Recuperação de Informação em Bases de Texto. Aula 10

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Recuperação de Informação em Bases de Texto. Aula 10"

Transcrição

1 Aula 10 1

2 Agrupamento/ clustering de documentos: Agrupar os documentos em classes/grupos, de acordo com a sua semelhança Aprendizagem não supervisionada Sem conjunto de treino/exemplos 2

3 3

4 Agrupamento/ clustering de documentos: Permite: Melhorar recall /abrangência dos sistemas de RI Melhorar diminuir o número de iterações necessárias para recuperar os documentos 4

5 Agrupamento/ clustering de documentos: Flat Sem estrutura a relacionar os gupos/clusters Hierárquico Com estrutura entre os grupos tipicamente uma árvore 5

6 Agrupamento/ clustering de documentos: Hard-clustering Cada documento pertence a somente um grupo Soft-clustering Cada documento pode pertencer a mais do que um grupo 6

7 Agrupamento/ clustering de documentos: Hipótese: Documentos pertencentes ao mesmo grupo têm relevância semelhante relativamente a uma dada pesquisa Implicação: Se um documento de um dado grupo é relevante para uma dada pesquisa, então os outros documentos desse grupo também o deverão ser. 7

8 Agrupamento/ clustering de documentos: Problema principal: Como calcular a semelhança entre documentos? Vectores» coseno; distância Euclideana Sequência de palavras» Co-ocorrências de expressões Distância semântica... 8

9 Agrupamento/ clustering de documentos: Problemas adicionais: Agrupar em quantos grupos/clusters? Pré-definido Dependente dos documentos 9

10 Agrupamento/ clustering de documentos: Avaliação Critério interno Minimizar distâncias internas aos grupos e maximizar distância entre grupos 10

11 Agrupamento/ clustering de documentos: Avaliação Critério externo Comparar com resultados obtidos por juízes na divisão em classes dos documentos. 11

12 Agrupamento/ clustering de documentos: Avaliação Pureza/ purity Cada grupo/cluster é associado à classe mais frequente dos seus documentos; a pureza do clustering é obtida pela divisão do número de associações correctas pelo número de documentos 12

13 Agrupamento/ clustering de documentos: Avaliação F-measure PR / (P+R) P = TP / (TP+FP) R = TP / (TP+FN) 13

14 K-means -- flat clustering Minimizar a distância dos documentos ao centróide do grupo/cluster Centróide: μ c = 1 c x x c 14

15 K-means -- flat clustering Minimizar D k = Σ i (d i c k ) 2 d i in cluster k) (sum over all D = Σ k D k 15

16 K-means -- flat clustering Algoritmo Seleccionar {s1,..., sk} documentos como centróides dos k grupos Enquanto não atingir critério de paragem Associar cada doc di ao cluster cujo centróide estiver mais perto Recalcular os novos centróides 16

17 K-means -- flat clustering Algoritmo Critérios de paragem Número fixo de iterações Não haver alterações nos grupos Centróides não alterarem Valor do somatório das distâncias dos documentos aos centróides dos seus grupos ser inferior a um dado valor. 17

18 K-means -- flat clustering Definição de k Pré-fixo Dependente dos documentos Calcular a soma da distância dos documentos aos centróides dos seus grupos para vários k e escolher o k correspondente ao menor valor 18

19 K-means -- flat clustering Definição de k Dependente dos documentos Problema:»Favorece soluções com muitos grupos --> k=n -> distância = 0! Solução possível:»adicionar um peso por cada novo grupo 19

20 K-means -- flat clustering Resultados dependem da selecção inicial de documentos: {A,D} versus {A,C} 20

21 Agrupamento hierárquico Ascendente/bottom-up Hierarchical agglomerative clustering Descendente/top-down 21

22 HAC - Hierarchical agglomerative clustering Algoritmo simples: Início --> N clusters N-1 iterações em que: Os 2 clusters mais semelhantes são juntos/merged 22

23 HAC - Hierarchical agglomerative clustering Como calcular a semelhança entre 2 clusters? Single-link Distância entre os documentos mais próximos Complete-link Distância entre os documentos mais afastados 23

24 HAC - Hierarchical agglomerative clustering Como calcular a semelhança entre 2 clusters? Centroid Distância entre os centróides Average-link Distância média entre os vários pares de documentos 24

25 Top-down (divisive) clustering Algoritmo simples: Usar um algoritmo de flat clustering para dividir o conjunto inicial (por exemplo, o k-means com k<10) Recursivamente aplicar a mesma abordagem até obter grupos com 1 elemento/documento 25

26 Como identificar os grupos/clusters? Técnicas de selecção de atributos/features Termos mais informativos informação mútua, ganho de informação Título do documento mais próximo do centróide 26

27 Como aceder à informação contida nos documentos? Extracção de informação Sistemas de pergunta-resposta Aula 11! 27

Clustering - agrupamento. Baseado no capítulo 8 de. Introduction to Data Mining

Clustering - agrupamento. Baseado no capítulo 8 de. Introduction to Data Mining Clustering - agrupamento Baseado no capítulo 8 de Introduction to Data Mining de Tan, Steinbach, Kumar Clustering - agrupamento 1 O que é Clustering? Encontar grupos de objectos tal que os objectos dentro

Leia mais

MINERAÇÃO DE DADOS APLICADA. Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br

MINERAÇÃO DE DADOS APLICADA. Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br MINERAÇÃO DE DADOS APLICADA Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br Processo Weka uma Ferramenta Livre para Data Mining O que é Weka? Weka é um Software livre do tipo open source para

Leia mais

INTELIGÊNCIA ARTIFICIAL Data Mining (DM): um pouco de prática. (1) Data Mining Conceitos apresentados por

