MAT EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Aulas 14-17

Tamanho: px
Começar a partir da página:

Download "MAT EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Aulas 14-17"

Transcrição

1 MAT EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Aulas Bulmer Mejía García 2010-II Universidade Federal de Viçosa

2 EDO de Cauchy-Euler É uma EDO da seguinte forma a n (ax+b) n y (n) (x)+a n 1 (ax+b) n 1 y (n 1) (x)+...+a 1 (ax+b)y (x)+a 0 y(x) = 0 onde a i R e a n 0 A mudança de variável ax + b = e t transforma a EDO acima em b n y (n) (t) + b n 1 y (n 1) (t) b 1 y (t) + b 0 y(t) = 0 onde b i R e b n 0. Nesta última EDO podemos aplicar o que foi estudado nas aulas anteriores.

3 EDO de Cauchy-Euler Considerando o caso particular n = 2, a = 1 e b = 0, devemos estudar o P.C. associado b 2 λ 2 + b 1 λ + b 0 = 0. Suponha que uma das raizes seja λ 1 o que geraria a solução y 1 (t) = y 1 (x(t)) = e λ1t, de onde y 1 (x) = x λ1 seria uma solução da EDO original. Portanto, uma forma direta de procurar uma solução para a EDO a 2 x 2 y (x) + a 1 xy (x) + a 0 y(x) = 0 é propor uma solução da forma y(x) = x λ, para λ a ser determinado. Derivando e substituindo, a EDO transforma em: x λ [a 2 λ(λ 1) + a 1 λ + a 0 ] = x λ [a 2 λ 2 + (a 1 a 2 )λ + a 0 ] = 0 De onde, basta estudar = (a 1 a 2 ) 2 4a 2 a 0

4 EDO de Cauchy-Euler CASO 1. Se > 0, temos duas raizes reais distintas de onde φ 1 (x) = x λ1 e φ 2 (x) = x λ2 e a solução geral é φ(x) = c 1 φ 1 (x) + c 2 φ 2 (x) CASO 2. Se = 0, temos raiz repetida λ 1 = λ 2 = a 2 a 1, o que nos 2a 2 dá φ 1 (x) = x λ1. Aplicando o método de redução de ordem obtemos φ 2 (x) = x λ1 ln(x). Portanto, a solução geral é φ(x) = c 1 φ 1 (x) + c 2 φ 2 (x) = c 1 x λ1 + c 2 x λ1 ln(x) CASO 3. Se < 0, temos raizes complexas λ 1 = α + iβ e λ 2 = α iβ, o que nos dá solução na forma x α±iβ = e (α+iβ) ln(x) = x α [cos (β ln(x)) ± isen (β ln(x))] De onde φ 1 (x) = x α cos (β ln(x)) e φ 2 (x) = x α sen (β ln(x)), e a solução geral segue a partir daqui.

5 EDO de Cauchy-Euler Exemplos 1. x 2 y + 5xy + 4y = 0 2. x 2 y + xy y = 0 3. x 2 y + 3xy + y = 0 4. (x + 2) 2 y + 3(x + 2)y 3y = 0 5. x 2 y xy + y = 2x 6. x 2 y 2xy + 2y = x 2 2x x 2 y xy + 2y = x ln(x) 8. Resolver xy + 2y xy = 2e 2x, se y 1 = x 1 e x e y 2 = x 1 e x são soluções da EDO homogênea. 9. x 2 y + xy + y = x(6 ln(x)) 10. x 2 y xy 16 ln(x) 3y = x

6 EDO LINEARES DE 1RA E 2DA ORDEM: APLICAÇÕES As equações diferenciais tem muitas aplicações em diferentes campos do saber, tais aplicações modelam situações de cada área levando em consideração leis que regem os fenómenos que queremos modelar. A correta modelação da lugar a equações diferenciais muitas vezes complicadas, principalmente em derivadas parciais, para as quais não temos método de solução. Por esta razão um estudo qualitativo torna-se mais apropriado do que um estudo quantitativo a não ser que estejamos interessados em valores númericos aproximados, em cujo caso técnicas de cálculo numérico vem em nosso auxilio. Entre as aplicações das equações diferenciais ordinárias lineares podemos citar:

7 EDO LINEARES DE 1RA E 2DA ORDEM: APLICAÇÕES EDO PRIMEIRA ORDEM 1 Trajetorias ortogonais 2 Mecânica e circuitos elétricos do tipo LR e RC em série 3 Química: Desintegração radioativa e problemas de misturas 4 Biología: Problemas de Crescimento de decrescimento. EDO DE SEGUNDA ORDEM 1 Movimento harmônico simples 2 Oscilações livres e forçadas 3 Circuitos LRC em série 4 Vigas horizontais 5 Péndulo simples 6 Economia

8 APLICAÇÕES - PROBLEMAS 1. Determine as π 4 -trajetórias da família de curvas x 2 + y 2 = c. Solução: O ângulo θ em que duas curvas f e g se cortam em um dado ponto é dado por tan(θ) = tan(α β) = tan(α) tan(β) 1 + tan(α) tan(β) = f g 1 + f g Derivando a família de curvas dada, obtemos x + yy = 0 ou y = x y, logo tan( π 4 ) = y + x y 1 xy de onde obtemos a EDO homogênea y (x y) + (x + y)y = 0, cuja solução é x 2 + y 2 = ce 2 arctan( y x ), que é a família procurada.

9 APLICAÇÕES - PROBLEMAS 2. Um assado pesando cinco libras, inicialmente a 50 F, é posto no forno a 375 F às cinco horas da tarde. Depois de 75 minutos a temperatura T (t) do assado é de 125 F. Em que instante a temperatura do assado será de 150 F, isto é, mal passado? Solução: A lei de resfriamento de Newton: a taxa de variação temporal da temperatura T (t) = T de um corpo é proporcional à diferença entre T e a temperatura do ambiente A em volta De onde a EDO dt = k(t A), k > 0 dt Com os dados do problema obtemos t 105min. para o assado alcançar a temperatura de 125 F.

