A experiência de Oersted

Tamanho: px
Começar a partir da página:

Download "A experiência de Oersted"

Transcrição

1 Os pólos de um ímã á séculos, o homem observou que determinadas pedras têm a propriedade de atrair pedaços de ferro ou interagir entre si. Essas pedras foram chamadas de ímãs e os fenômenos, que de modo espontâneo se manifestam na Naturea, foram denominados fenômenos magnéticos. Um ímã em forma de barra tem dois pólos: sul e norte, em torno dos quais há um campo magnético. Os ímãs podem ser permanentes ou temporários e os materiais utiliados em cada tipo diferem entre si. Um material ferromagnético pode ser transformado em um ímã quando colocado na parte central de uma bobina elétrica ou solenóide, ao se passar uma corrente de grande intensidade através do enrolamento.

2 Os pólos de um ímã De acordo com a composição, o material receberá seu magnetismo depois que a corrente tiver sido cortada. Ímãs permanentes são fabricados a partir de materiais duros tais como aço, níquel e cobalto. Alguns materiais retêm pouco ou nenhum magnetismo após a corrente ter sido cortada. Ao tentarmos aproximar o pólo norte de um ímã do pólo norte de outro ímã, notaremos que haverá uma força magnética de repulsão entre esses pólos.

3 Os pólos de um ímã Do mesmo modo, notaremos que há uma força de repulsão entre os pólos sul de dois ímãs, enquanto que entre o pólo sul e norte haverá uma força de atração magnética. Resumindo: Pólos magnéticos de mesmo nome se repelem e pólos magnéticos de nomes diferentes se atraem. Os pólos de um ímã são inseparáveis. Se você quebrar ao meio um ímã em forma de barra, as duas metades obtidas serão ímãs completos. Por mais que você quebre, nunca obterá um ímã com um único pólo.

4 A experiência de Oersted Até o ano de 1820, os cientistas pensavam que os fenômenos elétricos e magnéticos eram totalmente independentes, isto é, que não havia qualquer relação entre eles. Nesse ano, o físico dinamarquês ans Christian Oersted, professor da Universidade de Copenhague, realiou uma experiência que se tornou famosa por alterar completamente essas idéias: - Um fio retilíneo (no qual não havia corrente elétrica) foi colocado próximo a uma agulha magnética, orientada livremente na direção norte-sul; - Faendo-se passar uma corrente no fio, observou-se que a agulha se desviava; - Interrompendo-se a corrente no fio, a agulha voltava a se orientar na direção norte-sul.

5 A experiência de Oersted Portanto, a corrente elétrica no fio atuou sobre a agulha magnética de maneira semelhante a um ímã que fosse colocado próximo à agulha. Em outras palavras, a corrente elétrica estabeleceu um campo magnético no espaço em torno dela, e esse campo foi o agente responsável pelo desvio da agulha magnética. Como já sabemos que a corrente elétrica é constituída por cargas elétricas em movimento, podemos tirar a seguinte conclusão: cargas elétricas em movimento (corrente elétrica) criam, no espaço em torno delas, um campo magnético.

6 Introdução O campo magnético é capa de exercer forças não apenas sobre ímãs, mas também sobre condutores percorridos por correntes elétricas. A força gerada é a soma das pequenas forças que o campo magnético exerce sobre cada elétron em movimento. Não é, porém, necessário que os elétrons estejam dentro do fio para que sofram a ação do campo magnético. Isso também ocorre quando eles estão no exterior e se movem livremente.

7 Introdução Em geral, cada partícula carregada e em movimento sofre a ação de uma força exercida pelo campo magnético. Essa força é grande quando a partícula se desloca perpendicularmente às linhas de campo, e é igual a ero quando a partícula se move na mesma direção do campo magnético. A direção da força é perpendicular tanto à direção do movimento como à do campo magnético.

8 Introdução A força que um campo magnético exerce sobre um condutor percorrido por corrente pode ser utiliada para realiar trabalho. É o que ocorre nos motores elétricos, que transformam energia elétrica em energia mecânica. Essa força também é usada para faer funcionar uma grande variedade de aparelhos elétricos de medida, como amperímetros e voltímetros.

9 Lei de Biot-Savart Fontes de um campo magnético: - Imã permanente; - Campo elétrico variável linearmente no tempo; - Corrente contínua. A intensidade de campo magnético d produido por um elemento diferencial de corrente I 1 dl 1 é dada pela Lei de Biot-Savart.

10 Lei de Biot-Savart Em um ponto P qualquer no espaço, a intensidade do campo magnético produido por um elemento diferencial de corrente é proporcional ao produto da corrente pela magnitude do comprimento diferencial e pelo seno do ângulo entre o filamento e linha que conecta o filamento do ponto P, onde o campo está sendo medido. d d 2 IdL ar A/ m 2 4πR IdL1 a 4πR R

11 Lei de Biot-Savart A Lei de Biot-Savart guarda certa semelhança com a Lei de Coulomb: de 2 Principal diferença: Direção do campo. dq 1 a 4πε R 0 R A Lei de Biot-Savart também é conhecida como Lei de Ampère para o elemento de corrente.

12 Lei de Biot-Savart Pela equação da continuidade corrente, tem-se: ρv. J t Como a corrente. J e, S 0 pelo J ds 0 é constante, Teorema da Divergência, A corrente acima é nula, já que atravessa uma superfície fechada, e será a fonte do campo magnético em estudo. A Lei de Biot-Savart só poderá ser verificada experimentalmente na forma integral em uma superfície fechada, isto é: Id L 4πR a 2 R

13 Lei de Biot-Savart O campo magnético produido pela corrente elétrica em um fio retilíneo depende basicamente de dois fatores: da intensidade da corrente e da distância ao fio. Quanto maior for o valor da corrente, maior será o campo magnético criado por ela. Por outro lado, quanto maior for a distância ao fio, menor será o valor do campo magnético. As linhas do campo magnético são circulares, centradas no fio. O sentido das linhas de campo magnético pode ser obtido pela regra da mão direita: segure o condutor com a sua mão direita, de maneira que o dedo polegar aponte o sentido da corrente. Os seus dedos apontarão no sentido das linhas de campo.

14 Lei de Biot-Savart Se o condutor tiver forma circular, ele se denomina uma espira. O campo magnético no centro de uma espira, depende do raio do círculo e da intensidade da corrente elétrica. Quanto maior a corrente, maior o valor do campo. Quanto maior o raio da espira, menor o valor do campo. Observe que as linhas de indução se concentram no interior do círculo e continua valendo a regra da mão direita para a determinação do seu sentido.

15 Lei de Biot-Savart Uma bobina, ou solenóide, é constituída por um fio enrolado várias vees, tomando uma forma cilíndrica. Cada uma das voltas do fio da bobina é uma espira. Ligando-se as extremidades da bobina a uma bateria, isto é, estabelecendo-se uma corrente em suas espiras, essa corrente cria um campo magnético no interior do solenóide. Seu valor, ao longo do eixo central, depende da intensidade da corrente elétrica, do número de espiras e do comprimento do solenóide.

