E = E ds. o fluxo de campo elétrico através da superfície B do paralelepípedo da figura seria 2m 2m. Cm 2 C (2.3.3) <x=4m,y=1m,z=1m>

Tamanho: px
Começar a partir da página:

Download "E = E ds. o fluxo de campo elétrico através da superfície B do paralelepípedo da figura seria 2m 2m. Cm 2 C (2.3.3) <x=4m,y=1m,z=1m>"

Transcrição

1 .3 A dedução d lei de Guss A lei de Guss desceve um popiedde de integis de fluxo do cmpo elético tvés de supefícies fechds. Então o objeto de inteesse do nosso estudo são gndezs do tipo Φ E = E ds (.3.1) Gstmos ul pssd intei p pede o medo deste tipo de objeto. Se E fosse um densidde de fluxo de um escomento, teímos um intepetção bem concet. Infelizmente E não desceve nenhum escomento, e um ou outo de vocês pode egi com um bloueio de compeensão poue não consegue enxeg o ue est gndez epesent. Ms o ue impot é ue el é bem definid e pode se clculd. Po exemplo, se o cmpo elético fosse N 5 N N E x, y, z = xˆ 5 x y + yˆ x + zˆ 3 ( ) C m C m C (.3.) o fluxo de cmpo elético tvés d supefície B do plelepípedo d figu.3.1 sei m m N 5 N N fluxo em B = xˆ 5 4 m y + yˆ x + zˆ 3 ˆ C m x dy dz = 1m 1m m C m C z= y= N 1 Nm = ( m 1m ) ( 4m 1m ) = 3 Cm C (.3.3) <x=4m,y=m,z=m> A <x=1m,y=1m,z=1m> z y B <x=4m,y=1m,z=1m> <x=4m,y=m,z=1m> x Fig..3.1 Exemplo de fluxo de cmpo elético. Igulmente podemos clcul os fluxos ds outs fces p obte um integl sobe supefície fechd. O esultdo é um vlo bem definido ue desceve lgum popiedde do cmpo. Se você, leito, ind não ficou contente com ests gndezs, é bom se lemb dos tempos d Físic I. Lá você fomou um gndez ue e um glomedo muito esuisito de gndezs: mss vezes o uddo d velocidde, dividido po, e ind po cim sommos um mgh. Não é ssustdomente estnho este glomedo de gndezs? Ms não impot. O inteessnte e ue o vlo de mv / + mgh não mud no tempo, e este fto pemiti clcul coiss com muit fcilidde. Com s gndezs E ds temos mesm situção: não impot ue els 75

2 sejm estnhs; se els têm popieddes úteis, justific-se su definição. mos então veigu uis popieddes têm o fluxo de cmpo elético tvés de supefícies fechds. Começemos com um cso muito simples. Sej o cmpo elético o cmpo de um únic cg puntifome. Usemos como supefície de integção supefície de um pedço de cone muito fino ue tem seu vétice extmente no locl d cg como most figu.3.. O pedço de cone é limitdo po dois discos cicules nos pontos e b indicdos n figu. Fig..3. Supefície de integção fomd po um pedço de cone com vétice num cg elétic. O pedço é limitdo po dois discos cicules nos pontos e b. Os vetoes do cmpo elético desenhdos coespondem lgum vlo d cg >. Obvimente s ptes lteis do pedço cônico não contibuem p integl de fluxo, já ue o E cmpo é tngencil est supefície. As únics contibuições são ds tmps cicules. Se o cone fo Eb suficientemente fino, isto é, b com um ângulo de betu peueno, podemos substitui integção sobe s áes cicules po simples multiplicções. Se usmos posição d cg como oigem de coodends, podemos esceve os vetoes supefície dos dois discos com o veto unitáio ue pont n dieção do veto posição: S = ˆ A e S = + ˆ b A, onde A e A b b são s espectivs áes dos discos. A integl de fluxo tvés d supefície fechd d noss escolh é α ˆ ˆ E ds = A ˆ ˆ + A b 4πε 4πε b (.3.4) Os ios dos discos são popocionis à distânci d cg disco = tgα e conseuentemente s áes são popocionis o uddo d distânci: ( ) ( ) A = π tgα e Ab = πb tgα (.3.5) Inseindo este esultdo n eução (.3.4), pecebemos ue o fluxo ue ent no volume no disco é extmente cnceldo pelo fluxo ue si no disco b. Então integl de fluxo tvés d supefície do pedço de cone é simplesmente zeo: p o pedço de cone d figu.3. : E ds = (.3.6) 76

3 Fig..3.3 Supefície de integção fomd po um pedço de cone com vétice num cg elétic. O pedço é limitdo po dois discos inclindos em elção o veto ˆ. α S E b Sb O ue mudi neste esultdo se pemitíssemos ue o pedço de cone não fosse cicul? Obvimente não mudi nd. A diminuição udátic do módulo do cmpo sei out vez compensd po um cescimento udático ds áes. E se pemitíssemos tmps do pedço inclinds como n figu.3.3? Tmbém não mudi nd. A áe d tmp cesce po um fto 1/ cosβ onde β é o ângulo de inclinção d tmp, e este fto sei extmente compensdo pelo fto cosβ do poduto escl ente veto supefície e cmpo elético ue pont n ntig dieção noml. O póximo psso é pemiti um volume ulue ue não contém cg. Com popiedde ditiv dos integis de fluxo, podemos esceve integl de fluxo tvés d supefície deste tipo de volume como um som de pedços de cones como indicdo n figu.3.4. Eb Fig..3.4 Decomposição de um volume ue não contém em pedços de cones com vétices em. Repe ue este último esultdo vle tmbém p volumes com cviddes, inclusive no cso em ue cg puntifome estej loclizd n cvidde. A figu.3.5 ilust est situção 77

4 mos esumi o ue descobimos té go: P o cmpo elético gedo po um cg puntifome vle E ds =, (.3.7) desde ue cg não estej dento do volume. Fig..3.5 olume com cvidde. O fluxo tvés de do cmpo elético de um cg puntifome n cvidde é nulo. Repe ue os vetoes supefície n supefície inten do volume pontm p dento d cvidde. Podeímos te chegdo este esultdo mis pidmente clculndo divegênci do cmpo de um cg puntifome e plicndo o teoem de Guss. P todos os pontos do espço fo do lug d cg, encont-se com um cálculo simples ue div E =. Se o volume não contém cg, podemos supo div E = em todos os pontos do volume. O teoem de Guss fim 3 E ds = div E d Então segue o esultdo (.3.7). O luno inteessdo pode fze o cálculo d divegênci, ms ui pefeimos deduzi o esultdo (.3.7) geometicmente com s figus Est dedução pemite visuliz melho ue zão po tás do esultdo (.3.7) é ued udátic d intensidde do cmpo junto com o diecionmento dil dos vetoes E. Ago vmos conside um volume ue contém cg. Neste cso o cálculo d divegênci não jud, pois no pópio ponto d cg o cmpo não é definido e conseuentemente não podemos clcul divegênci. Neste cso o método geomético é o único cminho. Sej um volume ddo e cg puntifome estej em lgum lug no inteio do volume. Est no inteio do volume signific não pens, ms signific ue existe um bol B intei de lgum io > e cento no lug d cg ue fic dento do volume. A figu.3.6 most um exemplo. Fig..3.6 olume contendo um cg puntifome no seu inteio. Um bol de io > pode se escolhid em tono d cg ue fic inteimente dento do volume. Podemos esceve o volume como junção d bol B e um outo volume = \ B : = B (.3.8) 78

