5. Transformada de Laplace

Tamanho: px
Começar a partir da página:

Download "5. Transformada de Laplace"

Transcrição

1 Sinai e Siema - 5. Tanfomada de Laplace A Tanfomada de Laplace é uma impoane feamena paa a eolução de equaçõe difeenciai. Também é muio úil na epeenação e análie de iema. É uma anfomação que faz um mapeameno do domínio do empo paa o domínio S com = σ+jw (complexo). A anfomada de Laplace exie em dua vaiane: unilaeal e bilaeal. A anfomada unilaeal é úil na análie de iema com condiçõe iniciai. A anfomada bilaeal em uo paa euda cea caaceíica do iema. A pincipal aplicação da anfomada de Laplace no âmbio da engenhaia é a análie de epoa empoal e da eabilidade de iema. 5. Definição Seja e uma exponencial complexa. = σ+jw é uma fequência complexa. Podemo eceve e como um inal de valo complexo: e = e σ co(w) + j e σ in(w) A pae eal de e é um coeno exponencialmene amoecido e a pae imagináia um eno exponencialmene amoecido (aumindo σ negaivo). Tanfomada de Laplace bilaeal: X = x e d Tanfomada de Laplace (bilaeal) Tanfomada de Laplace unilaeal: Sinai cauai êm uma oigem em empo finio o qual pode e aumido como endo a oigem: [x=, =]. Nee cao pode edefini-e a anfomada de Laplace como unilaeal. X = x e d Tanfomada de Laplace (unilaeal) É ea foma de anfomada de Laplace que vamo aa a pai daqui uma vez que o noo objecivo é uilizá-la como feamena paa a análie de iema. Condiçõe de exiência: Paa que a anfomada de Laplace exia é neceáio que o inegal convija. Io é gaanido e: xe σ d Io é, xe -σ em de e aboluamene inegável. Rogéio Lago Seúbal 999

2 Sinai e Siema - 4 Se compaamo a anfomada de Laplace com a anfomada de Fouie vemo que aquela pode e conideada como a anfomada de Fouie de xe -σ. Nea pepeciva veifica-e que a condiçõe de convegência ão exacamene a mema. Região de Convegência (ROC): Valoe de σ paa o quai o anfomada de Laplace convege. Sendo ea condição expea em emo da pae eal de =σ+jw, ela eabelece como egião de convegência um emi plano à dieia de uma eca veical : Re{} > σ. S σ Tanfomada invea de Laplace: A anfomada invea de Laplace de X é dada po: σ + x = X e d π j Tanfomada invea de Laplace (bilaeal) σ Uualmene ee inegal não neceia e eolvido, poi ecoe-e à abela e a méodo páico de obe a anfomada invea. 5. Tanfomada de Laplace de funçõe báica Vamo apena conidea, a pai daqui, a anfomada unilaeal. Logo x =, <. 5.. Função exponencial: x=e -a u, a eal (não é impoo que a eja poiivo). ( + a) a ( + a) e = = = ( + a) ( σ + a ) jw =σ+jw +a = (σ+a)+jw X e e d e d e e = = + + ( a) ( a) Noa que e jw = e paa que ; ROC: Re{} > -a. -( a ) e + lim =, eá de e σ+a >, logo: σ >- a (ROC) 5.. Função alo uniáio: x = u X =. e d =, Re> 5.. Função ampa uniáia S -a x = u X = e. d =, Re> Noa. A inegação fica fácil e ecoemo à inegação po pae: fg = fg f g Rogéio Lago Seúbal 999

3 Sinai e Siema Função inuoidal x = en(w).u jw jw e e w, Re{S}> X = en( w) e d = e d = j + w Analogamene, obém-e paa a função coeno: x = en(w).u, X = + w 5. Tabela de Tanfomada de Laplace Paindo da anfomada acima calculada e de oua que podeíamo facilmene deemina oganiza-e a abela de anfomada de Laplace que e apeena a egui e que eá úil paa poeio conula. Tabela 5. Tanfomada de Laplace de funçõe elemenae Função empoal x Tanfomada de Laplace X δ Impulo u u e -a u + a e -a u ( + a) n e -a u n ( + a ) en(w )u w + w co(w )u + w e -a en(w )u w a + w ( ) Noa Salo uniáio Re> Rampa Re(> Exponencial Re{}>-a Re{}>-a Re{}>-a Seno Re> Coeno Re> Seno amoecido Re{}>-a 5.4 Popiedade da anfomada de Laplace Enunciam-e a egui um conjuno de popiedade da anfomada de Laplace. Com bae na anfomada de funçõe imple obida de abela e nea popiedade é poível uma um gande de anfomada de oua funçõe elacionada com aquela. Rogéio Lago Seúbal 999

4 Sinai e Siema - 6 i) Lineaidade: x X, Roc=R ; x Enão: a x a x a X + a X X, Roc=R +, R A demonação é imediaa aplicando a definição e endo em cona a lineaidade do opeado inegal. ii) Delocação no empo: x X, x e X, Enão: ( ) A demonação pode faze-e ecoendo a uma mudança de vaiável: τ = - : ( ) x( ) e d x( ) e τ + τ τ dτ e = = x( τ) e dτ = e X iii) Tanlação em S (modulação): x X, Enão: e x X( ), + Re{S } iv) Ecalameno no empo: x X, Enão: ( a ) x X a a, a v) Deivada no empo: x X, Enão: dx d X, RoC coném R Noa: No cao da anfomada de Laplace unilaeal apaecem a condiçõe iniciai x( + ), poi x em início em =. dx d X + x( ) vi) Deivada em S (no domínio S): x X, Enão: dx x, d vii) Inegação no empo: x X,, RoC coném R Re> Enão: x( τ) dτ X Rogéio Lago Seúbal 999

5 Sinai e Siema - 7 viii) Convolução: : x Enão: x x X X X, RoC =R ; x X, RoC =R, RoC coném R R Noa: O ímbolo indica a opeação de convolução que e define pelo eguine inegal: = ( ) ( ) x x x τ x τ dτ ix) Valo Inicial e Valo Final: Admie-e que x=, < e que não coném impulo na oigem. x + ( ) limx lim x = Reulado do eoema do valo inicial. lim X = Reulado do eoema do valo final. Ee doi eulado ão muio úei poi, em neceidade de conhece a expeão empoal de x, pemiem abe o eu valoe iniciai e finai a pai da ua anfomada de Laplace. Ee conjuno de popiedade eá umaiado na abela abaixo: Tabela 5. Popiedade da Tanfomada de Laplace Função empoal x x; y X; Y Tanfomada de Laplace X a x + a y a X + a Y Lineaidade x(- ) x(a) exp(- )X a X a Rogéio Lago Seúbal 999 Noa Delocameno no empo > Ecalameno no empo a> e a x X(-a) Modulação n x n n d X (-) n d n>, e ineio dx d X - x Deivação n d x n X - n- x - n- x n d x (n-) Deivação X x( τ) dτ Inegação x y XY Convolução x lim X Teoema do valo inicial x lim X Teoema do valo final

