Experimento 4 Forças Centrais
|
|
- Leonor Miranda Marques
- 4 Há anos
- Visualizações:
Transcrição
1 Experimento 4 Forças Centrais Neste experimento, mediremos a energia mecânica e o momento angular de um corpo em movimento, no qual age uma força central elástica. O objetivo do experimento é interpretar o resultado do ponto de vista das leis de conservação. Introdução O arranjo experimental consiste em um corpo preso por uma mola a um pino fixo na mesa e que desliza em uma mesa de ar sobre vidro, quase sem atrito. O corpo é lançado de forma que sua velocidade inicial é aproximadamente perpendicular à força da mola. A trajetória do corpo é registrada com faíscas a cada intervalo de tempo Δt = 1/60 s em uma folha de papel presa numa placa paralela ao tampo de vidro da mesa. As Figuras 1 e 2 ilustram o arranjo experimental. As principais grandezas de interesse são: Energia cinética do corpo Energia potencial elástica da mola Energia total Quantidade de movimento linear Momento angular!!! L = r P!! P = mv colchão de ar Figura 1. Puque sobre um colchão de ar em mesa de vidro. Vista lateral. Ao analisar o diagrama de corpo livre do puque que se move em um plano horizontal sem atrito, o que acontece se a mesa estiver bem nivelada e com o ar fluindo, a força peso no puque será compensada pela força normal e a resultante será igual à força da mola. Como a soma das forças externas não é! nula, a quantidade de movimento linear!! não é conservada, mas o momento angular L = r P se conserva quando se adota, neste arranjo, a origem do sistema de coordenadas no ponto fixo da mola: o vetor r! é paralelo à força que a mola exerce no puque, de modo que temos!!! τ = r F = 0 e, como o torque é a derivada no tempo do momento angular, L! é constante. No sistema puque-mola, as energias em jogo são: Energia cinética de translação do puque. Energia potencial da mola.
2 A energia potencial da mola pode ser determinada a partir da distância do centro do puque até o centro do pino que prende a mola, descontando eventuais ganchos e prendedores, e os parâmetros da mola: constante de força k e comprimento natural x 0. Deve-se tomar cuidado ao determinar x 0, uma vez que a energia potencial varia com o quadrado do comprimento da mola, de forma que um erro no comprimento natural da mola (x 0 ) causa na energia potencial um erro maior, em relação ao seu valor. A energia cinética de translação do puque é calculada a partir da sua velocidade. Para esses cálculos, qualquer ponto fixo à mesa pode ser usado como referência. y y x x Figura 2: Puque sob a ação de força elástica central. Vista superior. Conceitos importantes: 4.1) Torque e momento angular. Desenhe o diagrama de forças no puque, mostre que o torque em relação ao ponto fixo da mola é nulo e demonstre que, nessas condições, o momento angular do puque em relação a esse ponto se conserva. A obtenção do valor da energia total do puque envolve as medições da energia cinética e da energia potencial do sistema puque-mola. A fim de se obter um bom resultado para essa última, é preciso tomar bastante cuidado. Sua medição compreende duas etapas. Medição dos parâmetros da mola, x 0 e k. Com uma extremidade da mola presa em um suporte, mede-se o comprimento para diferentes pesos pendurados nela (Lembrem-se que temos uma balança de precisão dentro do laboratório). Figura 3: Aparato experimental para medição dos parâmetros da mola. Cuidado especial deve ser tomado na medida do comprimento, porque o critério de medida dessa quantidade no arranjo para determinação dos parâmetros da mola não é o mesmo que você usa na medição da distância do centro do puque ao centro do
3 pino fixo, devido aos ganchos e outras peças de fixação, que são diferentes nas duas montagens. Além disso, o próprio peso da mola dá uma distensão inicial, que não ocorre quando ela está apoiada sobre a mesa de vidro. Note que a energia potencial é uma função quadrática da elongação: 1 2 E p = k( x x0 ) (1) 2 que pode ser expandida: k 2 k 2 E p = ( x) + ( x0) + k x x0 (2) 2 2 NOTE QUE um eventual erro em x 0 não implica num simples acréscimo aditivo da energia, como pode ser visto no último termo da equação (2). Determinação da energia potencial da mola. Para isso é necessário medir a distância do puque ao centro fixo (para alguns pontos da trajetória) e determinar a elongação da mola. Conforme discutido acima, deve-se cuidar para estimar corretamente o valor de x 0. Procedimento Experimental 1. Para caracterizarmos a mola e conforme o arranjo experimental da Figura 3 siga os seguintes passos: Meça o comprimento da mola x em função da força F, para diferentes massas (de 8 a 10) a ideia é montar uma curva de calibração e determinar