Princípios de Bioestatística

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Princípios de Bioestatística"

Transcrição

1 Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Princípios de Bioestatística Aula 5 Introdução à Probabilidade

2 Nosso dia-a-dia está cheio de incertezas Vai chover amanhã? Quanto tempo levarei de casa até a universidade? Em quanto tempo serei atendido se eu pegar a fila única? E se eu pegar as filas separadas?

3 Na área científico-investigativa, não é diferente. Se fizermos uma intervenção X, quantos casos da doença eliminaremos na área 1? Quantos bebês dos próximos 10 recém-nascidos precisarão de cuidados na UTI neo-natal? Qual será o tamanho da ninhada de uma fêmea felina da raça siamesa? Se nascerem 6 gatinhos, quantos vão sobreviver?

4 Lidando com a incerteza Uma das maneiras de lidar com a incerteza acerca de um evento é expressá-la em números. Ou seja, quantificando a incerteza.

5 Probabilidades: quantificando a incerteza Probabilidade é uma medida da incerteza acerca de um evento. Esta medida é um número que vai de 0 a 1. Quanto maior a probabilidade de evento, menor a incerteza acerca dele.

6 Segundo o centro de meteorologia, a probabilidade de chover amanhã é de A probabilidade de gastar mais de 20 minutos de casa até o trabalho é de A probabilidade de esperar menos de 2 minutos na fila única é de Na fila separada, esta probabilidade é de 0.40.

7 Conceitos Básicos Experimento aleatório é aquele no qual os resultados possíveis são conhecidos antes da realização do experimento, mas só saberemos qual deles irá ocorrer quando ele for realizado. EXEMPLOS: Experimento aleatório 1: retirar uma carta de um baralho de 52 cartas e verificar sua cor. Resultados possíveis: {vermelha, preta} Experimento aleatório 2: jogar um dado e observar a face de cima. Resultados possíveis: {1,2,3,4,5,6} Experimento aleatório 3: sortear uma mulher na cidade e verificar quantos filhos ela tem. Resultados possíveis: {0,1,2,3,4...}

8 Espaço Amostral (E) é o conjunto de resultados possíveis para o experimento aleatório. EXEMPLOS: Para o experimento aleatório 1: retirar uma carta de um baralho de 52 cartas e verificar sua cor. Espaço amostral E 1 = {vermelha, preta} Para o experimento aleatório 2: jogar um dado e observar a face de cima. Espaço amostral E 2 ={1,2,3,4,5,6} Para o experimento aleatório 3: sortear uma mulher na cidade e verificar quantos filhos ela tem. Espaço amostral E 3 ={0,1,2,3,4...}

9 Evento é qualquer subconjunto do espaço amostral de um experimento aleatório. Exemplos: do espaço amostral E 1, A = {preta}; do espaço amostral E 2, B = {2,4,6}. A é um Evento Simples (somente um elemento do espaço amostral). A Evento Complementar ( ): o complementar de um evento A é formado pelos elementos do espaço amostral que não fazem parte do evento A. Exemplo: se o espaço amostral é E = {1,2,3,4,5,6} e o evento B = {2,4,6}, então = {1,3,5}. B

10 Evento vazio ( ) é evento que não contém nenhum elemento do espaço amostral. Exemplo: no experimento aleatório 1, o evento B: carta verde é um evento vazio, B =. AUB AIB Evento União ( ): Evento Interseção ( ): o evento A união B é o evento A interseção B formado pelos elementos é formado pelos elementos que estão em A ou em B. que estão em A e em B.

11 Exemplo: No E = {1,2,3,4,5,6}, sejam os eventos A sair um número par na jogada de um dado, A = { 2, 4, 6} e B sair um número menor do que 4 na jogada de um dado, B = {1, 2, 3}. O evento união é formado por (AU B) O evento interseção é formado por (AI B) = {1, 2, 3, 4, 6}. = { 2 }.

12 Eventos Mutuamente Exclusivos ou Disjuntos: dois eventos A e B são mutuamente exclusivos quando AI B= B A E Exemplo : Seja o experimento aleatório retirar uma carta de um baralho de 52 cartas. A : sair uma carta vermelha, A = {vermelha} e B : sair uma carta de espadas, B = {espadas}. O evento interseção (AI B)=

13 Definição Clássica para Probabilidade Quando TODOS os elementos do espaço amostral têm a mesma probabilidade de ocorrer, a definição clássica da probabilidade de um evento A ocorrer é dada por P( A ) = número de elementos do evento A total de elementos do espaço amostral Exemplo: Jogar um dado e observar a face de cima. Se o dado for honesto, todas as seis faces têm a mesma probabilidade de saírem para cima. Assim, a probabilidade do evento F o número é par, F = {2,4,6}, é dada por P(F)=3/6=0.5.

14 Experimento aleatório: retirar uma carta de um baralho de 52 cartas e verificar sua cor, naipe ou número E= { A J Q K A J Q K A J Q K A J Q K } espadas paus copas ouros A = carta preta P(A) = 26/52 = 1/2 B= carta com letra P(B) = 16/52 = 4/13 C = carta de copas P(C) = 13/52 = 1/4 D = carta de ouros preta P(D) = 0/52 = 0

15 Propriedades da Probabilidade Probabilidade da União de Dois Eventos P(AU B) = P(A) + P (B) - P (A I B)

16 Probabilidade Condicional Probabilidade Condional de A dado B: é a probabilidade do evento A ocorrer, sabendo-se que o evento B ocorreu: P( A B) = P( A B) P( B) Exemplo: no experimento aleatório jogar um dado e observar a face de cima. E = {1,2,3,4,5,6}. Sejam os eventos: A={2,3}, B = {2,4,5,6} e A B = {2} P(A) = 2/6 = 1/3 P(A B) = 2/6 = 1/4 P(A B) = (1/6)/(4/6) = 1/4