6 Sinai e Siema Tanfomada invea de Laplace Já foi aá apeenada a expeão que define a anfomada invea de Laplace. Ee inegal pode e de eolução complicada. Exiem méodo expedio de obe a anfomada invea. Vamo aqui apeena um baeado na expanão em facçõe imple Méodo da expanão em facçõe imple Aume-e que a anfomada de Laplace eá epeenada po uma azão de polinómio, o que ocoe empe paa a funçõe que no ineeam no âmbio da engenhaia. m m m m N bm + bm b+ b bm + bm b+ b X = = = n n D( ) + an a+ a ( pn)( pn )...( p) Também podeíamo facoiza o numeado. Obeíamo m aíze que eiam o zeo (z i ). A aíze do polinómio denominado ão o pólo (p i ) de X e ão em númeo de n. Em geal n>m io é há mai pólo que zeo pelo que X pode e ecio como uma oma de emo em cujo denominado apena exie um pólo (facçõe imple): A A An X = A k é o eíduo de X no pólo p k. ( p) ( p) ( pn ) N p k Ak Ak = ( pk) Da abela de anfomada: Ae k D = p pk k Dea foma a inveão de cada uma da facçõe imple é imediaa. Ee eulado aplicam-e apena a iuaçõe em que o pólo ão odo difeene (p i p j e i j). Exemplo : Obe x a pai da ua anfomada de Laplace X 5+ A A A X = = + + ( + )( + )( + ) O eíduo no pólo {-;-;-} obém-e da eguine maneia: ( 5 + ) 5+ A = ( + ) = = ( + ) ( + )( + ) ( + )( + ) = ( 5 + ) 7 A = = = 7 ( + )( + ) = ( 5 + ) A = = = 6 ( + )( + ) = Enão X expandido em facçõe imple e a ua anfomada invea ão: 7 6 X == + + x = e + 7e 6 e u Pólo de odem múlipla Cao exiam pólo de odem upeio à pimeia (váio pólo iguai) apaecem no denominado da função emo do ipo (+ i ). O pocedimeno a egui apeena-e no exemplo eguine: Rogéio Lago Seúbal 999

7 Sinai e Siema - 9 Exemplo : X N A A B B... B = = ( + )( + )( + ) + + ( + ) ( + ) ( + ) O eíduo A e A Coepondem a pólo imple e obém-e da foma já via no exemplo aneio. O pólo com muliplicidade em eíduo que e calculam da eguine foma: B X ( ) N = + Noa que X( + ) = = ( + )( + ) d B = X ( + ) d = d B = X ( + ) d =... d B = X ( + ) Expeão genéica paa o eíduo.! d = ( ) Exemplo : Obe a anfomada invea de X A A B B B X = = A = = ; A = = ( + ) ( + ) ( + ) ( ) ( ) ( ) ( ) ( ) = Pólo iplo S =- X( ) B = = = ( + ) = + = ( + ) =. Aim o eíduo B, B e B viam: B B d (+ ) = = = = d + ( + ) = ( ) = d d ( + ) = = = ( + ) ( ) d d = + = ( ) ( ) ( )( ) 4 ( + ) = = Noa que = + + ( ) A expanão em facçõe imple e a anfomada invea vem: X ( ) = x( ) = ( ) ( ) ( ) e + e e u( ) Rogéio Lago Seúbal 999

8 Sinai e Siema - Noa: ) Pólo complexo conjugado ocoem em pae complexo conjugado: S S Na expanão em facçõe imple, o eíduo A e A ambém ão complexo conjugado: Exemplo: N( ) A A [ ] = + Ae + A e u( ) ( + )( ) ( ) + + ( + ) De aliena que o inal empoal ambém é eal uma vez que e aa da oma de complexo conjugado. Noa: ) Aplicação da anfomada de Laplace à eolução de equaçõe difeenciai: Tomando a equação difeencial eguine com a condiçõe iniciai dada: d x( ) dx( ) x = + + x( ) = 5u( ) d d x = Aplicando anfomada de Laplace a ambo o membo: 5 5 S X( S) Sx x + SX( S) x + X( S) = ( S + S + ) X ( S) = S + S S S S + 5 Enão: X ( S) = S( S + S + ) Paa obe a expeão empoal de x é ó calcula a anfomada invea. Rogéio Lago Seúbal 999

CONTROLE POR REALIMENTAÇÃO DOS ESTADOS SISTEMAS SERVOS

CONTROLE POR REALIMENTAÇÃO DOS ESTADOS SISTEMAS SERVOS CONTROLE POR REALIMENTAÇÃO DOS ESTADOS SISTEMAS SERVOS. Moivaçõe Como vio o Regulado de Eado maném o iema em uma deeminada condição de egime pemanene, ou eja, ena mane o eado em uma dada condição eacionáia.

Leia mais

Escoamentos Compressíveis. Capítulo 06 Forma diferencial das equações de conservação para escoamentos invíscidos

Escoamentos Compressíveis. Capítulo 06 Forma diferencial das equações de conservação para escoamentos invíscidos Escoamenos Compessíveis Capíulo 06 Foma difeencial das equações de consevação paa escoamenos invíscidos 6. Inodução A análise de poblemas na dinâmica de fluidos eque ês passos iniciais: Deeminação de um

Leia mais

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 1. Retas Cortadas por uma Transversal. Oitavo Ano

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 1. Retas Cortadas por uma Transversal. Oitavo Ano Maeial Teóico - Módulo Elemeno áico de Geomeia Plana - Pae 1 Rea oada po uma Tanveal Oiavo no uo: Pof. Ulie Lima Paene Revio: Pof. nonio aminha M. Neo 1 Rea coada po uma anveal Sejam e dua ea iuada em