a constante elástica da mola. O modo prático consiste selecionar a pilha de arruelas e pesar, primeiro, o porta-pesos vazio. Em seguida, acrescente uma arruela por vez e anote o peso do conjunto, que vai ficando cada vez maior. Meça também a massa da mola. Pendure esse porta peso cheio na mola e meça sua distensão. Retire uma arruela de cada vez e meça a distensão da mola. Faça um gráfico da força peso em função da elongação da mola (ou seja, subtraia qualquer distância que não seja referente a mola), ajuste os parâmetros de uma reta F = kx + C e determine a constante elástica da mola k e x! = C k, que é o comprimento natural da mola, que você precisa medir para determinar a energia potencial. (Lembre-se de adicionar a metade da massa da mola à massa do peso pendurado, para levar em conta, ao menos aproximadamente, o a massa da mola). 2. Conforme o arranjo experimental da Figura 1, siga os seguintes passos: Teste o arranjo algumas vezes ANTES de colocar (e desperdiçar) o papel sensível. Prenda o papel, verifique que esteja MUITO BEM ESTICADO, posicionado de maneira que o lado sensível (o que marca com facilidade ao raspar com qualquer objeto) fique virado para a ponta do puque. Marque a posição do pino fixo (gire a sua ponta de latão para que fique mais alta, baixe a tampa e deixe a ponta marcar o papel, mas evite que pressione excessivamente a tampa, que pode acabar furando também,
4 uma vez que ela é relativamente mole). Feito isso, recolha a ponta do pino, senão as faíscas saltarão todas por ali. Identifique esse furo no papel como seu ponto inicial. Arme o lançador do puque, dispare-o e registre sua trajetória com as faíscas. Identifique qual o ponto inicial e qual o final para não se confundir. 3. Com o fluxo de ar comprimido cortado e a tampa da mesa levantada, meça a diferença entre o tamanho da mola e a distância entre o centro do pino fixo e a ponta do puque; faça pelo menos 6 medições dessa diferença, em diversas posições, para avaliar quanto ela flutua e estimar a precisão da medida. Não esqueça de anotar a massa do puque. 4. Volte para o registro da trajetória no papel e selecione ao menos 10 trechos distribuídos uniformemente ao longo do movimento, cada trecho composto por sete pontos consecutivos (ou seis intervalos, que é o mesmo), de modo que o intervalo de tempo correspondente a esse trecho seja Δt = 6 1/60 s =1/10 s. Pode ser que você use todos os pontos para conseguir esses 10 trechos. Como mostra a figura abaixo. Figura 4: Representação da folha sensível. 5. Represente os vetores r i e também os vetores de deslocamento r em escala 1:1 (1 cm de deslocamento = 1 cm de flecha), ou seja, desenhe uma flecha que começa no primeiro ponto do trecho e tem a ponta de seta no último. Como mostra a Figura Determine a velocidade média v, a partir de!! do puque para cada trecho e a elongação da mola (x-x 0 ); não se esqueça de levar em conta a diferença medida no item 3 acima. A velocidade instantânea no ponto central de cada trecho de trajetória selecionado no item 4 acima (o ponto central é o quarto ponto do trecho) pode ser aproximada pelo valor da velocidade média no trecho. Para obter o módulo do vetor momento angular, é necessário também conhecer a direção da velocidade: Síntese L = r p = p rsenθ!" Faça uma descrição sucinta das medições realizadas, com suas palavras.
5 Determine as estimativas da constante de força k e do comprimento natural x 0 da mola, bem como suas incertezas, a partir do ajuste dos parâmetros da equação que dá a força em função do comprimento da mola pelo método dos mínimos quadrados; apresente os dados em tabelas e gráficos e represente a reta ajustada no mesmo gráfico em que estiverem os dados experimentais. Determine, para cada um dos trechos selecionados, as seguintes grandezas e suas respectivas incertezas: o Velocidade média de cada trecho e o movimento linear respectivo. o elongação da mola (x-x 0 ). o energias cinética, potencial e total em função do tempo. o O momento Angular L em função do tempo. o Não se esqueça de calcular as incertezas para cada uma dessas grandezas. Apresente os resultados em tabelas e gráficos. Relatório Especifique claramente os objetivos do experimento. Introdução teórica que seja breve, mas que inclua a dedução da conservação da energia e do momento. Faça uma descrição sucinta das medições realizadas, dos materiais usados e do aparato utilizado. Calcule as energias cinética, potencial e total. Faça um gráfico dos valores de forma conveniente. Discuta se houve ou não conservação da energia mecânica total e do momento angular, de acordo com suas medidas experimentais. Responda a questão do item 4.2. Conclusões gerais do trabalho realizado.
