Carlos Sérgio Araújo dos Santos José Antonio Aleixo da Silva Gauss Moutinho Cordeiro Joseilme Fernandes Gouveia Alisson de Oliveira Silva

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Carlos Sérgio Araújo dos Santos José Antonio Aleixo da Silva Gauss Moutinho Cordeiro Joseilme Fernandes Gouveia Alisson de Oliveira Silva"

Transcrição

1 Modelos Smétrcos Transformados não lneares com aplcação na estmatva volumétrca em Híbrdo de Eucalyptus teretcorns no Pólo Gessero do Ararpe - PE Carlos Sérgo Araújo dos Santos José Antono Alexo da Slva Gauss Moutnho Cordero Joselme Fernandes Gouvea Alsson de Olvera Slva 1 Introdução A vegetação natural da Caatnga vem sofrendo grandes desmatamentos, sendo explorada de forma rregular, caracterzando-se em grande parte pela ausênca de crtéros técncos no corte da vegetação e consequentemente, colocando em rsco de extnção váras espéces vegetas e anmas predomnantes desta vegetação (RIBEIRO et al., 2001). No Pólo Gessero do Ararpe, localzado na regão do sem-árdo pernambucano, este fato se deve prncpalmente a crescente demanda por bomassa renovável para energa, aumentando gradatvamente a sua degradação, tanto a nível domclar como a nível ndustral e comercal, com a utlzação da madera na calcnação da gpsta para produção do gesso. Consderando que a regão do Pólo Gessero do Ararpe se destaca pela grande produção de gpsta, de onde se produz 95% de todo gesso consumdo no Brasl (ALBUQUERQUE, 2002). Portanto, meddas efcazes devem ser tomadas para soluconar essa problemátca. Baseado neste contexto, realzar uma modelagem do volume de árvores de eucalptos é essencal para estmar ou predzer a vabldade da mplantação destas árvores para fns energétcos na regão do Pólo Gessero do Ararpe. O uso de modelos volumétrcos em nventáro florestal são bastante utlzados para cálculo de volume de madera em pé e estmatva da altura das árvores por meo da relação DAP (dâmetro à altura do peto) e altura total (Ht). Baseados nas dstrbuções smétrcas Cordero e Andrade (2009) ntroduzram uma nova classe de Modelos Smétrcos Transformados (MST) com dstrbução smétrca para a varável resposta e uma Departamento de Cêncas da Natureza, IFPB, CEP: , João pessoa, PB, Brasl, E-mal: Programa de Pós-graduação em Bometra e Estatístca Aplcada, UFRPE, CEP: , Recfe, PE, Brasl, E-mal: Departamento de Estatístca e Informátca, UFRPE, CEP: , Recfe, PE, Brasl, E-mal: Departamento de Informátca e Estatístca, UFPI, Teresna, PI, Brasl, Unversdade Federal da Paraíba, UFPB, CEP: , João Pessoa, PB, Brasl, E-mal: alsson 1

2 possível função de lgação não lnear para a resposta méda. Essa classe de modelos se estende os modelos clásscos de Box e Cox (1964) abrangendo com váras outras dstrbuções contínuas smétrcas com caldas menores ou mas longas que normas. Essa nova classe de modelos nclu dstrbuções tas como normal, t de Student, exponencal potênca, logístcas I e II, Cauchy e Laplace, permtndo ajustar uma ampla varedade de modelos para város tpos de dados. 2 Objetvos A proposta prncpal deste estudo fo modelar por meo dos Modelos Smétrcos Transformados não lneares o volume em Híbrdo de Eucalyptus teretcorns (cruzamento natural), em ponto de corte para produção de lenha. 3 Materal e Métodos A regão na qual o expermento está mplantado possu as seguntes coordenadas geográfcas de posção S e W e alttude de 816 metros. O clma regonal predomnante é do tpo BShw de Koppen, quente e seco das baxas lattudes, com chuvas de verão. A presença da Chapada do Ararpe confere uma dferencação no clma regonal, elevando a pluvometra, regstrando cerca de 735 mm anuas (ALVES, 2007). Na aplcação dessa nova classe de modelos, foram utlzadas para este trabalho 56 árvores pertencentes ao clone 01, referente ao Híbrdo de Eucalyptus teretcorns. As árvores amostras foram derrubadas e seconadas com motosserra, para se proceder à cubagem rgorosa das mesmas na área do povoamento. Devdo à facldade dos cálculos e rapdez na medção das pequenas seções, a fórmula de Smalan (LOESTCH et al., 1973), fo empregada, para calcular o volume rgoroso total e o volume das seções. Os modelos foram ajustados supondo dferentes dstrbuções smétrcas para os erros (normal, t-student, Exponencal Potênca, Cauchy, logístca I e logístca II). Para os dados da varável volume em (m 3 ) a transformação de Box-Cox utlzada mas aproprada devdo a natureza dos dados fo { y (λ) y λ (λ 0) = log(y) (λ = 0) Para estmar os volumes das árvores fo utlzado o modelo de Schumacher-Hall de 1933 especfcado por: vol (λ) = β 0 DAP β 1 Ht β 2 ɛ em que λ é o parâmetro da transformação de Box-Cox, β 0, β 1 e β 2 são os parâmetros a serem estmados, vol representa o volume da árvore em m 3, DAP representa o dâmetro à altura do peto em cm (medda a 1,30m) e Ht representa a altura total da árvore em m e ɛ é o erro aleatóro. O parâmetro λ da transformação de Box-Cox fo estmado por meo da verossmlhança perflada. 2