Leia mais

PARNAMIRIM - RN. Data: / / 2016

PARNAMIRIM - RN. Data: / / 2016 PARNAMIRIM - RN Aluno (a) Nº: 8º ano Tuma: Daa: / / 2016 NOTA: Eecício de evião de maemáica II Timee Pofeo (a): Joeane Fenande Agoa vamo coloca em páica o eu conhecimeno maemáico e udo o que eudamo em

Leia mais

Transmissão de calor

Transmissão de calor UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenhaia ansmissão de calo 3º ano Pof D. Engº Joge Nhambiu Aula. Equação difeencial de condução de calo Equação difeencial de condução de calo Dedução da equação

Leia mais

Seu pé direito nas melhores faculdades. a) Indicando os montantes finais possuídos por Carlos, Luís e Sílvio por C, L e S, respectivamente, temos:

Seu pé direito nas melhores faculdades. a) Indicando os montantes finais possuídos por Carlos, Luís e Sílvio por C, L e S, respectivamente, temos: Seu pé dieio na melhoe faculdade. FUVEST/00 a Fae TEÁTI 0. alo, Luí e Sílvio inham, juno, 00 mil eai paa invei po um ano. alo ecolheu uma aplicação que endia ao ano. Luí, uma que endia 0% ao ano. Sílvio

Leia mais

TEOREMA DE TALES PROF. JOÃO BATISTA

TEOREMA DE TALES PROF. JOÃO BATISTA PROF. JOÃO BATISTA TEOREMA DE TALES Se um feie de paalela deemina egmeno conguene obe uma anveal, enão ee feie deemina egmeno conguene obe qualque oua anveal. Aim, um feie de paalela deemina, em dua anveai

Leia mais

Transformada inversa de Laplace

Transformada inversa de Laplace Sinai e Siema - 6 Tranformada invera de Laplace Já foi ará apreenada a expreão que define a ranformada invera de Laplace. Ee inegral pode er de reolução complicada. Exiem méodo expedio de ober a ranformada

Leia mais

Onde sentar no cinema?

Onde sentar no cinema? Onde ena no cinema? Felipe Vieia 1 felipemae@gmail.com im como muia áea da maemáica, poblema de exemo maximização ou minimização de uma cea vaiável) ão eudado á muio empo. Ee poblema, que êm deafiado maemáico

Leia mais

CONTROLABILIDADE E OBSERVABILIDADE

CONTROLABILIDADE E OBSERVABILIDADE Eduardo obo uoa Cabral CONTROABIIDADE E OBSERVABIIDADE. oiação Em um iema na forma do epaço do eado podem exiir dinâmica que não ão ia pela aída do iema ou não ão influenciada pela enrada do iema. Se penarmo

Leia mais

EOREMA DE TALES. Assim, um feixe de paralelas determina, em duas transversais quaisquer, segmentos proporcionais. Exemplo: Quanto vale x?

EOREMA DE TALES. Assim, um feixe de paralelas determina, em duas transversais quaisquer, segmentos proporcionais. Exemplo: Quanto vale x? EOREMA DE TALES Se um feixe de paalela deemina egmeno conguene obe uma anveal, enão ee feixe deemina egmeno conguene obe qualque oua anveal. Aim, um feixe de paalela deemina, em dua anveai quaique, egmeno

Leia mais

Separação Cromatografica. Docente: João Salvador Fernandes Lab. de Tecnologia Electroquímica Pavilhão de Minas, 2º Andar Ext. 1964

Separação Cromatografica. Docente: João Salvador Fernandes Lab. de Tecnologia Electroquímica Pavilhão de Minas, 2º Andar Ext. 1964 Sepaação Comaogafica Docene: João Salvado Fenandes Lab. de Tecnologia Elecoquímica Pavilhão de Minas, º Anda Ex. 964 Sepaação Comaogáfica envolve ineacções ene um soluo numa fase móvel (eluene) e um leio

Leia mais

3. Representaç ão de Fourier dos Sinais

3. Representaç ão de Fourier dos Sinais Sinais e Sisemas - 3. Represenaç ão de Fourier dos Sinais Nese capíulo consideramos a represenação dos sinais como uma soma pesada de exponenciais complexas. Dese modo faz-se uma passagem do domínio do

Leia mais

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 1. Conceitos Geométricos Básicos. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 1. Conceitos Geométricos Básicos. Oitavo Ano. Prof. Ulisses Lima Parente Mateial Teóico - Módulo Elemento áico de Geometia Plana - Pate 1 Conceito Geomético áico itavo no Pof. Ulie Lima Paente 1 Conceito pimitivo ideia de ponto, eta e plano apaecem natualmente quando obevamo

Leia mais

6.1: Transformada de Laplace

6.1: Transformada de Laplace 6.: Tranformada de Laplace Muio problema práico da engenharia envolvem iema mecânico ou elérico ob ação de força deconínua ou de impulo. Para ee ipo de problema, o méodo vio em Equaçõe Diferenciai I, ão

Leia mais

01- A figura ABCD é um quadrado de lado 2 cm e ACE um triângulo equilátero. Calcule a distância entre os vértices B e E.

01- A figura ABCD é um quadrado de lado 2 cm e ACE um triângulo equilátero. Calcule a distância entre os vértices B e E. PROFESSOR: Macelo Soae NO E QUESTÕES - MTEMÁTI - 1ª SÉRIE - ENSINO MÉIO ============================================================================================= GEOMETRI Pae 1 01- figua é um quadado

Leia mais

TENSÕES E CORRENTES TRANSITÓRIAS E TRANSFORMADA LAPLACE

TENSÕES E CORRENTES TRANSITÓRIAS E TRANSFORMADA LAPLACE TNSÕS CONTS TANSTÓAS TANSFOMADA D APAC PNCPAS SNAS NÃO SNODAS Degrau de ampliude - É um inal que vale vol para < e vale vol, conane, para >. Ver fig. -a. v (a) (b) v Fig. A fig. -b mora um exemplo da geração

Leia mais

Princípios de conservação e Equação de Evolução

Princípios de conservação e Equação de Evolução Pincípios de consevação e Equação de Evolução Os pincípios fundamenais da Mecânica aplicam-se a copos maeiais e po isso em fluidos aplicam-se a uma poção de fluido e não a um volume fixo do espaço. Ese

Leia mais

ENGENHARIA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 2ª LISTA DE EXERCÍCIOS. (Atualizada em abril de 2009)

ENGENHARIA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 2ª LISTA DE EXERCÍCIOS. (Atualizada em abril de 2009) ENGENHARIA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Pofesso : Humbeo Anônio Baun d Azevedo ª LISTA DE EXERCÍCIOS (Aualizada em abil de 009 1 Dados A (1, 0, -1, B (, 1,, C (1, 3, 4 e D (-3, 0, 4 Deemina: a

Leia mais

Tabela 1 Relações tensão-corrente, tensão-carga e impedância para capacitoers, resistores e indutores.