Experimento 5 Colisões Bidimensionais
Experimento 5 Colisões Bidimensionais A dinâmica da colisão entre dois corpos em um plano aplica-se a fenômenos físicos que ocorrem constantemente à nossa volta, como os choques entre as moléculas do ar,
Experimento 1: Colisões
Experimento 1: Colisões Objetivo Verificar a Conservação Quantidade de Movimento Linear e a Conservação da Energia Cinética. a) A conservação do momento linear e da energia cinética numa colisão unidimensional.
Experimento 1: Colisões *
Experimento : Colisões * Objetivo Avaliar a Conservação Quantidade de Movimento Linear e a Conservação da Energia Cinética nos seguintes experimentos: a) Colisão unidimensional. b) Colisão bidimensional.
Experimento 3 Rolamento
Experimento 3 Rolamento Determinar os tempos de queda de objetos cilíndricos rolando sem escorregamento em um plano inclinado e relacioná-los com a distribuição de massa dos objetos. Introdução Considere
MATEMÁTICA 1ª QUESTÃO. O valor do número real que satisfaz a equação =5 é. A) ln5. B) 3 ln5. C) 3+ln5. D) ln5 3. E) ln5 2ª QUESTÃO
MATEMÁTICA 1ª QUESTÃO O valor do número real que satisfaz a equação =5 é A) ln5 B) 3 ln5 C) 3+ln5 D) ln5 3 E) ln5 ª QUESTÃO O domínio da função real = 64 é o intervalo A) [,] B) [, C), D), E), 3ª QUESTÃO
FEP Física Geral e Experimental para Engenharia I
FEP195 - Física Geral e Experimental para Engenharia I Prova P3 - Gabarito 1. Três partículas de massa m estão presas em uma haste fina e rígida de massa desprezível e comprimento l. O conjunto assim formado
UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA LABORATÓRIO DE MECÂNICA. (Licenciatura em Física)
UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA 430054 LABORATÓRIO DE MECÂNICA (Licenciatura em Física) 01 Eventos Aleatórios Introdução Medidas físicas não são exatas. Devido às limitações dos aparelhos
ESPAÇO PARA RESPOSTA COM DESENVOLVIMENTO
Parte 2 - P2 de Física I - 2016-2 NOME: DRE Teste 1 Nota Q1 Assinatura: Questão 1 - [2,4 ponto] Dois blocos se deslocam em linha reta sobre uma mesa horizontal sem atrito. O bloco A, de massa m, tem velocidade
EXPERIMENTO IV COLISÕES
EXPERIMENTO IV COLISÕES Introdução Nesta experiência estudaremos colisões unidimensionais entre dois carrinhos sobre o trilho de ar. Com este arranjo experimental, um colchão de ar gerado entre a superfície
Roteiro do experimento Colisões bidimensionais Parte 2
Roteiro do experimento Colisões bidimensionais Parte 2 Retomada do Experimento Como visto na primeira parte do experimento, o fluxo de ar injetado pelos furos do tampo formou um colchão de ar que praticamente
Experimento 1: Colisões
Experimento : Colisões Objetivo Verificar a Conservação Quantidade de Movimento Linear e a Conservação da Energia. a) A conservação do momento linear e da energia cinética numa colisão unidimensional.
Cada questão objetiva vale 0,7 ponto
Instituto de Física Segunda Prova de Física I 2017/1 Nas questões em que for necessário, considere que: todos os fios e molas são ideais; os fios permanecem esticados durante todo o tempo; a resistência
Colisões. 1. Introdução
Colisões 1. Introdução Uma grandeza muito importante para o estudo de colisões é o momento linear ou quantidade de movimento, representado por e definido por: (1) Onde: é a massa e a velocidade do objeto
3 a fase prova experimental para alunos da 2 a série
Olimpíada Brasileira de Física 2006 3 a fase - 2ªsérie - Experimental 01 3 a fase prova experimental para alunos da 2 a série Experimento Condições de Equilíbrio LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO:
Medidas em Laboratório
Medidas em Laboratório Prof. Luis E. Gomez Armas Lab. de Física Unipampa, Alegrete 1 o Semestre 2014 Sumário O que é fazer um experimento? Medidas diretas e indiretas Erros e sua classificação Algaritmos
UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA LABORATÓRIO DE MECÂNICA. (Licenciatura em Física)
UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA 430054 LABORATÓRIO DE MECÂNICA (Licenciatura em Física) 013 1. Eventos Aleatórios Introdução Medidas físicas não são exatas. Devido às limitações dos aparelhos
Por outro lado, sabemos que o módulo e o sentido da força que atua sobre uma partícula em MHS são dados, genericamente, por:
Sistema Corpo-Mola Um corpo de massa m se apóia sobre uma superfície horizontal sem atrito e está preso a uma mola (de massa desprezível) de constante elástica k (Fig.18). Se o corpo é abandonado com a
Universidade do Estado do Rio de Janeiro - Instituto de Física Lista de exercícios para a P2 - Física 1
Universidade do Estado do Rio de Janeiro - Instituto de Física Lista de exercícios para a P2 - Física 1 1. Dois corpos A e B, de massa 16M e M, respectivamente, encontram-se no vácuo e estão separados
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof.