INTELIGÊNCIA ARTIFICIAL Data Mining (DM): um pouco de prática. (1) Data Mining Conceitos apresentados por INTELIGÊNCIA ARTIFICIAL Data Mining (DM): um pouco de prática (1) Data Mining Conceitos apresentados por 1 2 (2) ANÁLISE DE AGRUPAMENTOS Conceitos apresentados por. 3 LEMBRE-SE que PROBLEMA em IA Uma busca

Leia mais

Clustering: K-means and Aglomerative

Clustering: K-means and Aglomerative Universidade Federal de Pernambuco UFPE Centro de Informática Cin Pós-graduação em Ciência da Computação U F P E Clustering: K-means and Aglomerative Equipe: Hugo, Jeandro, Rhudney e Tiago Professores:

Leia mais

Agrupamento de dados

Agrupamento de dados Organização e Recuperação de Informação: Agrupamento de dados Marcelo K. A. Faculdade de Computação - UFU Agrupamento de dados / 7 Overview Agrupamento: introdução Agrupamento em ORI 3 K-médias 4 Avaliação

Leia mais

Algoritmos de Agrupamento - Aprendizado Não Supervisionado. Fabrício Jailson Barth

Algoritmos de Agrupamento - Aprendizado Não Supervisionado. Fabrício Jailson Barth Algoritmos de Agrupamento - Aprendizado Não Supervisionado Fabrício Jailson Barth Abril de 2013 Sumário Introdução e Definições Aplicações Algoritmos de Agrupamento Agrupamento Plano Agrupamento Hierárquico

Leia mais

Universidade Tecnológica Federal do Paraná UTFPR Programa de Pós-Graduação em Computação Aplicada Disciplina de Mineração de Dados

Universidade Tecnológica Federal do Paraná UTFPR Programa de Pós-Graduação em Computação Aplicada Disciplina de Mineração de Dados Universidade Tecnológica Federal do Paraná UTFPR Programa de Pós-Graduação em Computação Aplicada Disciplina de Mineração de Dados Prof. Celso Kaestner Poker Hand Data Set Aluno: Joyce Schaidt Versão:

Leia mais

Electrónica de Seguros

Electrónica de Seguros Sistema Multi-Agente Mediação Electrónica de Seguros Luís Nogueira (ISEP) Eugénio Oliveira (FEUP) LIACC / NIAD&R Motivação e Objectivos Problema apresentado na Industrial Session - AMEC SIG Meeting, 2001

Leia mais

Reconhecimento de Padrões

Reconhecimento de Padrões Engenharia Informática (ramos de Gestão e Industrial) Departamento de Sistemas e Informação Reconhecimento de Padrões Projecto Final 2004/2005 Realizado por: Prof. João Ascenso. Departamento de Sistemas

Leia mais

Problema apresentado no AMEC SIG meeting da rede AgentLink, 2001

Problema apresentado no AMEC SIG meeting da rede AgentLink, 2001 Luís Nogueira (ISEP) Eugénio Oliveira (FEUP) LIACC / NIAD&R Problema apresentado no AMEC SIG meeting da rede AgentLink, 2001 Sistema multi-agente Comparar e avaliar produtos complexos Valor acrescentado

Leia mais

Pré processamento de dados II. Mineração de Dados 2012

Pré processamento de dados II. Mineração de Dados 2012 Pré processamento de dados II Mineração de Dados 2012 Luís Rato Universidade de Évora, 2012 Mineração de dados / Data Mining 1 Redução de dimensionalidade Objetivo: Evitar excesso de dimensionalidade Reduzir

Leia mais

Classificação da imagem (ou reconhecimento de padrões): objectivos Métodos de reconhecimento de padrões

Classificação da imagem (ou reconhecimento de padrões): objectivos Métodos de reconhecimento de padrões Classificação de imagens Autor: Gil Gonçalves Disciplinas: Detecção Remota/Detecção Remota Aplicada Cursos: MEG/MTIG Ano Lectivo: 11/12 Sumário Classificação da imagem (ou reconhecimento de padrões): objectivos

Leia mais

Sistema Multi-Agente Mediação Electrónica de Seguros

Sistema Multi-Agente Mediação Electrónica de Seguros Sistema Multi-Agente Mediação Electrónica de Seguros Luís Nogueira (ISEP) Eugénio Oliveira (FEUP) LIACC / NIAD&R Motivação e Objectivos Problema apresentado no AMEC SIG meeting da rede AgentLink, 2001

Leia mais

Prof. Júlio Cesar Nievola Data Mining PPGIa PUCPR

Prof. Júlio Cesar Nievola Data Mining PPGIa PUCPR Encontrar grupos de objetos tal que objetos em um grupo são similares (ou relacionados) uns aos outros e diferentes de (ou não relacionados) a objetos em outros grupos Compreensão Agrupa documentos relacionados

Leia mais

Técnicas de Clustering: Algoritmos K-means e Aglomerative

Técnicas de Clustering: Algoritmos K-means e Aglomerative Técnicas de Clustering: Algoritmos K-means e Aglomerative Danilo Oliveira, Matheus Torquato Centro de Informática Universidade Federal de Pernambuco 9 de outubro de 2012 Danilo Oliveira, Matheus Torquato

Leia mais

Instituto Superior de Engenharia do Porto. Agrupamento Clustering

Instituto Superior de Engenharia do Porto. Agrupamento Clustering Instituto Superior de Engenharia do Porto Engenharia Informática Projecto Agrupamento Clustering Manuel Altino Torres Aniceto Castro Orientadora Profª Fátima Rodrigues Julho 2003 Agradecimentos A realização

Leia mais

Análise de técnicas de selecção de atributos em Bioinformática

Análise de técnicas de selecção de atributos em Bioinformática Análise de técnicas de selecção de atributos em Bioinformática Rui Mendes 100378011 Bioinformática 10/11 DCC Artigo Base Yvan Saeys, Inaki Inza and Pedro Larranaga. A review of feature selection techniques

Leia mais

UTILIZANDO O SOFTWARE WEKA

UTILIZANDO O SOFTWARE WEKA UTILIZANDO O SOFTWARE WEKA O que é 2 Weka: software livre para mineração de dados Desenvolvido por um grupo de pesquisadores Universidade de Waikato, Nova Zelândia Também é um pássaro típico da Nova Zelândia

Leia mais

Sistemas de Nomes Planos

Sistemas de Nomes Planos Sistemas de Nomes Planos November 2, 2009 Sumário Sistemas de Nomes Planos e DHTs Chord Sistemas de Nomes Planos Tipicamente, sistemas de nomes à escala da Internet usam nomes estruturados hierarquicamente.