3 3.1 Modelos Smétrcos Transformados não lneares Neste estudo consdera-se uma famíla paramétrca geral de transformações da varável resposta Y especfcada por Y (λ) = Λ(Y, λ), (1) em que λ é um parâmetro escalar defnndo uma transformação partcular. Admte-se que para cada λ, Y (λ) é uma função monotônca de Y. Usualmente, consdera-se a transformação de potênca de Box Cox (1964), Y (λ) = (Y λ 1)/λ em que λ 0 ou Y (λ) = log(y ) em que λ = 0. Geralmente é assumdo que exste um valor de λ para a varável resposta tal que Y (λ) segue um modelo de regressão não-lnear µ = h(x, β) com erro normal e varânca constante. Assumndo-se que as varáves aleatóras transformadas Y (λ) 1,..., Y n (λ) em Y (λ) são ndependentes e cada Y (λ) tem uma dstrbução contínua smétrca com parâmetro de locação µ R e parâmetro de dspersão φ > 0 especfcada por ( π(y (λ) ; µ, φ) = 1 h φ y (λ) µ φ ) 2, y(λ) R, (2) em que a função h(.) (conhecda como a geradora de densdades) tal que h(u) > 0, para u > 0 e 0 u 1/2 h(u)du = 1, sendo u = (y µ)2 φ. Esta condção é necessára para que π(y (λ) ; µ, φ) seja uma função de densdade de probabldade da varável aleatóra padronzada Z (λ) = yλ µ φ é π(v, 0, 1) = h(v 2 ) v R, sto é, Z (λ) S(0, 1). A famíla de densdades smétrca de locação-escala (2) retém a estrutura da dstrbução normal, mas elmna a forma específca da densdade normal. Esta famíla nclu densdades smétrcas que têm caldas menores ou mas longas que normas. Para ntrduzr uma estrutura de regressão na classe de modelos (2), assume-se um componente sstemátco para o vetor da méda µ = E(Y (λ) ) expresso por g(µ) = η (β) = h(x, β) (3) em que g(.) é conhecda e duplamente dferencável, η (β) é o predtor não-lnear, X é uma matrz n p de posto completo e β = (β 1,..., β p ) T é um vetor de parâmetros não-lneares desconhecdos a serem estmados. Os modelos smétrcos transformados não-lneares supõem a exstênca de alguns valores de λ em (1) de modo que as varáves aleatóras transformadas Y (λ) 1,..., Y n (λ) podem ser tratadas como ndependentemente dstrbuídas segundo a componente aleatóra (2) e a componente sstemátca (3). A comparação entre todos os modelos transformados ajustados aos dados será realzada através do crtéro de nformação de Akake (1974) AIC, defndo por AIC = 2ˆl + 2r (4) 3

4 em que ˆl é a log-verossmlhança maxmzada, r = p + 2 e p é o número de parâmetros estmados. O modelo com menor valor do AIC, entre todos os modelos ajustados, pode ser consderado como o que melhor explca os dados. Para avalar melhor os ajustes abtdos, calculou-se o erro médo quadrátco (EQM) e o erro percentual absoluto médo (M AP E) especfcados como e EQM = 1 n n =1 (y (ˆλ) ˆµ ) 2 (5) MAP E = 100% n n =1 y (ˆλ) ˆµ. (6) y (ˆλ) Para verfcar se um modelo é adequado, temos que analsar se as pressuposções fetas para o desenvolvmento do modelo não estão sendo voladas. Para o melhor modelo remos ressaltar bascamente métodos gráfcos, especfcamente os gráfcos das médas ajustadas versus valores observados, bem como os resíduos de Pearson versus os valores ajustados. 4 Resultados Na Tabela 1, encontram-se as estmatvas dos parâmetros dos modelos smétrcos transformados não lneares, bem como do parâmetro de dspersão φ condconado em λ estmado e seus respectvos errospadrões. O parâmetro λ da transformação de Box-Cox fo estmado usando a verossmlhança perflada. Não houveram estmatvas não-sgnfcatvas dos parâmetros. Tabela 1: Estmatvas dos parâmetros e (erros padrões) dos modelos smétrcos transformados. Dstrbução ˆλ ˆβ0 ˆβ1 ˆβ2 ˆφ Normal 0, , , , , (0,005842) (0,003478) (0,024329) (0,024722) (0,000012) Student t 2 0, , , , , (0,006476) (0,001304) (0,025671) (0,026328) (0,000008) Exp. Potênca (0, 5) 0, , , , , (0,011022) (0,000194) (0,048876) (0,048762) (0,000004) Cauchy 0, , , , , (0,007193) (0,001367) (0,021871) (0,021444) (0,000006) Logístca I 0, , , , , (0,009353) (0,002730) (0,040220) (0,039824) (0,000016) Logístca II 0, , , , , (0,008910) (0,001347) (0,033674) (0,033898) (0,000004) 4

5 Para escolher o modelo que melhor se ajustou aos dados, apresenta-se na Tabela 2 a log-verossmlhança maxmzada ˆl e o crtéro de nformação de Akake (AIC) e os valores das estatístcas EQM e MAP E para os modelos transformados. O modelo supondo erro com dstrbução t-student transformado produzu maor valor para a log-verossmlhança ˆl (362,21) e um menor valor do AIC (-714,43) como também os menores valores para o EQM (0,000535) e para o MAP E (0,004994), comparado com os demas modelos smétrcos, sendo assm, o modelo mas ndcado para representar os dados de acordo com esses crtéros. Tabela 2: Estatístcas para seleção dos modelos e comparação dos erros para os modelos ajustados. Dstrbução ˆl AIC EQM MAP E (%) Normal 354,80-699,61 0, , Student t 2 362,21-714,43 0, , Exp. Potênca (0, 5) 254,12-498,24 0, , Cauchy 341,31-672,62 0, , Logístca I 284,12-558,25 0, , Logístca II 280,25-550,51 0, , Para verfcar se o modelo t-student transformado é razoável para ajustar os dados de volume de eucalíptos, apresentamos na Fgura 1(a) o gráfco de dspersão dos valores observados versus médas ajustadas. Observa-se através da fgura que os pontos apresentam-se de forma lnear, ndcando que os dados foram bem ajustados. Além dsso, na Fgura 1(b), os resíduos de Pearson apresentaram uma dstrbução aleatóra quando feta a sua dspersão versus os valores ajustados, ndcando assm, que os resíduos são não correlaconados, ou seja, hpótese de ndependênca e varânca constante para os resíduos são acetas. Fgura 1: Gráfcos de verfcação da qualdade do ajuste. A partr das estmatvas dos parâmetros do modelo com erros t 2 transformado representado pelo modelo não-lnear de Schumacher-Hall, pode-se agora, escrever o modelo ajustado com parâmetro de dspersão φ = 0,