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: Como descrever a rotação
Dinâmica. Prof.ª Betty Carvalho Rocha Gonçalves do Prado
Dinâmica Prof.ª Betty Carvalho Rocha Gonçalves do Prado betty.prado@kroton.com.br bettycarvalho@ig.com.br CORPO RÍGIDO São corpos cuja dimensões não são desprezáveis Corpo rígido É um conceito limite ideal,
Parte 2 - PF de Física I NOME: DRE Teste 1
Parte 2 - PF de Física I - 2016-2 NOME: DRE Teste 1 Nota Q1 Assinatura: Questão discursiva [4,0 pontos] Uma esfera homogênea de massa M e raio R parte do repouso e rola sem deslizar sobre uma rampa que
Universidade Federal do Recôncavo da Bahia GCET095.P - Física Geral e Experimental I Roteiro para Experimento: Lei de Hooke
Universidade Federal do Recôncavo da Bahia GCET095.P - Física Geral e Experimental I 2016.1 Roteiro para Experimento: Lei de Hooke Professora: Sânzia Alves 17 de março de 2017 1 Preparação Responda as
FEDERAL Instituto. de Física. Pantoja. Apêndice. Rio de Janeiro
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Física Programa de Pós-Graduação Profissional em Ensino de Física em Ensino de Física Mestrado GUIAS DE LABORATÓRIO: MECÂNICA INTRODUTÓRIA Fernanda Marques
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof.
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: Como descrever a rotação
Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo EXPERIMENTO 7
Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo Roteiro para prática experimental EXPERIMENTO 7 Determinação da constante elástica de uma mola utilizando o plano inclinado por fuso Disciplina:
Lista 12: Rotação de corpos rígidos
Lista 12: Rotação de Corpos Rígidos Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. iv. Siga a estratégia para
Apresentação: Trabalho e energia
Apresentação: Trabalho e energia INTRODUÇÃO Como enfatizado na comum definição de energia como a habilidade de realizar trabalho, os conceitos de trabalho e energia estão intimamente relacionados. Dizemos
Física Experimental III - Experiência E7
Física Experimental III - Experiência E7 Balança de corrente OBJETIVOS Estudo da interação corrente campo usando uma balança magnética. Estimativa do campo magnético de um ímã permanente. MATERIAL Balança
Energia Mecânica - Matheus Souza Gomes / N USP:
Energia Mecânica - Matheus Souza Gomes / N USP: 7161048 Introdução No trabalho, foi analisado o experimento Energia Cinética encontrado no portal web do Fisfoto, localizado no endereço http://www.fep.if.usp.br/~fisfoto.
SEGUNDA LEI DE NEWTON
Experimento 2 SEGUNDA LEI DE NEWTON Objetivo Introdução Verificar a Segunda Lei de Newton a partir da análise do movimento de translação de um corpo sobre um plano horizontal variando-se a força resultante,
FSC Exercício preparatório para experiências Lei de Hooke e a constante elástica da mola
FSC5122 - Exercício preparatório para experiências Lei de Hooke e a constante elástica da mola Diz a lei de Hooke que uma mola deslocada (esticada ou comprimida) uma distância x de sua posição de equilíbrio
Física I Prova 2 20/02/2016
Física I Prova 2 20/02/2016 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 3 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 10 questões
Parte 2 - P2 de Física I NOME: DRE Teste 1
Parte 2 - P2 de Física I - 2017-1 NOME: DRE Teste 1 Nota Q1 Questão 1 - [3,7 ponto] Um carretel é composto por um cilindro interno de raio r = R/2 e massa M, enrolado por um fio ideal, com 2 discos idênticos,
Física I para a Escola Politécnica ( ) - P3 (24/06/2016) [16A7]
Física I para a Escola Politécnica (330) - P3 (/0/0) [A] NUSP: 0 0 0 0 0 0 0 3 3 3 3 3 3 3 8 8 8 8 8 8 8 9 9 9 9 9 9 9 Instruções: preencha completamente os círculos com os dígitos do seu número USP (um
EXPERIÊNCIA M018-TE CONSTANTE ELÁSTICA DA MOLA
UFSC CFM DEPARTAMENTO DE FÍSICA LABORATÓRIO DE MECÂNICA, ACÚSTICA E TERMODINÂMICA EXPERIÊNCIA M018-TE CONSTANTE ELÁSTICA DA MOLA 1 OBJETIVOS Determinar experimentalmente o valor da constante elástica k
Em outras palavras, no regime elástico há uma dependência linear entre F e a deformação x. Este é o comportamento descrito pela lei de Hooke: F = k x
Aula 6: Lei de Hooke 1 Introdução A lei de Hooke descreve a força restauradora que existe em diversos sistemas quando comprimidos ou distendidos. Qualquer material sobre o qual exercermos uma força sofrerá
Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo EXPERIMENTO 6
Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo Roteiro para prática experimental EXPERIMENTO 6 Condições de equilíbrio estático utilizando o plano inclinado por fuso Disciplina: Física Experimental
Lista 12: Rotação de corpos rígidos
Lista 12: Rotação de Corpos Rígidos Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. Siga a estratégia para
Objetivo: Determinar a eficiência de um transformador didático. 1. Procedimento Experimental e Materiais Utilizados
Eficiência de Transformadores Universidade Tecnológica Federal do Paraná - Curitiba Departamento Acadêmico de Física Física Experimental Eletricidade Prof. Ricardo Canute Kamikawachi Objetivo: Determinar
Física 1. Rotação e Corpo Rígido Resumo P3
Física 1 Rotação e Corpo Rígido Resumo P3 Fórmulas e Resumo Teórico Momento Angular - Considerando um corpo de massa m a um momento linear p, temos: L = r p = r mv Torque - Considerando uma força F em
(d) K 1 > K 2 e K 2 < K 3 (e) K 1 = K 3 < K 2
Segunda Prova de Física I - 019/1 Instituto de Física Nas questões onde for necessário, considere que: todos os fios e molas são ideais; a resistência do ar é nula; a aceleração da gravidade tem módulo
2.1 Colisões Unidimensionais - Choque Elástico
44 2.1 Colisões Unidimensionais - Choque Elástico 2.1.1 Material Necessário 01 trilho de ar 120 cm com polia no fim do curso; 02 carrinho para trilho de ar; 02 bandeiras para carrinho para interrupção
01- Sobre a energia mecânica e a conservação de energia, assinale o que for correto.
PROFESSOR: EQUIPE DE FÍSICA BANCO DE QUESTÕES - FÍSICA - 9º ANO - ENSINO FUNDAMENTAL ============================================================================= 01- Sobre a energia mecânica e a conservação
Universidade Federal do Rio de Janeiro Instituto de Física Lista de Revisão Física 1. prof. Daniel Kroff e Daniela Szilard 20 de junho de 2015
Universidade Federal do Rio de Janeiro Instituto de Física Lista de Revisão Física 1 prof. Daniel Kroff e Daniela Szilard 20 de junho de 2015 OBS: Quando necessário, considere como dados a aceleração da
PRÁTICA 6: COLISÕES EM UMA DIMENSÃO
PRÁTICA 6: COLISÕES EM UMA DIMENSÃO Nesta prática, estudaremos o fenômeno da colisão em uma dimensão, fazendo a aproximação de que o sistema é fechado (não há variação de massa) e isolado (não há forças
ESPAÇO PARA RESPOSTA COM DESENVOLVIMENTO
Parte 2 - P3 de Física I - 2018-1 NOME: DRE Teste 0 Assinatura: Questão 1 - [2,5 pontos] Um bloco de massamestá pendurado por um fio ideal que está enrolado em uma polia fixa, mas que pode girar em torno
BC 0208 Fenômenos Mecânicos. Experimento 3 - Roteiro
BC 008 Fenômenos Mecânicos Experimento - Roteiro Lei de Hooke Professor: Turma: Data: / /05 Introdução e Objetivos Os dois experimentos que realizamos neste curso até o momento nos permitiram observar
Verificar que a aceleração adquirida por um corpo sob a ação de uma força constante é inversamente proporcional à massa, ou ao peso do corpo.
84 10.3 Experimento 3: Segunda Lei de Newton 10.3.1 Objetivo Verificar que a aceleração adquirida por um corpo sob a ação de uma força constante é inversamente proporcional à massa, ou ao peso do corpo.
Física 1. 2 a prova 02/07/2016. Atenção: Leia as recomendações antes de fazer a prova.
Física 1 2 a prova 02/07/2016 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua
EXPERIMENTO I MEDIDAS E ERROS
EXPERIMENTO I MEDIDAS E ERROS Introdução Na leitura de uma medida física deve-se registrar apenas os algarismos significativos, ou seja, todos aqueles que a escala do instrumento permite ler mais um único
BC Fenômenos Mecânicos. Experimento 1 - Roteiro
BC 0208 - Fenômenos Mecânicos Experimento 1 - Roteiro Movimento Retilíneo Uniforme (MRU) Professor: Turma: Data: / /2015 Introdução e Objetivos Na disciplina de Fenômenos Mecânicos estamos interessados
EQUILÍBRIO ESTÁTICO. Material Utilizado:
EQUILÍBRIO ESTÁTICO Material Utilizado: (arte A Calibração de um Dinamômetro) - 5 montagens FVE para dinamômetros constituidas de escala milimetrada em haste montada em tripé, com os acessórios: molas
Física 1. 2 a prova 02/07/2016. Atenção: Leia as recomendações antes de fazer a prova.