16 Lei de Biot-Savart Para saber qual das extremidades de um solenóide é o pólo norte, você pode aplicar a regra da mão direita, da mesma maneira que fe com o fio condutor e com a espira. A intensidade de um eletroímã depende também do facilidade com que o material em seu interior é magnetiado. A maior parte dos eletroímãs são feitos de ferro puro, que se magnetia facilmente. Os eletroímãs são utiliados nas campainhas elétricas, telégrafos, telefones, amperímetros, voltímetros, etc.

17 Lei de Biot-Savart Linhas de fluxo magnético em torno de um filamento infinitamente longo.

18 Lei de Biot-Savart A Lei de Biot-Savart pode ser expressa em função da Densidade de Corrente (J) e da Densidade de Corrente de Superfície (K). A corrente de superfície flui em uma camada infinitesimal do condutor. Neste caso, a densidade J tende a infinito. A densidade de corrente de superfície (K) é medida em ampères por metro, na direção transversal (dn) ao sentido da corrente: K di I dn KdN

19 Lei de Biot-Savart O elemento diferencial de corrente I.dL, na direção da corrente, pode, portanto ser expresso em termos de J e K: IdL KdS Jdv A Lei de Biot-Savart transforma-se em: RdS Rdv K a e J a S 2 2 4π R vol 4π R

20 Lei de Biot-Savart Campo magnético devido a um filamento retilíneo percorrido por uma corrente constante. Não há variação em nem em φ. Tem-se, ainda, que: R 12 ρa ρ a a R 12 ρa ρ ρ 2 a + 2

21 dl 2 2 ρa I 4π ρ Integrando d Id Id + Iρa 4π Campo magnético estacionário Lei de Biot-Savart ρd φa a 4π a 4π + - ( ρa ) ρ a ( 2 2 ) 3 / 2 ρ + ( ρa ) ρ a ( 2 2 ) 3 / 2 ρ + ( 2 2 ρ + ) se φ φ ρd a ρ em 2 + ρ d a φ 3 / 2, 2 + tem se φ constante. I a 2πρ φ

22 Exercício 8.1 (a) Determinar o vetor campo magnético () em componentes cartesianas no ponto P(2 ; 3 ; 4) devido a um filamento conduindo uma corrente de 8 ma no eixo, na direção a. (b) Repetir o item a para um filamento localiado em x - 1 e y 2. (c) Encontrar o valor de se ambos os filamentos estiverem presentes.

23 Lei (Circuital) de Ampère As aplicações da Lei de Biot-Savart que envolvem alto grau de simetria podem ser mais facilmente resolvidas pela Lei Circuital de Ampère. Condutor atravessado por uma corrente total I. A Lei de Ampère estabelece que a integral de linha de um campo magnético em qualquer percurso fechado é igual à corrente enlaçada pelo percurso. A integral no percurso c é menor que I, visto que a corrente total não é enlaçada pelo caminho..dl I

24 Lei (Circuital) de Ampère Retornando à situação de um filamento infinitamente longo atravessado por uma corrente, coincidindo com o eixo, tem-se que o deslocamento da corrente se dá na direção definida por a. O campo magnético devido à corrente está em plano perpendicular ao filamento. Logo, não possui variação em. Além disso, as linhas que definem o campo magnético são circulares, o que indica que não há variação, também, em φ. Podemos aplicar a Lei Circuital de Ampère supondo um deslocamento dl igual a ρdφ, conforme se segue, observando que o campo magnético possui apenas componente em φ.

25 Lei (Circuital) de Ampère 2π 2π. d L ρdφ ρ dφ 2πρ I φ φ φ 0 0 φ 1 2πρ

26 Lei Circuital de Ampère aplicada a um cabo coaxial Seção reta de um cabo coaxial com uma corrente constante I no condutor interno e I no condutor externo, ambas uniformemente distribuídas. Os filamentos de corrente produem componentes de em ρ e φ, que se cancelam. Não existem componentes de na direção.

27 Lei Circuital de Ampère aplicada a um cabo coaxial Para ρ maior que o raio a do condutor interno e menor que o raio b do condutor externo, temos que a corrente enlaçada é: I φ ( a < ρ < b) 2πρ Para ρ menor que o raio a do condutor interno, a corrente enlaçada será: I enl I πρ πa 2 2 I ρ a 2 2 φ Iρ 2πa 2

28 Lei Circuital de Ampère aplicada a um cabo coaxial Se ρ for maior que o raio c do condutor externo, a corrente será igual a ero. φ 0 ( ρ > c)

29 Lei Circuital de Ampère aplicada a um cabo coaxial Se o percurso estiver dentro do condutor externo, a corrente atravessa a região cujo raio está definido por b<ρ<c será a total menos a corrente correspondente à região cujo raio está definido por ρ>b, isto é: ρ b ρ b I I 2πρ I I c b c b 2 2 I c ρ φ ( b< ρ < c) 2 2 2πρ c b φ 2 2

30 Lei Circuital de Ampère aplicada a um cabo coaxial Variação do campo magnético em um cabo coaxial, em função do raio.

31 Lei Circuital de Ampère aplicada a uma lâmina uniforme Densidade de corrente de superfície ipótese: a corrente de retorno estará dividida entre duas lâminas eqüidistantes da lâmina acima.

32 Lei Circuital de Ampère aplicada a uma lâmina uniforme Fatos: 1) Como a corrente está na direção de y, não há componente y; 2) Como a corrente de retorno é suposta simétrica em relação à lâmina, as componentes se cancelam; 3) Só há a componente x. 4) O percurso de integração escolhido é , cujos segmentos são paralelos ou perpendiculares a x.

33 Lei Circuital de Ampère aplicada a uma lâmina uniforme Aplicando a Lei Circuital de Ampère ao percurso de integração teremos: L+ ( L) K L x1 x2 y K x1 x2 y Aplicando a mesma Lei, agora ao percurso de integração , vem: K x3 x2 y x3 x1 Portanto, x é o mesmo, tanto para valores positivos quanto negativos de, porém simétricos. 1 1 x Ky, > 0 x Ky, < 0 2 2

34 Lei Circuital de Ampère aplicada a uma lâmina uniforme Em termos genéricos, e considerando o vetor unitário a N perpendicular à lâmina, podemos escrever, para qualquer valor de : 1 K a 2 Supondo a existência de uma segunda lâmina em h, paralela à primeira e com corrente fluindo no sentido contrário, isto é, K - K y a y, a expressão anterior indica que o campo na região entre ambas as lâminas será: K an (0 < < h) e 0 ( < 0, > h) N

35 Lei Circuital de Ampère aplicada a um solenóide Solenóide ideal de comprimento infinito, com uma lâmina circular de corrente K K φ a φ. Solenóide real de comprimento finito d, com N espiras.