Leia mais

Olhó-passarinho: uma extensão do TweeProfiles para fotografias

Olhó-passarinho: uma extensão do TweeProfiles para fotografias FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO Olhó-passarinho: uma extensão do TweeProfiles para fotografias Ivo Filipe Valente Mota PREPARAÇÃO DA DISSERTAÇÃO Mestrado Integrado em Engenharia Eletrotécnica

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Linear Aula 25: Programação Não-Linear - Funções de Uma única variável Mínimo; Mínimo Global; Mínimo Local; Optimização Irrestrita; Condições Óptimas; Método da Bissecção; Método de Newton.

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Alessandro L. Koerich Algoritmo k Means Mestrado/Doutorado em Informática (PPGIa) Pontifícia Universidade Católica do Paraná (PUCPR) 2 Problema do Agrupamento Seja x = (x 1, x 2,,

Leia mais

Análise do desempenho das escolas públicas de Campinas

Análise do desempenho das escolas públicas de Campinas Análise do desempenho das escolas públicas de Campinas Por Prof. Dr. Dalton Francisco de Andrade e Prof. Dra. Maria Ines Fini 1. Introdução A análise apresentada foi elaborada a partir do estudo realizado

Leia mais

Métodos e Algoritmos de Data Mining(parte 1)

Métodos e Algoritmos de Data Mining(parte 1) Robert Groth Métodos e Algoritmos de Data Mining(parte 1) Usama Fayyad et al 1 Métodos e Algoritmos de Data Mining Soluções distância (K-NN e clustering) Naïve-Bayes Arvores de decisão Regras de associação

Leia mais

O uso da Mineração de Textos para Extração e Organização Não Supervisionada de Conhecimento

O uso da Mineração de Textos para Extração e Organização Não Supervisionada de Conhecimento Revista de Sistemas de Informacao da FSMA n. 7 (2011) pp. 7-21 http://www.fsma.edu.br/si/sistemas.html O uso da Mineração de Textos para Extração e Organização Não Supervisionada de Conhecimento Solange

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO 1º Ciclo Planificação Anual de Matemática 1º ano Ano Letivo 2015/2016

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO 1º Ciclo Planificação Anual de Matemática 1º ano Ano Letivo 2015/2016 AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO 1º Ciclo Planificação Anual de Matemática 1º ano Ano Letivo 2015/2016 1º Trimestre Domínios Números e Operações Números naturais Contar até cinco Correspondências

Leia mais

Otimização de Recuperação de Informação usando Algoritmos Genéticos

Otimização de Recuperação de Informação usando Algoritmos Genéticos Otimização de Recuperação de Informação usando Algoritmos Genéticos Neide de Oliveira Gomes, M. Sc., nog@inpi.gov.br Prof. Marco Aurélio C. Pacheco, PhD Programa de Doutorado na área de Métodos de Apoio

Leia mais

Pesquisa: localização de um Registo num Ficheiro (para aceder ao registo: ler/alterar informação) R. P. António Viera, 23. R. Carlos Seixas, 9, 6º

Pesquisa: localização de um Registo num Ficheiro (para aceder ao registo: ler/alterar informação) R. P. António Viera, 23. R. Carlos Seixas, 9, 6º Pesquisa Pesquisa: localização de um Registo num Ficheiro (para aceder ao registo: ler/alterar informação) Ficheiro (ou tabela) Campos Nome Endereço Telefone Antunes, João A. R. P. António Viera, 23 720456

Leia mais

AGRUPAMENTO DE DADOS SEMI-SUPERVISIONADO NO CONTEXTO DE APRENDIZADO DE MÁQUINA

AGRUPAMENTO DE DADOS SEMI-SUPERVISIONADO NO CONTEXTO DE APRENDIZADO DE MÁQUINA AGRUPAMENTO DE DADOS SEMI-SUPERVISIONADO NO CONTEXTO DE APRENDIZADO DE MÁQUINA Jornada Científica UFSCar - 2009 Priscilla de Abreu Lopes priscilla_lopes@dc.ufscar.br AGRUPAMENTO DE DADOS - INTRODUÇÃO 1.

Leia mais

4 Aplicativo para Análise de Agrupamentos

4 Aplicativo para Análise de Agrupamentos 65 4 Aplicativo para Análise de Agrupamentos Este capítulo apresenta a modelagem de um aplicativo, denominado Cluster Analysis, dedicado à formação e análise de grupos em bases de dados. O aplicativo desenvolvido

Leia mais

MESTRADO EM PESQUISA DE MERCADOS 2006 2007

MESTRADO EM PESQUISA DE MERCADOS 2006 2007 MESTRADO EM PESQUISA DE MERCADOS 2006 2007 PROGRAMA DAS DISCIPLINAS 1 1º trimestre PESQUISA DE MERCADOS Objectivos Pretende-se que os alunos: (a) adquiram os conceitos e semântica próprios do tema, (b)

Leia mais

Vetor Quantização e Aglomeramento (Clustering)