Física 1 2 a prova 02/07/2016 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua
Departamento de Física - ICE/UFJF Laboratório de Física II Pêndulos
Pêndulos Pêndulo 1 Pêndulo Simples e Pêndulo Físico 1 Objetivos Gerais: Determinar experimentalmente o período de oscilação de um pêndulo físico e de um pêndulo simples; Determinar experimentalmente o
ENERGIA CINÉTICA E TRABALHO
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ENERGIA CINÉTICA E TRABALHO Prof. Bruno Farias Introdução Neste módulo concentraremos nossa
Departamento de Física - ICE/UFJF Laboratório de Física II
1 Objetivos Gerais: Movimento Harmônico Amortecido Determinar o período de oscilação do pêndulo T ; Determinar a constante de amortecimento. *Anote a incerteza dos instrumentos de medida utilizados: ap
Oscilações. Movimento Harmônico Simples. Guia de Estudo (Formato para Impressão):
Page 1 of 6 Oscilações Guia de Estudo (Formato para Impressão): Após o estudo deste tópico você deve: Entender os conceitos de Frequência, Período, Amplitude e Constante de Fase; Conhecer e saber resolver
A energia potencial em um ponto de coordenada, associada à força, quando o nível zero é tomado no ponto de coordenada em que, é:
AULA 41 ENERGIA NO MOVIMENTO HARMÔNICO SIMPLES OBJETIVOS: - Estudar a conservação da energia no movimento harmônico simples 41.1 Introdução: A força restauradora que atua sobre uma partícula que possui
Lei de Hooke. 1 Objetivo. 2 Introdução Teórica
Lei de Hooke 1 Objetivo Comprovação experimental da lei de Hooke. Determinação das constantes elásticas de uma mola, de duas molas em série e de duas molas em paralelo. 2 Introdução Teórica A lei de Hooke
*Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções gratis em simplificaaulas.com.
FÍSICA 1 - RESUMO E EXERCÍCIOS* P2 *Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções gratis em simplificaaulas.com. FORMULÁRIO DA P2 RESUMO
Verificar as equações para a constante de mola efetiva em um sistema com molas em série e outro com molas em paralelo.
74 9.4 Experiência 4: Deformações Elásticas e Pêndulo Simples 9.4.1 Objetivos Interpretar o gráfico força x elongação; Enunciar e verificar a validade da lei de Hooke; Verificar as equações para a constante
Exemplos de aplicação das leis de Newton e Conservação da Energia
Exemplos de aplicação das leis de Newton e Conservação da Energia O Plano inclinado m N Vimos que a força resultante sobre o bloco é dada por. F r = mg sin α i Portanto, a aceleração experimentada pelo
Universidade Federal do Rio de Janeiro Instituto de Física Lista de Revisão Física 1. prof. Daniel Kroff e Daniela Szilard 17 de abril de 2015
Universidade Federal do Rio de Janeiro Instituto de Física Lista de Revisão Física 1 prof. Daniel Kroff e Daniela Szilard 17 de abril de 2015 1. Uma partícula move-se em linha reta, partindo do repouso
Lista 10: Momento Angular. Lista 10: Momento Angular
Lista 10: Momento Angular NOME: Matrícula: Turma: Prof. : Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. Analisar
UNIDADE 15 OSCILAÇÕES
UNIDADE 15 OSCILAÇÕES 557 AULA 40 OSCILAÇÕES OBJETIVOS: - DEFINIR O CONCEITO DE OSCILAÇÃO; - CONHECER AS GRANDEZAS QUE DESCREVEM O MOVIMENTO. 40.1 Introdução: Há, na Natureza, um tipo de movimento muito
Força de interação entre qualquer corpo de massa m com um campo gravitacional e pode ser calculado com a equação:
Principais forças da dinâmica Resumo Após o estudo das Leis de Newton, podemos definir as principais forças que usamos na Dinâmica: força peso, força normal, força elástica, tração e força de atrito. Para
MOVIMENTO OSCILATÓRIO
MOVIMENTO OSCILATÓRIO 1.0 Noções da Teoria da Elasticidade A tensão é o quociente da força sobre a área aplicada (N/m²): As tensões normais são tensões cuja força é perpendicular à área. São as tensões
DEFIS - ICEB - UFOP. Após realizar o experimento e analisar os dados, você deverá ser capaz de:
Apresentação: Colisões INTRODUÇÃO A conservação do momento linear, definido classicamente como q = m v), é um importante princípio na física. Contudo, a investigação experimental deste conceito em um laboratório