Tabela 1 Relações tensão-corrente, tensão-carga e impedância para capacitoers, resistores e indutores. Modelagem Maemáica MODELOS MATEMÁTICOS DE CIRCUITOS ELÉTRICOS O circuio equivalene à rede elérica com a quai rabalhamo coniem baicamene em rê componene lineare paivo: reiore, capaciore e induore. A Tabela

Leia mais

TRANSFORMADA DE LAPLACE. Revisão de alguns: Conceitos Definições Propriedades Aplicações

TRANSFORMADA DE LAPLACE. Revisão de alguns: Conceitos Definições Propriedades Aplicações TRANSFORMADA DE LAPLACE Revião de algun: Conceito Deiniçõe Propriedade Aplicaçõe Introdução A Tranormada de Laplace é um método de tranormar equaçõe dierenciai em equaçõe algébrica mai acilmente olucionávei

Leia mais

Análise Matemática IV

Análise Matemática IV Análie Maemáica IV Problema para a Aula Práica Semana. Calcule a ranformada de Laplace e a regiõe de convergência da funçõe definida em 0 pela expreõe eguine: a f = cha b f = ena Reolução: a Aendendo a

Leia mais

Seção 24: Laplaciano em Coordenadas Esféricas

Seção 24: Laplaciano em Coordenadas Esféricas Seção 4: Laplaciano em Coodenadas Esféicas Paa o leito inteessado, na pimeia seção deduimos a expessão do laplaciano em coodenadas esféicas. O leito ue estive disposto a aceita sem demonstação pode dietamente

Leia mais

ESPAÇO VETORIAL REAL DE DIMENSÃO FINITA

ESPAÇO VETORIAL REAL DE DIMENSÃO FINITA EPÇO ETORIL REL DE DIMENÃO FINIT Defnção ejam um conjuno não ao o conjuno do númeo ea R e dua opeaçõe bnáa adção e mulplcação po ecala : : R u a u a é um Epaço eoal obe R ou Epaço eoal Real ou um R-epaço

Leia mais

4 Descrição de permutadores

4 Descrição de permutadores Aponameno de Pemuadoe de alo Equipameno émico 005 João Luí oe Azevedo 4 ecição de pemuadoe Nea ecção vão deceve-e o pincipai ipo de pemuadoe de calo de conaco indieco com anfeência dieca, ou eja, equipameno

Leia mais

Processamento de Imagens

Processamento de Imagens Poceamento de Imagen By Vania V. Etela UFF-TELECOM, Joaquim T. de AiIPRJ-UERJ Técnica de Modificação de Hitogama O hitogama de uma imagem, que é uma oiedade do conteúdo da infomação contida na mema, é

Leia mais

2 O Motor de Indução Equações do Motor de Indução Trifásico

2 O Motor de Indução Equações do Motor de Indução Trifásico 2 O Moto de Indução Paa aplicação de nova tecnologia no moto de indução é neceáio conhece-e o eu modelo matemático, paa pode incopoa quae toda a técnica de contole, etimação, deteção, etc. Potanto, nete

Leia mais

MODELOS DE SISTEMAS DINÂMICOS. Função de transferência Resposta transiente

MODELOS DE SISTEMAS DINÂMICOS. Função de transferência Resposta transiente MODELOS DE SISTEMS DINÂMICOS Função de ranferência epoa raniene Função de Tranferência Deenvolveremo a função de ranferência de um iema de primeira ordem coniderando o comporameno não eacionário de um

Leia mais

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS IUITOS ESSONANTES ENTO FEDEA DE EDUAÇÃO TENOÓGIA DE MINAS GEAIS PÁTIA DE ABOATÓIO DE TEEOMUNIAÇÕES POF: WANDE ODIGUES - 3 o e 4 o MÓDUOS DE EETÔNIA - 003 EPEIÊNIA N o TÍTUO: IUITOS ESSONANTES Os cicuios

Leia mais

Matemática. Atividades. complementares. FUNDAMENTAL 8-º ano. Este material é um complemento da obra Matemática 8. uso escolar. Venda proibida.

Matemática. Atividades. complementares. FUNDAMENTAL 8-º ano. Este material é um complemento da obra Matemática 8. uso escolar. Venda proibida. 8 ENSINO FUNMENTL 8-º ano Matemática tividade complementae Ete mateial é um complemento da oba Matemática 8 Paa Vive Junto. Repodução pemitida omente paa uo ecola. Venda poibida. Samuel aal apítulo 6 Ete

Leia mais

GEOMETRIA DE POSIÇÃO.

GEOMETRIA DE POSIÇÃO. GEMETRI DE SIÇÃ. Geomeia de oição é a pae da Geomeia que euda a deeminação do elemeno geoméico, bem como a poiçõe elaiva e a ineeçõe dee elemeno no epaço. III - o dua ea paalela diina. IV - o dua ea concoene.

Leia mais

2.6 - Conceitos de Correlação para Sinais Periódicos

2.6 - Conceitos de Correlação para Sinais Periódicos .6 - Conceios de Correlação para Sinais Periódicos O objeivo é o de comparar dois sinais x () e x () na variável empo! Exemplo : Considere os dados mosrados abaixo y 0 x Deseja-se ober a relação enre x

Leia mais

SEMELHANÇA DE TRIÂNGULOS

SEMELHANÇA DE TRIÂNGULOS SLHÇ TRIÂGULOS 1. SGTOS PROPORIOIS Quao egmeno,,, GH,, nea odem, ão popocionai quando ua medida, omada numa mema unidade, fomaem uma popoção. Indicação: ( Lê-e: eá paa GH aim como eá paa GH ) emplo: Veifica

Leia mais

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem Seção 8: EDO s de a odem edutíveis à a odem Caso : Equações Autônomas Definição Uma EDO s de a odem é dita autônoma se não envolve explicitamente a vaiável independente, isto é, se fo da foma F y, y, y

Leia mais

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON) TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 8 LIVRO DO NILSON). CONSIDERAÇÕES INICIAIS SÉRIES DE FOURIER: descrevem funções periódicas no domínio da freqüência (ampliude e fase). TRANSFORMADA DE FOURIER:

Leia mais

1. O movimento uniforme de uma partícula tem sua função horária representada no diagrama a seguir: e (m) t (s)

1. O movimento uniforme de uma partícula tem sua função horária representada no diagrama a seguir: e (m) t (s) . O moimeno uniforme de uma parícula em ua função horária repreenada no diagrama a eguir: e (m) - 6 7 - Deerminar: a) o epaço inicial e a elocidade ecalar; a função horária do epaço.. É dado o gráfico

Leia mais

Matemática / Física. Figura 1. Figura 2

Matemática / Física. Figura 1. Figura 2 Matemática / Fíica SÃO PAULO: CAPITAL DA VELOCIDADE Diveo título foam endo atibuído à cidade de São Paulo duante eu mai de 00 ano de fundação, como, po exemplo, A cidade que não pode paa, A capital da

Leia mais

Credenciamento Portaria MEC 3.613, de D.O.U

Credenciamento Portaria MEC 3.613, de D.O.U edenciamento Potaia ME 3.63, de 8..4 - D.O.U. 9..4. MATEMÁTIA, LIENIATURA / Geometia Analítica Unidade de apendizagem Geometia Analítica em meio digital Pof. Lucas Nunes Ogliai Quest(iii) - [8/9/4] onteúdos

Leia mais

Seção 5: Equações Lineares de 1 a Ordem

Seção 5: Equações Lineares de 1 a Ordem Seção 5: Equações Lineares de 1 a Ordem Definição. Uma EDO de 1 a ordem é dia linear se for da forma y + fx y = gx. 1 A EDO linear de 1 a ordem é uma equação do 1 o grau em y e em y. Qualquer dependência

Leia mais

8.6 A corrente de deslocamento e as equações de Maxwell

8.6 A corrente de deslocamento e as equações de Maxwell 8.6 A correne de delocameno e a equaçõe de Maxwell Michael Faraday decobriu uma da dua lei báica que regem o fenômeno não eacionário do eleromagneimo. Nela aparece uma derivada emporal do campo magnéico.

Leia mais

APÊNDICE. Revisão de Trigonometria

APÊNDICE. Revisão de Trigonometria E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio

Leia mais

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Geometia no Epaço NOME: Nº TURMA: Geometia é o amo da Matemática que etuda a popiedade e a elaçõe ente ponto, ecta,

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cuinho que mai apova na GV FGV Adminiação Pova Objeiva 03/dezembo/006 MATEMÁTICA 0. Se um auomóvel cua hoje R$ 45 000,00 e a cada ano ofe uma devaloização de 4%, o eu valo, em eai, daqui a dez ano, pode

Leia mais

Aula 7 Resposta no domínio do tempo - Sistemas de segunda ordem

Aula 7 Resposta no domínio do tempo - Sistemas de segunda ordem FUNDAMENTOS DE CONTROLE E AUTOMAÇÃO Aula 7 Repota no domínio do tempo - Sitema de egunda ordem Prof. Marcio Kimpara Univeridade Federal de Mato Groo do Sul Sitema de primeira ordem Prof. Marcio Kimpara

Leia mais

CONCEITOS FUNDAMENTAIS

CONCEITOS FUNDAMENTAIS Projeo eenge - Eng. Elérica Apoila de Siema de Conrole I III- &$3Ì78/,,, CONCEITOS FUNDAMENTAIS 3.- INTODUÇÃO Inicialmene nee capíulo, euda-e o conceio de função de ranferência, o qual é a bae da eoria

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2 CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do

Leia mais

O perímetro da circunferência

O perímetro da circunferência Univesidade de Basília Depatamento de Matemática Cálculo 1 O peímeto da cicunfeência O peímeto de um polígono de n lados é a soma do compimento dos seus lados. Dado um polígono qualque, você pode sempe

Leia mais

Geometria de Posição. Continuação. Prof. Jarbas

Geometria de Posição. Continuação. Prof. Jarbas Geometia de Poição Continuação Pof. Jaba POSIÇÕES RELATIVAS ENTRE DUAS RETAS NO ESPAÇO O que ão eta coplanae? São eta contida num memo plano. O que ão eta evea? São eta que não etão contida num memo plano.

Leia mais

Eletromagnetismo II 1 o Semestre de 2007 Noturno - Prof. Alvaro Vannucci. 21 aula - 29mai/2007

Eletromagnetismo II 1 o Semestre de 2007 Noturno - Prof. Alvaro Vannucci. 21 aula - 29mai/2007 Eleomagneismo II o Semese de 7 Nouno - Pof. Alvao Vannui aula - 9mai/7 Iniiamos o esudo da Emissão de adiação Eleomagnéia. Iniialmene, alulando os poeniais ϕ e A paa o Dipolo Eléio osilane, obivemos: A

Leia mais

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça Lei de Gauss II Revisão: Aula 2_2 Física Geal e Expeimental III Pof. Cláudio Gaça Revisão Cálculo vetoial 1. Poduto de um escala po um veto 2. Poduto escala de dois vetoes 3. Lei de Gauss, fluxo atavés

Leia mais

Edital Nº. 04/2009-DIGPE 10 de maio de 2009

Edital Nº. 04/2009-DIGPE 10 de maio de 2009 Caderno de Prova CONTROLE DE PROCESSOS Edial Nº. /9-DIPE de maio de 9 INSTRUÇÕES ERAIS PARA A REALIZAÇÃO DA PROVA Ue apena canea eferográfica azul ou prea. Ecreva o eu nome compleo e o número do eu documeno

Leia mais

Campo magnético criado por uma corrente eléctrica e Lei de Faraday

Campo magnético criado por uma corrente eléctrica e Lei de Faraday Campo magnéico ciado po uma coene elécica e Lei de Faaday 1.Objecivos (Rev. -007/008) 1) Esudo do campo magnéico de um conjuno de espias (bobine) pecoidas po uma coene elécica. ) Esudo da lei de indução

Leia mais

Considere as seguintes expressões que foram mostradas anteriormente:

Considere as seguintes expressões que foram mostradas anteriormente: Demontração de que a linha neutra paa pelo centro de gravidade Foi mencionado anteriormente que, no cao da flexão imple (em eforço normal), a linha neutra (linha com valore nulo de tenõe normai σ x ) paa

Leia mais

GEOMETRIA PLANA 1 - INTRODUÇÃO 2 - NOÇÕES PRIMITIVAS 3 - NOTAÇÕES 4 - ÂNGULO

GEOMETRIA PLANA 1 - INTRODUÇÃO 2 - NOÇÕES PRIMITIVAS 3 - NOTAÇÕES 4 - ÂNGULO GEOETRI L 1 - ITROUÇÃO Geomeia é uma palava de oigem gega e que ignifica medida de ea. Geomeia, como um do amo da aemáica, euda a figua geoméica e ua popiedade. O conceio peviamene eaelecido, em Geomeia,

Leia mais

Campo Magnético, Campo Eléctrico de Indução Devido ao Movimento e Binário da Máquina de Corrente Contínua

Campo Magnético, Campo Eléctrico de Indução Devido ao Movimento e Binário da Máquina de Corrente Contínua Campo Magnético, Campo Eléctico de Indução evido ao Movimento e Bináio da Máquina de Coente Contínua V. Maló Machado, I.S.T., Maio de 2008 A máquina de coente contínua, epeentada de foma etilizada na Fig.