10 APLICAÇÕES - PROBLEMAS 3. A taxa de crescimento da população de uma certa cidade é proporcional ao número de habitantes. Se a população em 1950 era de e em 1980 de , qual a população esperada em 2010? Solução: Seja N a população. Do enunciado temos dn(t) dt = kn(t), cuja solução é N(t) = ce kt Usando os dados do problema chegamos a que em 2010 a população esperada será de habitantes.

11 APLICAÇÕES - PROBLEMAS 4. Um estudante portador de um virus de gripe retorna ao campus univeristário (isolado), que tem 1000 estudantes. Suponha que a velocidade de propagação do virus da gripe é proporcional tanto ao número de estudantes infestados como aos que não estão infestados. Determine o número de estudantes infestados com o virus após 6 dias, se é observado que o número de infestados após 4 dias chegou a 50. Solução: Seja x(t) o número de infestados após t dias, então dx dt = x(1000 x), de onde x(t) = 1000Ae1000kt 1 + Ae 1000kt Pelas condições do problema: x(t) = Portanto x(6) = e 0,990578t

12 APLICAÇÕES - PROBLEMAS 5. Numa excavação achou-se um osso antigo que contem 1 8 da quantidade original de C 14 que um osso atual contem. Determine a antiguidade do fóssil. Solução: Seja x(t) a quantidade de C 14 presente no osso no tempo t e seja x(0) = x 0. A meia-vida do carbono é 5568 anos, pelo que x(5568) = x 0 2 A velocidade de desintegração é proprocional a quantidade x(t), de onde dx = kx. Levando em consideração os dados k = 0, e dt x(t) = x 0 e 0, t. Desejamos saber quando ocorre x(t) = x 0 8, o que nos dá t = anos.

13 MOVIMENTO OSCILATÓRIO LIVRE 6. De forma experimental verificou-se que um peso de 4lb expande uma mola em 6 polegadas. Suspende-se o peso até a posição de equilibrio da mola e se deixa cair livremente a uma velocidade de 4pol/s.. Determine: O PVI que descreve o movimento. A equação do movimento. A posição, velocidade e aceleração do peso após 2 segundos. O periodo, a frequência e o gráfico da solução. Solução: 6pol = 1/2pe. Pela lei de Hooke F = kd, de onde k = 8lb/pe e m = W /g = 4/32 = 1/8slug. A condição de equilibrio dá mg = ks. O processo descrito e a segunda lei de Newton nos dá m d 2 x dt 2 = mg k(x + s), logo m d 2 x dt 2 = kx. a) d 2 x dt x = 0, x(0) = 0 e x (0) = 1/3. Os itens restantes se seguem imediatamente.

14 MOVIMENTO OSCILATÓRIO LIVRE AMORTECIDO m d 2 x dt 2 dx = ks β dt ou d 2 x dt 2 + 2λdx dt + ω2 x = 0 onde 2λ = β m e ω2 = k m O P.C. associado é r 2 + 2λr + ω 2 = 0, com raizes r 1 = λ + λ 2 ω 2 e r 2 = λ λ 2 ω 2 CASO 1. λ 2 ω 2 > 0, o movimento é super-amortecido = movimento suave e não oscilatório. CASO 2. λ 2 ω 2 = 0, o movimento é criticamente amortecido, há movimento oscilatório. CASO 3. λ 2 ω 2 < 0 o movimento é oscilatório, com amplitude indo a zero a medida que o tempo cresce infinitamente.

15 MOVIMENTO OSCILATÓRIO LIVRE AMORTECIDO 7. De forma experimental verificou-se que um peso de 4lb expande uma mola em 6 polegadas. O meio oferece resistência ao movimento do corpo em 2,5 vezes a velocidade instantânea. Determine a equação do movimento se o peso se desloca 4 polegadas por baixo da posição de equilibrio e se deixa livre. Solução: A equação diferencial do movimento é 4 d 2 x 32 dt 2 ou equivalentemente d 2 x dt dx + 64x = 0, com condições iniciais dt x(0) = 1/3 e x (0) = 0. Resolvendo a EDO temos = 8x 2, 5dx dt x(t) = 4 9 e 4t 1 9 e 16t

16 MOVIMENTO OSCILATÓRIO FORÇADO Consideramos forças externas que variam com o tempo. Para este caso consideramos f (t). Da segunda lei de Newton m d 2 x dt 2 dx = kx β dt +f (t) ou equivalentemente d 2 x dt 2 +2λdx dt +ω2 x = F (t) Onde 2λ = β m, ω2 = k m e F (t) = f (t) m

17 MOVIMENTO OSCILATÓRIO FORÇADO 8. Uma mola vertical com constante de 6lb/ft tem suspensa no seu extremo uma masa de 1/2slug. Aplica-se uma força externa dada por f (t) = 40sen (2t), t 0. Suponha que sobre a mola atue uma força amortecedora igual a duas vezes a velocidade instantânea e que inicialmente o corpo está no reposo na posição de equilibrio. Determine a posição do corpo em qualquer instante de tempo t. Solução: De acordo ao enunciado k = 6lb/ft, m = 1/2slug e β = 2, portanto a EDO que modela este problema é: d 2 x dt 2 + 4dx + 12x = 80sen (2t) dt Para a qual φ c (t) = e 2t (c 1 cos (22t) + c 2 sen (2 2t)) e φ p (t) = 5cos (2 2t) + 5sen (2 2t). As condições iniciais x(0) = x (0) = 0, proporcionam x(t) = 5e 2t cos (2 2t) + 5(sen (2t) cos (2t)

18 OUTRAS APLICAÇÕES Queremos estudar a deformação de uma viga horizontal. O momento é dado por M = EI d 2 y, onde E é a elasticidade da viga, I é o momento dx 2 de inércia. 9. Uma viga de 8m de comprimento está apoiada em duas colunas verticais. Se a viga tem uma carga uniforme de 500kg/m e uma carga central de 5000kg. Qual é a equação da curva elástica da viga? Solução: - Uma força aplicada no extremo direito a x m de P apontando para cima e igual a 1 ( ) 2 - Uma força de 500x apontando para baixo concentrada no ponto meio de OP - O momento flector é: M = F 1 d 1 F 2 d 2 = 2( )x 500x( x 2 ) = 4500x 250x A EDO é: EI d 2 y 2 = 4500x 250x dx 2 - Portanto y(x) = 1 EI (225 3 x 3 ) x x, é acurva elástica da viga.

