Estudo da Transmissão de Sinal em um Cabo co-axial

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Estudo da Transmissão de Sinal em um Cabo co-axial"

Transcrição

1 Rlatório final d Instrumntação d Ensino F-809 /11/00 Wllington Akira Iwamoto Orintador: Richard Landrs Instituto d Física Glb Wataghin, Unicamp Estudo da Transmissão d Sinal m um Cabo co-axial OBJETIVO Atualmnt as frqüências usadas na transmissão d sinais stão cada vz mais altas, lvando a prdas importants nos sinais. Isto faz com qu o conhcimnto da física básica nvolvida sja muito important, spc0ialmnt, para físicos xprimntais. Para ntndrmos a idéia d como sinais d alta frqüência intrfrm m circuitos létricos dvmos considrar o fato qu os sinais létricos s propagam d um ponto a outro d um circuito à vlocidad da luz. Um sinal létrico a uma frqüência(angular) tm associado a l um comprimnto d onda =c/, ond c é a vlocidad da luz no mio. S as dimnsõs físicas do circuito são maiors ou comparávis a, ntão o potncial instantâno m dois pontos d um msmo condutor podm sr difrnts. Por xmplo, para sinais d 60 Hz o comprimnto d onda é d aproximadamnt 5000 Km, logo todos os pontos da fiação da rd d nrgia létrica d uma cidad stão instantanamnt no msmo potncial. Mas para uma frqüência d 300 MHz, tmos um comprimnto d onda

2 1m, nst caso tmos uma difrnça d potncial ntr dois pontos aprciávl s a difrnça ntr ls for d apnas alguns cntímtros.[3] Esss são casos d computadors qu opram na faixa d MHz m laboratórios qu trabalham m alta frqüência. Tndo m vista qu as rds podm sr ligadas com cabos co-axiais com mais d 100 m, torna-s important os fitos d propagação. Toria Um cabo co-axial é uma linha d transmissão qu consist d um cntro condutor, um spaçamnto dilétrico um condutor concêntrico, como na figura 1. Figura1. Esquma d um Cabo Coaxial. A capacitância a indutância m unidads d comprimnto[] são dadas por πε C = (1) ln( b / a) L = µ π b ln a ()

3 σ πσ G = C = (3) ε ln( b / a) Para as rsistência indutância, todas as sçõs do cabo stão m séri para a capacitância condutância, todas as sçõs stão m parallo. Como C, L, G stão m unidads d comprimnto, multiplicando-os pla sção do comprimnto do fio z, tmos o su valor total. Diant disso podmos supor um circuito quivalnt para a linha, figura. Rz Lz grador Cz Gz Cz Gz carga Figura. circuito quivalnt d um cabo co-axial. Aplicando li das malhas, fazndo as dvidas substituiçõs tomando o limit z 0, obtmos V z = RGV V + ( RC + LG) T V + LC t (4) Uma solução para a quação 1, no caso da onda variar harmonicamnt com o tmpo, é dado por V(z,=V(z) it (5)

4 Com um pouco d álgbra obtmos V ( z, = V 1 αz j( ωt+ βz) + V αz j( ωt βz) V ( z, = V ( z, V ( z, (6) i + r O trmo nvolvndo t + z rprsnta a onda rfltida V r (z, qu s propaga na dirção ngativa d z ao longo do cabo. O fator z indica qu sta onda diminui m módulo nquanto a onda s propaga na dirção ngativa d z. Já trmo nvolvndo t z rprsnta a onda incidnt qu s propaga na dirção positiva d z, sndo o fator z indica qu sta onda diminui m módulo na mdida qu caminha m dirção positiva d z. O valor total da onda é a suprposição dssas ondas. Numa manira smlhant pod s mostrar qu V i( z, = ( Z / Y ) 1 1/ αz j( ωt+ βz) V + ( Z / Y ) 1/ αz j( ωt βz) i( z, t ) = i ( z, t ) i ( z, t ) (7) i + r Aqui Z=R+jL é a impdância séri, Y=G +jc é a admitância γ = ZY = ( R + jωl)( G + jωc) (m -1 ) (8) γ = ( RG ω LC) + jω( LG + RC) (9) é a constant d propagação complxa, ond a part ral é a constant d atnuação a part imaginária é constant d fas.[1] Para R G muito pquno ou frqüência muito alta tal qu L>>R C>>G, tmos R α R( γ ) = + GZ 0 na maioria dos casos G pod sr dsprzada, logo, tmos Z 0

5 α = R / Z 0 β = Im( γ ) = ω LC (10) Aqui, R aumnta aproximadamnt m forma proporcional a raiz quadrada da frquência dvido ao fito plicular[4]. a vlocidad é dada por ω 1 1 v = = = (11) 1/ 1/ β ( LC) ( µε ) Lmbrando-s qu stamos tratando d cabos qu são utilizados para transportar corrnt a alta frqüência, dvmos considrar os parâmtros distribuídos (principalmnt a indutância a capacitância), logo, associamos a sss parâmtros uma impdância caractrística dada por Z c Vi Z R + jωl = = = (1) V Y G + jωc i para R G muito pquno d modo qu podmos dsprzá-los Z c = L C = 1 π µ ε b ln a (13) Exprimnto Na primira part do xprimnto, a fim d mdirmos a vlocidad d propagação d um pulso, montamos um circuito como a figura 3. Z 0 ~ Z L

6 Figura 3. font gradora d onda com impdância Z 0 conctada ao cabo d comprimnto l d impdância Z c com o trminal ligada a impdância d carga Z L Nst caso podmos considrar a impdância Z 0 do grador, a impdância Z c do cabo uma impdância Z L qu srá infinita (circuito abrto) ou nula (curto-circuito). O cabo co-axial utilizado foi RG 58U. Est cabo tm as sguints caractrísticas: a=0,9mm, b=,9mm; o isolant d politilno d constant dilétricaε/ε 0 =,1, qu os substituindo nas quação 1 obtrmos aproximadamnt L=50nH/m C=100pF/m, rspctivamnt[3]. Com ssa montagm notamos qu quando dixamos o circuito abrto, ou sja Z L =infinito, a voltagm do pulso rfltido não invrt o sinal ( no caso V incidnt é positivo V rfltido também é). E, quando colocamos m curto circuito, isto é, Z L =0, a voltagm do pulso rfltido invrt o sinal( V incidnt é positivo V rfltido é ngativo). Isto stá d acordo com a toria, pois a voltagm stá rlacionado com o coficint d rflxão da sguint manira Z Z V L c r ρ L = = (14) Z L + Z c Vi ou sja, s Z L =infinito V r /V i = 1, ntão V r = V i, mas para Z L = 0, tmos V r /V i = -1, rsultando V r = V i. Obsrvando o pulso incidnt o pulso rfltido com Z L = infinito (circuito abrto) mdimos o tmpo( ntr o pulso rfltido o pulso incidnt para outros comprimntos,