Leia mais

1.1 TRANSFORMADA DE LAPLACE

1.1 TRANSFORMADA DE LAPLACE Revião de Tranformada de Laplace - Cenro Federal de Educação Tecnológica do Paraná. TRANSFORMADA DE LAPLACE Daa de impreão (verão): 5 de janeiro de 5, :38:8 documeno compoo com LATEXε uando L Y X. A Tranformada

Leia mais

CAPÍTULO 4 4.1 GENERALIDADES

CAPÍTULO 4 4.1 GENERALIDADES CAPÍTULO 4 PRIMEIRA LEI DA TERMODINÂMICA Nota de aula pepaada a pati do livo FUNDAMENTALS OF ENGINEERING THERMODINAMICS Michael J. MORAN & HOWARD N. SHAPIRO. 4. GENERALIDADES Enegia é um conceito fundamental

Leia mais

Mecânica dos Fluidos 1 Capítulo 2. Luis Fernando Azevedo Laboratório de Engenharia de Fluidos DEM/PUC-Rio

Mecânica dos Fluidos 1 Capítulo 2. Luis Fernando Azevedo Laboratório de Engenharia de Fluidos DEM/PUC-Rio Mecânica dos Fluidos 1 Capíulo 2 Luis Fenando Azevedo Laboaóio de Engenhaia de Fluidos DEM/PUC-Rio A hipóese do meio conínuo Uma eoia complea paa o movimeno de fluidos deveia leva em consideação a esuua

Leia mais

Modelo Intertemporal da Conta Corrente: Evidências para o Brasil. Resumo

Modelo Intertemporal da Conta Corrente: Evidências para o Brasil. Resumo Modelo Ineempoal da Cona Coene: Evidência paa o Bail Reumo Nelon da Silva * Joaquim P. Andade ** Nee abalho eguimo o pocedimeno de Campbell (987) paa ea a popoição paa o cao baileio de que a cona coene

Leia mais

Aplicações à Teoria da Confiabilidade

Aplicações à Teoria da Confiabilidade Aplicações à Teoria da ESQUEMA DO CAPÍTULO 11.1 CONCEITOS FUNDAMENTAIS 11.2 A LEI DE FALHA NORMAL 11.3 A LEI DE FALHA EXPONENCIAL 11.4 A LEI DE FALHA EXPONENCIAL E A DISTRIBUIÇÃO DE POISSON 11.5 A LEI

Leia mais

Acção da neve: quantificação de acordo com o EC1

Acção da neve: quantificação de acordo com o EC1 Acção da neve: quanificação de acordo com o EC1 Luciano Jacino Iniuo Superior de Engenharia de Liboa Área Deparamenal de Engenharia Civil Janeiro 2014 Índice 1 Inrodução... 1 2 Zonameno do erriório...

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

v t Unidade de Medida: Como a aceleração é dada pela razão entre velocidade e tempo, dividi-se também suas unidades de medida.

v t Unidade de Medida: Como a aceleração é dada pela razão entre velocidade e tempo, dividi-se também suas unidades de medida. Diciplina de Fíica Aplicada A / Curo de Tecnólogo em Geão Ambienal Profeora M. Valéria Epíndola Lea. Aceleração Média Já imo que quando eamo andando de carro em muio momeno é neceário reduzir a elocidade,

Leia mais

a) A energia potencial em função da posição pode ser representada graficamente como

a) A energia potencial em função da posição pode ser representada graficamente como Solução da questão de Mecânica uântica Mestado a) A enegia potencial em função da posição pode se epesentada gaficamente como V(x) I II III L x paa x < (egião I) V (x) = paa < x < L (egião II) paa x >

Leia mais

FIGURA 1. Diagrama fasorial de um dielétrico submetido a uma tensão CA.

FIGURA 1. Diagrama fasorial de um dielétrico submetido a uma tensão CA. i.ee DETEMINAÇÃO DO FATO DE DISSIPAÇÃO PEDAS DIELÉTIAS Eng. Joé Aino Teieia J. ondutividade eidual. Peda o olaização 3. Peda o decaga aciai Gae : O gae gealmente tem eda etemamente baia. O mecanimo de

Leia mais

Modelagem por composição de Wavelets: aplicação em localização do pitch de vogais 1

Modelagem por composição de Wavelets: aplicação em localização do pitch de vogais 1 Educação & Tecnologia Neta eção eá ealizada uma beve apeentação da teoia de wavelet, com a definição de tanfomada de wavelet, decompoição em multi-eoluçõe e a de-................................................................

Leia mais

A NATUREZA DO HORIZONTE DE EVENTOS - BURACOS NEGROS DE SCHWARZSCHILD. Rafaello Virgilli 1

A NATUREZA DO HORIZONTE DE EVENTOS - BURACOS NEGROS DE SCHWARZSCHILD. Rafaello Virgilli 1 A NATUREZA DO HORIZONTE DE EVENTOS - BURACOS NEGROS DE SCHWARZSCHILD Rafaello Vigilli 1 Resumo Ese abalho discoe sobe a solução de Schwazchild paa as equações de Einsein, em paicula sobe o hoizone de evenos.