6 vol ˆ (0,377258) = 0, DAP 0, Ht 0, Logo, ˆ vol = 0, DAP 1, Ht 0, (7) Dentre os modelos smétrcos transformados não lneares testados o modelo com erros t-student com 2 graus de lberdade representado pelo modelo não-lnear de Schumacher-Hall mostrado na equação (7) fo o que mostrou maor confabldade estatístca e apresentou melhor ajuste para o volume de Híbrdo de Eucalyptus teretcorns no Pólo Gessero do Ararpe. Vale ressaltar que os demas modelos com erros smétrcos se ajustaram satsfatoramente aos dados. O modelo apresentado em (7) permte nferr o volume ndvdual do clone utlzado neste estudo a partr dos valores do dâmetro à altura do peto (DAP ) e altura total (Ht). A vantagem da utlzação dessa nova classe de modelos é a maor adequação e a flexbldade em face ao modelo normal, pos permtem ajustar uma ampla varedade de modelos para dversos tpos de dados, além do mas, buscar outras alternatvas à suposção de erros normalmente dstrbuídos torna-se mportante, pos nem sempre a modelagem se ajusta adequadamente aos dados. 5 Conclusões A nova classe de Modelos Smetrcos Transformados Não Lneares, ntroduzda neste estudo mostrou-se uma ferramenta bastante efcaz para modelagem do volume de Híbrdo de Eucalyptus Teretcorns devdo a flexbldade da dstrbução dos erros. Para as condções em que se realzou este estudo, pode-se conclur que o modelo t 2 transformado se ajustou aos dados mas adequadamente utlzando o modelo não lnear de Schumacher e Hall, quando comparado aos demas modelos smétrcos, dante dos crtéros estabelecdos para escolha do melhor ajuste. Entretanto, os demas modelos também se ajustaram satsfatóramente aos dados expermentas. Assm, as possves correções volumétrcas deverão ser estudadas para cada caso partcular de aplcação, permanecendo, portanto, o problema em aberto para futuras pesqusas. Entretanto, para a fnaldade de produção energétca, fo apresentado um estudo da volumetra em Híbrdo de Eucalyptus Teretcorns que servrá de suporte em estudos do volume de eucalptos na regão do Pólo Gessero do Ararpe. Espera-se que este estudo possa contrbur para defnção de estratégas vsando melhor aprovetamento, em termos de produção e qualdade, das fontes de energa utlzadas no processo de fabrcação do gesso, que atenda às necessdades da ndústra, que preserve o meo ambente, bem como contrbundo para a promoção do desenvolvmento regonal no Pólo Gessero do Ararpe. 6

7 Referêncas [1] AKAIKE, H., A new look at the statstcal model dentfcaton., IEEE Trans. Auto Cntl AC-19, 6, p , [2] ALBUQUERQUE, J. de L. Dagnóstco ambental e questões estratégcas: uma análse consderando o Pólo Gessero do Sertão do Ararpe - Estado de Pernambuco. 185p. Tese (Doutorado em Engenhara Florestal) - Unversdade Federal do Paraná, Curtba, [3] ALVES, A. M. C. Quantfcação da produção de bomassa e do teor de carbono fxado por clones de eucalpto, no pólo gessero do Ararpe-PE. 62f. Dssertação (Mestrado em Cêncas Florestas) - Unversdade Federal Rural de Pernambuco, Recfe, [4] BOX, G. E. P.; COX, D. R., An analyss of transformaton, Journal of the Royal Statstcal Socety B, v. 26, n.2, p , [5] CORDEIRO, G. M.; ANDRADE, M. G., Transformed symmetrc models, Statstcal Modellng, (artgo aceto), [6] LOESTCH, F. et al. Forest nventory. Munchen: BLV Verlagellschaft, v. 469p. [7] NELDER, J. A., WEDDERBURN, R. W. M. Generalzed lnear models.journal of the Royal Statstcal Socety, A, 135 (1972) [8] RIBEIRO, C.A.S. et al. Seleção de modelos volumétrcos para leucena no Agreste de Pernambuco. Brasl Florestal, Brasíla, DF, ano 20, n. 72, nov,

SELEÇÃO DE MODELOS VOLUMÉTRICOS PARA CLONES DE EUCALYPTUS SPP., NO PÓLO GESSEIRO DO ARARIPE

SELEÇÃO DE MODELOS VOLUMÉTRICOS PARA CLONES DE EUCALYPTUS SPP., NO PÓLO GESSEIRO DO ARARIPE SELEÇÃO DE MODELOS VOLUMÉTRICOS PARA CLONES DE EUCALYPTUS SPP, NO PÓLO GESSEIRO DO ARARIPE Jáder da Slva Jale Joselme Fernandes Gouvea Alne Santos de Melo Denns Marnho O R Souza Kléber Napoleão Nunes de

Leia mais

Avaliação da Tendência de Precipitação Pluviométrica Anual no Estado de Sergipe. Evaluation of the Annual Rainfall Trend in the State of Sergipe

Avaliação da Tendência de Precipitação Pluviométrica Anual no Estado de Sergipe. Evaluation of the Annual Rainfall Trend in the State of Sergipe Avalação da Tendênca de Precptação Pluvométrca Anual no Estado de Sergpe Dandara de Olvera Félx, Inaá Francsco de Sousa 2, Pablo Jónata Santana da Slva Nascmento, Davd Noguera dos Santos 3 Graduandos em

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado)

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado) 5 Aplcação Neste capítulo será apresentada a parte empírca do estudo no qual serão avalados os prncpas regressores, um Modelo de Índce de Dfusão com o resultado dos melhores regressores (aqu chamado de

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado Varabldade Espacal do Teor de Água de um Argssolo sob Planto Convenconal de Fejão Irrgado Elder Sânzo Aguar Cerquera 1 Nerlson Terra Santos 2 Cásso Pnho dos Res 3 1 Introdução O uso da água na rrgação

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

Estimativa da Incerteza de Medição da Viscosidade Cinemática pelo Método Manual em Biodiesel

Estimativa da Incerteza de Medição da Viscosidade Cinemática pelo Método Manual em Biodiesel Estmatva da Incerteza de Medção da Vscosdade Cnemátca pelo Método Manual em Bodesel Roberta Quntno Frnhan Chmn 1, Gesamanda Pedrn Brandão 2, Eustáquo Vncus Rbero de Castro 3 1 LabPetro-DQUI-UFES, Vtóra-ES,

Leia mais

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística ESTATÍSTICA MULTIVARIADA º SEMESTRE 010 / 11 EXERCÍCIOS PRÁTICOS - CADERNO 1 Revsões de Estatístca -0-11 1.1 1.1. (Varáves aleatóras: função de densdade e de dstrbução; Méda e Varânca enquanto expectatvas

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA CE 071 ANÁLISE DE REGRESSÃO LINEAR. Cesar Augusto Taconeli

UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA CE 071 ANÁLISE DE REGRESSÃO LINEAR. Cesar Augusto Taconeli UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA CE 7 ANÁLISE DE REGRESSÃO LINEAR Cesar Augusto Taconel Curtba-PR . INTRODUÇÃO Taconel, C.A. Análse de Regressão Lnear Ao se tratar da relação