7 lmbrando qu a distância prcorrida plo pulso é d. Assim, a vlocidad é v = d / τ, ond d é o comprimnto do cabo τ = t/(dividimos o tmpo por ao invés d dobrarmos a distância. Foi mdido também a amplitud do pulso incidnt do pulso rfltido rprsntado na tabla, figura 4, abaixo. Tabla 1. d, comprimnto do cabo; τ, tmpo ntr o pulso incidnt o rfltido; V i V r, amplitud do pulso incidnt rfltido, rspctivamnt. d(m) d(m) τ(µs) v(10 8 m/s) v(10 8 m/s) V i (V) V r,i (V) V r (V) τ (s ) 8,0 0,1 0,040 0,008,0 0, 1, 0,1 1,1 0,6 0,1 0,100 0,008,1 0, 1, 0,1 0,9 5, 0,1 0,10 0,008,1 0,3 1, 0,1 0,9 36, 0,1 0,168 0,008, 0,3 1, 0,1 0,8 Figura1. tabla d dados xprimntais. Sgundo a tabla, notamos qu as vlocidads stão com valors muito próximos um do outro. Isso já ra sprado uma vz qu para pqunos comprimntos ou frqüências baixas o valor tórico é d,07x10 8 m/s. Ess valor é calculado usando-s a quação 11 ond µ é aproximadamnt µ 0 ε=,1ε 0. Not qu conform comprimnto aumnta(36,±0,1m) a vlocidad fica mais long do valor sprado. Uma outra grandza qu é compromtida com o aumnto da frqüência ou aumnto da distância são as amplituds dos pulsos incidnts rfltidos, no caso m qustão, para (36,±0,5)m, tmos uma prda d aproximadamnt(0,5±0, )V. Tndo m vista ssa dpndência da frqüência da distância, calculamos a partir dos valors da figura 4 a atnuação α, qu stão rprsntadas na figura 5. Para o calculo da atnuação usamos a quação 10. Nsta quação R = ρl / S, ond ρ=1,8x10-8 Ω.m é a

8 rsistividad do mtal, l é o comprimnto do cabo S é a ára da sção qu ftivamnt passa corrnt. Para altas frqüências S=π(a/)δ, ond a=0,45mm é o raio da sção δ=(ρ/µω) 1/ é a distância dntro do condutor para a qual a dnsidad d corrnt val 1/ do valor da suprfíci. Tabla. d(m) d(m) Frquência(MHz) f(mhz) Atnuação α(10-1 ) α(10-1 ) 8,0 0,1 1,5 0, 0,5 0, 0,61 0,1 5,0 0, 0,8 0, 5,17 0,1 4, 0,3 0,9 0,1 36,0 0,1 3,0 0,3 1, 0, Figura 5. Tabla d dados xprimntais com a atnuação calculada. Sgundo a figura 5 prcbmos qu quanto maior a distância maior é atnuação. Isso, como foi visto ants, pronuncia-s na amplitud do pulso. Conclusão. Nst xprimnto, mostramos d uma forma simpls a propagação d um sinal létrico no cabo coaxial. Obtmos a vlocidad para distâncias difrnts, concluímos, xprimntalmnt, qu a vlocidad é prturbada, s distanciando cada vz mais da vlocidad tórica. Embora haja algumas passagns complicadas na ddução d crtas fórmulas quando stas são studas com maior profundidad, st xprimnto ainda pod aplicado a laboratórios d física básica, até msmo ao nsino médio, s for tratado com mnos dtalhs. REFERÊNCIAS

9 [1] Daryl W. Prston and Eric R. Ditz, Th Art of Exprimntal Physics, Wily, Nw York, [] Ritz, Milford Christy, Fundamntos da Toria Eltromagnética, Campus, Rio d Janiro, 198. [3] - Apostila sobr circuitos d corrnt altrnada, Hugo J. Fragnito, Unicamp, stmbro d 00.

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T. Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos

Leia mais

Desta maneira um relacionamento é mostrado em forma de um diagrama vetorial na Figura 1 (b). Ou poderia ser escrito matematicamente como:

Desta maneira um relacionamento é mostrado em forma de um diagrama vetorial na Figura 1 (b). Ou poderia ser escrito matematicamente como: ASSOCIAÇÃO EDUCACIONA DOM BOSCO FACUDADE DE ENGENHAIA DE ESENDE ENGENHAIA EÉICA EEÔNICA Disciplina: aboratório d Circuitos Elétricos Circuitos m Corrnt Altrnada EXPEIMENO 9 IMPEDÂNCIA DE CICUIOS SÉIE E

Leia mais

Definição de Termos Técnicos

Definição de Termos Técnicos Dfinição d Trmos Técnicos Eng. Adriano Luiz pada Attack do Brasil - THD - (Total Harmonic Distortion Distorção Harmônica Total) É a rlação ntr a potência da frqüência fundamntal mdida na saída d um sistma

Leia mais

Dinâmica Longitudinal do Veículo

Dinâmica Longitudinal do Veículo Dinâmica Longitudinal do Vículo 1. Introdução A dinâmica longitudinal do vículo aborda a aclração frnagm do vículo, movndo-s m linha rta. Srão aqui usados os sistmas d coordnadas indicados na figura 1.

Leia mais

SISTEMA DE PONTO FLUTUANTE

SISTEMA DE PONTO FLUTUANTE Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,

Leia mais

EC1 - LAB - CIRCÚITOS INTEGRADORES E DIFERENCIADORES

EC1 - LAB - CIRCÚITOS INTEGRADORES E DIFERENCIADORES - - EC - LB - CIRCÚIO INEGRDORE E DIFERENCIDORE Prof: MIMO RGENO CONIDERÇÕE EÓRIC INICII: Imaginmos um circuito composto por uma séri R-C, alimntado por uma tnsão do tipo:. H(t), ainda considrmos qu no

Leia mais

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita: Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários

Leia mais

Módulo II Resistores, Capacitores e Circuitos

Módulo II Resistores, Capacitores e Circuitos Módulo laudia gina ampos d arvalho Módulo sistors, apacitors ircuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. omo o rsistor é um condutor d létrons, xistm

Leia mais

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO 8 Expriência n 1 Lvantamnto da Curva Caractrística da Bomba Cntrífuga Radial HERO 1. Objtivo: A prsnt xpriência tm por objtivo a familiarização do aluno com o lvantamnto d uma CCB (Curva Caractrística

Leia mais

2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom.