17 Probabilidade Condicional Quando os elementos do espaço amostral são equiprováveis, podemos enxergar a probabilidade condicional como uma redução do espaço amostral inicial. Exemplo: o experimento aleatório jogar um dado e observar a face de cima. Espaço amostral inicial E = {1,2,3,4,5,6} Se F = {2,4,6} ocorre, então o espaço amostral inicial E={1,2,3,4,5,6} é reduzido para {2,4,6} P( B F) = 1 3

18 Independência de Eventos Se a ocorrência de B não altera a probabilidade de ocorrência de A, os eventos A e B são independentes. Ou seja, se P( A B) = P( A) os eventos A e B são independentes.

19 Independência de Eventos Se A e B são independentes, isto significa que P( A B) = P( B) P( A) P( A B) = P( A B ) P( B) ind = P ( A ) P ( A B ) = P ( A ) P ( B ) ind

20 Experimento aleatório: retirar uma carta de um baralho de 52 cartas e verificar sua cor, naipe ou número E= {A J Q K A J Q K A J Q K A A J J Q Q K } A = carta preta P(A) = 26/52 = 1/2 B= carta com letra P(B) = 16/52 = 4/13 A e B são eventos independentes? P(B A) = 8/26 = 4/13 = P(B). SIM Interseção A e B : P(A B) = 8/52 = 2/13

21 Experimento aleatório: jogar um dado e olhar a face de cima E= { } A = número 4 P(A) = 1/6 B= número ímpar P(B) = 3/6 = 1/2 A B = número ímpar igual a 4 P(A B) = 0/6 = 0 A e B são eventos independentes? P(B A) = P(A B)/P(A) = 0/(1/6) = 0 P(B). NÃO

22 Definição Frequentista da Probabilidade A probabilidade de um evento deve ser estimada atráves da frequência da ocorrência do evento na repetição do experimento um grande número de vezes.

23 Definição Frequentista da Probabilidade Exemplo: Qual é a probabilidade de que uma pessoa seja portadora da bactéria H. pylori? Experimento aleatório : selecionar uma pessoa do grupo de interesse e verificar um dos resultados possíveis: E = {portadora, não-portadora}. P( portadora) P( não portadora) A probabilidade de ser portadora deve ser estimada com a utilização de uma grande amostra de pessoas do grupo de interesse.

24 Definição Frequentista da Probabilidade Exemplo: Qual é a probabilidade de que uma pessoa seja portadora da bactéria H. pylori? # de pessoas portadoras na amostra Pˆ( portadora ) = tamanho da amostra O valor de P ˆ( portadora ) é uma estimativa de P( portadora)

25 Cálculo de Probabilidades em tabelas de classificação cruzada Grupo Sangüíneo Tromboembolismo Doente Sadia Total A B AB O Total P( doente ) = = P( sadia) = 1 P( doente) 200 = = P( A ) = = P( A doente) = =

26 Cálculo de Probabilidades em tabelas de classificação cruzada Grupo Sangüíneo Tromboembolismo Doente Sadia Total A B AB O Total P( A doente) = = P( doente A ) = = Os eventos ser doente e pertencer ao grupo sanguíneo A podem ser considerados independentes? NÃO P( doente ) = P( doente A) P( doente)

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e):

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Adição de probabilidades O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Dois eventos A e B são ditos mutuamente exclusivos se, e somente se, A B

Leia mais

DEPARTAMENTO DE MATEMÁTICA

DEPARTAMENTO DE MATEMÁTICA FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhanguene, Av. de Moçambique, km 1, Tel: +258 21401078, Fax: +258 21401082, Maputo Cursos de Licenciatura em Ensino de Matemática

Leia mais

Técnicas de Contagem I II III IV V VI

Técnicas de Contagem I II III IV V VI Técnicas de Contagem Exemplo Para a Copa do Mundo 24 países são divididos em seis grupos, com 4 países cada um. Supondo que a escolha do grupo de cada país é feita ao acaso, calcular a probabilidade de

Leia mais

RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS

RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS CENTRO UNIVERSITÁRIO FRANCISCANO Curso de Administração Disciplina: Estatística I Professora: Stefane L. Gaffuri RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS Sessão 1 Experimentos Aleatórios e

Leia mais

Caique Tavares. Probabilidade Parte 1

Caique Tavares. Probabilidade Parte 1 Caique Tavares Probabilidade Parte 1 Probabilidade: A teoria das probabilidades é um ramo da Matemática que cria, elabora e pesquisa modelos para estudar experimentos ou fenômenos aleatórios. Principais

Leia mais

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Dois ou mais eventos são mutuamente exclusivos, ou disjuntos, se os mesmos não podem ocorrer simultaneamente. Isto é, a ocorrência de um

Leia mais

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado.

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado. PROBABILIDADE Espaço amostral Espaço amostral é o conjunto universo U de todos os resultados possíveis de um experimento aleatório. O número de elementos desse conjunto é indicado por n(u). Exemplos: No

Leia mais

Probabilidade. Evento (E) é o acontecimento que deve ser analisado.

Probabilidade. Evento (E) é o acontecimento que deve ser analisado. Probabilidade Definição: Probabilidade é uma razão(divisão) entre a quantidade de eventos e a quantidade de amostras. Amostra ou espaço amostral é o conjunto formado por todos os elementos que estão incluídos

Leia mais

A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento.