36 Lei Circuital de Ampère aplicada a um solenóide Para um solenóide real de comprimento finito d, com N espiras, percorrido por uma corrente filamentar I, o valor do campo magnético para pontos no interior do solenóide, pode ser obtido pela fórmula aproximada: NI d a A fórmula acima não é valida para pontos mais próximos da superfície do solenóide do que duas vees a separação entre as espiras, nem para pontos mais próximos das extremidades do que duas vees o raio do solenóide..

37 Lei Circuital de Ampère aplicada a um toróide Toróide ideal com uma corrente superficial K. Toróide real com N espiras, percorrido por uma corrente I. Para fórmulas mais precisas e mais abrangentes sobre solenóides, toróides e espiras de formas diversas, consultar: Standard andbook for Electrical Engineers.

38 Aplicando-se a Lei Circuital de Ampère aos 4 lados do percurso incremental ao lado, tem-se: y x x x y y x y y x J x x dl J y y dl J y x y x dl. lim. lim. lim 0 0 0

39 A combinação das 3 equações anteriores gera o elemento denominado rotacional. O rotacional de qualquer vetor é um vetor. Em termos matemáticos, tem-se: ( ) a a a + + rot y x x y rot S dl rot x y y x x y n S n n 0 lim

40 Teorema de Stokes O Teorema de Stokes define a equivalência entre a integral de um campo vetorial ao longo de uma curva fechada formada por elementos dl e a integral do rotacional do referido campo na superfície ds, limitada pelo percurso formado pelos elementos dl. Por extensão ao campo magnético, temos: dl ids S ( )

41 Fluxo Magnético O Fluxo Magnético Φ, semelhantemente ao fluxo elétrico, pode ser considerado como uma grandea associada ao número de linhas que atravessa uma superfície. Analogamente, podemos definir a Densidade de Fluxo Magnético B, como sendo a relação B µ sendo µ a permeabilidade do meio. O Fluxo Magnético Φ, é medido em weber (Wb), enquanto a Densidade de Fluxo Magnético B é medida em weber por metro quadrado (Wb/m 2 ), ou tesla (T). µ é definido em henry por metro (/m). Para o vácuo, µ 0 4π x 10-7 /m.

42 Fluxo Magnético As relações B µ e D εe permitem que se estabeleça uma analogia entre os campos elétrico e magnético. O Fluxo Magnético Φ, pode ser escrito como: Φ BidS Wb, valendo lembrar que Ψ DidS C S S As linhas de fluxo magnético não terminam em uma carga magnética. Assim, a Lei de Gauss para o campo magnético é expressa por: Φ BidS0 S Logo, pelo Teorema da Divergência, i B0

43 Equações de Maxwell As Equações de Maxwell podem agora ser resumidas pela tabela abaixo: Forma diferencial Forma integral id ρ v S DidSQ vol ρ dv v E 0 EidL0 J idli JidS S ib 0 BidS 0 S

44 Potenciais magnéticos escalar e vetorial Foi visto anteriormente que um campo elétrico pode ser obtido a partir do potencial elétrico, mediante a relação: E V Partindo da hipótese que é possível definir um potencial magnético, com analogia ao campo elétrico, tem-se: V m O potencial magnético só tem significado físico em Física Quântica. No eletromagnetismo clássico, possui somente significado matemático. ib 0 A equação de Maxwell define que não existem monopolos magnéticos. Uma ve que o divergente de um campo vetorial é nulo, e, Das propriedades da divergência, podemos reescrever o divergente como sendo o rotacional de um outro campo vetorial: i A 0

45 Potenciais magnéticos escalar e vetorial Temos, pois, que: B A O campo vetorial A é denominado potencial magnético vetorial, a partir do qual pode-se determinar o campo magnético com a operação acima. Assim, 1 A µ A B B A µ J µ 2 2 i ( A) A µ J A µ J A a + A a + A a µ ( J a + J a + J a ) x x y y x x y y

46 Potenciais magnéticos escalar e vetorial Logo, A µ J A µ J A µ J x x y y As relações acima tomam a forma da Equação de Poisson e, portanto: µ µ µ Ax Jxdv Ay Jydv A Jdv 4πR vol 4πR vol 4πR vol µ A Jdv 4π R vol A expressão acima tem o mesmo significado da Lei de Biot-Savart.

47 Potenciais magnéticos escalar e vetorial Portanto, A pode ser re-escrito como, que corresponde a uma corrente I que flui ao longo de um filamento condutor, do qual dl é um elemento diferencial e R é a distância para a qual se deseja calcular A. da µ IdL 4π R Na forma diferencial,. µ A IdL 4π R

48 Potenciais magnéticos escalar e vetorial da da µ Id 4π 4π ρ 2 2 µ Id ρ + a Note-se que a direção de da é a mesma de IdL. Agora pode-se calcular o campo magnético a partir de A. 1 1 da Id ρ d da φ d φ µ µ ρ a a 4π ( ) ρ + Este resultado é o mesmo obtido pela Lei de Biot-Savart

ELECTROMAGNETISMO. Dulce Godinho 1. Nov-09 Dulce Godinho 1. Nov-09 Dulce Godinho 2

ELECTROMAGNETISMO. Dulce Godinho 1. Nov-09 Dulce Godinho 1. Nov-09 Dulce Godinho 2 Dulce Godinho 1 Dulce Godinho 2 Dulce Godinho 1 Dulce Godinho 3 Dulce Godinho 4 Dulce Godinho 2 Dulce Godinho 5 Dulce Godinho 6 Dulce Godinho 3 Dulce Godinho 7 Dulce Godinho 8 Dulce Godinho 4 Dulce Godinho

Leia mais

Microfone e altifalante. Conversão de um sinal sonoro num sinal elétrico. sinal elétrico num sinal sonoro.

Microfone e altifalante. Conversão de um sinal sonoro num sinal elétrico. sinal elétrico num sinal sonoro. Microfone e altifalante Conversão de um sinal sonoro num sinal elétrico. Conversão de um sinal elétrico num sinal sonoro. O funcionamento dos microfones e dos altifalantes baseia-se na: - acústica; - no

Leia mais

TC DE FÍSICA 2 a SÉRIE ENSINO MÉDIO

TC DE FÍSICA 2 a SÉRIE ENSINO MÉDIO TC DE FÍSICA 2 a SÉRIE ENSINO MÉDIO Professor(es): Odair Mateus 14/6/2010 1.Na(s) questão(ões) a seguir, escreva no espaço apropriado a soma dos itens corretos. Sobre os conceitos e aplicações da Eletricidade

Leia mais

Cap. 7 - Fontes de Campo Magnético

Cap. 7 - Fontes de Campo Magnético Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 7 - Fontes de Campo Magnético Prof. Elvis Soares Nesse capítulo, exploramos a origem do campo magnético - cargas em movimento.

Leia mais

EXPERIMENTO DE OERSTED 313EE 1 TEORIA

EXPERIMENTO DE OERSTED 313EE 1 TEORIA EXPERIMENTO DE OERSTED 313EE 1 TEORIA 1. UM BREVE HISTÓRICO No século XIX, o período compreendido entre os anos de 1819 e 1831 foi dos mais férteis em descobertas no campo da eletricidade. Os fenômenos

Leia mais

Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo.

Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo. Capacitores e Dielétricos Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo. Imaginemos uma configuração como a de um capacitor em que os

Leia mais

Campo Magnético. e horário. e anti-horário. e horário. e anti-horário. e horário. a) b) c) d) e)

Campo Magnético. e horário. e anti-horário. e horário. e anti-horário. e horário. a) b) c) d) e) Campo Magnético 1. (Ita 2013) Uma espira circular de raio R é percorrida por uma corrente elétrica i criando um campo magnético. Em seguida, no mesmo plano da espira, mas em lados opostos, a uma distância

Leia mais

Magnetismo. Campo Magnético. Professor Bolinha

Magnetismo. Campo Magnético. Professor Bolinha Magnetismo Campo Magnético Professor Bolinha Magnetismo Magnetismo é o ramo da Ciência que estuda os materiais magnéticos, ou seja, que estuda materiais capazes de atrair ou repelir outros a distância.

Leia mais

Lei de Gauss Origem: Wikipédia, a enciclopédia livre.

Lei de Gauss Origem: Wikipédia, a enciclopédia livre. Lei de Gauss Origem: Wikipédia, a enciclopédia livre. A lei de Gauss é a lei que estabelece a relação entre o fluxo de campo elétrico que passa através de uma superfície fechada com a carga elétrica que

Leia mais

Corrente elétrica corrente elétrica.

Corrente elétrica corrente elétrica. Corrente elétrica Vimos que os elétrons se deslocam com facilidade em corpos condutores. O deslocamento dessas cargas elétricas é chamado de corrente elétrica. A corrente elétrica é responsável pelo funcionamento

Leia mais

1. Descobertas de Oersted

1. Descobertas de Oersted Parte II - ELETROMAGNETISMO 1. Descobertas de Oersted Até o início do século XIX acreditava-se que não existia relação entre os fenômenos elétricos e magnéticos. Em 1819, um professor e físico dinamarquês

Leia mais

Magnetismo: Campo Magnético

Magnetismo: Campo Magnético INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA E TECNOLOGIA PARAÍBA Campus Princesa Isabel Magnetismo: Campo Magnético Disciplina: Física III Professor: Carlos Alberto Aurora Austral Polo Sul Aurora Boreal Polo

Leia mais

Hoje estou elétrico!

Hoje estou elétrico! A U A UL LA Hoje estou elétrico! Ernesto, observado por Roberto, tinha acabado de construir um vetor com um pedaço de papel, um fio de meia, um canudo e um pedacinho de folha de alumínio. Enquanto testava

Leia mais

MAGNETISMO - ELETROMAGNETISMO

MAGNETISMO - ELETROMAGNETISMO MAGNETISMO - ELETROMAGNETISMO MAGNETISMO Estuda os corpos que apresentam a propriedade de atrair o ferro. Estes corpos são denominados imãs ou magnetos. Quando suspendemos um imã deixando que ele gire

Leia mais

Física Unidade VI Série 1

Física Unidade VI Série 1 01 a) Os polos sul e norte encontram-se próximos, por isso ocorre atração. b) Polos iguais encontram-se próximos, resultando em repulsão. c) Polos iguais encontram-se próximos, resultando em repulsão.

Leia mais

Capítulo 11 MOTORES ELÉTRICOS DE CORRENTE CONTÍNUA E UNIVERSAL. Introdução

Capítulo 11 MOTORES ELÉTRICOS DE CORRENTE CONTÍNUA E UNIVERSAL. Introdução Capítulo 11 MOTORES ELÉTRICOS DE CORRENTE CONTÍNUA E UNIVERSAL Esta aula apresenta o princípio de funcionamento dos motores elétricos de corrente contínua, o papel do comutador, as características e relações

Leia mais

Análise Matemática III - Turma Especial

Análise Matemática III - Turma Especial Análise Matemática III - Turma Especial Ficha Extra 6 - Equações de Maxwell Não precisam de entregar esta ficha omo com todas as equações básicas da Física, não é possível deduzir as equações de Maxwell;

Leia mais

Fundamentos de Máquinas Elétricas

Fundamentos de Máquinas Elétricas Universidade Federal do ABC Engenharia de Instrumentação, Automação e Robótica Fundamentos de Máquinas Elétricas Prof. Dr. José Luis Azcue Puma Ementa e avaliação Introdução ao circuito magnético 1 Ementa

Leia mais

ESTUDO DIRIGIDO DE REVISÃO PARA RECUPERAÇÃO FINAL - 2015

ESTUDO DIRIGIDO DE REVISÃO PARA RECUPERAÇÃO FINAL - 2015 Nome: 3ª série: n o Professor: Luiz Mário Data: / / 2015. ESTUDO DIRIGIDO DE REVISÃO PARA RECUPERAÇÃO FINAL - 2015 Orientações: - Este estudo dirigido poderá ser usado para revisar a matéria que será cobrada

Leia mais

1] Dada a associação de resistores abaixo, calcule a resistência total.

1] Dada a associação de resistores abaixo, calcule a resistência total. ª ANO 1] Dada a associação de resistores abaixo, calcule a resistência total. Onde: O circuito A é uma associação de resitores em série, pois há apenas um caminho para que a corrente passe de uma extremidade

Leia mais

Condensador equivalente de uma associação em série

Condensador equivalente de uma associação em série Eletricidade Condensador equivalente de uma associação em série por ser uma associação em série, a ddp U nos terminais da associação é igual à soma das ddps individuais em cada capacitor. U U U U 1 2 3

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = = Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo

Leia mais

E L E T R O M AG N E T I S M O. Professor Alex Siqueira

E L E T R O M AG N E T I S M O. Professor Alex Siqueira E L E T R O M AG N E T I S M O Professor Alex Siqueira Equipe de Física UP 2015 DESCOBERTA DOS IMÃS Há muito tempo se observou que certos corpos tem a propriedade de atrair o ferro. Esses corpos foram

Leia mais

3º Bimestre. Física I. Autor: Geraldo Velazquez

3º Bimestre. Física I. Autor: Geraldo Velazquez 3º Bimestre Autor: Geraldo Velazquez SUMÁRIO UNIDADE III... 4 Capítulo 3: Eletromagnetismo... 4 3.1 Introdução... 4 3.2 Campo Magnético (B)... 6 3.3 Campo Magnético Gerado Por Corrente... 7 3.4 Campo

Leia mais

Cap. 6 - Campo Magnético e Força Magnética

Cap. 6 - Campo Magnético e Força Magnética Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 6 - Campo Magnético e Força Magnética Prof. Elvis Soares Nesse capítulo, estudaremos as forças que agem em cargas elétricas

Leia mais

Física: Eletromagnetismo

Física: Eletromagnetismo Física: Eletromagnetismo Questões de treinamento para a banca Cesgranrio elaborada pelo prof. Alex Regis Questão 01 Está(ão) correta(s): Considere as afirmações a seguir a respeito de ímãs. I. Convencionou-se

Leia mais

ɸ E = ΣE.A (5) 14/04/2015. Bacharelado em Engenharia Civil. Física III

ɸ E = ΣE.A (5) 14/04/2015. Bacharelado em Engenharia Civil. Física III Bacharelado em Engenharia Civil Física III Prof a.: M.Sc. Mariana de Faria Gardingo Diniz FLUXO DE CAMPO ELÉTRICO Imagine que as linhas de campo da figura abaixo representem um campo elétrico de cargas

Leia mais

AULA 17.1. Eletromagnetismo: Introdução ao eletromagnetismo.