Leia mais

1. CORRELAÇÃO E REGRESSÃO LINEAR

1. CORRELAÇÃO E REGRESSÃO LINEAR 1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação

Leia mais

MAPEAMENTO DA VARIABILIDADE ESPACIAL

MAPEAMENTO DA VARIABILIDADE ESPACIAL IT 90 Prncípos em Agrcultura de Precsão IT Departamento de Engenhara ÁREA DE MECANIZAÇÃO AGRÍCOLA MAPEAMENTO DA VARIABILIDADE ESPACIAL Carlos Alberto Alves Varella Para o mapeamento da varabldade espacal

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Correlação Este uma correlação entre duas varáves quando uma delas está, de alguma forma, relaconada com a outra. Gráfco ou Dagrama de Dspersão é o

Leia mais

Professor Mauricio Lutz CORRELAÇÃO

Professor Mauricio Lutz CORRELAÇÃO Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00) Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)

Leia mais

PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS

PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS L. G. Olvera, J. K. S. Negreros, S. P. Nascmento, J. A. Cavalcante, N. A. Costa Unversdade Federal da Paraíba,

Leia mais

EFEITO DA IDADE E MATERIAL GENÉTICO NA FORMA DE ÁRVORES DE Eucalyptus

EFEITO DA IDADE E MATERIAL GENÉTICO NA FORMA DE ÁRVORES DE Eucalyptus EFEITO DA IDADE E MATERIAL GENÉTICO NA FORMA DE ÁRVORES DE Eucalyptus Dana Marques de Olvera ; Ellezer Almeda Mello ; Carolne Stephany Inocênco ; Adrano Rbero Mendonça Bolssta PBIC/UEG, graduandos do Curso

Leia mais

Influência dos Procedimentos de Ensaios e Tratamento de Dados em Análise Probabilística de Estrutura de Contenção

Influência dos Procedimentos de Ensaios e Tratamento de Dados em Análise Probabilística de Estrutura de Contenção Influênca dos Procedmentos de Ensaos e Tratamento de Dados em Análse Probablístca de Estrutura de Contenção Mara Fatma Mranda UENF, Campos dos Goytacazes, RJ, Brasl. Paulo César de Almeda Maa UENF, Campos

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso de Admnstração em Gestão Públca Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos uns dos

Leia mais

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO - SEPLAG INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE NOTA TÉCNICA Nº 29 PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS

Leia mais

MODELAGEM DA FRAÇÃO DE NÃO-CONFORMES EM PROCESSOS INDUSTRIAIS

MODELAGEM DA FRAÇÃO DE NÃO-CONFORMES EM PROCESSOS INDUSTRIAIS versão mpressa ISSN 0101-7438 / versão onlne ISSN 1678-5142 MODELAGEM DA FRAÇÃO DE NÃO-CONFORMES EM PROCESSOS INDUSTRIAIS Ângelo Márco Olvera Sant Anna* Carla Schwengber ten Caten Programa de Pós-graduação

Leia mais

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2 Econometra - Lsta 3 - Regressão Lnear Múltpla Professores: Hedbert Lopes, Prscla Rbero e Sérgo Martns Montores: Gustavo Amarante e João Marcos Nusdeo QUESTÃO 1. Você trabalha na consultora Fazemos Qualquer

Leia mais

REGRESSÃO LOGÍSTICA. Seja Y uma variável aleatória dummy definida como:

REGRESSÃO LOGÍSTICA. Seja Y uma variável aleatória dummy definida como: REGRESSÃO LOGÍSTCA. ntrodução Defnmos varáves categórcas como aquelas varáves que podem ser mensurados usando apenas um número lmtado de valores ou categoras. Esta defnção dstngue varáves categórcas de

Leia mais

ROGÉRIO ALVES SANTANA. AVALIAÇÃO DE TÉCNICAS GEOESTATÍSTICAS NO INVENTÁRIO DE POVOAMENTOS DE Tectona grandis L.f.

ROGÉRIO ALVES SANTANA. AVALIAÇÃO DE TÉCNICAS GEOESTATÍSTICAS NO INVENTÁRIO DE POVOAMENTOS DE Tectona grandis L.f. ROGÉRIO ALVES SANTANA AVALIAÇÃO DE TÉCNICAS GEOESTATÍSTICAS NO INVENTÁRIO DE POVOAMENTOS DE Tectona grands L.f. Dssertação apresentada à Unversdade Federal de Vçosa, como parte das exgêncas do Programa

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

CONGRESSO DE INICIAÇÃO CIENTÍFICA E PÓS-GRADUAÇÃO - I CICPG SUL BRASIL Florianópolis 2010

CONGRESSO DE INICIAÇÃO CIENTÍFICA E PÓS-GRADUAÇÃO - I CICPG SUL BRASIL Florianópolis 2010 Floranópols 200 ANÁLISE COMPARATIVA DA INFLUÊNCIA DA NEBULOSIDADE E UMIDADE RELATIVA SOBRE A IRRADIAÇÃO SOLAR EM SUPERFÍCIE Eduardo Wede Luz * ; Nelson Jorge Schuch ; Fernando Ramos Martns 2 ; Marco Cecon

Leia mais

DEFINIÇÃO - MODELO LINEAR GENERALIZADO

DEFINIÇÃO - MODELO LINEAR GENERALIZADO DEFINIÇÃO - MODELO LINEAR GENERALIZADO 1 Um modelo lnear generalzado é defndo pelos seguntes três componentes: Componente aleatóro; Componente sstemátco; Função de lgação; Componente aleatóro: Um conjunto

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

Princípios do Cálculo de Incertezas O Método GUM

Princípios do Cálculo de Incertezas O Método GUM Prncípos do Cálculo de Incertezas O Método GUM João Alves e Sousa Laboratóro Regonal de Engenhara Cvl - LREC Rua Agostnho Perera de Olvera, 9000-64 Funchal, Portugal. E-mal: jasousa@lrec.pt Resumo Em anos

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

BALANÇO HÍDRICO: UMA FERRAMENTA PARA GESTÃO INDUSTRIAL E OTIMIZAÇÃO AMBIENTAL.