Exercícios de Física Movimento Harmônico Simples - MHS
Exercícios de Física Movimento Harmônico Simples - MHS 1.Um movimento harmônico simples é descrito pela função x = 7 cos(4 t + ), em unidades de Sistema Internacional. Nesse movimento, a amplitude e o
Apresentação: Movimento unidimensional
Apresentação: Movimento unidimensional INTRODUÇÃO Um objeto em movimento uniformemente acelerado, ou seja, com aceleração constante, é um importante caso da cinemática. O exemplo mais comum desse tipo
Halliday & Resnick Fundamentos de Física
Halliday & Resnick Fundamentos de Física Mecânica Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica,
Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T2 FÍSICA EXPERIMENTAL I /08 FORÇA GRAVÍTICA
Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T2 FÍSICA EXPERIMENTAL I - 2007/08 1. Objectivo FORÇA GRAVÍTICA Comparar a precisão de diferentes processos de medida; Linearizar
QUESTÕES DISCURSIVAS
QUESTÕES DISCURSIVAS Questão 1. (3 pontos) Numa mesa horizontal sem atrito, dois corpos, de massas 2m e m, ambos com a mesma rapidez v, colidem no ponto O conforme a figura. A rapidez final do corpo de
Laboratório de Física
Laboratório de Física Experimento 03 - Trilho de Ar Movimento a Força Constante Disciplina: Laboratório de Física Experimental I Professor: Turma: Data: / /20 Alunos: 1: 2: 3: 4: 5: 1/11 03 - Trilho de
Parte 2 - P2 de Física I Nota Q Nota Q2 Nota Q3 NOME: DRE Teste 1
Parte - P de Física I - 017- Nota Q1 88888 Nota Q Nota Q3 NOME: DRE Teste 1 Assinatura: AS RESPOSTAS DAS QUESTÕES DISCURSIVAS DEVEM SER APRESENTADAS APENAS NAS FOLHAS GRAMPEA- DAS DE FORMA CLARA E ORGANIZADA.
Resolução da Prova Final de Física I -UFRJ do Período (03/12/2014).
www.engenhariafacil.weebly.com Resolução da Prova Final de Física I -UFRJ do Período- 2014.2 (03/12/2014). OBS: Esse não é o gabarito oficial. O gabarito oficial será lançado no site do Instituto de Física
2.2 Segunda Lei de Newton
50 CAPÍTULO 2. SÉRIE A 2.2 Segunda Lei de Newton 2.2.1 Material Necessário 01 trilho de ar 120 cm com polia no fim do curso; 01 carrinho para trilho de ar; 01 pino para carrinho para interrupção de sensor;
EXPERIMENTO II MOVIMENTO RETILÍNEO UNIFORME E MOVIMENTO RETILÍNEO UNIFORMEMENTE VARIADO.
EXPERIMENTO II MOVIMENTO RETILÍNEO UNIFORME E MOVIMENTO RETILÍNEO UNIFORMEMENTE VARIADO. Este experimento consiste em duas etapas. A primeira é a realização do Movimento Retilíneo Uniforme. A segunda é
ESPAÇO PARA RESPOSTA COM DESENVOLVIMENTO
Parte 2 - P2 de Física I - 2016-2 NOME: DRE Teste 1 Nota Q1 Assinatura: Questão 1 - [2,4 ponto] Dois pequenos discos (que podem ser considerados como partículas), de massas m e 2m, se deslocam sobre uma
Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo EXPERIMENTO 12
Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo Roteiro para prática experimental EXPERIMENTO 12 Princípio de Conservação do Momento Linear e Colisões Disciplina: Física Experimental GRUPO DE TRABALHO:
v CM K = ½ I CM a CM
ENGENHARIA 1 ROLAMENTO O rolamento é um movimento que associa translação e rotação. É o caso, por exemplo, de uma roda que, ao mesmo tempo que rotaciona em torno de seu eixo central, translada como um
Capítulo 8 Conservação de Momento
Capítulo 8 Conservação de Momento Sistema de 2 partículas Forças Internas e Externas Sejam as forças internas (aparecem aos pares) que 2 faz sobre 1 e que 1 faz sobre 2, respectivamente. Sejam as forças
Parte 2 - P2 de Física I NOME: DRE Teste 0. Assinatura:
Parte 2 - P2 de Física I - 2018-1 NOME: DRE Teste 0 Assinatura: Questão 1 - [3,0 pontos] Um sistema formado por dois blocos de mesma massa m, presos por uma mola de constante elástica k e massa desprezível,
Lista 5: Trabalho e Energia
Lista 5: Trabalho e Energia NOME: Matrícula: Turma: Prof. : Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder a
Laboratório de Física
Laboratório de Física Experimento 03 - Trilho de Ar Disciplina: Laboratório de Física Experimental I Professor: Turma: Data: / /20 Alunos: 1: 2: 3: 4: 5: 1/12 03 - Trilho de Ar - Movimento a Força Constante