AULA 17.1. Eletromagnetismo: Introdução ao eletromagnetismo. AULA 17.1 Eletromagnetismo: Introdução ao eletromagnetismo. 1 INTRODUÇÃO AO ELETROMAGNETISMO A palavra magnetismo está relacionada à Magnésia, região da Ásia onde foi encontrada, pela primeira vez, a magnetita,

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3 Linhas de Força Mencionamos na aula passada que o físico inglês Michael Faraday (79-867) introduziu o conceito de linha de força para visualizar a interação elétrica entre duas cargas. Para Faraday, as

Leia mais

Capacitores, correntes contínua e alternada, magnetismo

Capacitores, correntes contínua e alternada, magnetismo É melhor lançar-se à luta em busca do triunfo, mesmo expondo-se ao insucesso, do que ficar na fila dos pobres de espírito, que nem gozam muito nem sofrem muito, por viverem nessa penumbra cinzenta de não

Leia mais

Fundamentos do Eletromagnetismo (FEMZ4)

Fundamentos do Eletromagnetismo (FEMZ4) Fundamentos do Eletromagnetismo (FEMZ4) Aulas (período diurno): 3as-feiras: Três aulas de teoria 5as.-feiras: Duas aulas de laboratório Conteúdo: Campos Magnéticos. Forças Magnéticas. Leis de Maxwell:

Leia mais

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 4

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 4 Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica Módulo 4 Faraday Lenz Henry Weber Maxwell Oersted Conteúdo 4 - Capacitores e Indutores...1 4.1 - Capacitores...1 4.2 - Capacitor

Leia mais

Circuitos Elétricos 1º parte. Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento

Circuitos Elétricos 1º parte. Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento Circuitos Elétricos 1º parte Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento Introdução Um circuito elétrico é constituido de interconexão de vários

Leia mais

Eletromagnetismo: imãs, bobinas e campo magnético

Eletromagnetismo: imãs, bobinas e campo magnético Eletromagnetismo: imãs, bobinas e campo magnético 22 Eletromagnetismo: imãs, bobinas e campo magnético 23 Linhas do campo magnético O mapeamento do campo magnético produzido por um imã, pode ser feito

Leia mais

Lista de Eletromagnetismo. 1 Analise as afirmativas seguintes e marque a opção correta.

Lista de Eletromagnetismo. 1 Analise as afirmativas seguintes e marque a opção correta. Lista de Eletromagnetismo 1 Analise as afirmativas seguintes e marque a opção correta. I. Se duas barras de ferro sempre se atraem, podemos concluir que uma das duas não está magnetizada. II. Para conseguirmos

Leia mais

COLÉGIO NOSSA SENHORA DA PIEDADE. Programa de Recuperação Paralela. 2ª Etapa 2014

COLÉGIO NOSSA SENHORA DA PIEDADE. Programa de Recuperação Paralela. 2ª Etapa 2014 COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Paralela 2ª Etapa 2014 Disciplina: Física Série: 3ª Professor (a): Marcos Vinicius Turma: FG Caro aluno, você está recebendo o conteúdo de recuperação.

Leia mais

RESUMO 2 - FÍSICA III

RESUMO 2 - FÍSICA III RESUMO 2 - FÍSICA III CAMPO ELÉTRICO Assim como a Terra tem um campo gravitacional, uma carga Q também tem um campo que pode influenciar as cargas de prova q nele colocadas. E usando esta analogia, podemos

Leia mais

FONTES DE CAMPO MAGNÉTICO. Caracterizar e mostrar o campo magnético produzido por uma carga a velocidade constante.

FONTES DE CAMPO MAGNÉTICO. Caracterizar e mostrar o campo magnético produzido por uma carga a velocidade constante. FONTES DE CAMPO MAGNÉTICO META Aula 8 Caracterizar e mostrar o campo magnético produzido por uma carga a velocidade constante. Mostrar a lei da circulação de Ampère-Laplace e a lei de Biot-Savart. Estudar

Leia mais

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente:

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente: Rumo ao ITA Física Análise Dimensional Ivan Guilhon Mitoso Rocha A análise dimensional é um assunto básico que estuda as grandezas físicas em geral, com respeito a suas unidades de medida. Como as grandezas

Leia mais

Ondas Eletromagnéticas. E=0, 1 B=0, 2 E= B t, 3 E

Ondas Eletromagnéticas. E=0, 1 B=0, 2 E= B t, 3 E Ondas Eletromagnéticas. (a) Ondas Planas: - Tendo introduzido dinâmica no sistema, podemos nos perguntar se isto converte o campo eletromagnético de Maxwell em uma entidade com existência própria. Em outras

Leia mais

LISTÃO DE MAGNETISMO PARA REVISÃO

LISTÃO DE MAGNETISMO PARA REVISÃO LISTÃO DE MAGNETISMO PARA REVISÃO 1. Favip-PE Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmarque seus pólos magnéticos de mesmo nome (norte

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 4

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 4 Lei de Gauss Considere uma distribuição arbitrária de cargas ou um corpo carregado no espaço. Imagine agora uma superfície fechada qualquer envolvendo essa distribuição ou corpo. A superfície é imaginária,

Leia mais

POTENCIAL ELÉTRICO. por unidade de carga

POTENCIAL ELÉTRICO. por unidade de carga POTENCIAL ELÉTRICO A lei de Newton da Gravitação e a lei de Coulomb da eletrostática são matematicamente idênticas, então os aspectos gerais discutidos para a força gravitacional podem ser aplicadas para

Leia mais

Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores. Prof. Clóvis Antônio Petry.

Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores. Prof. Clóvis Antônio Petry. Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores Campos Magnéticos, Densidade de Fluxo, Permeabilidade e Relutância Prof. Clóvis Antônio Petry. Florianópolis,

Leia mais

Assim como em qualquer problema de engenharia, existem limitações e exigências que você deve cumprir. Aqui estão as diretrizes.

Assim como em qualquer problema de engenharia, existem limitações e exigências que você deve cumprir. Aqui estão as diretrizes. Science Lab Desafio de Engenharia: Construindo um Eletroímã Este Desafio de Engenharia do SEED é para construir o melhor eletroímã que você puder. Seu eletroímã será avaliado pelo peso que ele pode levantar,

Leia mais

LEI DE OHM LEI DE OHM. Se quisermos calcular o valor da resistência, basta dividir a tensão pela corrente.