BALANÇO HÍDRICO: UMA FERRAMENTA PARA GESTÃO INDUSTRIAL E OTIMIZAÇÃO AMBIENTAL. BALANÇO HÍDRICO: UMA FERRAMENTA PARA GESTÃO INDUSTRIAL E OTIMIZAÇÃO AMBIENTAL. Leonardo Slva de Souza (1) Mestrando em Engenhara Químca(UFBA). Pesqusador da Rede Teclm. Bárbara Vrgína Damasceno Braga (1)

Leia mais

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL. A FUNÇÃO DE PRODUÇÃO E SUPERMERCADOS NO BRASIL ALEX AIRES CUNHA (1) ; CLEYZER ADRIAN CUNHA (). 1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL;.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

Leia mais

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre

Leia mais

PLANEJAMENTO DE EXPERIMENTOS E OTIMIZAÇÃO DE SISTEMAS MISTOS

PLANEJAMENTO DE EXPERIMENTOS E OTIMIZAÇÃO DE SISTEMAS MISTOS PLANEJAMENTO DE EXPERIMENTOS E OTIMIZAÇÃO DE SISTEMAS MISTOS Smone P. Saramago e Valder Steffen Jr UFU, Unversdade Federal de Uberlânda, Curso de Engenhara Mecânca Av. João Naves de Ávla, 2160, Santa Mônca,

Leia mais

Identidade dos parâmetros de modelos segmentados

Identidade dos parâmetros de modelos segmentados Identdade dos parâmetros de modelos segmentados Dana Campos de Olvera Antono Polcarpo Souza Carnero Joel Augusto Munz Fabyano Fonseca e Slva 4 Introdução No Brasl, dentre os anmas de médo porte, os ovnos

Leia mais

Uso dos gráficos de controle da regressão no processo de poluição em uma interseção sinalizada

Uso dos gráficos de controle da regressão no processo de poluição em uma interseção sinalizada XXIII Encontro Nac. de Eng. de Produção - Ouro Preto, MG, Brasl, 1 a 4 de out de 003 Uso dos gráfcos de controle da regressão no processo de polução em uma nterseção snalzada Luz Delca Castllo Vllalobos

Leia mais

Estatística stica Descritiva

Estatística stica Descritiva AULA1-AULA5 AULA5 Estatístca stca Descrtva Prof. Vctor Hugo Lachos Davla oo que é a estatístca? Para mutos, a estatístca não passa de conjuntos de tabelas de dados numércos. Os estatístcos são pessoas

Leia mais

Portaria Inmetro nº 248 de 17 de julho de 2008

Portaria Inmetro nº 248 de 17 de julho de 2008 INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL - Portara Inmetro nº 248 de 17 de julho de 2008 O PRESIDENTE DO INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL,

Leia mais

PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 1. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 1. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA PROVA DE MATEMÁTICA DO VESTIBULAR 03 DA UNICAMP-FASE. PROFA. MARIA ANTÔNIA C. GOUVEIA QUESTÃO 37 A fgura abaxo exbe, em porcentagem, a prevsão da oferta de energa no Brasl em 030, segundo o Plano Naconal

Leia mais

PLANEJAMENTO DE GRÁFICOS DE CONTROLE DE REGRESSÃO VIA SIMULAÇÃO

PLANEJAMENTO DE GRÁFICOS DE CONTROLE DE REGRESSÃO VIA SIMULAÇÃO PLANEJAMENTO DE GRÁFICOS DE CONTROLE DE REGRESSÃO VIA SIMULAÇÃO Ana Carolna Campana Nascmento 1, José Ivo Rbero Júnor 1, Mosés Nascmento 1 1. Professor da Unversdade Federal de Vçosa, Avenda Peter Henr

Leia mais

Federal do Espírito Santo, Alegre, ES, Brasil. 2

Federal do Espírito Santo, Alegre, ES, Brasil.    2 Aplação da dentdade de modelos não-lneares na estmatva da relação hpsométra de Pnus arbaea var. hondurenss e Pnus ooarpa sob dferentes dades Leonardo Cassan Laerda Adrano Rbero de Mendonça Edson Lahn Glson

Leia mais

JOANNE MEDEIROS FERREIRA ANÁLISE DE SOBREVIVÊNCIA: UMA VISÃO DE RISCO COMPORTAMENTAL NA UTILIZAÇÃO DE CARTÃO DE CRÉDITO.

JOANNE MEDEIROS FERREIRA ANÁLISE DE SOBREVIVÊNCIA: UMA VISÃO DE RISCO COMPORTAMENTAL NA UTILIZAÇÃO DE CARTÃO DE CRÉDITO. JOANNE MEDEIROS FERREIRA ANÁLISE DE SOBREVIVÊNCIA: UMA VISÃO DE RISCO COMPORTAMENTAL NA UTILIZAÇÃO DE CARTÃO DE CRÉDITO. RECIFE-PE, 007 UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO PRÓ-REITORIA DE PESQUISA

Leia mais

AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA ANEEL RESOLUÇÃO Nº 488, DE 29 DE AGOSTO DE 2002

AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA ANEEL RESOLUÇÃO Nº 488, DE 29 DE AGOSTO DE 2002 AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA ANEEL RESOLUÇÃO Nº 488, DE 29 DE AGOSTO DE 2002 Regulamenta o estabelecdo na Resolução CNPE n 7, de 21 de agosto de 2002, aprovada pela Presdênca da Repúblca em 22

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

Estudo e Previsão da Demanda de Energia Elétrica. Parte II

Estudo e Previsão da Demanda de Energia Elétrica. Parte II Unversdade Federal de Paraná Setor de Tecnologa Departamento de Engenhara Elétrca Estudo e Prevsão da Demanda de Energa Elétrca Parte II Prof: Clodomro Unshuay-Vla Etapas de um Modelo de Prevsão Objetvo

Leia mais

Análise de Variância. Comparação de duas ou mais médias

Análise de Variância. Comparação de duas ou mais médias Análse de Varânca Comparação de duas ou mas médas Análse de varânca com um fator Exemplo Um expermento fo realzado para se estudar dabetes gestaconal. Desejava-se avalar o comportamento da hemoglobna (HbA)

Leia mais

POLARIMETRIA ÓPTICA E MODELAGEM DE POLARES OBSERVADAS NO OPD/LNA NO PERÍODO DE 2010-2012

POLARIMETRIA ÓPTICA E MODELAGEM DE POLARES OBSERVADAS NO OPD/LNA NO PERÍODO DE 2010-2012 5 POLARIMETRIA ÓPTICA E MODELAGEM DE POLARES OBSERVADAS NO OPD/LNA NO PERÍODO DE 00-0 OPTICAL POLARIMETRY AND MODELING OF POLARS OBSERVED IN OPD/LNA IN THE PERIOD 00-0 Karleyne M. G. Slva Cláuda V. Rodrgues