5 Com ditividde d gndez untidde de fonte, com (.3.8) e com segue E ds = E ds + E ds B B = (.3.9) Ms o volume não contém cg. Potnto, com o esultdo (.3.7), sbemos ue segund integl do ldo dieito é zeo. Temos então E ds = E ds (.3.1) B Isto é um esultdo impotnte. Ele signific ue temos o dieito de substitui supefície oiginl po um simples esfe. Nest esfe tudo pode se clculdo extmente. P fze este cálculo é conveniente coloc oigem de coodends n pópi posição d cg e us coodends esféics. Juntndo expessão do cmpo de um cg puntifome E = 4 πε ( ) com expessão d integl de supefície esféic (..14), obtemos E ds = E ds = B ϕ= θ= ϕ= θ= ˆ π π = E ˆ senθ dθ dϕ = π π ˆ = ˆ senθ dθ dϕ = 4πε π π π = senθ dθ dϕ = π senθ dθ = 4πε 4πε = 4π ϕ= θ= θ= π = ε ε (.3.11) (.3.1) Finlmente chegmos no ponto de pode entende po ue os físicos decidim esceve constnte de popocionlidde d lei de Coulomb de fom complicd 1/ 4πε. O cncelmento ue ocoeu nest últim linh é motivção. O 4π é o ângulo sólido de um esfe complet. Neste ponto vle inteompe dedução d lei de Guss e coment noção de ângulo sólido. A idei de medi ângulos com jud do compimento de um co pemite um genelizção do conceito ângulo. Imgine um cone. Este cone não pecis se cicul, ele pode te ulue fom. A figu.3.7 ilust isto. Fig..3.7 Cone de fom não cicul. Queemos um gndez p medi o unto este tipo de cone está beto ou fechdo. Est gndez é chmd ângulo sólido. A fom de medi isto é nálog à medição de ângulos comuns em dinos. Escolhe-se um esfe de 79

6 io com cento no vétice do cone. O cone sep um fgmento d supefície d esfe. A áe deste fgmento dividido pelo uddo do io do cículo é medid do ângulo sólido. Neste cso tmbém existe o costume de esceve um unidde ue n vedde é somente um comentáio. No cso est unidde é chmd stedino. Se bimos o cone totlmente, de tl fom ue o fgmento de supefície sepd sej supefície complet d esfe, o ângulo sólido tinge o vlo de 4π: ângulo sólido de um cone totlmente beto = 4π = π π = sen θ dθdϕ = ϕ= θ= 4π (.3.13) O ângulo sólido de um cone totlmente beto é um constnte impotnte n teoi de cmpos. Ms s pessos se cnsm de esceve os 4π e inventm um mnei de esconde est constnte n lei ue é menos usd. A lei de Guss é mis impotnte do ue lei de Coulomb; então se optou po coloc o 4π n lei de Coulomb de tl fom ue ele não peç n lei de Guss. Depois dest digessão pel definição de ângulo sólido, podemos volt à lei de Guss. Flt muito pouco p complet tudo. A únic estição ue temos ind é de temos um cmpo gedo po um únic cg puntifome. Podemos us ue integção é um opeção line p tt go o cso gel de um distibuição bitái de cgs. Imgine muits cgs puntifomes distibuíds no espço. mos chm os vloes ds cgs de k e s espectivs posições de k. Imginmos ind lgum volume e ueemos vli integl de fluxo do cmpo elético tvés d supefície deste volume. O cmpo elético gedo pels cgs é som de contibuições de cgs puntifomes: N k k E ( ) = 3 k = 4πε (.3.14) 1 Como integção é um opeção line, podemos toc odem de integção e somtóio no cálculo do fluxo: N N k k k k E ds = ds ds 3 = 3 k 1 4 k 1 4 = πε k = πε k (.3.15) P cd um dos temos d últim som, podemos plic os esultdos (.3.7) e (.3.1). Se cg k está fo do volume, contibuição dest cg no somtóio é zeo e se cg está dento de, contibuição é k / ε. No exemplo d figu.3.8 s cgs 1 e não dim nenhum contibuição, e s cgs 3, 4 e 5 dão contibuições. Então o somtóio esult n cg elétic totl contid no volume dividido pel constnte ε. Com isto chegmos à fom finl d lei de Guss: 1 k E ds = Qdento de (.3.16) ε Lembndo do bnho mtemático e ignondo o fto 1/ ε, podemos expess est lei veblmente de fom muito simples: 8

7 1 1 As fontes do cmpo E são s cgs elétics. (.3.17) Fig..3.8 Exemplo p lei de Guss. Somente s cgs 3, 4 e 5 contibuem p o fluxo tvés d supefície mostd. Cd cg positiv é um fonte positiv, e cd cg negtiv é um sumidouo. 3 A eução (.3.16) vle igulmente p um distibuição contínu de cg elétic. 4 Se cg não existe em fom de 5 ptículs puntifomes, podemos dividi o espço em muitos cubinhos minúsculos e tt cd cubinho como se fosse um cg puntifome. O esultdo sei out vez eução (.3.16). Neste cso podemos esceve cg totl no volume como um integl de volume d densidde de cg, e lei de Guss tom seguinte fom: 1 3 E ds = ρd ε (.3.18) Usndo o teoem de Guss, podemos esceve integl de supefície do ldo esuedo ind como integl de volume: div E d 1 = ρd ε 3 3 (.3.19) Um vez ue tudo está escito como integl de volume, podemos junt os dois ldos num únic integl ρ 3 ( div E) d = ε (.3.) Este esultdo deve vle p ulue volume! O um função (supostmente contínu) ue integd sobe ulue volume sempe esult em zeo só pode se função zeo. Então podemos conclui ue div E ρ = ε (.3.1) Est eução é fom locl ou difeencil d lei de Guss. El é nd mis do ue densidde d eução (.3.16). Isto signific: você esceve eução (.3.16) p um volume viável, divide mbos os ldos pelo volume e tom o limite. O esultdo é lei de Guss em fom locl. A lei de Guss integl deve vle p ulue volume, e eução locl (.3.1) deve vle p ulue ponto no espço. Aui no ciclo básico vmos tblh pedominntemente com fom integl d lei de Guss. Não é peciso te medo ds integis! De fto vmos plic lei de Guss sempe em situções ue esultm em integis totlmente tiviis. Ns disciplins mis vnçds de eletomgnetismo fom difeencil d lei de Guss seá tmbém de gnde utilidde. 81