LEI DE OHM LEI DE OHM. Se quisermos calcular o valor da resistência, basta dividir a tensão pela corrente. 1 LEI DE OHM A LEI DE OHM é baseada em três grandezas, já vistas anteriormente: a Tensão, a corrente e a resistência. Com o auxílio dessa lei, pode-se calcular o valor de uma dessas grandezas, desde que

Leia mais

Física II Curso Licenciatura em Química Selma Rozane 2015.2

Física II Curso Licenciatura em Química Selma Rozane 2015.2 Física II Curso Licenciatura em Química Selma Rozane 2015.2 INTRODUÇÃO A palavra magnetismo tem sua origem na Grécia Antiga, porque foi em Magnésia, região da Ásia Menor (Turquia), que se observou um minério

Leia mais

A busca constantes da qualidade e a preocupação com o atendimento ao cliente estão presentes nas ações do SENAI.

A busca constantes da qualidade e a preocupação com o atendimento ao cliente estão presentes nas ações do SENAI. Sumário Introdução 5 Magnetismo 6 Magnetismo natural - ímãs 6 Ímãs artificiais 6 Pólos magnéticos de um ímã 7 Origem do magnetismo 8 Inseparabilidade dos pólos 10 Interação entre ímãs 10 Campo magnético

Leia mais

EXPERIMENTO 11: DEMONSTRAÇÕES SOBRE ELETROMAGNETISMO. Observar, descrever e explicar algumas demonstrações de eletromagnetismo.

EXPERIMENTO 11: DEMONSTRAÇÕES SOBRE ELETROMAGNETISMO. Observar, descrever e explicar algumas demonstrações de eletromagnetismo. EXPERIMENTO 11: DEMONSTRAÇÕES SOBRE ELETROMAGNETISMO 11.1 OBJETIVOS Observar, descrever e explicar algumas demonstrações de eletromagnetismo. 11.2 INTRODUÇÃO Força de Lorentz Do ponto de vista formal,

Leia mais

Capacitância. 4.1 Capacitores e Capacitância. 4.1.1 Capacitor de Placas Paralelas

Capacitância. 4.1 Capacitores e Capacitância. 4.1.1 Capacitor de Placas Paralelas Capítulo 4 Capacitância 4.1 Capacitores e Capacitância O capacitor é um aparelho eletrônico usado para armazenar energia elétrica. Consiste de dois condutores com um isolante entre eles. Os condutores

Leia mais

Lei dos transformadores e seu princípio de funcionamento

Lei dos transformadores e seu princípio de funcionamento Lei dos transformadores e seu princípio de funcionamento Os transformadores operam segundo a lei de Faraday ou primeira lei do eletromagnetismo. Primeira lei do eletromagnetismo Uma corrente elétrica é

Leia mais

O que você deve saber sobre

O que você deve saber sobre O que você deve saber sobre Além de resistores, os circuitos elétricos apresentam dispositivos para gerar energia potencial elétrica a partir de outros componentes (geradores), armazenar cargas, interromper

Leia mais

Capítulo 4 Trabalho e Energia

Capítulo 4 Trabalho e Energia Capítulo 4 Trabalho e Energia Este tema é, sem dúvidas, um dos mais importantes na Física. Na realidade, nos estudos mais avançados da Física, todo ou quase todos os problemas podem ser resolvidos através

Leia mais

FÍSICA 3 Campo Magnético. Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba

FÍSICA 3 Campo Magnético. Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba FÍSICA 3 Campo Magnético Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba EMENTA Carga Elétrica Campo Elétrico Lei de Gauss Potencial Elétrico Capacitância Corrente e resistência Circuitos Elétricos

Leia mais

Sexta Lista - Fontes de Campo Magnético

Sexta Lista - Fontes de Campo Magnético Sexta Lista - Fontes de Campo Magnético FGE211 - Física III Sumário A Lei de Biot-Savart afirma que o campo magnético d B em um certo ponto devido a um elemento de comprimento d l que carrega consigo uma

Leia mais

CAMPO MAGNÉTICO. Definição de B

CAMPO MAGNÉTICO. Definição de B Em 1822, durante uma aula experimental, o professor de física dinamarquês Hans Christian Oersted descobriu que uma corrente elétrica passando por um fio deslocava a agulha de uma bússola que estava por

Leia mais

Experimento 3 # Professor: Data: / / Nome: RA:

Experimento 3 # Professor: Data: / / Nome: RA: BC-0209 Fenômenos Eletromagnéticos Experimento 3 # Campo Magnético de Correntes Elétricas Professor: Data: / / Introdução e Objetivos Relatos históricos indicam que a bússola já era um instrumento utilizado

Leia mais

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Magnetismo

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Magnetismo Lista de Exercícios Pré Universitário Uni-Anhanguera Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Magnetismo 01 - (PUC SP) Na figura abaixo temos a representação de dois

Leia mais

Indutores. Prof a. Michelle Mendes Santos michelle.mendes@ifmg.edu.br

Indutores. Prof a. Michelle Mendes Santos michelle.mendes@ifmg.edu.br Indutores Prof a. Michelle Mendes Santos michelle.mendes@ifmg.edu.br Indutores Consistem de um condutor enrolado com N voltas (espiras) na forma de um solenóide, ou de um tiróide. Podem conter ou não um

Leia mais

N S. Técnico de Refrigeração e Climatização. Magnetismo TÉCNICO DE REFRIGERAÇÃO E CLIMATIZAÇÃO. Magnetismo. Magnetismo. Magnetismo. Magnetismo.

N S. Técnico de Refrigeração e Climatização. Magnetismo TÉCNICO DE REFRIGERAÇÃO E CLIMATIZAÇÃO. Magnetismo. Magnetismo. Magnetismo. Magnetismo. Imanes TÉCICO DE REFRIGERAÇÃO E CLIMATIZAÇÃO UFCD 1290 Eletricidade e eletrónica eletromagnetismo e circuitos de comando eletromagnético Ímanes naturais: Magnetite Ímanes artificiais: são constituídos

Leia mais

Eletricidade Aula 1. Profª Heloise Assis Fazzolari

Eletricidade Aula 1. Profª Heloise Assis Fazzolari Eletricidade Aula 1 Profª Heloise Assis Fazzolari História da Eletricidade Vídeo 2 A eletricidade estática foi descoberta em 600 A.C. com Tales de Mileto através de alguns materiais que eram atraídos entre

Leia mais

Campos. Exemplos de campos: - Campo de temperaturas (térmico) - Campo de pressões - Campo gravitacional - Campo elétrico

Campos. Exemplos de campos: - Campo de temperaturas (térmico) - Campo de pressões - Campo gravitacional - Campo elétrico Campos Podemos definir campo, de forma genérica, como sendo uma região do espaço caracterizada por um conjunto de valores de uma grandeza física que dependem apenas de coordenadas que utilizem uma determinada

Leia mais

Universidade Federal do Pampa - UNIPAMPA Prova Escrita de Física III A Professor: Jorge Pedraza Arpasi, SALA 325 - UNIPAMPA Alegrete

Universidade Federal do Pampa - UNIPAMPA Prova Escrita de Física III A Professor: Jorge Pedraza Arpasi, SALA 325 - UNIPAMPA Alegrete Universidade Federal do Pampa - UNIPAMPA Prova Escrita de Física III A Professor: Jorge Pedraza Arpasi, SALA 325 - UNIPAMPA Alegrete Nome: 1 Algumas instruções Na primeira questão marque com caneta com

Leia mais

Analise as seguintes afirmações sobre ímãs e suas propriedades magnéticas.