Leia mais

Estimativa da fração da vegetação a partir de dados AVHRR/NOAA

Estimativa da fração da vegetação a partir de dados AVHRR/NOAA Estmatva da fração da vegetação a partr de dados AVHRR/NOAA Fabane Regna Cunha Dantas 1, Céla Campos Braga, Soetâna Santos de Olvera 1, Tacana Lma Araújo 1 1 Doutoranda em Meteorologa pela Unversdade Federal

Leia mais

O migrante de retorno na Região Norte do Brasil: Uma aplicação de Regressão Logística Multinomial

O migrante de retorno na Região Norte do Brasil: Uma aplicação de Regressão Logística Multinomial O mgrante de retorno na Regão Norte do Brasl: Uma aplcação de Regressão Logístca Multnomal 1. Introdução Olavo da Gama Santos 1 Marnalva Cardoso Macel 2 Obede Rodrgues Cardoso 3 Por mgrante de retorno,

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva Teora da Regressão Espacal Aplcada a Modelos Genércos Sérgo Alberto Pres da Slva ITENS DE RELACIONAMENTOS Tópcos Báscos da Regressão Espacal; Banco de Dados Geo-Referencados; Modelos Genércos Robustos;

Leia mais

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. Disciplina: Variável Aleatória

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. Disciplina: Variável Aleatória Departamento de Informátca Dscplna: do Desempenho de Sstemas de Computação Varável leatóra Prof. Sérgo Colcher colcher@nf.puc-ro.br Varável leatóra eal O espaço de amostras Ω fo defndo como o conjunto

Leia mais

* Economista do Instituto Federal do Sertão Pernambucano na Pró-Reitoria de Desenvolvimento Institucional PRODI.

* Economista do Instituto Federal do Sertão Pernambucano na Pró-Reitoria de Desenvolvimento Institucional PRODI. O desempenho setoral dos muncípos que compõem o Sertão Pernambucano: uma análse regonal sob a ótca energétca. Carlos Fabano da Slva * Introdução Entre a publcação de Methods of Regonal Analyss de Walter

Leia mais

Análise Econômica da Aplicação de Motores de Alto Rendimento

Análise Econômica da Aplicação de Motores de Alto Rendimento Análse Econômca da Aplcação de Motores de Alto Rendmento 1. Introdução Nesta apostla são abordados os prncpas aspectos relaconados com a análse econômca da aplcação de motores de alto rendmento. Incalmente

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Introdução Aprendzagem de Máquna Alessandro L. Koerch Redes Bayesanas A suposção Naïve Bayes da ndependênca condconal (a 1,...a n são condconalmente ndependentes dado o valor alvo v): Reduz a complexdade

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis.

PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis. EXERCICIOS AVALIATIVOS Dscplna: ECONOMETRIA Data lmte para entrega: da da 3ª prova Valor: 7 pontos INSTRUÇÕES: O trabalho é ndvdual. A dscussão das questões pode ser feta em grupo, mas cada aluno deve

Leia mais

XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA NOVO MODELO PARA O CÁLCULO DE CARREGAMENTO DINÂMICO DE TRANSFORMADORES

XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA NOVO MODELO PARA O CÁLCULO DE CARREGAMENTO DINÂMICO DE TRANSFORMADORES XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA Versão 1.0 22 a 25 Novembro de 2009 Recfe - PE GRUPO XIII GRUPO DE ESTUDO DE TRANSFORMADORES, REATORES, MATERIAIS E TECNOLOGIAS

Leia mais

ESTRUTURA DA Sacoglottis guianensis BENTH. NA UNIVERSIDADE FEDERAL DO AMAPÁ

ESTRUTURA DA Sacoglottis guianensis BENTH. NA UNIVERSIDADE FEDERAL DO AMAPÁ ESTRUTURA DA Sacoglotts guanenss BENTH. NA UNIVERSIDADE FEDERAL DO AMAPÁ Estgarrba, F. (1) ; Aparíco, W. C. S. (1) ; Perere, L. C. B. (1) ; Galvão, F. G. (1) ; Gama, R. C. (1) ; Lobato, C. M. (1) fabyestgarrba@gmal.com

Leia mais

Aplicação de um modelo simulado na formação de fábricas

Aplicação de um modelo simulado na formação de fábricas Aplcação de um modelo smulado na formação de fábrcas Márca Gonçalves Pzaa (UFOP) pzaa@ldapalm.com.br Rubson Rocha (UFSC) rubsonrocha@eps.ufsc.br Resumo O objetvo deste estudo é determnar a necessdade de

Leia mais

2 ANÁLISE ESPACIAL DE EVENTOS

2 ANÁLISE ESPACIAL DE EVENTOS ANÁLISE ESPACIAL DE EVENTOS Glberto Câmara Marla Sá Carvalho.1 INTRODUÇÃO Neste capítulo serão estudados os fenômenos expressos através de ocorrêncas dentfcadas como pontos localzados no espaço, denomnados

Leia mais

Estatística. 8 Teste de Aderência. UNESP FEG DPD Prof. Edgard

Estatística. 8 Teste de Aderência. UNESP FEG DPD Prof. Edgard Estatístca 8 Teste de Aderênca UNESP FEG DPD Prof. Edgard 011 8-1 Teste de Aderênca IDÉIA: descobrr qual é a Dstrbução de uma Varável Aleatóra X, a partr de uma amostra: {X 1, X,..., X n } Problema: Seja

Leia mais

Estatística I Licenciatura MAEG 2006/07

Estatística I Licenciatura MAEG 2006/07 Estatístca I Lcencatura MAEG 006/07 AMOSTRAGEM. DISTRIBUIÇÕES POR AMOSTRAGEM.. Em determnada unversdade verfca-se que 30% dos alunos têm carro. Seleccona-se uma amostra casual smples de 0 alunos. a) Qual

Leia mais

Controlo Metrológico de Contadores de Gás

Controlo Metrológico de Contadores de Gás Controlo Metrológco de Contadores de Gás José Mendonça Das (jad@fct.unl.pt), Zulema Lopes Perera (zlp@fct.unl.pt) Departamento de Engenhara Mecânca e Industral, Faculdade de Cêncas e Tecnologa da Unversdade

Leia mais

AULA EXTRA Análise de Regressão Logística

AULA EXTRA Análise de Regressão Logística 1 AULA EXTRA Análse de Regressão Logístca Ernesto F. L. Amaral 13 de dezembro de 2012 Metodologa de Pesqusa (DCP 854B) VARIÁVEL DEPENDENTE BINÁRIA 2 O modelo de regressão logístco é utlzado quando a varável