Laboratório de Física
Laboratório de Física Experimento 01: Mesa de Força Disciplina: Laboratório de Física Experimental I Professor: Turma: Data: / /20 Alunos: 1: 2: 3: 4: 5: 1/11 01 - Mesa de Força 1.1. Objetivos Verificar
Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino*
ROTAÇÃO Física Geral I (1108030) - Capítulo 07 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 25 Translação e Rotação Sumário Definições, variáveis da rotação e notação vetorial Rotação com aceleração angular
FEP Física Geral e Experimental para Engenharia I
FEP2195 - Física Geral e Experimental para Engenharia I Prova Substitutiva - Gabarito 1. Dois blocos de massas 4, 00 kg e 8, 00 kg estão ligados por um fio e deslizam para baixo de um plano inclinado de
Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo EXPERIMENTO 3
Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo Roteiro para prática experimental: EXPERIMENTO 3 Determinação da aceleração da gravidade local utilizando o plano inclinado por fuso Disciplina:
PSVS/UFES 2014 MATEMÁTICA 1ª QUESTÃO. O valor do limite 2ª QUESTÃO. O domínio da função real definida por 3ª QUESTÃO
MATEMÁTICA 1ª QUESTÃO O valor do limite 3 x 8 lim é x 2 x 2 2ª QUESTÃO O domínio da função real definida por é 3ª QUESTÃO A imagem da função real definida por, para todo, é GRUPO 1 PROVA DE MATEMÁTICA
Figura 1. Ilustração de um movimento parabólico.
Movimento Parabólico 1. Introdução Nesta experiência, será estudado o Movimento Parabólico que é executado por um projétil quando é lançado com uma velocidade inicial, formando um ângulo com a horizontal.
2.3 Colisões Unidimensionais
56 2.3 Colisões Unidimensionais 2.3.1 Material Necessário 01 trilho de ar 120 cm com polia no fim do curso; 02 carrinho para trilho de ar; 02 bandeiras para carrinho para interrupção de sensor; 01 cronômetro
Prova Experimental. (em português)
E-2 INTRODUÇÃO: As oscilações dos sólidos (pêndulos, molas, acoplamentos entre pêndulos e molas) permitem analizar as diversas propriedades destes sólidos: massa, momentos de inércia, frequências próprias,
Lista4: Trabalho e Energia
Lista 4: Trabalho e Energia NOME: Matrícula: Turma: Prof. : Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii.responder a questão
Instituto de Física - UFRJ Física I - Segunda Chamada - 2/03/2016. (c) 12gL/7 (d) 12gL/11 (e) 24gL/7. Parte 1 - Múltipla escolha - 0,6 cada
Instituto de Física - UFRJ Física I - Segunda Chamada - 2/03/2016 Parte 1 - Múltipla escolha - 0,6 cada 1. Um avião move-se com velocidade horizontal constante v A de módulo 200 m/s. Ao passar sobre uma
Física IV - Laboratório REFLEXÃO E REFRAÇÃO (Parte 2)
Física IV - Laboratório REFLEXÃO E REFRAÇÃO (Parte 2) O que acontece quando uma onda luminosa que se propaga em um meio 1 encontra a super@cie de um meio 2? Vetores unitários ˆk i direção da onda incidente
Universidade Federal do Rio de Janeiro Instituto de Física Oficinas de Física 2015/1 Gabarito Oficina 8 Dinâmica Angular
Universidade Federal do Rio de Janeiro Instituto de Física Oficinas de Física 2015/1 Gabarito Oficina 8 Dinâmica Angular 1) (a) A energia mecânica conserva-se pois num rolamento sem deslizamento a força
m R 45o vertical Segunda Chamada de Física I Assinatura:
Segunda Chamada de Física I - 016- NOME: Assinatura: DE Nota Q1 Nas questões em que for necessário, considere que: todos os fios e molas são ideais; os fios permanecem esticados durante todo o tempo; a
energia extraída do objeto é trabalho negativo. O trabalho possui a mesma unidade que energia e é uma grandeza escalar.
!!"#$#!"%&' OBS: Esta nota de aula foi elaborada com intuito de auxiliar os alunos com o conteúdo da disciplina. Entretanto, sua utilização não substitui o livro 1 texto adotado. ( ) A energia cinética
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS MAF- 04.05.2012 Prof. Dr. Antônio Newton Borges 1. Na caixa de 2,0 kg da figura abaixo são aplicadas duas forças, mais somente uma é mostrada. A aceleração da