2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom. 4 CONCLUSÕES Os Indicadors d Rndimnto avaliados nst studo, têm como objctivo a mdição d parâmtros numa situação d acsso a uma qualqur ára na Intrnt. A anális dsts indicadors, nomadamnt Vlocidads d Download

Leia mais

Módulo II Resistores e Circuitos

Módulo II Resistores e Circuitos Módulo Claudia gina Campos d Carvalho Módulo sistors Circuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. Como o rsistor é um condutor d létrons, xistm aquls

Leia mais

PROVA DE MATEMÁTICA APLICADA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia

PROVA DE MATEMÁTICA APLICADA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia PROVA DE MATEMÁTICA APLICADA VESTIBULAR 013 - FGV CURSO DE ADMINISTRAÇÃO Profa. Maria Antônia C. Gouvia 1. A Editora Progrsso dcidiu promovr o lançamnto do livro Dscobrindo o Pantanal m uma Fira Intrnacional

Leia mais

03-05-2015. Sumário. Campo e potencial elétrico. Energia potencial elétrica

03-05-2015. Sumário. Campo e potencial elétrico. Energia potencial elétrica Sumáio Unidad II Elticidad Magntismo 1- - Engia potncial lética. - Potncial lético. - Supfícis quipotnciais. Movimnto d cagas léticas num campo lético unifom. PS 22 Engia potncial lética potncial lético.

Leia mais

AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. azevedoglauco@unifei.edu.br

AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. azevedoglauco@unifei.edu.br AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE Glauco José Rodrigus d Azvdo 1, João Zangrandi Filho 1 Univrsidad Fdral d Itajubá/Mcânica, Av. BPS, 1303 Itajubá-MG,

Leia mais

PSICROMETRIA 1. É a quantificação do vapor d água no ar de um ambiente, aberto ou fechado.

PSICROMETRIA 1. É a quantificação do vapor d água no ar de um ambiente, aberto ou fechado. PSICROMETRIA 1 1. O QUE É? É a quantificação do vapor d água no ar d um ambint, abrto ou fchado. 2. PARA QUE SERVE? A importância da quantificação da umidad atmosférica pod sr prcbida quando s qur, dntr

Leia mais

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem PSI-2432: Projto Implmntação d Filtros Digitais Projto Proposto: Convrsor d taxas d amostragm Migul Arjona Ramírz 3 d novmbro d 2005 Est projto consist m implmntar no MATLAB um sistma para troca d taxa

Leia mais

Uma característica importante dos núcleos é a razão N/Z. Para o núcleo de

Uma característica importante dos núcleos é a razão N/Z. Para o núcleo de Dsintgração Radioativa Os núclos, m sua grand maioria, são instávis, ou sja, as rspctivas combinaçõs d prótons nêutrons não originam configuraçõs nuclars stávis. Esss núclos, chamados radioativos, s transformam

Leia mais

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL)

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL) 4. Método das Aproimaçõs Sucssivas ou Método d Itração Linar MIL O método da itração linar é um procsso itrativo qu aprsnta vantagns dsvantagns m rlação ao método da bisscção. Sja uma função f contínua

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO INSTITUTO DE FÍSICA FÍSICA III (FIM230) /1 GABARITO DA PROVA FINAL UNIFICADA DATA: 03/07/2009

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO INSTITUTO DE FÍSICA FÍSICA III (FIM230) /1 GABARITO DA PROVA FINAL UNIFICADA DATA: 03/07/2009 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO INSTITUTO DE FÍSICA FÍSICA III (FIM230) - 2009/1 GABARITO DA PROVA FINAL UNIFICADA DATA: 03/07/2009 PROBLEMA 1 (Cilindros coaxiais) [ 2,5 ponto(s)] Um cilindro condutor

Leia mais

Instituto de Física USP. Física Moderna I. Aula 09. Professora: Mazé Bechara

Instituto de Física USP. Física Moderna I. Aula 09. Professora: Mazé Bechara Instituto d Física USP Física Modrna I Aula 09 Profssora: Mazé Bchara Aula 09 O fito fotolétrico a visão corpuscular da radiação ltromagnética 1. Efito fotolétrico: o qu é, o qu s obsrva xprimntalmnt,

Leia mais

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W

Leia mais

NOTA SOBRE INDETERMINAÇÕES

NOTA SOBRE INDETERMINAÇÕES NOTA SOBRE INDETERMINAÇÕES HÉLIO BERNARDO LOPES Rsumo. Em domínios divrsos da Matmática, como por igual nas suas aplicaçõs, surgm com alguma frquência indtrminaçõs, d tipos divrsos, no cálculo d its, sja

Leia mais

Coordenadas polares. a = d2 r dt 2. Em coordenadas cartesianas, o vetor posição é simplesmente escrito como

Coordenadas polares. a = d2 r dt 2. Em coordenadas cartesianas, o vetor posição é simplesmente escrito como Coordnadas polars Sja o vtor posição d uma partícula d massa m rprsntado por r. S a partícula s mov, ntão su vtor posição dpnd do tmpo, isto é, r = r t), ond rprsntamos a coordnada tmporal pla variávl

Leia mais

Resolução. Admitindo x = x. I) Ax = b

Resolução. Admitindo x = x. I) Ax = b Considr uma população d igual númro d homns mulhrs, m qu sjam daltônicos % dos homns 0,% das mulhrs. Indiqu a probabilidad d qu sja mulhr uma pssoa daltônica slcionada ao acaso nssa população. a) b) c)

Leia mais

Módulo III Capacitores

Módulo III Capacitores laudia gina ampos d arvalho Módulo apacitors apacitors: Dnomina-s condnsador ou capacitor ao conjunto d condutors dilétricos arrumados d tal manira qu s consiga armaznar a máxima quantidad d cargas létricas.

Leia mais

Augusto Massashi Horiguti. Doutor em Ciências pelo IFUSP Professor do CEFET-SP. Palavras-chave: Período; pêndulo simples; ângulos pequenos.