Leia mais

Avaliação de imóveis: a importância dos vizinhos

Avaliação de imóveis: a importância dos vizinhos Avalação de móves: a mportânca dos vznhos no caso de Recfe* Rubens Alves Dantas André Matos Magalhães José Ramundo de Olvera Vergolno Resumo Tradconalmente, na avalação de móves, admte-se que as observações

Leia mais

7. Resolução Numérica de Equações Diferenciais Ordinárias

7. Resolução Numérica de Equações Diferenciais Ordinárias 7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem

Leia mais

IPEF: FILOSOFIA DE TRABALHO DE UMA ELITE DE EMPRESAS FLORESTAISBRASILEIRAS CIRCULAR TÉCNICA ~ 161 AGOSTO 1988

IPEF: FILOSOFIA DE TRABALHO DE UMA ELITE DE EMPRESAS FLORESTAISBRASILEIRAS CIRCULAR TÉCNICA ~ 161 AGOSTO 1988 PEF: FLOSOFA DE TRABALHO DE UMA ELTE DE EMPRESAS FLORESTASBRASLERAS.1 SSN 0100-3453 CRCULAR TÉCNCA ~ 161 AGOSTO 1988 NTRODUÇJlO CENTRO DE CONSERVAÇAo GENÉTCA E MELHORAMENTO DE PNHEROS TROPCAS * P. EDUARDO

Leia mais

Probabilidade nas Ciências da Saúde

Probabilidade nas Ciências da Saúde UNIVERSIDDE ESTDUL DE GOIÁS Undade Unverstára de Cêncas Exatas e Tecnológcas Curso de Lcencatura em Matemátca robabldade nas Cêncas da Saúde Rafaela Fernandes da Slva Santos NÁOLIS 014 Rafaela Fernandes

Leia mais

Análise do Retorno da Educação na Região Norte em 2007: Um Estudo à Luz da Regressão Quantílica.

Análise do Retorno da Educação na Região Norte em 2007: Um Estudo à Luz da Regressão Quantílica. Análse do Retorno da Edcação na Regão Norte em 2007: Um Estdo à Lz da Regressão Qantílca. 1 Introdcão Almr Rogéro A. de Soza 1 Jâno Macel da Slva 2 Marnalva Cardoso Macel 3 O debate sobre o relaconamento

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

Variáveis dummy: especificações de modelos com parâmetros variáveis

Variáveis dummy: especificações de modelos com parâmetros variáveis Varáves dummy: especfcações de modelos com parâmetros varáves Fabríco Msso, Lucane Flores Jacob Curso de Cêncas Econômcas/Unversdade Estadual de Mato Grosso do Sul E-mal: fabrcomsso@gmal.com Departamento

Leia mais

MODELAGEM MATEMÁTICA DO PROCESSO DE EVAPORAÇÃO MULTI-EFEITO NA INDÚSTRIA DE PAPEL E CELULOSE

MODELAGEM MATEMÁTICA DO PROCESSO DE EVAPORAÇÃO MULTI-EFEITO NA INDÚSTRIA DE PAPEL E CELULOSE MODELAGEM MATEMÁTICA DO PROCESSO DE EVAPORAÇÃO MULTI-EFEITO NA INDÚSTRIA DE PAPEL E CELULOSE R. L. S. CANEVESI 1, C. L. DIEL 2, K. A. SANTOS 1, C. E. BORBA 1, F. PALÚ 1, E. A. DA SILVA 1 1 Unversdade Estadual

Leia mais

RODRIGO LUIZ PEREIRA LARA DESEMPENHO DO GRÁFICO DE CONTROLE CUSUM TABULAR PARA O MONITORAMENTO DA MÉDIA

RODRIGO LUIZ PEREIRA LARA DESEMPENHO DO GRÁFICO DE CONTROLE CUSUM TABULAR PARA O MONITORAMENTO DA MÉDIA RODRIGO LUIZ PEREIRA LARA DESEMPENO DO GRÁFICO DE CONTROLE CUSUM TABULAR PARA O MONITORAMENTO DA MÉDIA Dssertação apresentada à Unversdade Federal de Vçosa, como parte das exgêncas do Programa de Pós Graduação

Leia mais

EST 220 ESTATÍSTICA EXPERIMENTAL

EST 220 ESTATÍSTICA EXPERIMENTAL UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE ESTATÍSTICA EST 0 ESTATÍSTICA EXPERIMENTAL Vçosa Mnas Geras 00 / II UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de

Leia mais

2 Incerteza de medição

2 Incerteza de medição 2 Incerteza de medção Toda medção envolve ensaos, ajustes, condconamentos e a observação de ndcações em um nstrumento. Este conhecmento é utlzado para obter o valor de uma grandeza (mensurando) a partr

Leia mais

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05 LQA - LEFQ - EQ -Químca Analítca Complemantos Teórcos 04-05 CONCEITO DE ERRO ALGARISMOS SIGNIFICATIVOS Embora uma análse detalhada do erro em Químca Analítca esteja fora do âmbto desta cadera, sendo abordada

Leia mais

REGRESSÃO LOGÍSTICA APLICADA NA ANÁLISE ESPACIAL DE DADOS ARQUEOLÓGICOS

REGRESSÃO LOGÍSTICA APLICADA NA ANÁLISE ESPACIAL DE DADOS ARQUEOLÓGICOS ÍTALO TSUCHIYA REGRESSÃO LOGÍSTICA APLICADA NA ANÁLISE ESPACIAL DE DADOS ARQUEOLÓGICOS Dssertação apresentada ao Curso de Pós Graduação em Cêncas Cartográfcas para a obtenção do Título de Mestre em Cêncas

Leia mais

SALÁRIO DE RESERVA E DURAÇÃO DO DESEMPREGO NO BRASIL: UMA ANÁLISE COM DADOS DA PESQUISA DE PADRÃO DE VIDA DO IBGE

SALÁRIO DE RESERVA E DURAÇÃO DO DESEMPREGO NO BRASIL: UMA ANÁLISE COM DADOS DA PESQUISA DE PADRÃO DE VIDA DO IBGE SALÁRIO DE RESERVA E DURAÇÃO DO DESEMPREGO NO BRASIL: UMA ANÁLISE COM DADOS DA PESQUISA DE PADRÃO DE VIDA DO IBGE Vctor Hugo de Olvera José Ramundo Carvalho Resumo O objetvo do presente estudo é o de analsar