Equações Diferenciais

Equações Diferenciais IFBA Equações Diferenciais Versão 1 Allan de Sousa Soares Graduação: Licenciatura em Matemática - UESB Especilização: Matemática Pura - UESB Mestrado: Matemática Pura - UFMG Vitória da Conquista - BA 2013

Leia mais

Equa c oes Diferenciais Ordin arias - Aplica c oes Marcelo Nascimento

Equa c oes Diferenciais Ordin arias - Aplica c oes Marcelo Nascimento Equações Diferenciais Ordinárias - Aplicações Marcelo Nascimento 2 Sumário 1 Aplicações 5 1.1 Desintegração Radioativa........................... 5 1.2 Resfriamento de um corpo..........................

Leia mais

Sessão 1: Generalidades

Sessão 1: Generalidades Sessão 1: Generalidades Uma equação diferencial é uma equação envolvendo derivadas. Fala-se em derivada de uma função. Portanto o que se procura em uma equação diferencial é uma função. Em lugar de começar

Leia mais

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um alto-falante, ou de um instrumento de percussão. Um terremoto

Leia mais

Física 2 - Movimentos Oscilatórios. Em um ciclo da função seno ou cosseno, temos que são percorridos 2π rad em um período, ou seja, em T.

Física 2 - Movimentos Oscilatórios. Em um ciclo da função seno ou cosseno, temos que são percorridos 2π rad em um período, ou seja, em T. Física 2 - Movimentos Oscilatórios Halliday Cap.15, Tipler Cap.14 Movimento Harmônico Simples O que caracteriza este movimento é a periodicidade do mesmo, ou seja, o fato de que de tempos em tempos o movimento

Leia mais

Seção 9: EDO s lineares de 2 a ordem

Seção 9: EDO s lineares de 2 a ordem Seção 9: EDO s lineares de a ordem Equações Homogêneas Definição. Uma equação diferencial linear de segunda ordem é uma equação da forma onde fx, gx e rx são funções definidas em um intervalo. y + fx y

Leia mais

1. Movimento Harmônico Simples

1. Movimento Harmônico Simples Física Oscilações 1. Movimento Harmônico Simples Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante elástica K que realiza oscilações em torno de seu ponto

Leia mais

y (n) (x) = dn y dx n(x) y (0) (x) = y(x).

y (n) (x) = dn y dx n(x) y (0) (x) = y(x). Capítulo 1 Introdução 1.1 Definições Denotaremos por I R um intervalo aberto ou uma reunião de intervalos abertos e y : I R uma função que possua todas as suas derivadas, a menos que seja indicado o contrário.

Leia mais

, (1) onde v é o módulo de v e b 1 e b 2 são constantes positivas.

, (1) onde v é o módulo de v e b 1 e b 2 são constantes positivas. Oscilações Amortecidas O modelo do sistema massa-mola visto nas aulas passadas, que resultou nas equações do MHS, é apenas uma idealização das situações mais realistas existentes na prática. Sempre que

Leia mais

1. Resolva as equações diferenciais: 2. Resolver os seguintes Problemas dos Valores Iniciais:

1. Resolva as equações diferenciais: 2. Resolver os seguintes Problemas dos Valores Iniciais: Universidade do Estado de Mato Grosso - Campus de Sinop Cálculo Diferencial e Integral III - FACET Lista 6 Profª Ma. Polyanna Possani da Costa Petry 1. Resolva as equações diferenciais: a) y + 2y = 2e

Leia mais

F = m d 2 x d t 2. temos que as forças a única força que atua no bloco é a força elástica da mola ( F E ), dada por. F E = k x

F = m d 2 x d t 2. temos que as forças a única força que atua no bloco é a força elástica da mola ( F E ), dada por. F E = k x Um bloco de massa m = 0,5 kg é ligado a uma mola de constante elástica k = 1 N/m. O bloco é deslocado de sua posição de equilíbrio O até um ponto P a 0,5 m e solto a partir do repouso, determine: a) A

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP96 - Física para Engenharia II Prova P - Gabarito. Uma plataforma de massa m está presa a duas molas iguais de constante elástica k. A plataforma pode oscilar sobre uma superfície horizontal sem atrito.

Leia mais

Lista 2 - EDO s de Ordem Superior

Lista 2 - EDO s de Ordem Superior Lista - EDO s de Ordem Superior. Use o teorema de eistência e unidade de soluções, para EDO s lineares, para encontrar um intervalo em que os PVI s abaio possuam solução única. (a) ( )y 00 + 3y = ; y(0)

Leia mais

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E SUPERCRÍTICO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 20 de março de 2013 Roteiro 1 Amortecidas forçadas Roteiro Amortecidas forçadas 1 Amortecidas

Leia mais

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP)

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP) MAT 1351 : Cálculo para Funções de Uma Variável Real I Sylvain Bonnot (IME-USP) 2016 1 Aplicação das derivadas: Equações diferenciais Teorema As soluções da equação y = 0 num intervalo (a, b) são exatamente

Leia mais

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto.

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Exemplos: pêndulos, ponte ao ser submetida à passagem de um veículo, asas de um avião ao sofrer turbulência

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula Aula 3 010 Movimento Harmônico Simples: Exemplos O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola executando vibrações de pequenas amplitudes

Leia mais

massa do corpo: m; constante elástica da mola: k; adotemos a aceleração da gravidade igual a g.

massa do corpo: m; constante elástica da mola: k; adotemos a aceleração da gravidade igual a g. Um corpo, de massa m, está suspenso pela extremidade de uma mola, de constante elástica, a outra extremidade da mola está presa ao teto. Afasta-se o corpo da posição de equilíbrio e libera-se o corpo.