Vetor Quantização e Aglomeramento (Clustering) (Clustering) Introdução Aglomeramento de K-partes Desafios do Aglomeramento Aglomeramento Hierárquico Aglomeramento divisivo (top-down) Aglomeramento inclusivo (bottom-up) Aplicações para o reconhecimento

Leia mais

Redes de Computadores. Camada de Rede Endereçamento

Redes de Computadores. Camada de Rede Endereçamento Redes de Computadores Camada de Rede Endereçamento Motivação Desperdício de endereços Qualquer endereço de rede somente pode ser alocada a uma única rede física Esquema de endereçamento original mostrou-se

Leia mais

Introdução a Datamining (previsão e agrupamento)

Introdução a Datamining (previsão e agrupamento) Introdução a Datamining (previsão e agrupamento) Victor Lobo Mestrado em Estatística e Gestão de Informação E o que fazer depois de ter os dados organizados? Ideias base Aprender com o passado Inferir

Leia mais

Miguel Rocha Dep. Informática - Universidade do Minho. BIOINFORMÁTICA: passado, presente e futuro!!

Miguel Rocha Dep. Informática - Universidade do Minho. BIOINFORMÁTICA: passado, presente e futuro!! Miguel Rocha Dep. Informática - Universidade do Minho BIOINFORMÁTICA: passado, presente e futuro!! Bragança, 11 de Maio de 2006 Porquê a Bioinformática?! Novas tecnologias experimentais da Biologia Molecular

Leia mais

EAGLE TECNOLOGIA E DESIGN CRIAÇÃO DE SERVIDOR CLONE APCEF/RS

EAGLE TECNOLOGIA E DESIGN CRIAÇÃO DE SERVIDOR CLONE APCEF/RS EAGLE TECNOLOGIA E DESIGN CRIAÇÃO DE SERVIDOR CLONE APCEF/RS Relatório Nº 03/2013 Porto Alegre, 22 de Agosto de 2013. ANÁLISE DE SOLUÇÕES: # RAID 1: O que é: RAID-1 é o nível de RAID que implementa o espelhamento

Leia mais

Computação Paralela. Desenvolvimento de Aplicações Paralelas João Luís Ferreira Sobral Departamento do Informática Universidade do Minho.

Computação Paralela. Desenvolvimento de Aplicações Paralelas João Luís Ferreira Sobral Departamento do Informática Universidade do Minho. Computação Paralela Desenvolvimento de Aplicações Paralelas João Luís Ferreira Sobral Departamento do Informática Universidade do Minho Outubro 2005 Desenvolvimento de Aplicações Paralelas Uma Metodologia

Leia mais

Evolução via Selecção Natural (Darwin) - sobrevivem os mais aptos (fittest )

Evolução via Selecção Natural (Darwin) - sobrevivem os mais aptos (fittest ) Generalidades A metáfora Biológica Evolução via Selecção Natural (Darwin) - sobrevivem os mais aptos (fittest ) Operadores Genéticos (Mendel) - recombinação (crossover ) - mutação (mutation ) Algoritmos

Leia mais

Reconhecimento de Padrões. Reconhecimento de Padrões

Reconhecimento de Padrões. Reconhecimento de Padrões Reconhecimento de Padrões 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Escola Superior de Tecnologia Engenharia Informática Reconhecimento de Padrões Prof. João Ascenso e Prof.

Leia mais

Análise e Processamento de Sinal e Imagem. V - Introdução ao Reconhecimento de Padrões

Análise e Processamento de Sinal e Imagem. V - Introdução ao Reconhecimento de Padrões V - Introdução ao Reconhecimento de Padrões António M. Gonçalves Pinheiro Departamento de Física Covilhã - Portugal pinheiro@ubi.pt Reconhecimento de Padrões 1. Caracterização de Sinais e Imagem 2. Técnicas

Leia mais

A Preparação dos Dados

A Preparação dos Dados A Preparação dos Dados Escolhas Básicas Objetos, casos, instâncias Objetos do mundo real: carros, arvores, etc Ponto de vista da mineração: um objeto é descrito por uma coleção de características sobre

Leia mais

SUMÁRIO. Introdução... 3

SUMÁRIO. Introdução... 3 SUMÁRIO Introdução..................................... 3 1 Consultas por Similaridade e Espaços métricos............. 5 1.1 Consultas por abrangência e consultas aos k-vizinhos mais próximos... 5 1.2

Leia mais

Análise de Clusters. Aplicações da formação de Grupos (Clustering)

Análise de Clusters. Aplicações da formação de Grupos (Clustering) Análise de Clusters Aplicações da formação de Grupos (Clustering) Ver e analisar vastas quantidades de dados biológicos como um todo pode ser difícil É mais fácil interpretar os dados se forem divididos

Leia mais

Análises Geração RI (representação intermediária) Código Intermediário

Análises Geração RI (representação intermediária) Código Intermediário Front-end Análises Geração RI (representação intermediária) Código Intermediário Back-End Geração de código de máquina Sistema Operacional? Conjunto de Instruções do processador? Ambiente de Execução O

Leia mais

Redes Neurais Construtivas. Germano Crispim Vasconcelos Centro de Informática - UFPE

Redes Neurais Construtivas. Germano Crispim Vasconcelos Centro de Informática - UFPE Redes Neurais Construtivas Germano Crispim Vasconcelos Centro de Informática - UFPE Motivações Redes Feedforward têm sido bastante utilizadas em aplicações de Reconhecimento de Padrões Problemas apresentados

Leia mais

Palavras-Chaves: Agrupamento Hierárquico; Acordo de Resultados.