Leia mais

NOVA METODOLOGIA PARA RECONCILIAÇÃO DE DADOS: CONSTRUÇÃO DE BALANÇÃO HÍDRICOS EM INDÚSTRIA UTILIZANDO O EMSO

NOVA METODOLOGIA PARA RECONCILIAÇÃO DE DADOS: CONSTRUÇÃO DE BALANÇÃO HÍDRICOS EM INDÚSTRIA UTILIZANDO O EMSO I Congresso Baano de Engenhara Santára e Ambental - I COBESA NOVA METODOLOGIA PARA RECONCILIAÇÃO DE DADOS: CONSTRUÇÃO DE BALANÇÃO HÍDRICOS EM INDÚSTRIA UTILIZANDO O EMSO Marcos Vnícus Almeda Narcso (1)

Leia mais

Controle de qualidade de produto cartográfico aplicado a imagem de alta resolução

Controle de qualidade de produto cartográfico aplicado a imagem de alta resolução Controle de qualdade de produto cartográfco aplcado a magem de alta resolução Nathála de Alcântara Rodrgues Alves¹ Mara Emanuella Frmno Barbosa¹ Sydney de Olvera Das¹ ¹ Insttuto Federal de Educação Cênca

Leia mais

Palavras-chaves: Gráficos de controle, ambiente R, análise estatística multivariada

Palavras-chaves: Gráficos de controle, ambiente R, análise estatística multivariada A ntegração de cadeas produtvas com a abordagem da manufatura sustentável. Ro de Janero, RJ, Brasl, 13 a 16 de outubro de 2008 O DESENVOLVIMENTO DE GRÁFICOS DE CONTROLE MCUSUM E MEWMA EM AMBIENTE R COMO

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

PROPOSIÇÃO, VALIDAÇÃO E ANÁLISE DOS MODELOS QUE CORRELACIONAM ESTRUTURA QUÍMICA E ATIVIDADE BIOLÓGICA

PROPOSIÇÃO, VALIDAÇÃO E ANÁLISE DOS MODELOS QUE CORRELACIONAM ESTRUTURA QUÍMICA E ATIVIDADE BIOLÓGICA 658 Gaudo & Zandonade Qum. Nova Qum. Nova, Vol. 4, No. 5, 658-671, 001. Dvulgação PROPOSIÇÃO, VALIDAÇÃO E ANÁLISE DOS MODELOS QUE CORRELACIONAM ESTRUTURA QUÍMICA E ATIVIDADE BIOLÓGICA Anderson Coser Gaudo

Leia mais

Estatística Experimental Medicina Veterinária. Faculadade de Ciências Agrárias e Veterinárias. Campus de Jaboticabal SP. Gener Tadeu Pereira

Estatística Experimental Medicina Veterinária. Faculadade de Ciências Agrárias e Veterinárias. Campus de Jaboticabal SP. Gener Tadeu Pereira MATERIAL DIDÁTICO Medcna Veternára Faculadade de Cêncas Agráras e Veternáras Campus de Jabotcabal SP Gener Tadeu Perera º SEMESTRE DE 04 ÍNDICE INTRODUÇÃO AO R AULA ESTATÍSTICA DESCRITIVA 3 º EXERCÍCIO

Leia mais

são os coeficientes desconhecidos e o termo ε (erro)

são os coeficientes desconhecidos e o termo ε (erro) Regressão Lnear Neste capítulo apresentamos um conjunto de técncas estatístcas, denomnadas análse de regressão lnear, onde se procura estabelecer a relação entre uma varável resposta e um conjunto de varáves

Leia mais

RM 68 INCERTEZA DE MEDIÇÃO: GUIA PRÁTICO DO AVALIADOR DE LABORATÓRIOS SUMÁRIO 1 OBJETIVO E CAMPO DE APLICAÇÃO 2 REFERÊNCIAS 3 DEFINIÇÕES 4 METODOLOGIA

RM 68 INCERTEZA DE MEDIÇÃO: GUIA PRÁTICO DO AVALIADOR DE LABORATÓRIOS SUMÁRIO 1 OBJETIVO E CAMPO DE APLICAÇÃO 2 REFERÊNCIAS 3 DEFINIÇÕES 4 METODOLOGIA RM 68 INCERTEZA DE MEDIÇÃO: GUIA PRÁTICO DO AVALIADOR DE LABORATÓRIOS PROCEDIMENTO DO SISTEMA DE GESTÃO DA QUALIDADE REVISÃO: 05 ABR/013 SUMÁRIO 1 OBJETIVO E CAMPO DE APLICAÇÃO REFERÊNCIAS 3 DEFINIÇÕES

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados Modelo lnear normal com erros heterocedástcos O método de mínmos quadrados ponderados Varâncas homogêneas Varâncas heterogêneas y y x x Fgura 1 Ilustração da dstrbução de uma varável aleatóra y (condconal

Leia mais

Cálculo do Conceito ENADE

Cálculo do Conceito ENADE Insttuto aconal de Estudos e Pesqusas Educaconas Aníso Texera IEP Mnstéro da Educação ME álculo do onceto EADE Para descrever o cálculo do onceto Enade, prmeramente é mportante defnr a undade de observação

Leia mais

GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO (SEPLAG) INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ (IPECE)

GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO (SEPLAG) INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ (IPECE) IPECE ota Técnca GOVERO DO ESTADO DO CEARÁ SECRETARIA DO PLAEJAMETO E GESTÃO (SEPLAG) ISTITUTO DE PESQUISA E ESTRATÉGIA ECOÔMICA DO CEARÁ (IPECE) OTA TÉCICA º 33 METODOLOGIA DE CÁLCULO DA OVA LEI DO ICMS

Leia mais

Modelo Multi-Estado de Markov em Cartões de Crédito. Daniel Evangelista Régis Rinaldo Artes

Modelo Multi-Estado de Markov em Cartões de Crédito. Daniel Evangelista Régis Rinaldo Artes Modelo Mult-Estado de Markov em Cartões de Crédto Danel Evangelsta Régs Rnaldo Artes Insper Workng Paper WPE: 137/2008 Copyrght Insper. Todos os dretos reservados. É probda a reprodução parcal ou ntegral

Leia mais

MODELAGEM DA BIOMASSA INDIVIDUAL DE Phyllostachys aurea Carr. ex A.& C. Rivi're

MODELAGEM DA BIOMASSA INDIVIDUAL DE Phyllostachys aurea Carr. ex A.& C. Rivi're MODELAGEM DA BIOMASSA INDIVIDUAL DE Phyllostachys aurea Carr. ex A.& C. Rv're Saymon Hamsés Monaster 1 ; Ana Paula Dalla Corte ; Carlos Roberto Sanquetta ; Mateus Nroh Inoue Sanquetta 1 ; Marel Sabrna

Leia mais