Augusto Massashi Horiguti. Doutor em Ciências pelo IFUSP Professor do CEFET-SP. Palavras-chave: Período; pêndulo simples; ângulos pequenos. DETERMNAÇÃO DA EQUAÇÃO GERAL DO PERÍODO DO PÊNDULO SMPLES Doutor m Ciências plo FUSP Profssor do CEFET-SP Est trabalho aprsnta uma rvisão do problma do pêndulo simpls com a dmonstração da quação do príodo

Leia mais

ASSUNTO Nº 4 POLARIDADE INSTANTÂNEA DE TRANSFORMADORES

ASSUNTO Nº 4 POLARIDADE INSTANTÂNEA DE TRANSFORMADORES ASSUNTO Nº 4 POLARIDADE INSTANTÂNEA DE TRANSFORMADORES 17 As associaçõs d pilhas ou batrias m séri ou parallo xigm o domínio d suas rspctivas polaridads, tnsõs corrnts. ALGUMAS SITUAÇÕES CLÁSSICAS (pilhas

Leia mais

Física A 1. Na figura acima, a corda ideal suporta um homem pendurado num ponto eqüidistante dos dois apoios ( A 1

Física A 1. Na figura acima, a corda ideal suporta um homem pendurado num ponto eqüidistante dos dois apoios ( A 1 Física Vstibular Urj 98 1ª fas Qustão 16 A 1 A 2 θ Na figura acima, a corda idal suporta um homm pndurado num ponto qüidistant dos dois apoios ( A 1 A 2 ), a uma crta altura do solo, formando um ângulo

Leia mais

3 Proposição de fórmula

3 Proposição de fórmula 3 Proposição fórmula A substituição os inos plos juros sobr capital próprio po sr um important instrumnto planjamnto tributário, sno uma rução lgal a tributação sobr o lucro. Nos últimos anos, a utilização

Leia mais

CAPÍTULO 06 ESTUDOS DE FILAS EM INTERSEÇÕES NÃO SEMAFORIZADAS

CAPÍTULO 06 ESTUDOS DE FILAS EM INTERSEÇÕES NÃO SEMAFORIZADAS APÍTULO 06 ESTUDOS DE FILAS EM INTERSEÇÕES NÃO SEMAFORIZADAS As filas m intrsçõs não smaforizadas ocorrm dvido aos movimntos não prioritários. O tmpo ncssário para ralização da manobra dpnd d inúmros fators,

Leia mais

PENSANDO E DESCOBRINDO!!!

PENSANDO E DESCOBRINDO!!! PENSANDO E DESCOBRINDO!!! Sobr o Chuviro Elétrico... Falarmos agora sobr outra facilidad qu a ltricidad os avanços tcnológicos trouxram, trata-s d um aparlho muito usado m nosso dia a dia, o CHUVEIRO ELÉTRICO!

Leia mais

Física Geral I F -128. Aula 6 Força e movimento II

Física Geral I F -128. Aula 6 Força e movimento II Física Gral I F -18 Aula 6 Força movimnto II Forças Fundamntais da Naturza Gravitacional Matéria ( 1/r ) Eltromagné7ca ( 1/r ) Cargas Elétricas, átomos, sólidos Nuclar Fraca Dcaimnto Radioa7vo bta Nuclar

Leia mais

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS M MIOS CONDUTORS A quação d onda dduida no capítulo antrior é para mios sm prdas ( = ). Vamos agora ncontrar a quação da onda m um mio qu aprsnta condutividad não

Leia mais

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno:

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno: Curso d Engnharia Mcânica Disciplina: Física 2 Nota: Rubrica Coordnador Profssor: Rudson R Alvs Aluno: Turma: EA3N Smstr: 1 sm/2017 Data: 20/04/2017 Avaliação: 1 a Prova Valor: 10,0 p tos INSTRUÇÕES DA

Leia mais

GERADOR ELETROSTÁTICO

GERADOR ELETROSTÁTICO GERADOR ELETROSTÁTICO Est artigo irá mostrar como construir um grador ltrostático, projto muito famoso m firas d Ciências. É uma máquina muito intrssant dvido às pqunas faíscas qu gra, dmonstrando claramnt

Leia mais

Catálogo M2404. PowerTrap. Série GP Série GT. Bomba Mecânica e Purgador Bomba

Catálogo M2404. PowerTrap. Série GP Série GT. Bomba Mecânica e Purgador Bomba Catálogo M404 PowrTrap Mcânica Séri GP Séri GT Rcupração ficaz do Mlhora a ficiência da planta Aumnto da produtividad qualidad dos produtos são, alguns dos bnfícios da drnagm rcupração do, além d rduzir

Leia mais

Tópicos do Curso ELETROTÉCNICA Eng.ª Mec. - ELM

Tópicos do Curso ELETROTÉCNICA Eng.ª Mec. - ELM Tópicos do urso EETROTÉNIA Eng.ª Mc. - EM Est rotiro tm como finalidad ofrcr aos alunos da disciplina Eltrotécnica, dos cursos d Engnharia, spcificamnt, d ngnharia mcânica, EM, os principais fundamntos

Leia mais

Planejamento de capacidade

Planejamento de capacidade Administração da Produção Opraçõs II Planjamnto d capacidad Planjamnto d capacidad Planjamnto d capacidad é uma atividad crítica dsnvolvida parallamnt ao planjamnto d matriais a) Capacidad insuficint lva

Leia mais

Diogo Batista de Oliveira ANÁLISE DO AQUECIMENTO POR MICROONDAS EM UMA CAVIDADE MONOMODO UTILIZANDO UMA TÉCNICA SEMI-ANALÍTICA

Diogo Batista de Oliveira ANÁLISE DO AQUECIMENTO POR MICROONDAS EM UMA CAVIDADE MONOMODO UTILIZANDO UMA TÉCNICA SEMI-ANALÍTICA UNIVERSIDADE FEDERAL DE MINAS GERAIS ESCOLA DE ENGENHARIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA Diogo Batista d Olivira ANÁLISE DO AQUECIMENTO POR MICROONDAS EM UMA CAVIDADE MONOMODO UTILIZANDO

Leia mais

Emerson Marcos Furtado

Emerson Marcos Furtado Emrson Marcos Furtado Mstr m Métodos Numéricos pla Univrsidad Fdral do Paraná (UFPR). Graduado m Matmática pla UFPR. Profssor do Ensino Médio nos stados do Paraná Santa Catarina dsd 1992. Profssor do Curso

Leia mais

λ, para x 0. Outras Distribuições de Probabilidade Contínuas

λ, para x 0. Outras Distribuições de Probabilidade Contínuas abilidad Estatística I Antonio Roqu Aula 3 Outras Distribuiçõs d abilidad Contínuas Vamos agora studar mais algumas distribuiçõs d probabilidads para variávis contínuas. Distribuição Eponncial Uma variávl

Leia mais

uma estrutura convencional. Desta forma, o desempenho de um sistema estrutural está diretamente relacionado com o desempenho de suas ligações.

uma estrutura convencional. Desta forma, o desempenho de um sistema estrutural está diretamente relacionado com o desempenho de suas ligações. ISSN 1809-5860 ESTUDO DE UMA LIGAÇÃO VIGA-PILAR UTILIZADA EM GALPÕES DE CONCRETO PRÉ- MOLDADO Anamaria Malachini Miotto 1 & Mounir Khalil El Dbs 2 Rsumo Em gral, as ligaçõs ntr lmntos pré-moldados d concrto

Leia mais

Procedimento em duas etapas para o agrupamento de dados de expressão gênica temporal