8 Execícios: E.3.1: Num pocesso usdo n fbicção de cetos componentes de optoeletônic foi cid um distibuição de cgs elétics ue poduz o seguinte cmpo elético: p x < E ( x, y, z) = x x ˆ b A x e e p x 8 onde s constntes vlem: A = 1 N/C, =, µ m e b = 5,µ m (Compe gáfico). Clcule cg elétic contid num plelepípedo ddo pels seguintes condições: 3µ m x 4µ m y 1µ m z 1µ m E.3.: Depois de te lido est seção escev dedução d lei de Guss pti d lei de Coulomb sem olh ests nots. E.3.3: Escev os pontos de destue dest seção. E x [N/C], -,x1 7-4,x1 7-6,x1 7-8,x1 7-1,x x [µm] 8

5/21/2015. Física Geral III

5/21/2015. Física Geral III 5/1/15 Físic Gel III Aul eóic 17 (Cp. 1 pte /): 1) Lei de Ampèe ) Cmpo Mgnético fo de um fio etilíneo longo ) Cmpo Mgnético dento de um fio etilíneo longo 4) 5) oóide Pof. Mcio R. Loos Andé-Mie Ampèe 1775

Leia mais

O ROTACIONAL E O TEOREMA DE STOKES

O ROTACIONAL E O TEOREMA DE STOKES 14 O ROTACONAL E O TEOREMA DE STOKES 14.1 - O ROTACONAL A equção:. dl ( A) (14.1) ecion integ de inh do veto intensidde de cmpo mgnético fechdo L com coente tot envovid po esse cminho. o ongo de um cminho

Leia mais

Análise Vetorial. Prof Daniel Silveira

Análise Vetorial. Prof Daniel Silveira nálise Vetoil Pof Dniel Silvei Intodução Objetivo Revisão de conceitos de nálise vetoil nálise vetoil fcilit descição mtemátic ds equções encontds no eletomgnetismo Vetoes e Álgeb Vetoil Escles Vetoes

Leia mais

MECÂNICA VETORES AULA 3 1- INTRODUÇÃO

MECÂNICA VETORES AULA 3 1- INTRODUÇÃO AULA 3 MECÂNICA VETOES - INTODUÇÃO N Físic usmos dois gupos de gndezs: s gndezs escles e s gndezs vetoiis. São escles s gndezs que ficm ccteizds com os seus vloes numéicos e sus espectivs uniddes. São

Leia mais

9. Fontes do Campo Magnético

9. Fontes do Campo Magnético 9. Fontes do Cmpo Mgnético 9.1. A Lei de iot-svt 9.. A Foç Mgnétic ente dois Condutoes Plelos. 9.3. A Lei de Ampèe 9.4. O Fluxo Mgnético 9.5. A Lei de Guss do Mgnetismo. 9.6. O Cmpo Mgnético dum Solenóide.

Leia mais

Ondas Eletromagnéticas Interferência

Ondas Eletromagnéticas Interferência Onds Eletomgnétics Intefeênci Luz como ond A luz é um ond eletomgnétic (Mxwell, 1855). Ess ond é fomd po dois cmpos, E (cmpo elético) e B (cmpo mgnético). Esses cmpos estão colocdos de um fom pependicul

Leia mais

3. Lei de Gauss (baseado no Halliday, 4a edição)

3. Lei de Gauss (baseado no Halliday, 4a edição) 3. Lei de Guss (bsedo no Hllidy, 4 edição) Um Nov Fomulção d Lei de Coulomb 1.) A Lei de Coulomb é lei básic d letostátic, ms não está expesso num fom ue poss simplific os csos ue envolvem elevdo gu de

Leia mais

3. Lei de Gauss (baseado no Halliday, 4a edição)

3. Lei de Gauss (baseado no Halliday, 4a edição) 3. Lei de Guss (bsedo no Hllidy, 4 edição) Um Nov Fomulção d Lei de Coulomb 1.) A Lei de Coulomb é lei básic d letostátic, ms não está expesso num fom que poss simplific os csos que envolvem elevdo gu

Leia mais

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL UNIVERSIDADE DE SÃO PAULO Escol de Engenhi de Loen EEL LOB153 - FÍSICA III Pof. D. Duvl Rodigues Junio Deptmento de Engenhi de Mteiis (DEMAR) Escol de Engenhi de Loen (EEL) Univesidde de São Pulo (USP)

Leia mais

TIPOS DE GRANDEZAS. Grandeza escalar necessita apenas de uma. Grandeza vetorial Além do MÓDULO, ela

TIPOS DE GRANDEZAS. Grandeza escalar necessita apenas de uma. Grandeza vetorial Além do MÓDULO, ela TIPO DE GRANDEZA Gndez escl necessit pens de um infomção p se compeendid. Nesse cso, qundo citmos pens o MÓDULO d gndez (intensidde unidde) el fic definid. Exemplo: tempetu(30ºc), mss(00kg), volume(3400

Leia mais

CAPÍTULO 5 CINEMÁTICA DO MOVIMENTO PLANO DE CORPOS RÍGIDOS

CAPÍTULO 5 CINEMÁTICA DO MOVIMENTO PLANO DE CORPOS RÍGIDOS 4 CPÍTULO 5 CINEMÁTIC DO MOVIMENTO PLNO DE CORPOS RÍGIDOS O estudo d dinâmic do copo ígido pode se feito inicilmente tomndo plicções de engenhi onde o moimento é plno. Neste cpítulo mos nlis s equções

Leia mais

4/10/2015. Física Geral III

4/10/2015. Física Geral III 4//5 Físic Gel III Aul Teóic (Cp. 7 pte /): ) Cpcitânci ) Cálculo d cpcitânci p cpcitoes de plcs plels, cilíndicos e esféicos 3) Associções de cpcitoes Pof. Mcio R. Loos Cpcito Um cpcito é um componente

Leia mais

Magnetostática. Programa de Óptica e Electromagnetismo. OpE - MIB 2007/2008. Análise Vectorial (revisão) 2 aulas

Magnetostática. Programa de Óptica e Electromagnetismo. OpE - MIB 2007/2008. Análise Vectorial (revisão) 2 aulas Fculdde de Engenhi Mgnetostátic OpE - MB 27/28 Pogm de Óptic e Electomgnetismo Fculdde de Engenhi Análise Vectoil (evisão) 2 uls Electostátic e Mgnetostátic 8 uls mpos e Onds Electomgnétics 6 uls Óptic

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica SCLA PLITÉCICA A UIVRSIA SÃ PAUL eptmento de ngenhi Mecânic Mecânic I PM 3100 Pov n o Rec. t 0 / 0 / 018 ução d Pov: 10 minutos ão é pemitido o pote de clculdos, "tblets", celules e dispositivos similes.