Analise as seguintes afirmações sobre ímãs e suas propriedades magnéticas. Imãs 1. (G1 - ifsp 2013) Um professor de Física mostra aos seus alunos 3 barras de metal AB, CD e EF que podem ou não estar magnetizadas. Com elas faz três experiências que consistem em aproximá-las e

Leia mais

GLOSSÁRIO MÁQUINAS ELÉTRICAS

GLOSSÁRIO MÁQUINAS ELÉTRICAS GLOSSÁRIO MÁQUINAS ELÉTRICAS Motor Elétrico: É um tipo de máquina elétrica que converte energia elétrica em energia mecânica quando um grupo de bobinas que conduz corrente é obrigado a girar por um campo

Leia mais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais LEI DE OHM Conceitos fundamentais Ao adquirir energia cinética suficiente, um elétron se transforma em um elétron livre e se desloca até colidir com um átomo. Com a colisão, ele perde parte ou toda energia

Leia mais

Resistência elétrica

Resistência elétrica Resistência elétrica 1 7.1. Quando uma corrente percorre um receptor elétrico (um fio metálico, uma válvula, motor, por exemplo), há transformação de ia elétrica em outras formas de energia. O receptor

Leia mais

ELETROSTÁTICA. Ramo da Física que estuda as cargas elétricas em repouso. www.ideiasnacaixa.com

ELETROSTÁTICA. Ramo da Física que estuda as cargas elétricas em repouso. www.ideiasnacaixa.com ELETROSTÁTICA Ramo da Física que estuda as cargas elétricas em repouso. www.ideiasnacaixa.com Quantidade de carga elétrica Q = n. e Q = quantidade de carga elétrica n = nº de elétrons ou de prótons e =

Leia mais

Faculdade de Administração e Negócios de Sergipe

Faculdade de Administração e Negócios de Sergipe Faculdade de Administração e Negócios de Sergipe Disciplina: Física Geral e Experimental III Curso: Engenharia de Produção Assunto: Gravitação Prof. Dr. Marcos A. P. Chagas 1. Introdução Na gravitação

Leia mais

Eletricidade e Magnetismo - Lista de Exercícios IV CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA

Eletricidade e Magnetismo - Lista de Exercícios IV CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Eletricidade e Magnetismo - Lista de Exercícios IV CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Campo Magnético (Fundamentos de Física Vol.3 Halliday, Resnick e Walker, Cap.

Leia mais

LENTES E ESPELHOS. O tipo e a posição da imagem de um objeto, formada por um espelho esférico de pequena abertura, é determinada pela equação

LENTES E ESPELHOS. O tipo e a posição da imagem de um objeto, formada por um espelho esférico de pequena abertura, é determinada pela equação LENTES E ESPELHOS INTRODUÇÃO A luz é uma onda eletromagnética e interage com a matéria por meio de seus campos elétrico e magnético. Nessa interação, podem ocorrer alterações na velocidade, na direção

Leia mais

Um pouco de história. Um pouco de história. Um pouco de história. Um pouco de história CORPOS ELETRIZADOS E NEUTROS CARGA ELÉTRICA

Um pouco de história. Um pouco de história. Um pouco de história. Um pouco de história CORPOS ELETRIZADOS E NEUTROS CARGA ELÉTRICA Um pouco de história O conhecimento de eletricidade data de antes de Cristo ~ 600 a.c. Ambar, quando atritado, armazena eletricidade William Gilbert em 1600 conseguiu eletrizar muitas substâncias diferentes

Leia mais

Máquinas Eléctricas Instalações Eléctricas e Automação Industrial Instituto Politécnico de Tomar Carlos Ferreira Princípios básicos das máquinas eléctricas 1 Equações de Maxwell: As Equações de Maxwell

Leia mais

REVISÃO ENEM. Prof. Heveraldo

REVISÃO ENEM. Prof. Heveraldo REVISÃO ENEM Prof. Heveraldo Fenômenos Elétricos e Magnéticos Carga elétrica e corrente elétrica. Lei de Coulomb. Campo elétrico e potencial elétrico. Linhas de campo. Superfícies equipotenciais. Poder

Leia mais

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Aula 03: Movimento em um Plano Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Caro aluno, olá! Neste tópico, você vai aprender sobre um tipo particular de movimento plano, o movimento circular

Leia mais

2. Um pedaço de ferro é posto nas proximidades de um ímã, conforme a figura abaixo.

2. Um pedaço de ferro é posto nas proximidades de um ímã, conforme a figura abaixo. Magnetismo 1. Um feixe constituído de três espécies de partículas, A eletrizada positivamente, B eletrizada negativamente e C neutra, é lançado de um ponto O de um campo magnético uniforme de indução B

Leia mais

RECUPERAÇÃO TURMAS: 2º ANO FÍSICA

RECUPERAÇÃO TURMAS: 2º ANO FÍSICA RECUPERAÇÃO TURMAS: 2º ANO Professor: XERXES DATA: 22 / 11 / 2015 RECUPERAÇÃO FINAL FORÇA ELÉTRICA (LEI DE COULOMB) FÍSICA Para todas as questões, considere a constante eletrostática no vácuo igual a 9.10

Leia mais

Capítulo 04. Geradores Elétricos. 1. Definição. 2. Força Eletromotriz (fem) de um Gerador. 3. Resistência interna do gerador

Capítulo 04. Geradores Elétricos. 1. Definição. 2. Força Eletromotriz (fem) de um Gerador. 3. Resistência interna do gerador 1. Definição Denominamos gerador elétrico todo dispositivo capaz de transformar energia não elétrica em energia elétrica. 2. Força Eletromotriz (fem) de um Gerador Para os geradores usuais, a potência

Leia mais

Campo Magnético de Espiras e a Lei de Faraday

Campo Magnético de Espiras e a Lei de Faraday Campo Magnético de Espiras e a Lei de Faraday Semestre I - 005/006 1.Objectivos 1) Estudo do campo magnético de espiras percorridas por corrente eléctrica. ) Estudo da lei de indução de Faraday.. Introdução

Leia mais

CONHECIMENTOS TÉCNICOS DE AERONAVES

CONHECIMENTOS TÉCNICOS DE AERONAVES CONHECIMENTOS TÉCNICOS DE AERONAVES MÓDULO 2 Aula 4 Professor: Ricardo Rizzo MAGNETISMO É uma propriedade muito conhecida dos imãs, de atrair o ferro. Um imã possui dois pólos magnéticos denominados norte