A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento. Probabilidade A probabilidade estuda o risco e a ocorrência de eventos futuros determinando se existe condição de acontecimento ou não. O olhar da probabilidade iniciou-se em jogos de azar (dados, moedas,

Leia mais

Probabilidade. Luiz Carlos Terra

Probabilidade. Luiz Carlos Terra Luiz Carlos Terra Nesta aula, você conhecerá os conceitos básicos de probabilidade que é a base de toda inferência estatística, ou seja, a estimativa de parâmetros populacionais com base em dados amostrais.

Leia mais

Aula de Exercícios - Teorema de Bayes

Aula de Exercícios - Teorema de Bayes Aula de Exercícios - Teorema de Bayes Organização: Rafael Tovar Digitação: Guilherme Ludwig Primeiro Exemplo - Estagiários Três pessoas serão selecionadas aleatóriamente de um grupo de dez estagiários

Leia mais

1- INTRODUÇÃO 2. CONCEITOS BÁSICOS

1- INTRODUÇÃO 2. CONCEITOS BÁSICOS 1 1- INTRODUÇÃO O termo probabilidade é usado de modo muito amplo na conversação diária para sugerir um certo grau de incerteza sobre o que ocorreu no passado, o que ocorrerá no futuro ou o que está ocorrendo

Leia mais

Conceitos Básicos de Probabilidade

Conceitos Básicos de Probabilidade Conceitos Básicos de Probabilidade Como identificar o espaço amostral de um experimento. Como distinguir as probabilidades Como identificar e usar as propriedades da probabilidade Motivação Uma empresa

Leia mais

Estatística e Probabilidade. Aula 5 Cap 03 Probabilidade

Estatística e Probabilidade. Aula 5 Cap 03 Probabilidade Estatística e Probabilidade Aula 5 Cap 03 Probabilidade Na aula anterior vimos... Conceito de Probabilidade Experimento Probabilístico Tipos de Probabilidade Espaço amostral Propriedades da Probabilidade

Leia mais

Introdução aos Processos Estocásticos - Independência

Introdução aos Processos Estocásticos - Independência Introdução aos Processos Estocásticos - Independência Eduardo M. A. M. Mendes DELT - UFMG Programa de Pós-Graduação em Engenharia Elétrica Universidade Federal de Minas Gerais emmendes@cpdee.ufmg.br Eduardo

Leia mais

Coordenadoria de Matemática. Apostila de Probabilidade

Coordenadoria de Matemática. Apostila de Probabilidade Coordenadoria de Matemática Apostila de Probabilidade Vitória ES 1. INTRODUÇÃO CAPÍTULO 03 Quando investigamos algum fenômeno, verificamos a necessidade de descrevê-lo por um modelo matemático que permite

Leia mais

PROBABILIDADE: DIAGRAMAS DE ÁRVORES

PROBABILIDADE: DIAGRAMAS DE ÁRVORES PROBABILIDADE: DIAGRAMAS DE ÁRVORES Enunciados dos problemas Ana Maria Lima de Farias Departamento de Estatística (GET/UFF) 1. Na gincana anual do Colégio Universitário, 60% dos alunos presentes são do

Leia mais

Ficha Prática 5: Cap 3.Princípios Elementares de Contagem

Ficha Prática 5: Cap 3.Princípios Elementares de Contagem Matemática Discreta - 2010/11 Cursos: Engenharia Informática, Informática de Gestão DEPARTAMENTO de MATEMÁTICA ESCOLA SUPERIOR de TECNOLOGIA e de GESTÃO - INSTITUTO POLITÉCNICO de BRAGANÇA Ficha Prática

Leia mais

PRINCÍPIOS DA MULTIPLICAÇÃO, DA ADIÇÃO E DA INCLUSÃO-

PRINCÍPIOS DA MULTIPLICAÇÃO, DA ADIÇÃO E DA INCLUSÃO- Matemática Discreta 2009.10 Exercícios CAP2 pg 1 PRINCÍPIOS DA MULTIPLICAÇÃO, DA ADIÇÃO E DA INCLUSÃO- EXCLUSÃO 1. Quantas sequências com 5 letras podem ser escritas usando as letras A,B,C? 2. Quantos

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Introdução a Probabilidade Existem dois tipos

Leia mais

UM JOGO BINOMIAL 1. INTRODUÇÃO

UM JOGO BINOMIAL 1. INTRODUÇÃO 1. INTRODUÇÃO UM JOGO BINOMIAL São muitos os casos de aplicação, no cotidiano de cada um de nós, dos conceitos de probabilidade. Afinal, o mundo é probabilístico, não determinístico; a natureza acontece

Leia mais

Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica

Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica Unidade 11 - Probabilidade Probabilidade Empírica Probabilidade Teórica Probabilidade Empírica Existem probabilidade que são baseadas apenas uma experiência de fatos, sem necessariamente apresentar uma

Leia mais

Raciocínio Lógico 1 Probabilidade

Raciocínio Lógico 1 Probabilidade PROBABILIDADE 1. CONCEITOS INICIAIS A Teoria da Probabilidade faz uso de uma nomenclatura própria, de modo que há três conceitos fundamentais que temos que passar imediatamente a conhecer: Experimento

Leia mais

Distribuição Normal de Probabilidade

Distribuição Normal de Probabilidade Distribuição Normal de Probabilidade 1 Aspectos Gerais 2 A Distribuição Normal Padronizada 3 Determinação de Probabilidades 4 Cálculo de Valores 5 Teorema Central do Limite 1 1 Aspectos Gerais Variável

Leia mais

NOÇÕES DE PROBABILIDADE

NOÇÕES DE PROBABILIDADE NOÇÕES DE PROBABILIDADE Fenômeno Aleatório: situação ou acontecimento cujos resultados não podem ser determinados com certeza. Exemplos: 1. Resultado do lançamento de um dado;. Hábito de fumar de um estudante