Palavras-Chaves: Agrupamento Hierárquico; Acordo de Resultados. Estatística Multivariada: Grupos Homogêneos no Combate à Criminalidade em Minas Gerais 1 Formação de Regiões Homogêneas no Combate à Criminalidade Violenta de Minas Gerais utilizando técnica de agrupamento

Leia mais

Implementação de um Ambiente de e-ciência para Busca de Inovação Tecnológica

Implementação de um Ambiente de e-ciência para Busca de Inovação Tecnológica Implementação de um Ambiente de e-ciência para Busca de Inovação Tecnológica Nelson F. F. Ebecken 1, Renan C. F. De Souza 1 1 Programa de Engenharia Civil, COPPE Universidade Federal do Rio de Janeiro

Leia mais

Exemplos de aplicação. Mineração de Dados 2013

Exemplos de aplicação. Mineração de Dados 2013 Exemplos de aplicação Mineração de Dados 2013 Luís Rato Universidade de Évora, 2013 Mineração de dados / Data Mining 1 Classificação: Definição Dado uma conjunto de registos (conjunto de treino training

Leia mais

3. Metodologia 3.1. Análise exploratória de dados

3. Metodologia 3.1. Análise exploratória de dados O SELF-ORGANIZING MAP COMO FERRAMENTA NA ANÁLISE GEO- DEMOGRÁFICA Miguel Loureiro, Fernando Bação, Instituto Superior de Estatística e Gestão de Informação Universidade Nova de Lisboa, Campus de Campolide

Leia mais

Comparação entre as Técnicas de Agrupamento K-Means e Fuzzy C-Means para Segmentação de Imagens Coloridas

Comparação entre as Técnicas de Agrupamento K-Means e Fuzzy C-Means para Segmentação de Imagens Coloridas Comparação entre as Técnicas de Agrupamento K-Means e Fuzzy C-Means para Segmentação de Imagens Coloridas Vinicius Ruela Pereira Borges 1 1 Faculdade de Computação - Universidade Federal de Uberlândia

Leia mais

Mineração de Dados em Grandes Bancos de Dados Geográficos

Mineração de Dados em Grandes Bancos de Dados Geográficos Programa de Ciência e Tecnologia para Gestão de Ecosistemas Ação "Métodos, modelos e geoinformação para a gestão ambiental Mineração de Dados em Grandes Bancos de Dados Geográficos Marcos Corrêa Neves

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Linear (PL) Aula 5: O Método Simplex. 2 Algoritmo. O que é um algoritmo? Qualquer procedimento iterativo e finito de solução é um algoritmo. Um algoritmo é um processo que se repete (itera)

Leia mais

PROGRAMAÇÃO DE MICROPROCESSADORES 2011 / 2012

PROGRAMAÇÃO DE MICROPROCESSADORES 2011 / 2012 Departamento de Engenharia Electrotécnica PROGRAMAÇÃO DE MICROPROCESSADORES 2011 / 2012 Mestrado Integrado em Engenharia Electrotécnica e de Computadores 1º ano 2º semestre Trabalho Final Reservas de viagens

Leia mais

CURSO PROFISSIONAL TÉCNICO DE DESIGN GRÁFICO. Planificação anual

CURSO PROFISSIONAL TÉCNICO DE DESIGN GRÁFICO. Planificação anual Agrupamento de Escolas Júlio Dantas 1515 ESCOLA SECUNDÁRIA JÚLIO DANTAS LAGOS (00312) CURSO PROFISSIONAL TÉCNICO DE DESIGN GRÁFICO Disciplina: sign Gráfico - 10ºH Professores: Mara Taquelim, Rui Calmeiro.

Leia mais

Introdução a Datamining (previsão e agrupamento)

Introdução a Datamining (previsão e agrupamento) E o que fazer depois de ter os dados organizados? Introdução a Datamining (previsão e agrupamento) Victor Lobo Mestrado em Estatística e Gestão de Informação Ideias base Aprender com o passado Inferir

Leia mais

Balanceamento de linhas de produção

Balanceamento de linhas de produção Balanceamento de Linhas Distribuição de actividades sequenciais por postos de trabalho, de modo a permitir uma elevada utilização de trabalho e equipamentos minimizar o tempo em vazio Dado um tempo de

Leia mais

Engenharia Informática e de Computadores

Engenharia Informática e de Computadores MetaCluster.PT Um Meta-Motor de Pesquisa para a Web Portuguesa Nuno Miguel Salvado Amador Dissertação para obtenção do Grau de Mestre em Engenharia Informática e de Computadores Presidente: Orientador:

Leia mais

Redes Dinâmicas de Cooperação Organizacional, Modelo Dinâmico Descritivo de Negócios e Interoperabilidade

Redes Dinâmicas de Cooperação Organizacional, Modelo Dinâmico Descritivo de Negócios e Interoperabilidade Redes Dinâmicas de Cooperação Organizacional, Modelo Dinâmico Descritivo de Negócios e Interoperabilidade Bruno Carvalho Palvarini bruno.palvarini@caixa.gov.br CAIXA ECONÔMICA FEDERAL 1 Desenvolvimento

Leia mais

Meta-heurísticas. Métodos Heurísticos José António Oliveira zan@dps.uminho.pt. meta-heurísticas

Meta-heurísticas. Métodos Heurísticos José António Oliveira zan@dps.uminho.pt. meta-heurísticas Meta-heurísticas 105 meta-heurísticas Propriedades e Características: são estratégias que guiam o processo de pesquisa; - o objectivo a atingir é a exploração eficiente do espaço de pesquisa de modo a

Leia mais

ALGORITMOS DE ORDENAÇÃO. Algoritmos de comparação-e-troca. Bubble Sort Merge Sort Quick Sort

ALGORITMOS DE ORDENAÇÃO. Algoritmos de comparação-e-troca. Bubble Sort Merge Sort Quick Sort ALGORITMOS DE ORDENAÇÃO ALGORITMOS DE ORDENAÇÃO Algoritmos de comparação-e-troca Bubble Sort Merge Sort Quick Sort 1 BUBBLE SORT Usa a estratégia de comparação-e-troca É constituído por várias fases Cada