Leia mais

Série IV - Momento Angular (Resoluções Sucintas)

Série IV - Momento Angular (Resoluções Sucintas) Mecânica e Ondas, 0 Semestre 006-007, LEIC Série IV - Momento Angular (Resoluções Sucintas) 1. O momento angular duma partícula em relação à origem é dado por: L = r p a) Uma vez que no movimento uniforme

Leia mais

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E SUPERCRÍTICO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 26 de março de 2018 Roteiro 1 Modelo geral Amortecimento supercrítico Amortecimento subcrítico

Leia mais

Complementos de Análise Matemática

Complementos de Análise Matemática Instituto Politécnico de Viseu Escola Superior de Tecnologia Ficha prática n o 3 - Equações Diferenciais 1. Determine as equações diferenciais das seguintes famílias de linhas: (a) y = cx (b) y = cx 3

Leia mais

Física Geral e Experimental III

Física Geral e Experimental III Física Geral e Experimental III Oscilações Nosso mundo está repleto de oscilações, nas quais os objetos se movem repetidamente de um lado para outro. Eis alguns exemplos: - quando um taco rebate uma bola

Leia mais

UNIDADE 15 OSCILAÇÕES

UNIDADE 15 OSCILAÇÕES UNIDADE 15 OSCILAÇÕES 557 AULA 40 OSCILAÇÕES OBJETIVOS: - DEFINIR O CONCEITO DE OSCILAÇÃO; - CONHECER AS GRANDEZAS QUE DESCREVEM O MOVIMENTO. 40.1 Introdução: Há, na Natureza, um tipo de movimento muito

Leia mais

5.1 Exercícios Complementares

5.1 Exercícios Complementares 5.1 Exercícios Complementares 6.4A Usando a De nição 6.1.3 ou o Teorema 6.1.9, mostre que as funções dadas são soluções LI da EDO indicada. (a) y 1 (x) = sen x; y (x) = cos x; y 00 + y = 0; (b) y 1 (x)

Leia mais

Análise Complexa e Equações Diferenciais 2 o Semestre 2013/14 Cursos: LEAN, MeMec

Análise Complexa e Equações Diferenciais 2 o Semestre 2013/14 Cursos: LEAN, MeMec Análise Complexa e Equações Diferenciais 2 o Semestre 2013/14 Cursos: LEAN, MeMec M Paluch Aulas 28 33 7 23 de Abril de 2014 Exemplo de uma equação diferencial A Lei de Newton para a propagação de calor,

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Farias Arquivo em anexo Conteúdo Programático Bibliografia

Leia mais

Equações Diferenciais

Equações Diferenciais IFBA Equações Diferenciais Versão 1 Allan de Sousa Soares Graduação: Licenciatura em Matemática - UESB Especilização: Matemática Pura - UESB Mestrado: Matemática Pura - UFMG Vitória da Conquista - BA 2013

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Farias Arquivo em anexo Conteúdo Programático Bibliografia

Leia mais

Universidade Federal de Rio de Janeiro. Gabarito da Segunda Prova de Cálculo II

Universidade Federal de Rio de Janeiro. Gabarito da Segunda Prova de Cálculo II Universidade Federal de Rio de Janeiro Instituto de Matemática Departamento de Métodos Matemáticos Prof. Jaime E. Muñoz Rivera Gabarito da Segunda Prova de Cálculo II Rio de Janeiro 5 de outubro de 007

Leia mais

Solução Comentada da Prova de Física

Solução Comentada da Prova de Física Solução Comentada da Prova de Física 01. Uma partícula parte do repouso, no instante t = 0, na direção positiva do eixo x. O gráfico da aceleração da partícula ao longo eixo x, em função do tempo, é mostrado

Leia mais

massa do corpo: m; constante elástica da mola: k.

massa do corpo: m; constante elástica da mola: k. Um corpo, de massa m, está preso a extremidade de uma mola, de constante elástica k, e apoiado sobre uma superfície horizontal sem atrito. A outra extremidade da mola se encontra presa em ponto fixo. Afasta-se

Leia mais

d 2 h dt 2 = 9, 8 dh b) Para a altura inicial da massa h(0) = 200 metros e velocidade inicial v(0) = 9, 8m/s, onde v(t) = dh

d 2 h dt 2 = 9, 8 dh b) Para a altura inicial da massa h(0) = 200 metros e velocidade inicial v(0) = 9, 8m/s, onde v(t) = dh TURMA 202: Modelagem Matemática PRA3 Prof. José A. Dávalos Chuquipoma Questão LER 04 LISTA DE EXERCÍCIOS RESOLVIDOS 04 Data para submissão na Plataforma Moodle: 22/09/204 Um objeto de massa m = se encontra

Leia mais

Movimento Harmônico Simples - III Relação entre o MHS e o MCU Oscilações amortecidas Oscilações Forçadas e Ressonância. Prof. Ettore Baldini-Neto

Movimento Harmônico Simples - III Relação entre o MHS e o MCU Oscilações amortecidas Oscilações Forçadas e Ressonância. Prof. Ettore Baldini-Neto Movimento Harmônico Simples - III Relação entre o MHS e o MCU Oscilações amortecidas Oscilações Forçadas e Ressonância Prof. Ettore Baldini-Neto 1610: Galileu, usando um telescópio recém construído, descobre

Leia mais

Seção 11: EDOLH com coeficientes constantes

Seção 11: EDOLH com coeficientes constantes Seção 11: EDOLH com coeficientes constantes Observação fundamental: Se L(y) = y + py + qy, com p, q constantes então L(e λt ) = ( λ + pλ + q ) e λt. Portanto a EDO L(y) = 0 pode ter solução da forma y

Leia mais

Nota de Aula: Equações Diferenciais Ordinárias de 2 Ordem. ( Aplicações )

Nota de Aula: Equações Diferenciais Ordinárias de 2 Ordem. ( Aplicações ) Nota de Aula: Equações Diferenciais Ordinárias de Ordem ( Aplicações ) Vamos nos ater a duas aplicações de grande interesse na engenharia: Sistema massa-mola-amortecedor ( Oscilador Mecânico ) O Sistema

Leia mais

Aula do cap. 16 MHS e Oscilações

Aula do cap. 16 MHS e Oscilações Aula do cap. 16 MHS e Oscilações Movimento harmônico simples (MHS). Equações do MHS soluções, x(t), v(t) e a(t). Relações entre MHS e movimento circular uniforme. Considerações de energia mecânica no movimento

Leia mais

Resposta: (A) o traço é positivo (B) o determinante é negativo (C) o determinante é nulo (D) o traço é negativo (E) o traço é nulo.