Leia mais

Avaliação e Desempenho Aula 1 - Simulação

Avaliação e Desempenho Aula 1 - Simulação Avaliação e Desempenho Aula 1 - Simulação Introdução à simulação Geração de números aleatórios Lei dos grandes números Geração de variáveis aleatórias O Ciclo de Modelagem Sistema real Criação do Modelo

Leia mais

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADES 1 1. VARIÁVEIS ALEATÓRIAS Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações

Leia mais

Professor Mauricio Lutz PROBABILIDADE

Professor Mauricio Lutz PROBABILIDADE PROBABILIDADE Todas as vezes que se estudam fenômenos de observação, cumpre-se distinguir o próprio fenômeno e o modelo matemático (determinístico ou probabilístico) que melhor o explique. Os fenômenos

Leia mais

Espaços Amostrais e Eventos. Probabilidade 2.1. Capítulo 2. Espaço Amostral. Espaço Amostral 02/04/2012. Ex. Jogue um dado

Espaços Amostrais e Eventos. Probabilidade 2.1. Capítulo 2. Espaço Amostral. Espaço Amostral 02/04/2012. Ex. Jogue um dado Capítulo 2 Probabilidade 2.1 Espaços Amostrais e Eventos Espaço Amostral Espaço Amostral O espaço amostral de um experimento, denotado S, é o conjunto de todos os possíveis resultados de um experimento.

Leia mais

Espaço Amostral ( ): conjunto de todos os

Espaço Amostral ( ): conjunto de todos os PROBABILIDADE Espaço Amostral (): conjunto de todos os resultados possíveis de um experimento aleatório. Exemplos: 1. Lançamento de um dado. = {1,, 3, 4,, 6}. Doador de sangue (tipo sangüíneo). = {A, B,

Leia mais

5) Qual a probabilidade de sair um ás de ouros quando retiramos uma carta de um baralho de 52 cartas?

5) Qual a probabilidade de sair um ás de ouros quando retiramos uma carta de um baralho de 52 cartas? TERCEIRA LISTA DE EXERCÍCIOS DE PROBABILIDADE CURSO: MATEMÁTICA PROF. LUIZ CELONI 1) Dê um espaço amostral para cada experimento abaixo. a) Uma urna contém bolas vermelhas (V), bolas brancas (B) e bolas

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Departamento Matemática Curso Engenharia Civil 1º Semestre 2º Folha Nº1 1. Ao dar ordem de compra de um computador é necessário especificar, em relação ao seu sistema, a memória (1, 2 ou 3Gb) e capacidade

Leia mais

ActivALEA. ative e atualize a sua literacia

ActivALEA. ative e atualize a sua literacia ActivALEA ative e atualize a sua literacia N.º 26 A FREQUÊNCIIA RELATIIVA PARA ESTIIMAR A PROBABIILIIDADE Por: Maria Eugénia Graça Martins Departamento de Estatística e Investigação Operacional da FCUL

Leia mais

CAPÍTULO I - ELEMENTOS DE PROBABILIDADE

CAPÍTULO I - ELEMENTOS DE PROBABILIDADE CAPÍTULO I - ELEMENTOS DE PROBABILIDADE 1.1 INTRODUÇÃO Em geral, um experimento ao ser observado e repetido sob um mesmo conjunto especificado de condições, conduz invariavelmente ao mesmo resultado. São

Leia mais

7- Probabilidade da união de dois eventos

7- Probabilidade da união de dois eventos . 7- Probabilidade da união de dois eventos Sejam A e B eventos de um mesmo espaço amostral Ω. Vamos encontrar uma expressão para a probabilidade de ocorrer o evento A ou o evento B, isto é, a probabilidade

Leia mais

Matemática Ficha de Apoio Modelos de Probabilidade - Introdução

Matemática Ficha de Apoio Modelos de Probabilidade - Introdução Matemática Ficha de Apoio Modelos de Probabilidade - Introdução 12ºano Introdução às probabilidades No final desta unidade, cada aluno deverá ser capaz de: - Identificar acontecimentos com conjuntos e

Leia mais

RESUMO TEÓRICO. n(a) P(A) = n(u) 0 P(A) 1

RESUMO TEÓRICO. n(a) P(A) = n(u) 0 P(A) 1 RESUMO TEÓRICO Experimentos aleatórios: são aqueles que, mesmo repetidos várias vezes sob condições semelhantes, apresentam resultados imprevisíveis. Exemplo: Lançar um dado e verificar qual é a face voltada

Leia mais

AMEI Escolar Matemática 9º Ano Probabilidades e Estatística

AMEI Escolar Matemática 9º Ano Probabilidades e Estatística AMEI Escolar Matemática 9º Ano Probabilidades e Estatística A linguagem das probabilidades As experiências podem ser consideradas: - aleatórias ou casuais: quando é impossível calcular o resultado à partida;

Leia mais

Processos Estocásticos Parte 1 Probabilidades. Professora Ariane Ferreira

Processos Estocásticos Parte 1 Probabilidades. Professora Ariane Ferreira rocessos Estocásticos arte 1 robabilidades rofessora Conteúdos Conteúdos 2 arte 1.1 : Conceitos de robabilidade arte 1.2 : Variáveis Aleatórias Bibliografia indicada aos alunos [1] aul Meyer. robabilidade

Leia mais

Probabilidade - Conceitos Básicos. Anderson Castro Soares de Oliveira

Probabilidade - Conceitos Básicos. Anderson Castro Soares de Oliveira - Conceitos Básicos Castro Soares de Oliveira é o ramo da matemática que estuda fenômenos aleatórios. está associada a estatística, porque sua teoria constitui a base de estatística inferencial. Conceito

Leia mais

PROBABILIDADE Prof. Adriano Mendonça Souza, Dr.