Leia mais

Construção e Implantação de Software II - Unidade 3- Estratégias Para Testes de Software. Prof. Pasteur Ottoni de Miranda Junior

Construção e Implantação de Software II - Unidade 3- Estratégias Para Testes de Software. Prof. Pasteur Ottoni de Miranda Junior Construção e Implantação de Software II - Unidade 3- Estratégias Para Testes de Software Prof. Pasteur Ottoni de Miranda Junior 1 1-Estratégia Global 1.1-Visão Global de Estratégias Para Teste A estratégia

Leia mais

Metodos Praticos de Amostragem para Avaliações de Impacto

Metodos Praticos de Amostragem para Avaliações de Impacto Vincenzo Di Maro (DIME, World Bank) Metodos Praticos de Amostragem para Avaliações de Impacto Workshop de Avaliação de Impacto de Políticas Públicas São Paulo Março, 25-27 de 2013 1 Sumário 1. Componentes

Leia mais

1 Tipos de dados em Análise de Clusters

1 Tipos de dados em Análise de Clusters Curso de Data Mining Sandra de Amo Aula 13 - Análise de Clusters - Introdução Análise de Clusters é o processo de agrupar um conjunto de objetos físicos ou abstratos em classes de objetos similares Um

Leia mais

DESENVOLVIMENTO DE UM MÉTODO HÍBRIDO INTEGRANDO OS MÉTODOS: HIERARCHICAL CLUSTERING E BISECTING K-MEANS

DESENVOLVIMENTO DE UM MÉTODO HÍBRIDO INTEGRANDO OS MÉTODOS: HIERARCHICAL CLUSTERING E BISECTING K-MEANS DESENVOLVIMENTO DE UM MÉTODO HÍBRIDO INTEGRANDO OS MÉTODOS: HIERARCHICAL CLUSTERING E BISECTING K-MEANS BENTO, Renan Delazari 1 CHICON, Patricia Mariotto Mozzaquatro 2 Resumo: O presente artigo apresenta

Leia mais

Diagrama de Precedências

Diagrama de Precedências Planeamento Industrial Aula 06 Implantações por produto:.equilibragem de linhas de montagem Implantações por processo:. minimização dos custos de transporte. método craft. análise de factores Diagrama

Leia mais

Internet Update de PaintManager TM. Manual de instalação e utilização do programa de actualização

Internet Update de PaintManager TM. Manual de instalação e utilização do programa de actualização Internet Update de PaintManager TM Manual de instalação e utilização do programa de actualização ÍNDICE O que é o programa Internet Update? 3 Como se instala e executa o programa? 3 Aceder ao programa

Leia mais

PROCURA DE PADRÕES EM DOCUMENTOS PARA EXTRACÇÃO E CLASSIFICAÇÃO DE INFORMAÇÃO

PROCURA DE PADRÕES EM DOCUMENTOS PARA EXTRACÇÃO E CLASSIFICAÇÃO DE INFORMAÇÃO INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA DEPARTAMENTO DE ENGENHARIA ELECTRÓNICA E TELECOMUNICAÇÕES E DE COMPUTADORES (DEETC) ENGENHARIA INFORMÁTICA E DE COMPUTADORES PROCURA DE PADRÕES EM DOCUMENTOS

Leia mais

SISTEMA DE CLUSTERIZAÇÃO PARA DESLOCAMENTO DE PESSOAS EM GRUPO

SISTEMA DE CLUSTERIZAÇÃO PARA DESLOCAMENTO DE PESSOAS EM GRUPO SISTEMA DE CLUSTERIZAÇÃO PARA DESLOCAMENTO DE PESSOAS EM GRUPO Ricardo Ramos Linck Professora Dra. Fabiana Lorenzi Orientadora Universidade Luterana do

Leia mais

- A crescente necessidade de sistemas inteligentes e de aquisição de conhecimento levaram à necessidade de implementação de Data Warehouses.

- A crescente necessidade de sistemas inteligentes e de aquisição de conhecimento levaram à necessidade de implementação de Data Warehouses. - A crescente necessidade de sistemas inteligentes e de aquisição de conhecimento levaram à necessidade de implementação de. - O que é uma Data Warehouse? - Colecção de bases de dados orientadas por assunto

Leia mais

Folha de cálculo. Excel. Agrupamento de Escolas de Amares

Folha de cálculo. Excel. Agrupamento de Escolas de Amares Folha de cálculo Excel Agrupamento de Escolas de Amares Índice 1. Funcionalidades básicas... 3 1.1. Iniciar o Excel... 3 1.2. Criar um livro novo... 3 1.3. Abrir um livro existente... 3 1.4. Inserir uma

Leia mais

Programação Recursiva versão 1.02

Programação Recursiva versão 1.02 Programação Recursiva versão 1.0 4 de Maio de 009 Este guião deve ser entregue, no mooshak e no moodle, até às 3h55 de 4 de Maio. AVISO: O mooshak é um sistema de avaliação e não deve ser utilizado como

Leia mais

TÉCNICAS DE DATA MINING EM BIOINFORMÁTICA

TÉCNICAS DE DATA MINING EM BIOINFORMÁTICA TÉCNICAS DE DATA MINING EM BIOINFORMÁTICA Notas de apoio ao módulo Técnicas de Data Mining em Bioinformática Instituto Superior Técnico Outubro de 2005 Arlindo L. Oliveira, Paulo Franco, Ana Teresa Freitas,Cláudia

Leia mais

Transcrição Automática de Música

Transcrição Automática de Música Transcrição Automática de Música Ricardo Rosa e Miguel Eliseu Escola Superior de Tecnologia e Gestão do Instituto Politécnico de Leiria Departamento de Engenharia Informática A transcrição automática de