Leia mais

Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Teorema de Tales - Parte I. Nono Ano do Ensino Fundamental

Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Teorema de Tales - Parte I. Nono Ano do Ensino Fundamental Maerial Teórico - Módulo de Semelhança de Triângulo e Teorema de Tale Teorema de Tale - are I Nono no do Enino Fundamenal rof. Marcelo Mende de Oliveira rof. nonio aminha M. Neo 1 Razão de egmeno ara organizar

Leia mais

Sistemas e Sinais 2009/2010

Sistemas e Sinais 2009/2010 Análie de Sitema alimentado Sitema e Sinai 9/ Análie de itema realimentado Álgebra de diagrama de bloco Sitema realimentado Etabilidade Deempenho SSin Diagrama de bloco Sitema em érie X Y G G Z Y G X Z

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

Voo Nivelado - Avião a Hélice

Voo Nivelado - Avião a Hélice - Avião a Hélice 763 º Ano da icenciaura em ngenharia Aeronáuica edro. Gamboa - 008. oo de ruzeiro De modo a prosseguir o esudo analíico do desempenho, é conveniene separar as aeronaves por ipo de moor

Leia mais

AS EQUAÇÕES DE MAXWELL E AS ONDAS ELETROMAGNÉTICAS

AS EQUAÇÕES DE MAXWELL E AS ONDAS ELETROMAGNÉTICAS A QUAÇÕ D MAXWLL A ONDA LTROMAGNÉTICA 1.1 A QUAÇÕ D MAXWLL Todos os poblemas de eleicidade e magneismo podem se esolvidos a pai das equações de Mawell: v 1. Lei de Gauss: φ. nda ˆ. Lei de Gauss paa o magneismo:

Leia mais

CAPÍTULO 3 DEPENDÊNCIA LINEAR

CAPÍTULO 3 DEPENDÊNCIA LINEAR Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu CAPÍTULO 3 DEPENDÊNCIA LINEAR Combinação Linea 2 n Definição: Seja {,,..., } um conjunto com n etoes. Dizemos que um eto u é combinação linea desses

Leia mais

0.18 O potencial vector

0.18 O potencial vector 68 0.18 O potencial vecto onfome ecodámos no início da disciplina, a divegência do otacional de um campo vectoial é sempe nula. Este esultado do cálculo vectoial implica que todos os campos solenoidais,

Leia mais

Índices Físicos ÍNDICES

Índices Físicos ÍNDICES Ínice Fíico ÍNDICES = volume oal a amora; = volume a fae ólia a amora; = volume a fae líquia; a = volume a fae aoa; v = volume e vazio a amora = a + ; = peo oal a amora ; a = peo a fae aoa a amora; = peo

Leia mais

MATEMÁTICA CADERNO 7 CURSO E. FRENTE 1 ÁLGEBRA n Módulo 28 Dispositivo de Briot-Ruffini Teorema Do Resto

MATEMÁTICA CADERNO 7 CURSO E. FRENTE 1 ÁLGEBRA n Módulo 28 Dispositivo de Briot-Ruffini Teorema Do Resto MATEMÁTICA FRENTE ÁLGEBRA n Módulo 8 Dispositivo de Biot-Ruffini Teoema Do Resto ) x + x x x po x + Utilizando o dispositivo de Biot-Ruffini: coeficientes esto Q(x) = x x + x 7 e esto nulo ) Pelo dispositivo

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 08/03/14 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 08/03/14 PROFESSOR: MALTEZ RSOLUÇÃO VLIÇÃO MTMÁTI o NO O NSINO MÉIO T: 08/03/14 PROFSSOR: MLTZ QUSTÃO 01 Na figua, a eta e ão pependiculae e a eta m e n ão paalela. m 0º n ntão a medida do ângulo, em gau, é igual a: 0º m alteno

Leia mais

30/08/2016. Transferência de calor. Condução de calor. 2 º. semestre, Geometrias mais usuais. Parede plana. Esfera.

30/08/2016. Transferência de calor. Condução de calor. 2 º. semestre, Geometrias mais usuais. Parede plana. Esfera. 30/08/06 Tanfeência de calo Condução de calo º. emete, 06 Geometia mai uuai Paede plana Efea Cilindo longo 30/08/06 Condução de calo em paede plana: ditibuição de tempeatua Balanço de enegia Taxa decondução

Leia mais

O sistema constituído por um número infinito de partículas é vulgarmente designado por sólido.

O sistema constituído por um número infinito de partículas é vulgarmente designado por sólido. Capíulo CINEMÁTIC DE UM SISTEM DE PRTÍCULS. INTRODUÇÃO Po sisema de paículas, ou sisema de ponos maeiais, designa-se um conjuno finio ou infinio de paículas, de al modo que a disância ene qualque dos seus

Leia mais

Ângulo é a figura formada pela união dos pontos de duas semirretas com origem no mesmo ponto.

Ângulo é a figura formada pela união dos pontos de duas semirretas com origem no mesmo ponto. uo de linguagem maemáica Pofeo Renao Tião Ângulo Ângulo é a figua fomada pela união do pono de dua emiea com oigem no memo pono. = ou implemene. Q P é o véice, e ão o lado e é a medida do ângulo. P peence

Leia mais

O Jogo do resta-um num tabuleiro infinito

O Jogo do resta-um num tabuleiro infinito O Jogo do esta-um num tabuleio infinito Alexande Baaviea Milton Pocópio de Boba 1. Intodução. No EREMAT-007 em Canoas-RS, acompanhando a Kelly, aluna de Matemática da UNIVILLE, assisti a váias palestas,

Leia mais

UNIVERSIDADE FEDERAL DE SANTA MARIA

UNIVERSIDADE FEDERAL DE SANTA MARIA UNVRSDAD FDRAL D SANTA MARA CNTRO D TCNOLOGA Depaameno e uua e Conução Civil XMPLO: VRFCAÇÃO DOS STADOS LMTS D SRVÇO M VGA D CONCRTO ARMADO e exemplo eee-e ao pojeo euual a via V (iua abaixo), e eção 5cm

Leia mais

Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Teorema de Tales - Parte I. Nono Ano do Ensino Fundamental

Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Teorema de Tales - Parte I. Nono Ano do Ensino Fundamental Maerial Teórico - Módulo de Semelhança de Triângulo e Teorema de Tale Teorema de Tale - are I Nono no do Enino Fundamenal rof. Marcelo Mende de Oliveira rof. nonio aminha M. Neo oral da OME 1 Razão de

Leia mais

Slides Aulas de Eletrônica Material didático auxiliar

Slides Aulas de Eletrônica Material didático auxiliar Slide Aula de Eletrônica Material didático auxiliar Obervação importante O lide aqui apreentado não refletem todo o conteúdo abordado em ala de aula. Muito exercício, demontraçõe e detalhamento da teoria,