PROBABILIDADE Prof. Adriano Mendonça Souza, Dr. PROBABILIDADE Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM - O intelecto faz pouco na estrada que leva à descoberta, acontece um salto na consciência, chameo de

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel

MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel MOQ 13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Probabilidade e Estatística The Science of collecting and analyzing data for the purpose of drawing

Leia mais

3º Ano do Ensino Médio. Aula nº06

3º Ano do Ensino Médio. Aula nº06 Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº06 Assunto: Noções de Estatística 1. Conceitos básicos Definição: A estatística é a ciência que recolhe, organiza, classifica, apresenta

Leia mais

1 Axiomas de Probabilidade

1 Axiomas de Probabilidade 1 Axiomas de Probabilidade 1.1 Espaço amostral e eventos seja E um experimento aleatório Ω = conjunto de todos os resultados possíveis de E. Exemplos 1. E lançamento de uma moeda Ω = {c, c} 2. E retirada

Leia mais

PROBABILIDADE PROFESSOR: ANDRÉ LUIS

PROBABILIDADE PROFESSOR: ANDRÉ LUIS PROBABILIDADE PROFESSOR: ANDRÉ LUIS 1. Experimentos Experimento determinístico: são aqueles em que o resultados são os mesmos, qualquer que seja o número de ocorrência dos mesmos. Exemplo: Um determinado

Leia mais

Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes

Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes Para ampliar sua compreensão sobre probabilidade total e Teorema de Bayes, estude este conjunto de exercícios resolvidos sobre o tema.

Leia mais

Probabilidade e Estatística 2008/2. Regras de adicão, probabilidade condicional, multiplicação e probabilidade total.

Probabilidade e Estatística 2008/2. Regras de adicão, probabilidade condicional, multiplicação e probabilidade total. Probabilidade e Estatística 2008/2 Prof. Fernando Deeke Sasse Problemas Resolvidos Regras de adicão, probabilidade condicional, multiplicação e probabilidade total. 1. Um fabricante de lâmpadas para faróis

Leia mais

1 Probabilidade Condicional - continuação

1 Probabilidade Condicional - continuação 1 Probabilidade Condicional - continuação Exemplo: Sr. e Sra. Ferreira mudaram-se para Campinas e sabe-se que têm dois filhos sendo pelo menos um deles menino. Qual a probabilidade condicional que ambos

Leia mais

8 - PROBABILIDADE. 8.1 - Introdução

8 - PROBABILIDADE. 8.1 - Introdução INE 7002 - Probabilidade 1 8 - PROBABILIDADE 8.1 - Introdução No capítulo anterior foi utilizado um raciocínio predominantemente indutivo: os dados eram coletados, e através da sua organização em distribuições

Leia mais

I. Experimentos Aleatórios

I. Experimentos Aleatórios A teoria do azar consiste em reduzir todos os acontecimentos do mesmo gênero a um certo número de casos igualmente possíveis, ou seja, tais que estejamos igualmente inseguros sobre sua existência, e em

Leia mais

Módulo VIII. Probabilidade: Espaço Amostral e Evento

Módulo VIII. Probabilidade: Espaço Amostral e Evento 1 Módulo VIII Probabilidade: Espaço Amostral e Evento Suponha que em uma urna existam cinco bolas vermelhas e uma branca. Extraindo-se, ao acaso, uma das bolas, é mais provável que esta seja vermelha.

Leia mais

Aula 02: Probabilidade

Aula 02: Probabilidade ITA - Laboratório rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aula 02: Probabilidade população probabilidade (dedução) inferência estatística stica (indução) amostra Definições

Leia mais

NOÇÕES DE PROBABILIDADE

NOÇÕES DE PROBABILIDADE NOÇÕES DE PROBABILIDADE ? CARA? OU? COROA? ? Qual será o rendimento da Caderneta de Poupança até o final deste ano??? E qual será a taxa de inflação acumulada em 011???? Quem será o próximo prefeito de

Leia mais

Pressuposições à ANOVA

Pressuposições à ANOVA UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística II Aula do dia 09.11.010 A análise de variância de um experimento inteiramente ao acaso exige que sejam

Leia mais

Objetivo do jogo 40 pontos todos os quadrados de um templo todos os quadrados amarelos todos os quadrados verdes Material do jogo 72 cartas

Objetivo do jogo 40 pontos todos os quadrados de um templo todos os quadrados amarelos todos os quadrados verdes Material do jogo 72 cartas Objetivo do jogo Cada jogador representa o papel de um sumo sacerdote na luta pelo poder em Tebas no antigo Egito. Ganha o jogador que primeiro: Conseguir 40 pontos, ou Ocupar todos os quadrados de um

Leia mais

Métodos Estatísticos Avançados em Epidemiologia

Métodos Estatísticos Avançados em Epidemiologia Métodos Estatísticos Avançados em Epidemiologia Análise de Sobrevivência - Conceitos Básicos Enrico A. Colosimo Departamento de Estatística Universidade Federal de Minas Gerais http://www.est.ufmg.br/

Leia mais

Matemática Discreta - 08

Matemática Discreta - 08 Universidade Federal do Vale do São Francisco urso de Engenharia da omputação Matemática Discreta - 08 Prof. Jorge avalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1 1 INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1 1. Origem histórica É possível quantificar o acaso? Para iniciar,

Leia mais

Heredogramas. Capítulo 2 Item 4 Pág. 214 a 216. 2ª Série Ensino Médio Professora Priscila Binatto Fev/ 2013