Leia mais

Balanceamento de Carga

Balanceamento de Carga 40 4. Balanceamento de Carga Pode-se entender por balanceamento de carga uma política a ser adotada para minimizar tanto a ociosidade de utilização de alguns equipamentos quanto a super utilização de outros,

Leia mais

Web Data Mining com R

Web Data Mining com R Web Data Mining com R Fabrício J. Barth fabricio.barth@gmail.com VAGAS Tecnologia e Faculdade BandTec Maio de 2014 Objetivo O objetivo desta palestra é apresentar conceitos sobre Web Data Mining, fluxo

Leia mais

Aula 20. Roteamento em Redes de Dados. Eytan Modiano MIT

Aula 20. Roteamento em Redes de Dados. Eytan Modiano MIT Aula 20 Roteamento em Redes de Dados Eytan Modiano MIT 1 Roteamento Deve escolher rotas para vários pares origem, destino (pares O/D) ou para várias sessões. Roteamento datagrama: a rota é escolhida para

Leia mais

O MODELO ESPAÇO VETORIAL NO DESENVOLVIMENTO DE INTERFACES DE BUSCA E RECUPERAÇÃO DE INFORMAÇÃO

O MODELO ESPAÇO VETORIAL NO DESENVOLVIMENTO DE INTERFACES DE BUSCA E RECUPERAÇÃO DE INFORMAÇÃO O MODELO ESPAÇO VETORIAL NO DESENVOLVIMENTO DE INTERFACES DE BUSCA E RECUPERAÇÃO DE INFORMAÇÃO RESUMO LOPES, T.S.F. 1., FERNEDA, E. 2 1 Mestranda do Programa de Pós-graduação em Ciência da Informação Rua

Leia mais

RECUPERAÇÃO DE IMAGENS UTILIZANDO TÉCNICAS DE AGRUPAMENTO DE DADOS

RECUPERAÇÃO DE IMAGENS UTILIZANDO TÉCNICAS DE AGRUPAMENTO DE DADOS PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS Programa de Pós-Graduação em Informática RECUPERAÇÃO DE IMAGENS UTILIZANDO TÉCNICAS DE AGRUPAMENTO DE DADOS Fabiano Pereira Bhering Belo Horizonte 2012

Leia mais

Engenharia de Requisitos 2 - Conceitos Básicos da Engenharia de Requisitos

Engenharia de Requisitos 2 - Conceitos Básicos da Engenharia de Requisitos Engenharia de Requisitos 2 - Conceitos Básicos da Engenharia de Requisitos Pedro Campos Professor Auxiliar, Universidade da Madeira http://dme.uma.pt/pcampos - pcampos@uma.pt 1 O que é a engenharia? A

Leia mais

Módulo III. Folhas de Cálculo

Módulo III. Folhas de Cálculo Módulo III Ferramentas do Office Folhas de Cálculo Ferramentas de produtividade 1 Folhas de Cálculo O que é: Uma Folha de Cálculo é, por tradição, um conjunto de células que formam uma grelha ou tabela

Leia mais

Análise de agrupamento para taxa de incidência de dengue entre os anos de 1990 e 2010 nos estados brasileiros

Análise de agrupamento para taxa de incidência de dengue entre os anos de 1990 e 2010 nos estados brasileiros Análise de agrupamento para taxa de incidência de dengue entre os anos de 1990 e 2010 nos estados brasileiros Jader da Silva Jale 1 2 Joseilme Fernandes Gouveia 3 Prof. Dr. Borko Stosic 4 1 Introdução

Leia mais

Analise filogenética baseada em alinhamento de domínios

Analise filogenética baseada em alinhamento de domínios Analise filogenética baseada em alinhamento de domínios Moléculas biológicas e evolução Como já foi comentado anteriormente sabemos que o DNA de qualquer espécie de ser vivo sofre mutações ao longo do

Leia mais

FUNDAÇÃO DE APOIO AO ENSINO TÉCNICO DO ESTADO DO RIO DE JANEIRO FAETERJ Petrópolis Área de Extensão PLANO DE CURSO

FUNDAÇÃO DE APOIO AO ENSINO TÉCNICO DO ESTADO DO RIO DE JANEIRO FAETERJ Petrópolis Área de Extensão PLANO DE CURSO FUNDAÇÃO DE APOIO AO ENINO TÉCNICO DO ETADO DO RIO DE JANEIRO PLANO DE CURO 1. Identificação Curso de Extensão: INTRODUÇÃO AO ITEMA INTELIGENTE Professor Regente: José Carlos Tavares da ilva Carga Horária:

Leia mais

Pixel. Aprenda Italiano em Florença Cursos Individuais para Estrangeiros

Pixel. Aprenda Italiano em Florença Cursos Individuais para Estrangeiros Certified Quality System in compliance with the standard UNI EN ISO 9001:2000. Certificate n SQ.41823. Pixel Aprenda Italiano em Florença Cursos Individuais para Estrangeiros CURSOS INDIVIDUAIS PARA ESTRANGEIROS

Leia mais

Redes Neurais. Mapas Auto-Organizáveis. 1. O Mapa Auto-Organizável (SOM) Prof. Paulo Martins Engel. Formação auto-organizada de mapas sensoriais

Redes Neurais. Mapas Auto-Organizáveis. 1. O Mapa Auto-Organizável (SOM) Prof. Paulo Martins Engel. Formação auto-organizada de mapas sensoriais . O Mapa Auto-Organizável (SOM) Redes Neurais Mapas Auto-Organizáveis Sistema auto-organizável inspirado no córtex cerebral. Nos mapas tonotópicos do córtex, p. ex., neurônios vizinhos respondem a freqüências

Leia mais

Data, Text and Web Mining

Data, Text and Web Mining Data, Text and Web Mining Fabrício J. Barth TerraForum Consultores Junho de 2010 Objetivo Apresentar a importância do tema, os conceitos relacionados e alguns exemplos de aplicações. Data, Text and Web

Leia mais

Manual do Utilizador. Janeiro de 2012.