Leia mais

Soluções do Capítulo 9 (Volume 2)

Soluções do Capítulo 9 (Volume 2) Soluções do pítulo 9 (Volume ) 1. onsidee s ests oposts e do tetedo. omo e, os pontos e estão, mbos, no plno medido de, que é pependicul. Logo, et é otogonl, po est contid em um plno pependicul.. Tomemos,

Leia mais

Num sistema tridimensional um ponto pode ser localizado pela intersecção de três superfícies.

Num sistema tridimensional um ponto pode ser localizado pela intersecção de três superfícies. Sistems de cooden otogonis - 1 ELECTROMGNETISMO s leis do electomgnetismo são invintes em elção o sistem de cooden utilido. Muits vees solução de um poblem específico eque utilição de um sistem de cooden

Leia mais

Matemática para CG. Soraia Raupp Musse

Matemática para CG. Soraia Raupp Musse Mtemátic p CG Soi Rupp Musse 1 Sumáio Intodução Revisão Mtemátic Vetoes Mties Intodução Em CG, tlh-se com ojetos definidos em um mundo 3D Todos os ojetos têm fom, posição e oientção Pecismos de pogms de

Leia mais

carga da esfera: Q densidade volumétrica de carga: ρ = r.

carga da esfera: Q densidade volumétrica de carga: ρ = r. Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga Q distibuída com uma densidade volumética de caga dada po ρ =, onde α é uma constante ue tona a expessão

Leia mais

carga da esfera: Q densidade volumétrica de carga: ρ = r.

carga da esfera: Q densidade volumétrica de carga: ρ = r. Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga distibuída com uma densidade volumética de caga dada po ρ =, onde α é uma constante ue tona a expessão

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 9 1. Uma placa condutoa uadada fina cujo lado mede 5, cm enconta-se no plano xy. Uma caga de 4, 1 8 C é colocada na placa. Enconte (a) a densidade de

Leia mais

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS - INPE. Satélites Artificiais - Movimento de Atitude

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS - INPE. Satélites Artificiais - Movimento de Atitude Pof. Hns-Ulich Pilchowski Nots de Aul Toque Aeodinâmico INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS - INPE Stélites Atificiis - Movimento de Atitude Auls de 08 e 10 de novembo de 011 Código: CMC 316-4 Cálculo

Leia mais

Matemática D Extensivo V. 3

Matemática D Extensivo V. 3 GRITO Mtemátic tensivo V. ecícios 1) β 5 7º ) Note que.. o 8 o. Logo o. omo Δ é isósceles, 8 o ; po som dos ângulos intenos do, temos que α o. 18º Note que 7 o e 18 o. otnto o meno co 5 o. Logo β 5 15o.

Leia mais

Capítulo 3 ATIVIDADES PARA SALA PÁG. 50 GEOMETRIA. Projeções, ângulos e distâncias. 2 a série Ensino Médio Livro 1 1

Capítulo 3 ATIVIDADES PARA SALA PÁG. 50 GEOMETRIA. Projeções, ângulos e distâncias. 2 a série Ensino Médio Livro 1 1 esoluções pítulo ojeções, ângulos e distâncis 0 Sendo pojeção otogonl do ponto soe o plno, tem-se o tiângulo, etângulo em, confome figu. t TIIS SL ÁG. 0 0 0 onte luminos 7 cm 8 cm estcndo o tiângulo, tem-se

Leia mais

4. lei de Gauss. lei de Gauss a ideia. r usar a sobreposição. muito importante!

4. lei de Gauss. lei de Gauss a ideia. r usar a sobreposição. muito importante! cmpo e potecil elécticos: cição cmpo e potecil elécticos: efeito se um ptícul cegd,, fo colocd um cmpo eléctico: F Um cg potul ci um cmpo e um potecil à su volt ˆ; ke k e us sobeposição estão elciodos:

Leia mais

carga da esfera: Q. figura 1 Consideramos uma superfície Gaussiana interna e outra superfície externa á esfera.

carga da esfera: Q. figura 1 Consideramos uma superfície Gaussiana interna e outra superfície externa á esfera. Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga distibuída unifomemente pelo seu volume. Dados do poblema caga da esfea:. Esuema do poblema Vamos assumi

Leia mais

QUESTÃO 01 01) ) ) ) ) 175 RESOLUÇÃO:

QUESTÃO 01 01) ) ) ) ) 175 RESOLUÇÃO: QUESTÃO A AVALIAÇÃO DE MATEMÁTICA DA UNIDADE II- COLÉGIO ANCHIETA-BA ELABOAÇÃO: POF. ADIANO CAIBÉ e WALTE POTO. POFA, MAIA ANTÔNIA C. GOUVEIA Sejm ABC e ADE dois tiângulos etângulos conguentes, com AB

Leia mais

RESNICK, HALLIDAY, KRANE, FÍSICA, 4.ED., LTC, RIO DE JANEIRO, FÍSICA 3 CAPÍTULO 27 CARGA ELÉTRICA E LEI DE COULOMB

RESNICK, HALLIDAY, KRANE, FÍSICA, 4.ED., LTC, RIO DE JANEIRO, FÍSICA 3 CAPÍTULO 27 CARGA ELÉTRICA E LEI DE COULOMB Pobles Resolvidos de ísic Pof. Andeson Cose Gudio Depto. ísic UES RESNICK, HALLIDAY, KRANE, ÍSICA,.ED., LTC, RIO DE JANEIRO, 996. ÍSICA CAPÍTULO CARGA ELÉTRICA E LEI DE COULOMB. ul deve se distânci ente

Leia mais

carga da esfera: Q. figura 1 Consideramos uma superfície Gaussiana interna e outra superfície externa á esfera.

carga da esfera: Q. figura 1 Consideramos uma superfície Gaussiana interna e outra superfície externa á esfera. Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga distibuída unifomemente pelo seu volume. Dados do poblema caga da esfea:. Esuema do poblema Vamos assumi

Leia mais

3.3 Potencial e campo elétrico para dadas configurações de carga.

3.3 Potencial e campo elétrico para dadas configurações de carga. . Potencial e campo elético paa dadas configuações de caga. Emboa a maio utilidade do potencial se evele em situações em ue a pópia configuação de caga é uma incógnita, nas situações com distibuições conhecidas

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de eecícios 1 9 1. As cagas q 1 = q = µc na Fig. 1a estão fias e sepaadas po d = 1,5m. (a) Qual é a foça elética que age sobe q 1? (b) Colocando-se uma teceia caga

Leia mais

Electrostática. Programa de Óptica e Electromagnetismo. OpE - MIB 2007/2008. Análise Vectorial (revisão) 2 aulas