Procedimento em duas etapas para o agrupamento de dados de expressão gênica temporal Procdimnto m duas tapas para o agrupamnto d dados d xprssão gênica tmporal Moysés Nascimnto Fabyano Fonsca Silva Thlma Sáfadi Ana Carolina Campana Nascimnto Introdução Uma das abordagns mais importants

Leia mais

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física UNIVERSIDADE FEDERAL DE GOIAS INSTITUTO DE FÍSICA C.P. 131, CEP 74001-970, Goiânia - Goiás - Brazil. Fon/Fax: +55 62 521-1029 Programa d Pós-Graduação Procsso d Slção 2 0 Smstr 2008 Exam d Conhcimnto m

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

66 (5,99%) 103 (9,35%) Análise Combinatória 35 (3,18%)

66 (5,99%) 103 (9,35%) Análise Combinatória 35 (3,18%) Distribuição das 0 Qustõs do I T A 9 (8,6%) 66 (,99%) Equaçõs Irracionais 09 (0,8%) Equaçõs Exponnciais (,09%) Conjuntos 9 (,6%) Binômio d Nwton (,9%) 0 (9,%) Anális Combinatória (,8%) Go. Analítica Funçõs

Leia mais

ESTUDO DA CINÉTICA DE SECAGEM DO BAGAÇO DO PEDUNCULO DO CAJU IN NATURA E ENRIQUECIDO, COM APLICAÇÃO DO MODELO DIFUSIONAL DE FICK.

ESTUDO DA CINÉTICA DE SECAGEM DO BAGAÇO DO PEDUNCULO DO CAJU IN NATURA E ENRIQUECIDO, COM APLICAÇÃO DO MODELO DIFUSIONAL DE FICK. ESTUDO DA CINÉTICA DE SECAGEM DO BAGAÇO DO PEDUNCULO DO CAJU IN NATURA E ENRIQUECIDO, COM APLICAÇÃO DO MODELO DIFUSIONAL DE FICK. N. M. RIBEIRO FILHO 1 ; R. C. SANTOS 3 ; O. L. S. d ALSINA ; M. F. D. MEDEIROS

Leia mais

CAPÍTULO 13 PROPRIEDADES TÉRMICAS DE MATERIAIS

CAPÍTULO 13 PROPRIEDADES TÉRMICAS DE MATERIAIS 30 CAPÍTULO 13 PROPRIEDADES TÉRMICAS DE MATERIAIS Sumário Objtivos dst capítulo...303 13.1 Uma brv introdução...303 13. Propridads térmicas d matriais...303 13.3.1 Capacidad calorífica vibracional ltrônica...308

Leia mais

Modelo de Oferta e Demanda Agregada (OA-DA)

Modelo de Oferta e Demanda Agregada (OA-DA) Modlo d Ofrta Dmanda Agrgada (OA-DA) Lops Vasconcllos (2008), capítulo 7 Dornbusch, Fischr Startz (2008), capítulos 5 6 Blanchard (2004), capítulo 7 O modlo OA-DA xamina as condiçõs d quilíbrio dos mrcados

Leia mais

CONTINUIDADE A idéia de uma Função Contínua

CONTINUIDADE A idéia de uma Função Contínua CONTINUIDADE A idéia d uma Função Contínua Grosso modo, uma função contínua é uma função qu não aprsnta intrrupção ou sja, uma função qu tm um gráfico qu pod sr dsnhado sm tirar o lápis do papl. Assim,

Leia mais

3 Modelagem de motores de passo

3 Modelagem de motores de passo 31 3 odlagm d motors d passo Nst capítulo é studado um modlo d motor d passo híbrido. O modlo dsnolido é implmntado no ambint computacional Simulink/TL. Est modlo pod sr utilizado m motors d imã prmannt,

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}. Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos

Leia mais

Laboratório de Física

Laboratório de Física Laboratório d Física Exprimnto 01: Associação d Rsistors Disciplina: Laboratório d Física Exprimntal II Profssor: Turma: Data: / /20 Alunos (noms compltos m ordm alfabética): 1: 2: 3: 4: 5: 2/15 01 Associação

Leia mais

MÁQUINAS SÍNCRONAS PRINCÍPIO DE FUNCIONAMENTO DAS MÁQUINAS ELÉTRICAS. Princípio de Funcionamento Aplicado ao Motor Elétrico

MÁQUINAS SÍNCRONAS PRINCÍPIO DE FUNCIONAMENTO DAS MÁQUINAS ELÉTRICAS. Princípio de Funcionamento Aplicado ao Motor Elétrico PRINCÍPIO DE FUNCIONAMENTO DAS MÁQUINAS ELÉTRICAS MÁQUINAS SÍNCRONAS Princípio d indução aplicado ao grador d tnsão Princípio d Funcionamnto Aplicado ao Motor Elétrico Princípio d Funcionamnto Aplicado

Leia mais

2.2 Transformada de Fourier e Espectro Contínuo

2.2 Transformada de Fourier e Espectro Contínuo 2.2 Transformada d Fourir Espctro Contínuo Analisam-s a sguir, sinais não priódicos, concntrados ao longo d um curto intrvalo d tmpo. Dfinição: sinal stritamnt limitado no tmpo Dado um sinal não priódico

Leia mais

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é:

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é: nrgia no MHS Para studar a nrgia mcânica do oscilador harmônico vamos tomar, como xmplo, o sistma corpo-mola. A nrgia cinética do sistma stá no corpo d massa m. A mola não tm nrgia cinética porqu é uma

Leia mais

Equilíbrio Térmico. é e o da liga é cuja relação com a escala Celsius está representada no gráfico.

Equilíbrio Térmico. é e o da liga é cuja relação com a escala Celsius está representada no gráfico. Equilíbrio Térmico 1. (Unsp 2014) Para tstar os conhcimntos d trmofísica d sus alunos, o profssor propõ um xrcício d calorimtria no qual são misturados 100 g d água líquida a 20 C com 200 g d uma liga

Leia mais

Proposta de Resolução do Exame Nacional de Física e Química A 11.º ano, 2011, 1.ª fase, versão 1

Proposta de Resolução do Exame Nacional de Física e Química A 11.º ano, 2011, 1.ª fase, versão 1 Proposta d Rsolução do Exam Nacional d ísica Química A 11.º ano, 011, 1.ª fas, vrsão 1 Socidad Portugusa d ísica, Divisão d Educação, 8 d Junho d 011, http://d.spf.pt/moodl/ 1. Movimnto rctilíno uniform

Leia mais

Temática Circuitos Eléctricos Capítulo Sistemas Trifásicos LIGAÇÃO DE CARGAS INTRODUÇÃO

Temática Circuitos Eléctricos Capítulo Sistemas Trifásicos LIGAÇÃO DE CARGAS INTRODUÇÃO www.-l.nt Tmática Circuitos Eléctricos Capítulo Sistmas Trifásicos GAÇÃO DE CARGAS NTRODÇÃO Nsta scção, studam-s dois tipos d ligação d cargas trifásicas (ligação m strla ligação m triângulo ou dlta) dduzindo

Leia mais

Física 3. k = 1/4πε 0 = 9, N.m 2 /C Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação

Física 3. k = 1/4πε 0 = 9, N.m 2 /C Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação Física 3 Valors d algumas constants físicas clração da gravidad: 10 m/s 2 Dnsidad da água: 1,0 g/cm 3 Calor spcífico da água: 1,0 cal/g C Carga do létron: 1,6 x 10-19 C Vlocidad da luz no vácuo: 3,0 x

Leia mais

A VARIAÇÃO ENTRE PERDA & PERCA: UM CASO DE MUDANÇA LINGUÍSTICA EM CURSO?