Resposta: (A) o traço é positivo (B) o determinante é negativo (C) o determinante é nulo (D) o traço é negativo (E) o traço é nulo. MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 201/2018 EIC0010 FÍSICA I 1º ANO, 2º SEMESTRE 12 de junho de 2018 Nome: Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário

Leia mais

Vibrações e Dinâmica das Máquinas Aula Fundamentos de vibrações. Professor: Gustavo Silva

Vibrações e Dinâmica das Máquinas Aula Fundamentos de vibrações. Professor: Gustavo Silva Vibrações e Dinâmica das Máquinas Aula Fundamentos de vibrações Professor: Gustavo Silva 1 1.Movimentos Movimento oscilatório é qualquer movimento onde o sistema observado move-se em torno de uma certa

Leia mais

Prova P3 Física para Engenharia II, turma nov. 2014

Prova P3 Física para Engenharia II, turma nov. 2014 Questão 1 Imagine que você prenda um objeto de 5 g numa mola cuja constante elástica vale 4 N/m. Em seguida, você o puxa, esticando a mola, até 5 cm da sua posição de equilíbrio, quando então o joga com

Leia mais

b) (0,5) Supondo agora que µ é uma função linear de x e que µ = µ 0 para x = 0 e µ = µ L para x = L. Obter µ(x) para o intervalo 0 x L.

b) (0,5) Supondo agora que µ é uma função linear de x e que µ = µ 0 para x = 0 e µ = µ L para x = L. Obter µ(x) para o intervalo 0 x L. Problemas 1) (2,5) Um bloco de massa m = 0, 05 kg, apoiado sobre uma mesa horizontal sem atrito, está ligado à extremidade de uma mola de constante elástica k = 20 N/m. Este conjunto está imerso em um

Leia mais

Lista de Exercícios 4 Disciplina: CDI1 Turma: 1BEEN

Lista de Exercícios 4 Disciplina: CDI1 Turma: 1BEEN Lista de Exercícios 4 Disciplina: CDI1 Turma: 1BEEN Prof. Alexandre Alves Universidade São Judas Tadeu 1 Limites no infinito Exercício 1: Calcule os seguintes limites (a) (b) (c) (d) ( 1 lim 10 x + x +

Leia mais

Física para Engenharia II - Prova P a (cm/s 2 ) -10

Física para Engenharia II - Prova P a (cm/s 2 ) -10 4320196 Física para Engenharia II - Prova P1-2012 Observações: Preencha todas as folhas com o seu nome, número USP, número da turma e nome do professor. A prova tem duração de 2 horas. Não somos responsáveis

Leia mais

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4)

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) [0000]-p1/7 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) ando necessário, use π = 3, 14, g=10 m/s. (1) [1,0] Um móvel executa MHS e obedece à função horária x=cos(0,5πt+π), no SI. O tempo necessário para que este

Leia mais

= 0,7 m/s. F = m d 2 x d t 2

= 0,7 m/s. F = m d 2 x d t 2 Um bloco de massa m = 0,5 kg é ligado a uma mola de constante elástica k = 16,5 N/m e a um amortecedor de constante de amortecimento b = 0,5 N.s/m. O bloco é deslocado de sua posição de equilíbrio O até

Leia mais

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações Movimento Oscilatório Cinemática do Movimento Harmônico Simples (MHS) MHS e Movimento

Leia mais

Solução Comentada da Prova de Física

Solução Comentada da Prova de Física Solução Comentada da Prova de Física 01. Uma partícula parte do repouso, no instante t = 0, na direção positiva do eixo x. O gráfico da aceleração da partícula ao longo eixo x, em função do tempo, é mostrado

Leia mais

MOVIMENTO OSCILATÓRIO

MOVIMENTO OSCILATÓRIO MOVIMENTO OSCILATÓRIO 1.0 Noções da Teoria da Elasticidade A tensão é o quociente da força sobre a área aplicada (N/m²): As tensões normais são tensões cuja força é perpendicular à área. São as tensões

Leia mais

2. Em um sistema massa-mola temos k = 300 N/m, m = 2 kg, A = 5 cm. Calcule ω, T, f, E (12,25 rad/s; 0,51 s; 1,95 Hz; 0,38 J).

2. Em um sistema massa-mola temos k = 300 N/m, m = 2 kg, A = 5 cm. Calcule ω, T, f, E (12,25 rad/s; 0,51 s; 1,95 Hz; 0,38 J). FÍSICA BÁSICA II - LISTA 1 - OSCILAÇÕES - 2019/1 1. Em um sistema massa-mola temos k = 200 N/m, m = 1 kg, x(0) = A = 10 cm. Calcule ω, T, f, v m, a m, E (14,14 rad/s; 0,44 s; 2,25 Hz; 1,41 m/s; 20 m/s

Leia mais

O termo modelo é utilizado freqüentemente como sinônimo de edo quando referida a aplicações. A seguir, apresentaremos alguns modelos:

O termo modelo é utilizado freqüentemente como sinônimo de edo quando referida a aplicações. A seguir, apresentaremos alguns modelos: Capítulo 2 Modelos O termo modelo é utilizado freqüentemente como sinônimo de edo quando referida a aplicações. A seguir, apresentaremos alguns modelos: 2.1 Molas Considere uma mola, de massa desprezível,

Leia mais

Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros

Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros Movimento Periódico O movimento é um dos fenômenos mais fundamentais

Leia mais

= 0,28 m/s. F = m d 2 x d t 2

= 0,28 m/s. F = m d 2 x d t 2 Um bloco de massa m = 0,1 kg é ligado a uma mola de constante elástica k = 0,6 N/m e a um amortecedor de constante de amortecimento b = 0,5 N.s/m. O bloco é deslocado de sua posição de equilíbrio O até

Leia mais

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto.