Electrostática. Programa de Óptica e Electromagnetismo. OpE - MIB 2007/2008. Análise Vectorial (revisão) 2 aulas Electostátic OpE - MIB 2007/2008 Pogm de Óptic e Electomgnetismo Análise Vectoil (evisão) 2 uls Electostátic e Mgnetostátic 7 uls Cmpos e Onds Electomgnétics 7 uls Óptic Geométic 3 uls Fis Óptics 3 uls

Leia mais

Prof. A.F.Guimarães Questões Eletricidade 2 Lei de Coulomb

Prof. A.F.Guimarães Questões Eletricidade 2 Lei de Coulomb Questão 1 of. A..Guimães Questões Eleticidde Lei de Coulomb (EI) Dus cgs puntifomes 1 + µ C e 6µ C estão fixs e sepds po um distânci de 6 mm no ácuo. Um tecei cg µ C é colocd no ponto médio do segmento

Leia mais

ELECTROMAGNETISMO. Campos eléctrico e magnético - 1 o Carga eléctrica Q e campo eléctrico E

ELECTROMAGNETISMO. Campos eléctrico e magnético - 1 o Carga eléctrica Q e campo eléctrico E Cmpos eléctico e mgnético - o Cg eléctic Q e cmpo eléctico E A quntidde eléctic bse é cg Q. Um cg eléctic isold é oded po um cmpo eléctico que exece um foç sobe tods s outs cgs. () (b) dus cgs positivs

Leia mais

PROCESSO SELETIVO TURMA DE 2008 FASE 1 PROVA DE CONHECIMENTOS DE FÍSICA

PROCESSO SELETIVO TURMA DE 2008 FASE 1 PROVA DE CONHECIMENTOS DE FÍSICA PROCESSO SELETIVO TURM DE 008 FSE PROV DE CONHECIMENTOS DE FÍSIC Co pofesso, est pov tem 0 questões de cáte objetivo (múltipl escolh) sobe físic básic dução d pov é de 3 hos Neste peíodo, você deveá peenche

Leia mais

UFPA / PPGEE. Equação de Onda. Rodrigo M. S. de Oliveira

UFPA / PPGEE. Equação de Onda. Rodrigo M. S. de Oliveira UFPA / PPGEE Equção de Ond Rodigo M. S. de Olivei A Equção de Ond As equções otcionis de Mwell, no domínio do tempo, p meios não dispesivos e Isotópicos, são dds po: Fd Ampèe Qundo é clculdo o otcionl

Leia mais

Problemas sobre Análise Vectorial

Problemas sobre Análise Vectorial Fcldde de ngenhi Polems soe nálise Vectoil ÓPTIC CTOMGNTIMO MIB Mi Inês Bos de Cvlho etemo de 7 NÁI VCTOI Fcldde de ngenhi ÓPTIC CTOMGNTIMO MIB 7/8 NÁI VCTOI POBM OVIDO 1. Considee o cmpo vectoil epesso

Leia mais

a) A energia potencial em função da posição pode ser representada graficamente como

a) A energia potencial em função da posição pode ser representada graficamente como Solução da questão de Mecânica uântica Mestado a) A enegia potencial em função da posição pode se epesentada gaficamente como V(x) I II III L x paa x < (egião I) V (x) = paa < x < L (egião II) paa x >

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

Uma derivação simples da Lei de Gauss

Uma derivação simples da Lei de Gauss Uma deivação simples da Lei de Gauss C. E. I. Caneio de maço de 009 Resumo Apesentamos uma deivação da lei de Gauss (LG) no contexto da eletostática. Mesmo paa cagas em epouso, uma deivação igoosa da LG

Leia mais

Matemática D Intensivo V. 1

Matemática D Intensivo V. 1 GRITO Mtemátic Intensivo V. ecícios 0) onstuímos et t, tl que t // s e t // : b t s et t divide o ângulo em dois ângulos e b. = 0 (ltenos intenos) b = = 0 = 7 Segue, b = (ltenos intenos). Logo, = 7. 0)

Leia mais

PME 3200 MECÂNICA II Primeira Prova 31 de março de 2016 Duração da Prova: 120 minutos (não é permitido uso de calculadoras)

PME 3200 MECÂNICA II Primeira Prova 31 de março de 2016 Duração da Prova: 120 minutos (não é permitido uso de calculadoras) PME 3 MECÂNICA II Piei Pov 31 de ço de 16 Dução d Pov: 1 inutos (não é peitido uso de clculdos) A B g 1ª Questão (3, pontos). Dois discos A e B, de sss, ios R e espessus despeíveis, estão fidos o eio de

Leia mais

Matemática D Intensivo V. 1

Matemática D Intensivo V. 1 GRITO Mtemátic Intensivo V. ecícios 0) onstuímos et t, tl que t // s e t // : b t s et t divide o ângulo em dois ângulos e b. = 0 (ltenos intenos) b = = 0 = 7 Segue, b = (ltenos intenos). Logo, = 7. 0)

Leia mais

Exame Recuperação de um dos Testes solução abreviada

Exame Recuperação de um dos Testes solução abreviada Exme Recupeção de um dos Testes solução evid 5 de Junho de 5 (h3) Mestdo em Eng Electotécnic e de Computdoes (MEEC) Electomgnetismo e Óptic º semeste de 4-5 Pof João Pulo Silv (esponsável) Pof Pedo Aeu

Leia mais

É o trabalho blh realizado para deslocar um corpo, com velocidade idd constante, t de um ponto a outro num campo conservativo ( )

É o trabalho blh realizado para deslocar um corpo, com velocidade idd constante, t de um ponto a outro num campo conservativo ( ) 1. VAIAÇÃO DA ENEGIA POTENCIAL É o tabalho blh ealizado paa desloca um copo, com velocidade idd constante, t de um ponto a outo num campo consevativo ( ) du W = F. dl = 0 = FF. d l Obs. sobe o sinal (-):

Leia mais

F-328 Física Geral III

F-328 Física Geral III F-328 Física Geal III Aula exploatóia Cap. 23 UNICAMP IFGW 1 Ponto essencial O fluxo de água atavessando uma supefície fechada depende somente das toneias no inteio dela. 2 3 1 4 O fluxo elético atavessando

Leia mais

sistema. Considere um eixo polar. P números π 4 b) B = coincidir eixo dos y x e) r = 4

sistema. Considere um eixo polar. P números π 4 b) B = coincidir eixo dos y x e) r = 4 UNIVERSIDDE FEDERL D PRÍB ENTRO DE IÊNIS EXTS E D NTUREZ DEPRTMENTO DE MTEMÁTI ÁLULO DIFERENIL E INTEGRLL II PLIÇÕES D INTEGRLL. oodends Poles O sstem de coodends que conhecemos p dentfc pontos noo plno