Leia mais

Antena Escrito por André

Antena Escrito por André Antena Escrito por André Antenas A antena é um dispositivo passivo que emite ou recebe energia eletromagnéticas irradiada. Em comunicações radioelétricas é um dispositivo fundamental. Alcance de uma Antena

Leia mais

Introdução à Eletricidade e Lei de Coulomb

Introdução à Eletricidade e Lei de Coulomb Introdução à Eletricidade e Lei de Coulomb Introdução à Eletricidade Eletricidade é uma palavra derivada do grego élektron, que significa âmbar. Resina vegetal fossilizada Ao ser atritado com um pedaço

Leia mais

Lista de Exercícios Física 2 - Prof. Mãozinha Tarefa 15 Eletromagnetismo. Resumo de fórmulas. Fórmulas para cargas elétricas

Lista de Exercícios Física 2 - Prof. Mãozinha Tarefa 15 Eletromagnetismo. Resumo de fórmulas. Fórmulas para cargas elétricas Resumo de fórmulas Força magnética em uma carga elétrica em movimento F = q. v. B. senθ Fórmulas para cargas elétricas Raio de uma trajetória circular gerada por uma partícula em um campo magnético R =

Leia mais

Indução Eletromagnética

Indução Eletromagnética BC-009 Fenômenos Eletromagnéticos Experimento 4 # Indução Eletromagnética Professor: Data: / / Introdução e Objetivos No experimento 3, analisamos o campo magnético gerado por correntes elétricas. Observamos

Leia mais

Problemas de eletricidade

Problemas de eletricidade Problemas de eletricidade 1 - Um corpo condutor está eletrizado positivamente. Podemos afirmar que: a) o número de elétrons é igual ao número de prótons. b) o número de elétrons é maior que o número de

Leia mais

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de?

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de? Física 01. Um fio metálico e cilíndrico é percorrido por uma corrente elétrica constante de. Considere o módulo da carga do elétron igual a. Expressando a ordem de grandeza do número de elétrons de condução

Leia mais

HISTORIA DA ELETRICIDADE

HISTORIA DA ELETRICIDADE 1 HISTORIA DA ELETRICIDADE RESUMO OS PRIMEIROS PASSOS Grécia Antiga - Tales descobre as propriedades do âmbar. Ásia Menor descobre-se as propriedades de um pedaço de rocha atrair pequenos pedaços de ferro

Leia mais

Geradores elétricos GERADOR. Energia dissipada. Símbolo de um gerador

Geradores elétricos GERADOR. Energia dissipada. Símbolo de um gerador Geradores elétricos Geradores elétricos são dispositivos que convertem um tipo de energia qualquer em energia elétrica. Eles têm como função básica aumentar a energia potencial das cargas que os atravessam

Leia mais

Disciplina : Termodinâmica. Aula 5 ANÁLISE DA MASSA E ENERGIA APLICADAS A VOLUMES DE CONTROLE

Disciplina : Termodinâmica. Aula 5 ANÁLISE DA MASSA E ENERGIA APLICADAS A VOLUMES DE CONTROLE Curso: Engenharia Mecânica Disciplina : Aula 5 ANÁLISE DA MASSA E ENERGIA APLICADAS A VOLUMES DE CONTROLE Prof. Evandro Rodrigo Dário, Dr. Eng. Vazão mássica e vazão volumétrica A quantidade de massa que

Leia mais

CAMPOS MAGNÉTICOS PRODUZIDOS POR CORRENTES

CAMPOS MAGNÉTICOS PRODUZIDOS POR CORRENTES Física (Eletromagnetismo) 1. Lei de iot-savart CAMPOS MAGNÉTICOS PRODUZIDOS POR CORRENTES A lei de iot-savart é uma lei no eletromagnetismo que descreve o vetor indução magnética em termos de magnitude

Leia mais

Sobriedade e objetividade nessa caminhada final e que a chegada seja recheado de SUCESSO! Vasco Vasconcelos

Sobriedade e objetividade nessa caminhada final e que a chegada seja recheado de SUCESSO! Vasco Vasconcelos Prezado aluno, com o intuito de otimizar seus estudos para a 2ª fase do Vestibular da UECE, separamos as questões, por ano, por assunto e com suas respectivas resoluções! Vele a pena dar uma lida e verificar

Leia mais

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS JOINILLE APOSTILA DE ELETROMAGNETISMO PROF. ANA BARBARA

Leia mais

AS LEIS DE NEWTON PROFESSOR ANDERSON VIEIRA

AS LEIS DE NEWTON PROFESSOR ANDERSON VIEIRA CAPÍTULO 1 AS LEIS DE NEWTON PROFESSOR ANDERSON VIEIRA Talvez o conceito físico mais intuitivo que carregamos conosco, seja a noção do que é uma força. Muito embora, formalmente, seja algo bastante complicado

Leia mais

Potencial Elétrico. e dividindo-se pela carga de prova q 0 temos o campo elétrico E:

Potencial Elétrico. e dividindo-se pela carga de prova q 0 temos o campo elétrico E: Potencial Elétrico Quando estudamos campo elétrico nas aulas passadas, vimos que ele pode ser definido em termos da força elétrica F que uma carga q exerce sobre uma carga de prova q 0. Essa força é, pela

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÁS. DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof.

UNIVERSIDADE CATÓLICA DE GOIÁS. DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof. 01 UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof. EDSON VAZ NOTA DE AULA III (Capítulo 7 e 8) CAPÍTULO 7 ENERGIA CINÉTICA

Leia mais

Eletrodinâmica. Circuito Elétrico

Eletrodinâmica. Circuito Elétrico Eletrodinâmica Circuito Elétrico Para entendermos o funcionamento dos aparelhos elétricos, é necessário investigar as cargas elétricas em movimento ordenado, que percorrem os circuitos elétricos. Eletrodinâmica

Leia mais

CAPACITORES. Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br

CAPACITORES. Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br CAPACITORES DEFINIÇÕES Quando as placas do capacitor estão carregadas com cargas iguais e de sinais diferentes, estabelece-se entre as placas uma diferença de potencial V que é proporcional à carga. Q

Leia mais

PARADOXO DA REALIZAÇÃO DE TRABALHO PELA FORÇA MAGNÉTICA

PARADOXO DA REALIZAÇÃO DE TRABALHO PELA FORÇA MAGNÉTICA PARADOXO DA REALIZAÇÃO DE TRABALHO PELA FORÇA MAGNÉTICA Marcelo da S. VIEIRA 1, Elder Eldervitch C. de OLIVEIRA 2, Pedro Carlos de Assis JÚNIOR 3,Christianne Vitor da SILVA 4, Félix Miguel de Oliveira

Leia mais

Comunicações. Microfone e Altifalante - Resumindo

Comunicações. Microfone e Altifalante - Resumindo Comunicações { Microfone e Altifalante - Resumindo Microfone Finalidades Altifalante { Instalam-se nos circuitos elétricos para: Microfone transforma vibração mecânica em corrente elétrica alternada de

Leia mais