A VARIAÇÃO ENTRE PERDA & PERCA: UM CASO DE MUDANÇA LINGUÍSTICA EM CURSO? A VARIAÇÃO ENTRE PERDA & PERCA: UM CASO DE MUDANÇA LINGUÍSTICA EM CURSO? Luís Augusto Chavs Frir, UNIOESTE 01. Introdução. Esta é uma psquisa introdutória qu foi concrtizada como um studo piloto d campo,

Leia mais

GERADORES E RECEPTORES. Setor 1202 Aulas 58, 59, 60 Prof. Calil. Geradores

GERADORES E RECEPTORES. Setor 1202 Aulas 58, 59, 60 Prof. Calil. Geradores GERADORES E RECEPTORES Stor 1202 Aulas 58, 59, 60 Prof. Call Gradors São sstmas qu convrtm um dtrmnado tpo d nrga, m nrga létrca. Cram mantém nos sus trmnas, uma dfrnça d potncal. São xmplos d gradors

Leia mais

03/04/2014. Força central. 3 O problema das forças centrais TÓPICOS FUNDAMENTAIS DE FÍSICA. Redução a problema de um corpo. A importância do problema

03/04/2014. Força central. 3 O problema das forças centrais TÓPICOS FUNDAMENTAIS DE FÍSICA. Redução a problema de um corpo. A importância do problema Força cntral 3 O problma das forças cntrais TÓPICOS FUNDAMENTAIS DE FÍSICA Uma força cntralé uma força (atrativa ou rpulsiva) cuja magnitud dpnd somnt da distância rdo objto à origm é dirigida ao longo

Leia mais

No N r o m r a m s a?

No N r o m r a m s a? Normas? EM ALGUMA CERÂMICA... NORMAS? O qu tnho a vr com isso? VENDAS NORMAS??? O qu é isso?...um clint dixou d fchar o pdido porqu o bloco não stava dntro das NORMAS... Grnt Produção...Uma carga d Blocos

Leia mais

a b TERMOLOGIA 1- Definição É o ramo da física que estuda os efeitos e as trocas de calor entre os corpos.

a b TERMOLOGIA 1- Definição É o ramo da física que estuda os efeitos e as trocas de calor entre os corpos. TERMOLOGI 1- Dfinição É o ramo da física qu studa os fitos as trocas d calor ntr os corpos. 2- Tmpratura É a mdida do grau d agitação d suas moléculas 8- Rlação ntr as scalas trmométricas Corpo Qunt Grand

Leia mais

AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU

AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU ANEXO II Coficint d Condutibilidad Térmica In-Situ AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU AII.1. JUSTIFICAÇÃO O conhcimnto da rsistência térmica ral dos componnts da nvolvnt do difício

Leia mais

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2 FILTROS Como tmos visto, quando tmos lmntos rativos nos circuitos, as tnsõs sobr os lmntos d um circuitos m CA são dpndnts da frquência. Est comportamnto m circuitos montados como divisors d tnsão prmit

Leia mais

GRANDEZAS SINUSOIDAIS

GRANDEZAS SINUSOIDAIS www.-l.nt mática Circuitos Eléctricos Capítulo Rgim Sinusoidal GRANDEZAS SINUSOIDAIS INRODUÇÃO Nst capítulo, faz-s uma pquna introdução às grandzas altrnadas ond s aprsntam algumas das razõs porqu os sistmas

Leia mais

Projeto de Magnéticos

Projeto de Magnéticos rojto d Magnéticos rojto d circuitos magnéticos ltrônicos rojto d Magnéticos 1. ntrodução s caractrísticas idais d um componnt magnético são: rsistência nula, capacitância parasita nula, dnsidad d campo

Leia mais

Atitudes Sociolinguísticas em cidades de fronteira: o caso de Bernardo de Irigoyen. Célia Niescoriuk Grad/UEPG. Valeska Gracioso Carlos UEPG.

Atitudes Sociolinguísticas em cidades de fronteira: o caso de Bernardo de Irigoyen. Célia Niescoriuk Grad/UEPG. Valeska Gracioso Carlos UEPG. Atituds Sociolinguísticas m cidads d frontira: o caso d Brnardo d Irigoyn. Célia Niscoriuk Grad/UEPG. Valska Gracioso Carlos UEPG. 1. Introdução: O Brasil Argntina fazm frontira m crca d 1240 km dsd sua

Leia mais

OFICINA 9-2ºSementre / MATEMÁTICA 3ª SÉRIE / QUESTÕES TIPENEM Professores: Edu Vicente / Gabriela / Ulício

OFICINA 9-2ºSementre / MATEMÁTICA 3ª SÉRIE / QUESTÕES TIPENEM Professores: Edu Vicente / Gabriela / Ulício OFICINA 9-2ºSmntr / MATEMÁTICA 3ª SÉRIE / QUESTÕES TIPENEM Profssors: Edu Vicnt / Gabrila / Ulício 1. (Enm 2012) As curvas d ofrta d dmanda d um produto rprsntam, rspctivamnt, as quantidads qu vnddors

Leia mais

UMA INTRODUÇÃO A TOPOLOGIA

UMA INTRODUÇÃO A TOPOLOGIA Encontro d Ensino, Psquisa Extnsão, Prsidnt Prudnt, 0 a 3 d outubro, 014 0 UMA INTRODUÇÃO A TOPOLOGIA TÍTULO DO TRABALHO EM INGLES Mário Márcio dos Santos Palhars 1, Antonio Carlos Tamarozzi² Univrsidad

Leia mais

PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA

PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA CONTEÚDOS EIXO TEMÁTICO COMPETÊNCIAS Sistma d Numração - Litura scrita sistma d numração indo-arábico