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Exemplos: pêndulos, ponte ao ser submetida à passagem de um veículo, asas de um avião ao sofrerem turbulência

Leia mais

Equações diferencias ordinárias - Exercícios

Equações diferencias ordinárias - Exercícios Página 1 de 5 Equações diferencias ordinárias - Exercícios 1) A lei do resfriamento de Newton diz que a temperatura de um corpo varia a uma taxa proporcional à diferença entre a temperatura do mesmo e

Leia mais

Universidade Federal do Pampa UNIPAMPA. Oscilações. Prof. Luis Armas

Universidade Federal do Pampa UNIPAMPA. Oscilações. Prof. Luis Armas Universidade Federal do Pampa UNIPAMPA Oscilações Prof. Luis Armas Que é uma oscilação? Qual é a importância de estudar oscilações? SUMARIO Movimentos oscilatórios periódicos Movimento harmônico simples

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP2196 - Física para Engenharia II Prova de Recuperação - 14/02/200 - Gabarito 1. Uma massa é abandonada com velocidade inicial igual a zero de modo que atinge o solo 10 segundos depois de solta. Desprezando

Leia mais

Séries e Equações Diferenciais Lista 04 EDO s de Primeira Ordem e Aplicações

Séries e Equações Diferenciais Lista 04 EDO s de Primeira Ordem e Aplicações Séries e Equações Diferenciais Lista 04 EDO s de Primeira Ordem e Aplicações Professor: Daniel Henrique Silva Introdução às Equações Diferenciais 1) Defina equação diferencial. 2) Seja f(x; y) uma função

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 15 de março de 2013

Prof. Dr. Ronaldo Rodrigues Pelá. 15 de março de 2013 PÊNDULOS Mecânica II (FIS-6) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 15 de março de 013 Roteiro 1 Harmônicas Roteiro Harmônicas 1 Harmônicas Harmônicas Sistemas que vibram: constituem uma classe de problemas

Leia mais

Física 2 - EMB5039. Prof. Diego Duarte Oscilações (lista 4) 19 de abril de 2017

Física 2 - EMB5039. Prof. Diego Duarte Oscilações (lista 4) 19 de abril de 2017 Física 2 - EMB5039 Prof. Diego Duarte Oscilações (lista 4) 19 de abril de 2017 1. Mostre que a equação que descreve o sistema massa-mola vertical da figura 1 é dada por: d 2 y dt 2 + ω2 y = 0 (1) em que

Leia mais

LISTA dy dx y x + y3 cos x = y = ky ay 3. dizemos que F (x, y) é homogênea de grau 0. Neste caso a equação diferencial y =

LISTA dy dx y x + y3 cos x = y = ky ay 3. dizemos que F (x, y) é homogênea de grau 0. Neste caso a equação diferencial y = MAT 01167 LISTA Equações Diferenciais Resolva: 1. y = y x + x y, y ( ) 1 8 =. (1 x ) dy dx (1 + x) y = y. dy dx y x + y cos x = 0 4. y = ky ay. Se uma função F (x, y) satisfaz a condição F (t x, t y) =

Leia mais

MAP2223 Introdução às Equações Diferenciais Ordinárias e Aplicações

MAP2223 Introdução às Equações Diferenciais Ordinárias e Aplicações MAP3 Introdução às Equações Diferenciais Ordinárias e Aplicações Lista 1 o semestre de 18 Prof. Claudio H. Asano 1 Classificação das Equações Diferenciais 1.1 Classifique as equações diferenciais a seguir.

Leia mais

Departamento de Física - ICE/UFJF Laboratório de Física II

Departamento de Física - ICE/UFJF Laboratório de Física II 1 Objetivos Gerais: Movimento Harmônico Amortecido Determinar o período de oscilação do pêndulo T ; Determinar a constante de amortecimento. *Anote a incerteza dos instrumentos de medida utilizados: ap

Leia mais

Introdução às Equações Diferenciais e Ordinárias

Introdução às Equações Diferenciais e Ordinárias Introdução às Equações Diferenciais e Ordinárias - 017. Lista - EDOs lineares de ordem superior e sistemas de EDOs de primeira ordem 1 São dadas trincas de funções que são, em cada caso, soluções de alguma

Leia mais

Departamento de Física - ICE/UFJF Laboratório de Física II

Departamento de Física - ICE/UFJF Laboratório de Física II Movimentos Periódicos 1 Objetivos Gerais: Verificar experimentalmente o comportamento da força exercida por uma mola em função do alongamento da mola; Determinar a constante de rigidez k da mola; Determinar

Leia mais

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4)

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) [0000]-p1/6 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) Respostas das versıes de m ltipla escolha: 16A7: (1) C; () D; (3) C; (4) D; 3A33: (1) C; () B; (3) C; (4) E; E7Hx: (1) C; () B; (3) B; (4) C; 11F: (1) A;

Leia mais

Movimento periódico é um movimento que um objecto repete com regularidade. O objecto regressa à posição inicial depois de um intervalo de tempo.