Leia mais

Módulo 1: Conteúdo programático Equação da quantidade de Movimento

Módulo 1: Conteúdo programático Equação da quantidade de Movimento Módulo 1: Conteúdo pogmático Equção d quntidde de Movimento Bibliogfi: Bunetti, F. Mecânic dos Fluidos, São Pulo, Pentice Hll, 007. Equção d quntidde de movimento p o volume de contole com celeção line

Leia mais

DINÂMICA DO SISTEMA SOLAR

DINÂMICA DO SISTEMA SOLAR PLANETAS E SISTEMAS PLANETÁRIOS AGA050 Enos Piczzio DINÂMICA DO SISTEMA SOLAR NÃO HÁ PERMISSÃO DE USO PARCIAL OU TOTAL DESTE MATERIAL PARA OUTRAS FINALIDADES. Pâmetos obitis i - Inclinção (i > 90 º, movimento

Leia mais

Aplicação da Lei Gauss: Algumas distribuições simétricas de cargas

Aplicação da Lei Gauss: Algumas distribuições simétricas de cargas Aplicação da ei Gauss: Algumas distibuições siméticas de cagas Como utiliza a lei de Gauss paa detemina D s, se a distibuição de cagas fo conhecida? s Ds. d A solução é fácil se conseguimos obte uma supefície

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica D x E RESOLUÇÃO i z k j 1ª Questão (3,5 pontos). O qudo, com fom de um tiângulo etângulo isósceles, é constituído po tês bs ticulds ente si e de peso despezível. O qudo é ticuldo em e ligdo em dois cbos

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO 3 a LISTA DE EXERCÍCIOS - PME MECÂNICA A DINÂMICA

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO 3 a LISTA DE EXERCÍCIOS - PME MECÂNICA A DINÂMICA 1 ESL PLITÉI D UIVESIDDE DE SÃ PUL LIST DE EXEÍIS - PME100 - MEÂI DIÂMI LIST DE EXEÍIS MPLEMETES LIV TEXT (FÇ, MTSUMU 1 Tês bs unifomes de mss m são soldds confome most fiu. Detemin os momentos e podutos

Leia mais

5.12 EXERCÍCIO pg. 224

5.12 EXERCÍCIO pg. 224 9 5 EXERCÍCIO pg Um fio de compimento l é cotdo em dois pedços Com um deles se fá um cículo e com o outo um quddo Como devemos cot o fio fim de que som ds dus áes compeendids pels figus sej mínim? S sendo

Leia mais

2.5 Aplicações da lei de Gauss para distribuições de carga com simetria

2.5 Aplicações da lei de Gauss para distribuições de carga com simetria .5 Aplicações da lei de Gauss paa distibuições de caga com simetia Paa distibuições de caga com alto gau de simetia, a lei de Gauss pemite calcula o campo elético com muita facilidade. Pecisamos explica

Leia mais

Material Teórico - Módulo de Geometria Anaĺıtica 2. Ângulo entre Retas. Terceiro Ano - Médio

Material Teórico - Módulo de Geometria Anaĺıtica 2. Ângulo entre Retas. Terceiro Ano - Médio Mteil Teóico - Módulo de Geometi Anĺıtic Ângulo ente Rets Teceio Ano - Médio Auto: Pof. Angelo Pp Neto Reviso: Pof. Antonio Cminh M. Neto Ângulo ente ets que pssm pel oigem Nest seção, definimos e clculmos

Leia mais

x podem ser reais ou complexos. Nós estamos interessados apenas nas raízes reais. O exemplo mais simples de raiz é da equação linear.

x podem ser reais ou complexos. Nós estamos interessados apenas nas raízes reais. O exemplo mais simples de raiz é da equação linear. CAPÍTULO ZEROS DE FUNÇÕES. INTRODUÇÃO Neste cpítulo pocumos esolve polems que fequentemente ocoem n áe de engenhi e ciêncis ets, que consiste n esolução de divesos tipos de equções. Sendo esss equções

Leia mais

6 Resultados e Discussão I - Obtenção do pk a a partir da fluorescência estacionária e resolvida no tempo

6 Resultados e Discussão I - Obtenção do pk a a partir da fluorescência estacionária e resolvida no tempo 6 Resultdos e Discussão I - Obtenção do K ti d luoescênci estcionái e esolvid no temo 6.1 Equilíbio de ionizção O H de um solução é um medid de su concentção de H, o qul ode se deinido como: 1 H log1 log1[

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO SOL OLITÉNI UNIVSI SÃO ULO venid ofesso Mello Moes, nº 3 008-900, São ulo, S Telefone: (0xx) 309 337 x: (0xx) 383 886 eptmento de ngenhi Mecânic M 00 MÂNI de setembo de 009 QUSTÃO (3 pontos): figu most

Leia mais

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça Lei de Gauss II Revisão: Aula 2_2 Física Geal e Expeimental III Pof. Cláudio Gaça Revisão Cálculo vetoial 1. Poduto de um escala po um veto 2. Poduto escala de dois vetoes 3. Lei de Gauss, fluxo atavés

Leia mais

Rede recíproca. Cap 2 KITTEL Cap 5 ASHCROFT- MERMIN Cap 4 IVAN

Rede recíproca. Cap 2 KITTEL Cap 5 ASHCROFT- MERMIN Cap 4 IVAN Rede ecípoc Cp KITTEL Cp 5 ASHCROFT- MERMIN Cp 4 IVAN Algums definições Definição ede ecípoc Plnos de Bgg Zons de Billouin Plnos de ede; índices de Mille Rede ecípoc difção em cistis cálculo de estutus

Leia mais

Resoluções das Atividades

Resoluções das Atividades Resoluções ds tividdes Sumáio Módulo 1 Geometi pln I...1 Módulo Geometi pln II... Módulo Geometi pln III...6 Módulo 1 Geometi pln I tividdes p Sl é-vestibul 1 0 E De codo com o enuncido, tem-se: Rzão (desejd)

Leia mais

setor 1202 Aulas 39 e 40 ESTUDO DO CAMPO ELÉTRICO

setor 1202 Aulas 39 e 40 ESTUDO DO CAMPO ELÉTRICO seto 10 100508 ulas 39 e 40 ESTUDO DO CMPO ELÉTRICO CMPO DE UM CRG PUNTIFORME P E p = f (, P) Intensidade: E K = Dieção: eta (, P) Sentido: 0 (afastamento) 0 (apoximação). (FUVEST) O campo elético de uma

Leia mais

Plano de Aulas. Matemática. Módulo 8 Geometria plana

Plano de Aulas. Matemática. Módulo 8 Geometria plana Plno de uls Mtemátic Módulo 8 Geometi pln Resolução dos eecícios popostos Retomd dos conceitos 1 PÍTULO 1 1 h 100 cm O esquem epesent escd, e h é ltu d escd. h 0 cm h 0 cm d d d d cm e codo com o teoem

Leia mais

GABARITO LISTA 2. A firma 2 resolve um problema semelhante e tem como CPO:

GABARITO LISTA 2. A firma 2 resolve um problema semelhante e tem como CPO: Fundção Getúlo Vgs FGV-RJ Gdução em dmnstção Mcoeconom II of: ulo omb Monto: Flvo Moes GBRITO LIST No duopólo de ounot, cd fm escolhe untdde ue mmz o seu luco dd untdde d out fm sendo ue escolh é smultâne

Leia mais

3.1 Potencial gravitacional na superfície da Terra

3.1 Potencial gravitacional na superfície da Terra 3. Potencial gavitacional na supefície da Tea Deive a expessão U(h) = mgh paa o potencial gavitacional na supefície da Tea. Solução: A pati da lei de Newton usando a expansão de Taylo: U( ) = GMm, U( +

Leia mais

Aula 6: Aplicações da Lei de Gauss

Aula 6: Aplicações da Lei de Gauss Univesidade Fedeal do Paaná eto de Ciências xatas Depatamento de Física Física III Pof. D. Ricado Luiz Viana Refeências bibliogáficas: H. 25-7, 25-9, 25-1, 25-11. 2-5 T. 19- Aula 6: Aplicações da Lei de

Leia mais

As forças traduzem e medem interações entre corpos e essas interações podem ser de contacto ou à distância (FQ A ano 1). de contacto.

As forças traduzem e medem interações entre corpos e essas interações podem ser de contacto ou à distância (FQ A ano 1). de contacto. Suáio Unidde I MECÂNIC 1- Mecânic d ptícul Moviento de copos sujeitos ligções. - Foçs plicds e foçs de ligção. - Moviento du siste de copos ligdos nu plno hoizontl, plno veticl e plno inclindo, despezndo

Leia mais

Fundamentos da Eletrostática Aula 08. O Potencial Elétrico. O Potencial Elétrico

Fundamentos da Eletrostática Aula 08. O Potencial Elétrico. O Potencial Elétrico O Potencil Elétrico Fundmentos d Eletrostátic Aul 8 O Potencil Elétrico Prof Alex G Dis Prof Alysson F Ferrri Imgine ue desejmos mover um crg teste de um ponto té um ponto b em um região do espço onde

Leia mais

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe 4 Teorem de Green Sej U um berto de R 2 e r : [, b] U um cminho seccionlmente, fechdo e simples, isto é, r não se uto-intersect, excepto ns extremiddes Sej região interior r([, b]) prte d dificuldde n

Leia mais

Física III Escola Politécnica Prova de Recuperação 21 de julho de 2016

Física III Escola Politécnica Prova de Recuperação 21 de julho de 2016 Físic III - 4220 Escol Politécnic - 2016 Prov de Recuperção 21 de julho de 2016 Questão 1 A cmd esféric n figur bixo tem um distribuição volumétric de crg dd por b O P ρ(r) = 0 pr r < α/r 2 pr r b 0 pr

Leia mais

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017 Potencil Elétrico Evndro Bstos dos Sntos 14 de Mrço de 2017 1 Energi Potencil Elétric Vmos começr fzendo um nlogi mecânic. Pr um corpo cindo em um cmpo grvitcionl g, prtir de um ltur h i té um ltur h f,

Leia mais

Eletromagnetismo Aplicado

Eletromagnetismo Aplicado Eletomagnetismo plicado Unidade 1 Pof. Macos V. T. Heckle 1 Conteúdo Intodução Revisão sobe álgeba vetoial Sistemas de coodenadas clássicos Cálculo Vetoial Intodução Todos os fenômenos eletomagnéticos

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO z Questão 1 (3,0 pontos). N figu o ldo, os vétices FGH deteminm um cubo de ldo. os vétices, e G desse cubo plicm-se s foçs indicds. ede-se: () detemin esultnte do sistem de foçs; (b) detemin o momento

Leia mais

',9(5*Ç1&,$'2)/8;2(/e75,&2 (7(25(0$'$',9(5*Ç1&,$

',9(5*Ç1&,$'2)/8;2(/e75,&2 (7(25(0$'$',9(5*Ç1&,$ Ã Ã $Ã /(,Ã '(Ã *$866Ã $/,&$'$Ã $Ã 8Ã (/((17 ',)(5(1&,$/Ã'(Ã9/8( 17 ',9(5*Ç1&,$')/8;(/e75,& (7(5($'$',9(5*Ç1&,$ Ao final deste capítulo você deveá se capa de: ½ Entende o que é a Divegência de um veto

Leia mais

Eletricidade e Magnetismo II Licenciatura: 3ª Aula (06/08/2012)

Eletricidade e Magnetismo II Licenciatura: 3ª Aula (06/08/2012) leticidade e Magnetismo II Licenciatua: 3ª ula (6/8/) Na última aula vimos: Lei de Gauss: ˆ nd int xistindo caga de pova sente uma foça F poduzida pelo campo. Ocoendo um deslocamento infinitesimal, o tabalho

Leia mais

Electrostática. Programa de Óptica e Electromagnetismo. OpE - MIB 2007/2008. Análise Vectorial (revisão) 2 aulas

Electrostática. Programa de Óptica e Electromagnetismo. OpE - MIB 2007/2008. Análise Vectorial (revisão) 2 aulas Faculdade de Engenhaia Electostática OpE - MIB 7/8 Pogama de Óptica e Electomagnetismo Faculdade de Engenhaia nálise ectoial (evisão) aulas Electostática e Magnetostática 7 aulas Campos e Ondas Electomagnéticas

Leia mais

VETORES GRANDEZAS VETORIAIS

VETORES GRANDEZAS VETORIAIS VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma

Leia mais

raio do disco: a; carga do disco: Q.

raio do disco: a; carga do disco: Q. Uma casca hemisféica de aio a está caegada unifomemente com uma caga Q. Calcule o veto campo elético num ponto P no cento da base do hemisféio. Dados do poblema aio do disco: a; caga do disco: Q. Esquema

Leia mais

7.4 A Lei de Ampère. Encontramos a seguinte expressão (7.4.1)

7.4 A Lei de Ampère. Encontramos a seguinte expressão (7.4.1) 7.4 A Lei de Ampèe Encontamos a seguinte expessão x B µ (, ϕ, z ϕˆ 2 π (7.4.1 paa o campo magnético geado po um fio eto infinitamente compido. Esta expessão se efee a coodenadas cilíndicas. O fio fica

Leia mais

Lei de Gauss. Ignez Caracelli Determinação do Fluxo Elétrico. se E não-uniforme? se A é parte de uma superfície curva?