Leia mais

6. Moeda, Preços e Taxa de Câmbio no Longo Prazo

6. Moeda, Preços e Taxa de Câmbio no Longo Prazo 6. Moda, Prços Taxa d Câmbio no Longo Prazo 6. Moda, Prços Taxa d Câmbio no Longo Prazo 6.1. Introdução 6.3. Taxas d Câmbio ominais Rais 6.4. O Princípio da Paridad dos Podrs d Compra Burda & Wyplosz,

Leia mais

A distribuição Beta apresenta

A distribuição Beta apresenta Prof. Lorí Viali, Dr. viali@pucrs.br http://www.pucrs.br/famat/viali/ Bta Cauchy Erlang Exponncial F (Sndkor) Gama Gumbl Laplac Logística Lognormal Normal Parto Qui-quadrado - χ Studnt - t Uniform Wibull

Leia mais

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática Aula Tórica nº 8 LEM-2006/2007 Trabalho ralizado plo campo lctrostático nrgia lctrostática Considr-s uma carga q 1 no ponto P1 suponha-s qu s trás uma carga q 2 do até ao ponto P 2. Fig. S as cargas form

Leia mais

3 Aritmética Computacional

3 Aritmética Computacional 33 3 Aritmética Computacional 3. Introdução Quando s utiliza um qualqur instrumnto d trabalho para ralizar uma tarfa dv-s tr um conhcimnto profundo do su modo d funcionamnto, das suas capacidads das suas

Leia mais

TECNOLOGIA DE INFORMAÇÃO

TECNOLOGIA DE INFORMAÇÃO FUNDAÇÃO EDUCACIONAL DE ALÉM PARAÍBA INSTITUTO SUPERIOR DE EDUCAÇÃO NAIR FORTES ABU-MERHY TECNOLOGIA DE INFORMAÇÃO PLANEJAMENTO DO PARQUE TECNOLÓGICO 2011-2013 Tcnologia d Informação - FEAP 1 - Rlação

Leia mais

RI406 - Análise Macroeconômica

RI406 - Análise Macroeconômica Fdral Univrsity of Roraima, Brazil From th SlctdWorks of Elói Martins Snhoras Fall Novmbr 18, 2008 RI406 - Anális Macroconômica Eloi Martins Snhoras Availabl at: http://works.bprss.com/loi/54/ Anális Macroconômica

Leia mais

O que são dados categóricos?

O que são dados categóricos? Objtivos: Dscrição d dados catgóricos por tablas gráficos Tst qui-quadrado d adrência Tst qui-quadrado d indpndência Tst qui-quadrado d homognidad O qu são dados catgóricos? São dados dcorrnts da obsrvação

Leia mais

Prof. Antonio Carlos Santos. Aula 9: Transistor como amplificador

Prof. Antonio Carlos Santos. Aula 9: Transistor como amplificador IF-UFRJ lmntos d ltrônica Analógica Prof. Antonio Carlos Santos Mstrado Profissional m nsino d Física Aula 9: Transistor como amplificador st matrial foi basado m liros manuais xistnts na litratura (id

Leia mais

x 2 sen e 13 y x b intercepta a elipse y 1 4 ponto. A soma dos valores de b é: PROVA DE MATEMÁTICA QUESTÃO 03 Considere a sequência a 1, a2,

x 2 sen e 13 y x b intercepta a elipse y 1 4 ponto. A soma dos valores de b é: PROVA DE MATEMÁTICA QUESTÃO 03 Considere a sequência a 1, a2, UFT/CPESE Vstibular/010. PVA DE MATEMÁTICA QUESTÃ 01 Considr as quaçõs das circunfrências C 1 : x x y y 0 C : x 4x y 4y 0 cujos gráficos stão rprsntados abaixo: QUESTÃ 03 Considr a squência a 1, a, a3,...

Leia mais

Atrito Fixação - Básica

Atrito Fixação - Básica 1. (Pucpr 2017) Um bloco d massa stá apoiado sobr uma msa plana horizontal prso a uma corda idal. A corda passa por uma polia idal na sua xtrmidad final xist um gancho d massa dsprzívl, conform mostra

Leia mais

PARTE I A) RESISTÊNCIA DEVIDA AO FLUXO DE AR COM AS SUPERFÍCIES

PARTE I A) RESISTÊNCIA DEVIDA AO FLUXO DE AR COM AS SUPERFÍCIES UNIVERSIDADE FEDERAL DO PIAUÍ CENTRO DE CIÊNCIAS DA NAUREZA DEPARTAMENTO DE FÍSICA DISCIPLINA: FÍSICA EXPERIMENTAL II Prof. Dr.: JEREMIAS ARAÚJO PRÁTICA IV PARTE I A) RESISTÊNCIA DEVIDA AO FLUXO DE AR

Leia mais

Calor Específico. Q t

Calor Específico. Q t Calor Espcífico O cocint da quantidad d nrgia () forncida por calor a um corpo plo corrspondnt acréscimo d tmpratura ( t) é chamado capacidad térmica dst corpo: C t Para caractrizar não o corpo, mas a

Leia mais

Mecânica dos Fluidos. Trabalhos de Laboratório. Universidade da Beira Interior

Mecânica dos Fluidos. Trabalhos de Laboratório. Universidade da Beira Interior Mcânica dos Fluidos Trabalhos d Laboratório Univrsidad da Bira Intrior Novmbro d 1995 Índic I. Mdição d Prssõs com Tubos d Pitot... II. Visualização d Escoamntos num Túnl d Fumo... 6 III. Dtrminação da

Leia mais

Desse modo, sendo E a energia de ligação de um núcleo formado por Z prótons e (A Z) nêutrons, de massa M(Z,A), pode-se escrever: E 2

Desse modo, sendo E a energia de ligação de um núcleo formado por Z prótons e (A Z) nêutrons, de massa M(Z,A), pode-se escrever: E 2 Enrgia d Ligação Nuclar Dado um núclo qualqur, a nrgia librada quando da sua formação a partir dos sus prótons nêutrons sparados d uma distância infinita é o qu s chama d nrgia d ligação d tal núclo. Dito

Leia mais

Campo elétrico. Antes de estudar o capítulo PARTE I

Campo elétrico. Antes de estudar o capítulo PARTE I PART I Unidad A 2 Capítulo Sçõs: 21 Concito d 22 d cargas puntiforms 2 uniform Ants d studar o capítulo Vja nsta tabla os tmas principais do capítulo marqu um X na coluna qu mlhor traduz o qu você pnsa

Leia mais

Fun»c~oesexponenciaiselogar ³tmicas. Uma revis~ao e o n umero e

Fun»c~oesexponenciaiselogar ³tmicas. Uma revis~ao e o n umero e Aula 9 Fun»c~osponnciaislogar ³tmicas. Uma rvis~ao o n umro Nsta aula farmos uma pquna rvis~ao das fun»c~os f() =a g() =log a, sndo a uma constant ral, a>0 a 6=. Farmos ainda uma aprsnta»c~ao do n umro,