Heredogramas. Capítulo 2 Item 4 Pág. 214 a 216. 2ª Série Ensino Médio Professora Priscila Binatto Fev/ 2013 Heredogramas Capítulo 2 Item 4 Pág. 214 a 216 2ª Série Ensino Médio Professora Priscila Binatto Fev/ 2013 O que é um heredograma? Também chamado do pedigree ou genealogia. Representa as relações de parentesco

Leia mais

Introdução à Probabilidade e Estatística

Introdução à Probabilidade e Estatística Professor Cristian F. Coletti Introdução à Probabilidade e Estatística (1 Para cada um dos casos abaixo, escreva o espaço amostral correspondente e conte seus elementos. a Uma moeda é lançada duas vezes

Leia mais

Estatística AMOSTRAGEM

Estatística AMOSTRAGEM Estatística AMOSTRAGEM Estatística: É a ciência que se preocupa com a coleta, a organização, descrição (apresentação), análise e interpretação de dados experimentais e tem como objetivo fundamental o estudo

Leia mais

PESQUISA DE OPINIÃO PÚBLICA SOBRE ASSUNTOS POLÍTICOS/ ADMINISTRATIVOS

PESQUISA DE OPINIÃO PÚBLICA SOBRE ASSUNTOS POLÍTICOS/ ADMINISTRATIVOS PESQUISA DE OPINIÃO PÚBLICA SOBRE ASSUNTOS POLÍTICOS/ ADMINISTRATIVOS NOVEMBRO/ DEZEMBRO DE 2013 JOB2726-13 ESPECIFICAÇÕES TÉCNICAS DA PESQUISA OBJETIVO LOCAL Trata-se de uma pesquisa de acompanhamento

Leia mais

FACULDADE DE CIÊNCIAS E TECNOLOGIA. Redes de Telecomunicações (2006/2007)

FACULDADE DE CIÊNCIAS E TECNOLOGIA. Redes de Telecomunicações (2006/2007) FACULDADE DE CIÊNCIAS E TECNOLOGIA Redes de Telecomunicações (2006/2007) Engª de Sistemas e Informática Trabalho nº4 (1ª aula) Título: Modelação de tráfego utilizando o modelo de Poisson Fundamentos teóricos

Leia mais

Álgebra Linear Aplicada à Compressão de Imagens. Universidade de Lisboa Instituto Superior Técnico. Mestrado em Engenharia Aeroespacial

Álgebra Linear Aplicada à Compressão de Imagens. Universidade de Lisboa Instituto Superior Técnico. Mestrado em Engenharia Aeroespacial Álgebra Linear Aplicada à Compressão de Imagens Universidade de Lisboa Instituto Superior Técnico Uma Breve Introdução Mestrado em Engenharia Aeroespacial Marília Matos Nº 80889 2014/2015 - Professor Paulo

Leia mais

Obtenção Experimental de Modelos Matemáticos Através da Reposta ao Degrau

Obtenção Experimental de Modelos Matemáticos Através da Reposta ao Degrau Alunos: Nota: 1-2 - Data: Obtenção Experimental de Modelos Matemáticos Através da Reposta ao Degrau 1.1 Objetivo O objetivo deste experimento é mostrar como se obtém o modelo matemático de um sistema através

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7 RACIOCÍNIO LÓGICO AULA 7 TEORIA DAS PROBABILIDADES Vamos considerar os seguintes experimentos: Um corpo de massa m, definida sendo arrastado horizontalmente por uma força qualquer, em um espaço definido.

Leia mais

Análise Qualitativa no Gerenciamento de Riscos de Projetos

Análise Qualitativa no Gerenciamento de Riscos de Projetos Análise Qualitativa no Gerenciamento de Riscos de Projetos Olá Gerente de Projeto. Nos artigos anteriores descrevemos um breve histórico sobre a história e contextualização dos riscos, tanto na vida real

Leia mais

Análise e Resolução da prova de Agente de Polícia Federal Disciplina: Raciocínio Lógico Professor: Custódio Nascimento

Análise e Resolução da prova de Agente de Polícia Federal Disciplina: Raciocínio Lógico Professor: Custódio Nascimento Análise e Resolução da prova de Agente de Polícia Federal Disciplina: Professor: Custódio Nascimento 1- Análise da prova Análise e Resolução da prova de Agente / PF Neste artigo, farei a análise das questões

Leia mais

Defender interesses difusos e coletivos, defender o regime democrático e a implementação de políticas constitucionais.

Defender interesses difusos e coletivos, defender o regime democrático e a implementação de políticas constitucionais. 1. Escopo ou finalidade do projeto Ampliar a efetividade do velamento que o Ministério Público exerce sobre as Fundações Privadas, de forma a garantir que este patrimônio social seja efetivamente aplicado

Leia mais

Testes Qui-Quadrado - Teste de Aderência

Testes Qui-Quadrado - Teste de Aderência Testes Qui-Quadrado - Teste de Aderência Consideremos uma tabela de frequências com k frequências, k 2 k: total de categorias frequências observadas: O 1,, O k seja p 1 = p 01,, p k = p 0k as probabilidades

Leia mais

AULA 19 Análise de Variância

AULA 19 Análise de Variância 1 AULA 19 Análise de Variância Ernesto F. L. Amaral 18 de outubro de 2012 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro: LTC. Capítulo

Leia mais

MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 19 de Agosto, 2013 Probabilidade: uma Introdução / Aula 3 1 Probabilidade Discreta: Exemplos