Manual do Utilizador. Janeiro de 2012. Janeiro de 2012. Índice 1. Introdução 2 Geral 2 Específico 2 Configurável 2 2. Acesso ao adapro 3 3. Descrição 4 Descrição Geral. 4 Funcionalidades específicas de um processador de textos. 5 Documento

Leia mais

Manual de iniciação rápida. ActivEngage

Manual de iniciação rápida. ActivEngage Manual de iniciação rápida Manual de iniciação rápida Manual de iniciação rápida Quais as novidades? 2 Registo 4 Votação 9 Resultados da votação 16 Mais informações 17 TP1780-PT Edição 2 2010 Promethean

Leia mais

Palavras-chave: self-organizing maps, p-median, construção de regiões

Palavras-chave: self-organizing maps, p-median, construção de regiões somgis: UMA FERRAMENTA PARA CONSTRUIR REGIÕES Roberto Henriques, Fernando Bação, Instituto Superior de Estatística e Gestão de Informação, Universidade Nova de Lisboa, Campus de Campolide 1070-312 Lisboa,

Leia mais

Árvores Binárias e Busca. Jeane Melo

Árvores Binárias e Busca. Jeane Melo Árvores Binárias e Busca Jeane Melo Roteiro Parte 1 Árvores Relação hierárquica Definição Formal Terminologia Caminhamento em Árvores Binárias Exemplos Parte 2 Busca seqüencial Busca Binária Grafos Conjunto

Leia mais

Microsoft Excel na resolução de problemas de optimização

Microsoft Excel na resolução de problemas de optimização Universidade do Minho Escola de Engenharia Departamento Campus de Gualtar de Produção 4710-057 Braga e Sistemas Microsoft Excel na resolução de problemas de optimização Manual da disciplina de Métodos

Leia mais

Problemas de Caminho Mínimo. Metodologias de Apoio à Decisão 1. Slide 1. Definição: Determinar o caminho mais curto entre o nó de entrada e o nó

Problemas de Caminho Mínimo. Metodologias de Apoio à Decisão 1. Slide 1. Definição: Determinar o caminho mais curto entre o nó de entrada e o nó Metodologias de Apoio à Decisão 1 Problemas de Caminho Mínimo Slide 1 Transparências de apoio à leccionação de aulas teóricas Problemas de Caminho Mínimo Definição: Determinar o caminho mais curto entre

Leia mais

Análise de complexidade

Análise de complexidade Introdução Algoritmo: sequência de instruções necessárias para a resolução de um problema bem formulado (passíveis de implementação em computador) Estratégia: especificar (definir propriedades) arquitectura

Leia mais

Estruturas de Armazenamento e Indexação. Rafael Lage Moreira Barbosa 10.1.4217

Estruturas de Armazenamento e Indexação. Rafael Lage Moreira Barbosa 10.1.4217 Estruturas de Armazenamento e Indexação Rafael Lage Moreira Barbosa 10.1.4217 Estruturas de Armazenamento Banco de Dados são armazenados fisicamente como arquivos de registro, que em geral ficam em discos

Leia mais

17/10/2012. dados? Processo. Doutorado em Engenharia de Produção Michel J. Anzanello. Doutorado EP - 2. Doutorado EP - 3.

17/10/2012. dados? Processo. Doutorado em Engenharia de Produção Michel J. Anzanello. Doutorado EP - 2. Doutorado EP - 3. Definição de Data Mining (DM) Mineração de Dados (Data Mining) Doutorado em Engenharia de Produção Michel J. Anzanello Processo de explorar grandes quantidades de dados à procura de padrões consistentes

Leia mais

Faculdades Santa Cruz - Inove. Plano de Aula Base: Livro - Distributed Systems Professor: Jean Louis de Oliveira.

Faculdades Santa Cruz - Inove. Plano de Aula Base: Livro - Distributed Systems Professor: Jean Louis de Oliveira. Período letivo: 4 Semestre. Quinzena: 5ª. Faculdades Santa Cruz - Inove Plano de Aula Base: Livro - Distributed Systems Professor: Jean Louis de Oliveira. Unidade Curricular Sistemas Distribuídos Processos

Leia mais

COMPARAÇÃO DOS MÉTODOS DE SEGMENTAÇÃO DE IMAGENS OTSU, KMEANS E CRESCIMENTO DE REGIÕES NA SEGMENTAÇÃO DE PLACAS AUTOMOTIVAS

COMPARAÇÃO DOS MÉTODOS DE SEGMENTAÇÃO DE IMAGENS OTSU, KMEANS E CRESCIMENTO DE REGIÕES NA SEGMENTAÇÃO DE PLACAS AUTOMOTIVAS COMPARAÇÃO DOS MÉTODOS DE SEGMENTAÇÃO DE IMAGENS OTSU, KMEANS E CRESCIMENTO DE REGIÕES NA SEGMENTAÇÃO DE PLACAS AUTOMOTIVAS Leonardo Meneguzzi 1 ; Marcelo Massoco Cendron 2 ; Manassés Ribeiro 3 INTRODUÇÃO

Leia mais

DISCIPLINA ENGENHARIA DE SOFTWARE Aula 03 Desenvolvimento Ágil Modelos Ágeis. Profª Esp.: Maysa de Moura Gonzaga

DISCIPLINA ENGENHARIA DE SOFTWARE Aula 03 Desenvolvimento Ágil Modelos Ágeis. Profª Esp.: Maysa de Moura Gonzaga DISCIPLINA ENGENHARIA DE SOFTWARE Aula 03 Desenvolvimento Ágil Modelos Ágeis Profª Esp.: Maysa de Moura Gonzaga 2º Semestre / 2011 Extreme Programming (XP); DAS (Desenvolvimento Adaptativo de Software)

Leia mais