Leia mais

Forma Integral das Equações Básicas para Volume de Controle

Forma Integral das Equações Básicas para Volume de Controle Núcleo de Engenhaia Témica e Fluidos Mecânica dos Fluidos (SEM5749) Pof. Osca M. H. Rodiguez Foma Integal das Equações Básicas paa olume de Contole Fomulação paa vs Fomulação paa volume de contole: fluidos

Leia mais

NOTAS DE AULA ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA RETAS E PLANOS ERON E ISABEL

NOTAS DE AULA ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA RETAS E PLANOS ERON E ISABEL NOTAS DE AULA ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA RETAS E PLANOS ERON E ISABEL SALVADOR BA 7 EQUAÇÃO VETORIAL DA RETA EQUAÇÕES DA RETA DEF: Qualque eto não nulo paalelo a uma eta chama-e eto dieto dea

Leia mais

Medida do Tempo de Execução de um Programa. Bruno Hott Algoritmos e Estruturas de Dados I DECSI UFOP

Medida do Tempo de Execução de um Programa. Bruno Hott Algoritmos e Estruturas de Dados I DECSI UFOP Medida do Tempo de Execução de um Programa Bruno Hott Algoritmo e Etrutura de Dado I DECSI UFOP Clae de Comportamento Aintótico Se f é uma função de complexidade para um algoritmo F, então O(f) é coniderada

Leia mais

Revisão de Alguns Conceitos Básicos da Física Experimental

Revisão de Alguns Conceitos Básicos da Física Experimental Revião de Algun Conceito Báico da Fíica Experimental Marcelo Gameiro Munhoz munhoz@if.up.br Lab. Pelletron, ala 245, r. 6940 O que é uma medida? Medir ignifica quantificar uma grandeza com relação a algum

Leia mais

Quantas equações existem?

Quantas equações existem? www2.jatai.ufg.br/oj/index.php/matematica Quanta equaçõe exitem? Rogério Céar do Santo Profeor da UnB - FUP profeorrogeriocear@gmail.com Reumo O trabalho conite em denir a altura de uma equação polinomial

Leia mais

8.2 Indução eletromagnética e a lei das malhas

8.2 Indução eletromagnética e a lei das malhas 8. Indução eleomagnéica e a lei das malhas Vimos na úlima seção que a lei das malhas na foma E dl = não vale na pesença de campos magnéicos empoalmene vaiáveis. Iso não é nenhuma agédia, é fácil consea

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV RJ_MATEMATICA_9_0_08 FGV-RJ A dministação Economia Dieito C Administação 26 26 das 200 vagas da GV têm ficado paa os alunos do CPV CPV O cusinho que mais apova na GV Ciências Sociais ociais GV CPV. ociais

Leia mais

Movimentos bi e tridimensional 35 TRIDIMENSIONAL

Movimentos bi e tridimensional 35 TRIDIMENSIONAL Moimenos bi e idimensional 35 3 MOVIMENTOS BI E TRIDIMENSIONAL 3.1 Inodução O moimeno unidimensional que imos no capíulo aneio é um caso paicula de uma classe mais ampla de moimenos que ocoem em duas ou

Leia mais

XXVII Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXVII Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXVII Olimpíada Braileira de Matemática GABARITO Segunda Fae Soluçõe Nível Segunda Fae Parte A CRITÉRIO DE CORREÇÃO: PARTE A Cada quetão vale 4 ponto e, e omente e, para cada uma o reultado ecrito pelo

Leia mais

Introdução ao Método de Elementos Finitos

Introdução ao Método de Elementos Finitos Intodução ao Método de Elementos Finitos Jaime Atuo Ramíe Unidade 1 1 Método de Elementos Finitos Apesentação do cuso O que se estuda aqui? O que é peciso sabe? O que amos fae? 2 Apesentação do cuso O

Leia mais

CIRCUITOS ELÉTRICOS EM CORRENTE ALTERNADA NÚMEROS COMPLEXOS

CIRCUITOS ELÉTRICOS EM CORRENTE ALTERNADA NÚMEROS COMPLEXOS CIRCUITOS ELÉTRICOS EM CORRENTE ALTERNADA NÚMEROS COMPLEXOS Um númeo compleo Z é um númeo da foma j, onde e são eais e j. (A ai quadada de um númeo eal negativo é chamada um númeo imagináio puo). No númeo

Leia mais

suur 03) (UPE 2007) Na figura abaixo a reta tangencia, em N, o círculo que passa por L, suur

suur 03) (UPE 2007) Na figura abaixo a reta tangencia, em N, o círculo que passa por L, suur Eta Geometia Plana Pof Eweton Paiva 01) (UFF 007) fim de elaboa um elemento de ua oba de ate, um eculto ua um pedaço de aame e contói uma cicunfeência, confome mota a figua P b) Pove que med(» ) med( E»

Leia mais

Conteúdos Exame Final e Avaliação Especial 2016

Conteúdos Exame Final e Avaliação Especial 2016 Componente Cuicula: Matemática Séie/Ano: 8º ANO Tuma: 18B, 18C e 18D Pofeoa: Liiane Mulick Betoluci Conteúdo Eame Final e Avaliação Epecial 16 1. Geometia. Monômio e Polinômio 3. Fatoação Algébica 4. Façõe

Leia mais

Unidade 3 Geometria: triângulos

Unidade 3 Geometria: triângulos Sugeõe de ividde Unidde 3 Geomei: iângulo 8 MTEMÁTI 1 Memáic 1. No iângulo egui você deve deemin: ) medid do ângulo ; b) medid do ângulo ; c) medid do ângulo z; d) medid do ângulo eeno o ângulo z. 120

Leia mais

Funções vetoriais. I) Funções vetoriais a valores reais:

Funções vetoriais. I) Funções vetoriais a valores reais: Funções vetoiais I) Funções vetoiais a valoes eais: f: I R R t a f(t) (f 1 n (t), f (t),..., f n (t)) I intevalo da eta eal denominada domínio da função vetoial f {conjunto de todos os valoes possíveis

Leia mais

A dinâmica estuda as relações entre as forças que actuam na partícula e os movimentos por ela adquiridos.

A dinâmica estuda as relações entre as forças que actuam na partícula e os movimentos por ela adquiridos. CAPÍTULO 4 - DINÂMICA A dinâmica estuda as elações ente as foças que actuam na patícula e os movimentos po ela adquiidos. A estática estuda as condições de equilíbio de uma patícula. LEIS DE NEWTON 1.ª

Leia mais