Leia mais

Avaliação e Desempenho Aula 4

Avaliação e Desempenho Aula 4 Avaliação e Desempenho Aula 4 Aulas passadas Motivação para avaliação e desempenho Aula de hoje Revisão de probabilidade Eventos e probabilidade Independência Prob. condicional Experimentos Aleatórios

Leia mais

Aula 10: Escalonamento da CPU

Aula 10: Escalonamento da CPU Aula 10: Escalonamento da CPU O escalonamento da CPU é a base dos sistemas operacionais multiprogramados. A partir da redistribuição da CPU entre processos, o sistema operacional pode tornar o computador

Leia mais

Experimentos Aleatórios e Espaços Amostrais

Experimentos Aleatórios e Espaços Amostrais Experimentos Aleatórios e Espaços Amostrais Cláudio Tadeu Cristino 1 1 Universidade Federal Rural de Pernambuco, Recife, Brasil Primeiro Semestre, 2012 C.T.Cristino (DEINFO-UFRPE) Experimentos Aleatórios

Leia mais

Estatística e Probabilidade. Aula 4 Cap 03. Probabilidade

Estatística e Probabilidade. Aula 4 Cap 03. Probabilidade Estatística e Probabilidade Aula 4 Cap 03 Probabilidade Estatística e Probabilidade Método Estatístico Estatística Descritiva Estatística Inferencial Nesta aula... aprenderemos como usar informações para

Leia mais

Ao ligar, o equipamento solicita o teste do alto falante SEGURANÇA. Esta é a tela em que você tem a opção de apagar a programação existente, que

Ao ligar, o equipamento solicita o teste do alto falante SEGURANÇA. Esta é a tela em que você tem a opção de apagar a programação existente, que G U I A Colleague Ao ligar, o equipamento solicita o teste do alto falante SEGURANÇA. Esta é a tela em que você tem a opção de apagar a programação existente, que permanece na memória do equipamento por

Leia mais

Prof. Daniela Barreiro Claro

Prof. Daniela Barreiro Claro O volume de dados está crescendo sem parar Gigabytes, Petabytes, etc. Dificuldade na descoberta do conhecimento Dados disponíveis x Análise dos Dados Dados disponíveis Analisar e compreender os dados 2

Leia mais

1. Cinco cartas são extraídas de um baralho comum (52 cartas, 13 de cada naipe) sem reposição. Defina a v.a. X = número de cartas vermelhas sorteadas.

1. Cinco cartas são extraídas de um baralho comum (52 cartas, 13 de cada naipe) sem reposição. Defina a v.a. X = número de cartas vermelhas sorteadas. GET007 Métodos Estatísticos Aplicados à Economia I Lista de Exercícios - variáveis Aleatórias Discretas Profa. Ana Maria Farias. Cinco cartas são extraídas de um baralho comum ( cartas, de cada naipe sem

Leia mais

MATEMÁTICA PARA VENCER. Apostilas complementares APOSTILA 10: Exercícios Cap 01. www.laercio.com.br

MATEMÁTICA PARA VENCER. Apostilas complementares APOSTILA 10: Exercícios Cap 01. www.laercio.com.br MATEMÁTICA PARA VENCER Apostilas complementares APOSTILA 10: Exercícios Cap 01 www.laercio.com.br APOSTILA 10 Exercícios cap 01 MATÉRIA FÁCIL, QUESTÕES DIFÍCEIS HORA DE ESTUDAR (cap 01) Apostila de complemento

Leia mais

Aula Prática 1 - Gerador Van de Graaff e interação entre corpos carregados

Aula Prática 1 - Gerador Van de Graaff e interação entre corpos carregados Aula Prática 1 - Gerador Van de Graaff e interação entre corpos carregados Disciplinas: Física III (DQF 06034) Fundamentos de Física III (DQF 10079) Departamento de Química e Física- CCA/UFES Objetivo:

Leia mais

Atividade à Distância Avaliativa - Probabilidade. 1 Probabilidade - Operações e Propriedades

Atividade à Distância Avaliativa - Probabilidade. 1 Probabilidade - Operações e Propriedades Universidade Estadual de Santa Cruz UESC Professora: Camila M. L Nagamine Bioestatística Atividade à Distância Avaliativa - Probabilidade Se ouço, esqueço; se vejo, recordo; se faço, aprendo. (Provérbio

Leia mais

Lista 2 - Probabilidade. Probabilidade. 1. Uma letra é escolhida entre as letras da palavra PROBABILIDADE

Lista 2 - Probabilidade. Probabilidade. 1. Uma letra é escolhida entre as letras da palavra PROBABILIDADE Estatística 2 a LISTA DE EXERCÍCIOS Prof. Ânderson Vieira Probabilidade Espaço Amostral Em cada um dos exercícios a 0. Determine o espaço amostral.. Uma letra é escolhida entre as letras da palavra PROBABILIDADE

Leia mais

UNITAU APOSTILA PROBABILIDADES PROF. CARLINHOS

UNITAU APOSTILA PROBABILIDADES PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ ALI UNITAU APOSTILA PROAILIDADES ibliografia: Curso de Matemática Volume Único Autores: ianchini&paccola Ed. Moderna Matemática Fundamental - Volume Único Autores:

Leia mais

WWW.RENOVAVEIS.TECNOPT.COM

WWW.RENOVAVEIS.TECNOPT.COM Energia produzida Para a industria eólica é muito importante a discrição da variação da velocidade do vento. Os projetistas de turbinas necessitam da informação para otimizar o desenho de seus geradores,

Leia mais

Lista de Exercícios 5: Soluções Teoria dos Conjuntos

Lista de Exercícios 5: Soluções Teoria dos Conjuntos UFMG/ICEx/DCC DCC Matemática Discreta Lista de Exercícios 5: Soluções Teoria dos Conjuntos Ciências Exatas & Engenharias 2 o Semestre de 206. Escreva uma negação para a seguinte afirmação: conjuntos A,