Lei de Gauss. Ignez Caracelli Determinação do Fluxo Elétrico. se E não-uniforme? se A é parte de uma superfície curva? Lei de Gauss Ignez Caacelli ignez@ufsca.b Pofa. Ignez Caacelli Física 3 Deteminação do Fluxo lético se não-unifome? se A é pate de uma supefície cuva? A da da = n da da nˆ da = da definição geal do elético

Leia mais

TRABALHO E POTENCIAL ELÉTRICO

TRABALHO E POTENCIAL ELÉTRICO NOTA DE AULA PROF. JOSÉ GOMES RIBEIRO FILHO TRABALHO E POTENCIAL ELÉTRICO 01.INTRODUÇÃO O conceito de enegi potencil foi intoduzido no Cpítulo Enegi Mecânic em conexão com foçs consevtivs como gvidde e

Leia mais

E = F/q onde E é o campo elétrico, F a força

E = F/q onde E é o campo elétrico, F a força Campo Elético DISCIPLINA: Física NOE: N O : TURA: PROFESSOR: Glênon Duta DATA: Campo elético NOTA: É a egião do espaço em ue uma foça elética pode sugi em uma caga elética. Toda caga elética cia em tono

Leia mais

Aula 2 Cálculo Vetorial

Aula 2 Cálculo Vetorial ul Cálculo etoil Cooens etngules Elementos ieenciis e áe Elemento ieencil e linh b c b S c S S Coight 7 Oo Univesit Pess 1 Po Roigo M S e Olivei ul Cálculo etoil v Coight 7 Oo Univesit Pess Cooens cilínics

Leia mais

16 - Carga Elétrica e Lei de Coulomb

16 - Carga Elétrica e Lei de Coulomb PROBLEMAS RESOLVIDOS DE ÍSICA Pof. Andeson Cose Gudio Deptmento de ísic Cento de Ciêncis Ets Univesidde edel do Espíito Snto http://www.cce.ufes.b/ndeson ndeson@npd.ufes.b Últim tulizção: 8//6 4:8 H 6

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO SOL POLITÉNI UNIRSI SÃO PULO enid Pofesso Mello Moes, nº 3. P 05508-900, São Pulo, SP. Telefone: (0) 309 5337 F: (0) 383 886 eptmento de ngenhi Mecânic PM 00 MÂNI Segund Po 30 de outubo de 009 ução d Po:

Leia mais

PUC-RIO CB-CTC. P1 DE ELETROMAGNETISMO segunda-feira. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P1 DE ELETROMAGNETISMO segunda-feira. Nome : Assinatura: Matrícula: Turma: PUC-RIO CB-CTC P1 DE EETROMAGNETISMO 11.4.11 segund-feir Nome : Assintur: Mtrícul: Turm: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁCUOS EXPÍCITOS. Não é permitido destcr folhs d prov Questão Vlor

Leia mais

FGE Eletricidade I

FGE Eletricidade I FGE0270 Eletricidde I 2 List de exercícios 1. N figur bixo, s crgs estão loclizds nos vértices de um triângulo equilátero. Pr que vlor de Q (sinl e módulo) o cmpo elétrico resultnte se nul no ponto C,

Leia mais

1 a Lista de Exercícios Carga Elétrica-Lei de Gauss

1 a Lista de Exercícios Carga Elétrica-Lei de Gauss 1 1 ist de Eercícios Crg Elétric-ei de Guss 1. Um crg de 3, 0µC está fstd 12, 0cm de um crg de 1, 5µC. Clcule o módulo d forç ue tu em cd crg. 2. ul deve ser distânci entre dus crgs pontuis 1 = 26, 0µC

Leia mais

Escola Politécnica FGE GABARITO DA P2 15 de maio de 2008

Escola Politécnica FGE GABARITO DA P2 15 de maio de 2008 P Físic Escol Politécnic - 008 FGE 03 - GABARTO DA P 5 de mio de 008 Questão Um cpcitor com plcs prlels de áre A, é preenchido com dielétricos com constntes dielétrics κ e κ, conforme mostr figur. σ σ

Leia mais

NOTAS DE AULA DE ELETROMAGNETISMO

NOTAS DE AULA DE ELETROMAGNETISMO UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA NOTAS DE AULA DE ELETROMAGNETISMO Pof. D. Helde Alves Peeia Maço, 9 - CONTEÚDO DAS AULAS NAS TRANSPARÊNCIAS -. Estágio

Leia mais

1 a Lista de Exercícios Força Elétrica Campo Elétrico Lei de Gauss

1 a Lista de Exercícios Força Elétrica Campo Elétrico Lei de Gauss 1 1 ist de Eercícios Forç Elétric Cmpo Elétrico ei de Guss 1. Um crg de 3, 0µC está fstd 12, 0cm de um crg de 1, 5µC. Clcule o módulo d forç ue tu em cd crg. 2. ul deve ser distânci entre dus crgs pontuis

Leia mais

Física III Escola Politécnica GABARITO DA P1 2 de abril de 2014

Física III Escola Politécnica GABARITO DA P1 2 de abril de 2014 Físic III - 430301 Escol Politécnic - 014 GABARITO DA P1 de bril de 014 Questão 1 Um brr semi-infinit, mostrd n figur o longo do ldo positivo do eixo horizontl x, possui crg positiv homogenemente distribuíd

Leia mais

2/27/2015. Física Geral III

2/27/2015. Física Geral III /7/5 Física Geal III Aula Teóica (Cap. pate /3) : ) O campo elético ) Cálculo do campo elético poduzido po: a) uma caga puntifome b) uma distibuição disceta de cagas Pof. Macio R. Loos O ue é um campo?

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO 1 a LISTA DE EXERCÍCIOS - PME MECÂNICA A SISTEMA DE FORÇAS E ESTÁTICA

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO 1 a LISTA DE EXERCÍCIOS - PME MECÂNICA A SISTEMA DE FORÇAS E ESTÁTICA 1 S ITÉNI UNIVRSI SÃ U 1 IST XRÍIS - M100 - MÂNI SISTM RÇS STÁTI IST XRÍIS MMNTRS IVR TXT (RNÇ, MTSUMUR) 1) do o sistem de foçs: 1 = i + j plicd no ponto (0,0,0) = i + k plicd no ponto (1,0,1) 3 = j k

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO PE 00 ECÂNIC Seund Pov 13 de mio de 003 Dução d Pov: 100 minutos (não é pemitido uso de clculdos) 1ª Questão (3,0 pontos) Um b ticuld em de mss e compimento L, está poid num mol de iide k. Um bloco de

Leia mais

DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA

DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA ELETROMAGNETIMO I 18 DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA.1 - A LEI DE GAU APLICADA A UM ELEMENTO DIFERENCIAL DE VOLUME Vimos que a Lei de Gauss pemite estuda o compotamento do campo

Leia mais

Recordando produtos notáveis

Recordando produtos notáveis Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único

Leia mais

As fórmulas aditivas e as leis do seno e do cosseno

As fórmulas aditivas e as leis do seno e do cosseno ul 3 s fórmuls ditivs e s leis do MÓDULO 2 - UL 3 utor: elso ost seno e do cosseno Objetivos 1) ompreender importânci d lei do seno e do cosseno pr o cálculo d distânci entre dois pontos sem necessidde

Leia mais