Leia mais

Modelagem Matemática em Membranas Biológicas

Modelagem Matemática em Membranas Biológicas Modlagm Matmática m Mmbranas Biológicas Marco A. P. Cabral Dpto d Matmática Aplicada, UFRJ Ilha do Fundão, Rio d Janiro, RJ -mail : mcabral@labma.ufrj.br Nathan B. Viana Instituto d Física Laboratório

Leia mais

ANÁLISE DA NORMA NBR 7117 BASEADO NA ESTRATIFICAÇÃO OTIMIZADA DO SOLO A PARTIR DO ALGORITMO DE SUNDE E ALGORITMOS GENÉTICOS

ANÁLISE DA NORMA NBR 7117 BASEADO NA ESTRATIFICAÇÃO OTIMIZADA DO SOLO A PARTIR DO ALGORITMO DE SUNDE E ALGORITMOS GENÉTICOS AÁLISE DA ORMA BR 77 BASEADO A ESTRATIFICAÇÃO OTIMIZADA DO SOLO A PARTIR DO ALGORITMO DE SUDE E ALGORITMOS GEÉTICOS ROOEY RIBEIRO A. COELHO RICARDO SILA THÉ POTES.. Univrsidad Fdral do Cará Cntro d Tcnologia

Leia mais

DISTRIBUIÇÃO DE PROBABILIDADE DE VALORES EXTREMOS DA PRECIPITAÇÃO MÁXIMA DE 24 HORAS DE BELÉM DO PARÁ

DISTRIBUIÇÃO DE PROBABILIDADE DE VALORES EXTREMOS DA PRECIPITAÇÃO MÁXIMA DE 24 HORAS DE BELÉM DO PARÁ DISTRIBUIÇÃO DE PROBABILIDADE DE VALORES ETREMOS DA MÁIMA DE 24 HORAS DE BELÉM DO PARÁ Mauro Mndonça da Silva Mstrando UFAL Mació - AL -mail: mmds@ccn.ufal.br Ant Rika Tshima Gonçalvs UFPA Blém-PA -mail:

Leia mais

GABARITO. 2a PROVA: REDAÇÃO / CONHECIMENTOS ESPECÍFICOS (Física e Química) 22 / JUNHO / 2008 GRUPO 3

GABARITO. 2a PROVA: REDAÇÃO / CONHECIMENTOS ESPECÍFICOS (Física e Química) 22 / JUNHO / 2008 GRUPO 3 GRUPO 3 CURSOS: Química (Licnciatura/Bacharlado) Tcnologia m Radiologia UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CONCURSO VESTIBULAR INVERNO/2008 2a PROVA: REDAÇÃO / CONHECIMENTOS ESPECÍFICOS (Física

Leia mais

Edital de seleção de candidatos para o Doutorado em Matemática para o Período 2015.2

Edital de seleção de candidatos para o Doutorado em Matemática para o Período 2015.2 ] Univrsidad Fdral da Paraíba Cntro d Ciências Exatas da Naturza Dpartamnto d Matmática Univrsidad Fdral d Campina Grand Cntro d Ciências Tcnologia Unidad Acadêmica d Matmática Programa Associado d Pós-Graduação

Leia mais

2.5. Estrutura Diamétrica

2.5. Estrutura Diamétrica F:\MEUS-OCS\LIRO_EF_44\CAP_I_ESTRUTURA-PARTE_4.doc 5.5. Estrutura iamétrica A strutura diamétrica é tamém dnominada d distriuição diamétrica ou distriuição dos diâmtros. Concitua-s distriuição diamétrica

Leia mais

Propagação de sinais senoidais em um cabo coaxial

Propagação de sinais senoidais em um cabo coaxial Disipina: Ondas Prpaaçã Prf.: Dr. Airtn Rams Univrsidad d Estad d Santa Catarina Cntr d Ciênias Tnóias CCT Dpartamnt d Ennharia Eétria Labratóri d Etrmantism E-3 Prpaaçã d sinais snidais m um ab axia O

Leia mais

A IMPLEMENTAÇÃO DA LÍNGUA ESPANHOLA NAS ESCOLAS DE SERGIPE. A presença da língua espanhola no Nordeste e o caso de Sergipe

A IMPLEMENTAÇÃO DA LÍNGUA ESPANHOLA NAS ESCOLAS DE SERGIPE. A presença da língua espanhola no Nordeste e o caso de Sergipe Congrsso Intrnacional d Profssors d Línguas Oficiais do MERCOSUL A IMPLEMENTAÇÃO DA LÍNGUA ESPANHOLA NAS ESCOLAS DE SERGIPE Doris Cristina Vicnt da Silva Matos (UFS) Considraçõs iniciais Chgamos a 2010,

Leia mais

QUE ESPANHOL É ESSE? Mariano Jeferson Teixeira (Grad /UEPG) Valeska Gracioso Carlos (UEPG)

QUE ESPANHOL É ESSE? Mariano Jeferson Teixeira (Grad /UEPG) Valeska Gracioso Carlos (UEPG) Congrsso Intrnacional d Profssors d Línguas Oficiais do MERCOSUL QUE ESPANHOL É ESSE? Mariano Jfrson Tixira (Grad /UEPG) Valska Gracioso Carlos (UEPG) 1. Introdução Graças á rgulamntaçõs impostas por acordos

Leia mais

Ori Junior. Ano: 3º Turma: Turno: Data: / / Listão Física Geral (3º ANO)

Ori Junior. Ano: 3º Turma: Turno: Data: / / Listão Física Geral (3º ANO) Profssor(a): Ori Junior Aluno(a): CPMG MAJOR OSCAR ALVELOS Ano: 3º Turma: Turno: Data: / / Listão Física Gral (3º ANO) Procdimnto d ralização: - Lista rspondida m papl almaço dvrá contr cabçalho complto

Leia mais

MATRIZ DE REFERÊNCIA PARA AVALIAÇÃO EM MATEMÁTICA AVALIA BH 1º, 2º E 3º CICLOS DO ENSINO FUNDAMENTAL

MATRIZ DE REFERÊNCIA PARA AVALIAÇÃO EM MATEMÁTICA AVALIA BH 1º, 2º E 3º CICLOS DO ENSINO FUNDAMENTAL MATRIZ DE REFERÊNCIA PARA EM MATEMÁTICA AVALIA BH 1º, 2º E 3º CICLOS DO ENSINO FUNDAMENTAL Na ralização d uma avaliação ducacional m larga scala, é ncssário qu os objtivos da avaliação as habilidads comptências

Leia mais