Leia mais

Métodos Estatísticos Avançados em Epidemiologia

Métodos Estatísticos Avançados em Epidemiologia Métodos Estatísticos Avançados em Epidemiologia Análise de Variância - ANOVA Cap. 12 - Pagano e Gauvreau (2004) - p.254 Enrico A. Colosimo/UFMG Depto. Estatística - ICEx - UFMG 1 / 39 Introdução Existem

Leia mais

CAPÍTULO 04 NOÇÕES DE PROBABILIDADE

CAPÍTULO 04 NOÇÕES DE PROBABILIDADE CAPÍTULO 0 NOÇÕES DE PROBABILIDADE. ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. No lançamento de uma moeda perfeita (não viciada) o espaço amostral é S =

Leia mais

Matemática. Resolução das atividades complementares. M3 Conjuntos

Matemática. Resolução das atividades complementares. M3 Conjuntos Resolução das atividades complementares Matemática M Conjuntos p. (UEMG) Numa escola infantil foram entrevistadas 8 crianças, com faia etária entre e anos, sobre dois filmes, e. Verificou-se que 4 delas

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística TESTES DE HIPÓTESES (ou Testes de Significância) Estimação e Teste de Hipóteses Estimação e teste de hipóteses (ou significância) são os aspectos principais da Inferência Estatística

Leia mais

Resolução da Lista de Exercício 6

Resolução da Lista de Exercício 6 Teoria da Organização e Contratos - TOC / MFEE Professor: Jefferson Bertolai Fundação Getulio Vargas / EPGE Monitor: William Michon Jr 10 de novembro de 01 Exercícios referentes à aula 7 e 8. Resolução

Leia mais

Aula de aplicação de categorias e critérios da IUCN para avaliação do estado de conservação da fauna

Aula de aplicação de categorias e critérios da IUCN para avaliação do estado de conservação da fauna Aula de aplicação de categorias e critérios da IUCN para avaliação do estado de conservação da fauna Categorias da IUCN Categorias de Espécies ameaçadas CR Criticamente em Perigo: espécie que, de acordo

Leia mais

A vida sem reflexão não merece ser vivida Sócrates Disciplina: ESTATÍSTICA e PROBABILIDADE

A vida sem reflexão não merece ser vivida Sócrates Disciplina: ESTATÍSTICA e PROBABILIDADE Notas de aula 07 1 A vida sem reflexão não merece ser vivida Sócrates Disciplina: ESTATÍSTICA e PROBABILIDADE 1. Medidas de Forma: Assimetria e Curtose. A medida de assimetria indica o grau de distorção

Leia mais

Módulo de Princípios Básicos de Contagem. Segundo ano

Módulo de Princípios Básicos de Contagem. Segundo ano Módulo de Princípios Básicos de Contagem Combinação Segundo ano Combinação 1 Exercícios Introdutórios Exercício 1. Numa sala há 6 pessoas e cada uma cumprimenta todas as outras pessoas com um único aperto

Leia mais

Organização e Arquitetura de Computadores. Ivan Saraiva Silva

Organização e Arquitetura de Computadores. Ivan Saraiva Silva Organização e Arquitetura de Computadores Hierarquia de Memória Ivan Saraiva Silva Hierarquia de Memória A Organização de Memória em um computador é feita de forma hierárquica Registradores, Cache Memória

Leia mais

Patologia, Tamanho de Grão, Poder Germinativo e Teor de Micotoxina em Genótipos de Cevada Produzidos em Ambiente Favorável a Doenças de Espigas

Patologia, Tamanho de Grão, Poder Germinativo e Teor de Micotoxina em Genótipos de Cevada Produzidos em Ambiente Favorável a Doenças de Espigas Patologia, Tamanho de Grão, Poder Germinativo e Teor de Micotoxina em s de Cevada Produzidos em Ambiente Favorável a Doenças de Espigas Maria Imaculada Pontes Moreira Lima 1 ; Euclydes Minella 1 ; Martha

Leia mais

Probabilidade é o quociente entre o número de casos favoráveis e o número de casos possíveis em um dado experimento.

Probabilidade é o quociente entre o número de casos favoráveis e o número de casos possíveis em um dado experimento. Probabilidade é o quociente entre o número de casos favoráveis e o número de casos possíveis em um dado experimento. número de casos favoráveis probabilidade número de casos possíveis Nessa definição convém

Leia mais

www.souvestibulando.com.br CURSO PRÉ-VESTIBULAR MATEMÁTICA AULA 2 TEORIA DOS CONJUNTOS

www.souvestibulando.com.br CURSO PRÉ-VESTIBULAR MATEMÁTICA AULA 2 TEORIA DOS CONJUNTOS 1 CURSO PRÉ-VESTIULR MTEMÁTIC UL 02 SSUNTO: TEORI DOS CONJUNTOS Esta aula é composta pelo texto da apostila abaixo e por um link de acesso à UL VIRTUL gravada. Estude com atenção o texto antes de acessar

Leia mais

Tópicos Avançados em Banco de Dados Dependências sobre regime e controle de objetos em Banco de Dados. Prof. Hugo Souza

Tópicos Avançados em Banco de Dados Dependências sobre regime e controle de objetos em Banco de Dados. Prof. Hugo Souza Tópicos Avançados em Banco de Dados Dependências sobre regime e controle de objetos em Banco de Dados Prof. Hugo Souza Após vermos uma breve contextualização sobre esquemas para bases dados e aprendermos

Leia mais