Movimento periódico é um movimento que um objecto repete com regularidade. O objecto regressa à posição inicial depois de um intervalo de tempo. Física 12.º Ano MOVIMENTOS OSCILATÓRIOS ADAPTADO DE SERWAY & JEWETT POR MARÍLIA PERES 2013 Movimento Periódico 2 Movimento periódico é um movimento que um objecto repete com regularidade. O objecto regressa

Leia mais

F = m d 2 x d t 2. F R = bv = b d x

F = m d 2 x d t 2. F R = bv = b d x Um bloco de massa m = 0,5 kg é ligado a uma mola de constante elástica k = 0,5 N/m e a um amortecedor de constante de amortecimento b = 0,5 N.s/m. O bloco é deslocado de sua posição de equilíbrio O até

Leia mais

em função de t é indique qual dos gráficos abaixo melhor representa uma primitiva y em função de t:

em função de t é indique qual dos gráficos abaixo melhor representa uma primitiva y em função de t: Centro Universitário UNIVATES Disciplina de Cálculo III Professora Maria Madalena Dullius Este teste é constituído por 0 questões de escolha múltipla e duas questões abertas. Dentre as alternativas, escolha

Leia mais

LISTA DE EXERCÍCIOS 2

LISTA DE EXERCÍCIOS 2 LISTA DE EXERCÍCIOS 2 Esta lista trata de vários conceitos associados ao movimento harmônico forçado e/ou amortecido. Tais conceitos são abordados no capítulo 4 do livro-texto (seções 4.1 a 4.5): Moysés

Leia mais

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2011/2012. EIC0010 FÍSICA I 1o ANO 2 o SEMESTRE

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2011/2012. EIC0010 FÍSICA I 1o ANO 2 o SEMESTRE MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2011/2012 EIC0010 FÍSICA I 1o ANO 2 o SEMESTRE Prova com consulta de formulário e uso de computador. Duração 2 horas. Nome do estudante: Pode consultar

Leia mais

7 Movimentos Oscilatórios

7 Movimentos Oscilatórios 7 Movimentos Oscilatórios 7.1. Uma massa m = 90 g ligada a uma mola é largada com velocidade inicial zero de um ponto a 2 cm da posição de equilíbrio. A constante da mola é k = 81 N /m. Considere o movimento

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ. 1. Use o gráfico de y = f(x) na figura em anexo para estimar o valor de f ( 2), f (1) e f (2).

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ. 1. Use o gráfico de y = f(x) na figura em anexo para estimar o valor de f ( 2), f (1) e f (2). UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ 3 a Lista de Exercícios de Cálculo Diferencial e Integral I: Derivada Prof. Wellington D. Previero 1. Use o gráfico de y = f(x) na figura em anexo para estimar

Leia mais

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4)

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) [0000]-p1/6 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) ando necessário, use π = 3, 14, g=10 m/s 2. Respostas da questões por versão de prova: E7Hx: (1) A; (2) E; (3) A; (4) E; 112F: (1) E; (2) B; (3) D; (4) B;

Leia mais

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Lista I

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Lista I EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Lista I 1. Desenhe um campo de direções para a equação diferencial dada. Determine o comportamento de y quando t +. Se esse comportamento depender do valor inicial de

Leia mais

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 9

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 9 591036 Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 9 A Equação de Onda em Uma Dimensão Ondas transversais em uma corda esticada Já vimos no estudo sobre oscilações que os físicos gostam de

Leia mais

Resumo e Lista de Exercícios. Física II Fuja do Nabo P

Resumo e Lista de Exercícios. Física II Fuja do Nabo P Resumo e Lista de Exercícios Física II Fuja do Nabo P1 018. Resumo 1. Movimento Harmônico Simples (MHS) Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante

Leia mais

O Sistema Massa-Mola

O Sistema Massa-Mola O Sistema Massa-Mola 1 O sistema massa mola, como vimos, é um exemplo de sistema oscilante que descreve um MHS. Como sabemos (aplicando a Segunda Lei de Newton) temos que F = ma Como sabemos, no caso massa-mola

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHRIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA ELÉTRICA. 2ª Lista de SEL0417 Fundamentos de Controle.

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHRIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA ELÉTRICA. 2ª Lista de SEL0417 Fundamentos de Controle. UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHRIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA ELÉTRICA ª Lista de SEL0417 undamentos de Controle Professor: Rodrigo Andrade Ramos Questão 1 Suponha que um satélite

Leia mais

Centro Federal de Educação Tecnológica de Minas Gerais

Centro Federal de Educação Tecnológica de Minas Gerais Centro Federal de Educação ecnológica de Minas Gerais Graduação em Engenharia da Computação Prática 07 - Oscilação Sistema Massa-Mola Alunos: Egmon Pereira; Igor Otoni Ripardo de Assis Leandro de Oliveira

Leia mais

1 Introdução Definições Problemas de Valor Inicial (PVI) Campos de Direções Teorema de Picard...

1 Introdução Definições Problemas de Valor Inicial (PVI) Campos de Direções Teorema de Picard... PREFÁCIO As equações diferenciais ordinárias apareceram de forma natural com os métodos do Cálculo Diferencial e Integral, descobertos por Newton e Leibnitz no final do século XVII, e se converteram na

Leia mais

FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA

FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA AULA 2 OSCILAÇÕES PROF.: KAIO DUTRA Movimento Harmônico Simples O movimento harmônico simples é um tipo básico de oscilação. Movimento Harmônico Simples Uma propriedade

Leia mais

EUF. Exame Unificado

EUF. Exame Unificado EUF Exame Unificado das Pós-graduações em Física Para o segundo semestre de 016 Respostas esperadas Parte 1 Estas são sugestões de possíveis respostas Outras possibilidades também podem ser consideradas

Leia mais

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 6

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 6 59136 Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 6 Oscilações Forçadas e Ressonância Nas aulas precedentes estudamos oscilações livres de diferentes tipos de sistemas físicos. Em uma oscilação

Leia mais

Estabilidade Dinâmica

Estabilidade Dinâmica Estabilidade Dinâmica João Oliveira Departamento de Engenharia Mecânica, Área Científica de Mecânica Aplicada e Aeroespacial Instituto Superior Técnico Estabilidade de Voo, Eng. Aeroespacial Versão de

Leia mais

Trabalho de Equações Diferenciais Ordinárias

Trabalho de Equações Diferenciais Ordinárias Universidade Tecnológica Federal do Paraná Diretoria de Graduação e Educação Prossional Departamento Acadêmico de Matemática Trabalho de Equações Diferenciais Ordinárias Data de Entrega: 16/12/2015 Nome:

Leia mais

depende apenas da variável y então a função ṽ(y) = e R R(y) dy

depende apenas da variável y então a função ṽ(y) = e R R(y) dy Formulario Equações Diferenciais Ordinárias de 1 a Ordem Equações Exactas. Factor Integrante. Dada uma equação diferencial não exacta M(x, y) dx + N(x, y) dy = 0. ( ) 1. Se R = 1 M N y N x depende apenas

Leia mais

Método de Euler. Marina Andretta/Franklina Toledo ICMC-USP. 29 de outubro de 2013

Método de Euler. Marina Andretta/Franklina Toledo ICMC-USP. 29 de outubro de 2013 Solução numérica de Equações Diferenciais Ordinárias: Método de Euler Marina Andretta/Franklina Toledo ICMC-USP 29 de outubro de 2013 Baseado nos livros: Análise Numérica, de R. L. Burden e J. D. Faires;

Leia mais

Oscilações II. Estudo: Pêndulo Simples Oscilador Forçado Ressonância

Oscilações II. Estudo: Pêndulo Simples Oscilador Forçado Ressonância Oscilações II Estudo: Pêndulo Simples Oscilador Forçado Ressonância Oscilações - Pêndulo Considere um corpo de massa m, presso a extremidade livre de um fio inextensível de comprimento L, como indicado

Leia mais

MAT Aula 14/ 30/04/2014. Sylvain Bonnot (IME-USP)

MAT Aula 14/ 30/04/2014. Sylvain Bonnot (IME-USP) MAT 0143 Aula 14/ 30/04/2014 Sylvain Bonnot (IME-USP) 2014 1 Resumo: 1 Site: http://www.ime.usp.br/~sylvain/courses.html 2 Derivada de sen, cos 3 Regra da cadeia 4 Funções inversas 5 Derivada da função

Leia mais

Equações Diferenciais Noções Básicas

Equações Diferenciais Noções Básicas Equações Diferenciais Noções Básicas Definição: Chama-se equação diferencial a uma equação em que a incógnita é uma função (variável dependente) de uma ou mais variáveis (independentes), envolvendo derivadas

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia IV

MAT Cálculo Diferencial e Integral para Engenharia IV MAT456 - Cálculo Diferencial e Integral para Engenharia IV Parte A: Equações Diferenciais de 1 a Ordem o Semestre de 018-3 a Lista de exercícios 1) Os gráficos de duas soluções de y = x + y podem se cruzar

Leia mais

(Versão 2014/2) (b) (d)

(Versão 2014/2) (b) (d) MOVIMENTO HARMÔNICO SIMPLES (Versão 2014/2) 1. INTRODUÇÃO Um dos movimentos mais importantes que observamos na natureza é o movimento oscilatório. Chamado também movimento periódico ou vibracional. Em

Leia mais

Física para Engenharia II (antiga FEP2196) Turma 09 Sala C2-09 3as 13h10 / 5as 9h20. Turma 10 Sala C2-10 3as 15h00 / 5as 7h30.

Física para Engenharia II (antiga FEP2196) Turma 09 Sala C2-09 3as 13h10 / 5as 9h20. Turma 10 Sala C2-10 3as 15h00 / 5as 7h30. Física para Engenharia II 4320196 (antiga FEP2196) Turma 09 Sala C2-09 3as 13h10 / 5as 9h20. Turma 10 Sala C2-10 3as 15h00 / 5as 7h30. Profa. Márcia Regina Dias Rodrigues Depto. Física Nuclear IF USP Ed.

Leia mais

Objetivo: Determinar a equação da curva de deflexão e também encontrar deflexões em pontos específicos ao longo do eixo da viga.

Objetivo: Determinar a equação da curva de deflexão e também encontrar deflexões em pontos específicos ao longo do eixo da viga. - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Deflexão de Vigas Objetivo:

Leia mais

1. Matrizes. 1. Dê um exemplo, em cada alínea, de uma matriz A = [a ij ] m n com:

1. Matrizes. 1. Dê um exemplo, em cada alínea, de uma matriz A = [a ij ] m n com: Matemática Licenciatura em Biologia 4 / 5. Matrizes.. Dê um eemplo, em cada alínea, de uma matriz A = [a ij ] m n com: m =, n = cuja soma das entradas principais seja. (b) m = n = 4 com a a e a 4 = a 4.

Leia mais

SISTEMAS DE OSCILADORES

SISTEMAS DE OSCILADORES SISTEMAS DE OSCILADORES Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 5 de abril de 2018 Roteiro 1 Formulação geral Acoplamento fraco 2 Mesma direção Direções perpendiculares 3 Pêndulo

Leia mais

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 3. de maneira que o sistema se comporta como um oscilador harmônico simples.

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 3. de maneira que o sistema se comporta como um oscilador harmônico simples. 591036 Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 3 O Pêndulo Simples O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola

Leia mais

Equações Diferenciais Noções Básicas

Equações Diferenciais Noções Básicas Equações Diferenciais Noções Básicas Definição: Chama-se equação diferencial a uma equação em que a incógnita é uma função (variável dependente) de uma ou mais variáveis (variáveis independentes), envolvendo

Leia mais

1. Na tabela abaixo, estão representados os valores de uma função y(t), para diversos valores de t. t y

1. Na tabela abaixo, estão representados os valores de uma função y(t), para diversos valores de t. t y Centro Universitário UNIVATES Disciplina de Cálculo III Professora Maria Madalena Dullius Este teste é constituído por 16 questões de escolha múltipla. Dentre as alternativas, escolha apenas uma, a que

Leia mais

É o número de oscilações que acontecem por segundo. A medida é feita em hertz: T = 1 f. x = x m

É o número de oscilações que acontecem por segundo. A medida é feita em hertz: T = 1 f. x = x m 1 OSCILAÇÕES Veja o pêndulo simples abaixo. Suponha que a bola amarela parta da posição vertical de repouso até alcançar o ponto de máximo deslocamento positivo. Considerando que não há nenhuma perda,

Leia mais