Alfabeto e palavras. Alfabeto conjunto finito de símbolos (Σ).

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Alfabeto e palavras. Alfabeto conjunto finito de símbolos (Σ)."

Transcrição

1 Alfabeto e palavras Alfabeto conjunto finito de símbolos (Σ). {A,...,Z}, {α, β,... }, {a,b}, {0,1}, ASCII Palavra de Σ sequência finita de símbolos do alfabeto Σ Σ = {a, b} aabba a aaaaaaaa Comprimento duma palavra x, é número de símbolos de x, x Σ = {a, b} palavras de comprimento 2: aa ab ba bb Palavra vazia é a palavra com zero símbolos, denota-se ɛ a n é a palavra constituída por n símbolos a a 5 = aaaaa a 1 = a a 0 = ɛ Podemos definir a n indutivamente: a 0 = ɛ a n+1 = a n a Departamento de Ciência de Computadores da FCUP MC Aula 2 1

2 Σ k conjunto de todas as palavras de Σ de comprimento k(σ 0 = {ɛ}) {a, b} 2 = {aa, ab, ba, bb} Σ conjunto de todas as palavras de Σ (incluindo ɛ) Qual o cardinal de Σ? (Para responder mais tarde...) {a, b} = {ɛ, a, b, aa, ab, ba, bb, aaa, aab,...} {a} = {ɛ, a, aa, aaa, aaaa,...} = {a n n 0} Por definição: ={ɛ} Não confundir conjuntos de símbolos com palavras: {a, b} = {b, a} mas ab ba;{a, a, b} = {a, b} mas aab ab Departamento de Ciência de Computadores da FCUP MC Aula 2 2

3 Operações sobre palavras A concatenação ( ) de x e y é a palavra xy, obtida por justaposição de y no fim de x(representamos x y = xy) aab concatenada com bba é aabbba flor concatenada com bela é florbela é associativa (xy)z = x(yz) a palavra vazia é identidade: ɛx = xɛ = x xy = x + y (Σ,, ɛ) é um monóide Uma palavra v é uma subpalavra de w sse existem x e y tal que w = xvy Se y = ɛ então v é um sufixo de w. Se x = ɛ então v é um prefixo de w. Departamento de Ciência de Computadores da FCUP MC Aula 2 3

4 Σ = {0, 1} w = é subpalavra de w? e 10? e 111? flor é um prefixo de florbela. bela é um sufixo de florbela Quais os prefixos de ? E os sufixos? ɛ é uma subpalavra de qualquer palavra x n é a concatenação de n cópias da palavra x. Define-se indutivamente por: x 0 = ɛ x n+1 = x n x Sendo w = aaba determina w 0, w 1, w 2, w 3 e w 4 Para todo n 0, x n = n x. Prova! Departamento de Ciência de Computadores da FCUP MC Aula 2 4

5 Qual a relação entre amor e roma?e baabba e abbaab? A palavra inversa de x, denota-se por x R e pode-se definir por indução no comprimento de x: 1. Se x = 0 então x R = x = ɛ 2. Se x = n + 1, então x = ya (a Σ) e x R = ay R Exercício 2.1. Determina as inversas de: aabaab, bbabb, b Exercício 2.2. Mostra por indução que (xy) R = y R x R. Departamento de Ciência de Computadores da FCUP MC Aula 2 5

6 Linguagem (formal) de alfabeto Σ Linguagem é qualquer subconjunto de Σ, i.e. qualquer conjunto de palavras de Σ Σ = {a, b} {aa, ab, ba, bb} ou {x x {a, b} e x = 2} {a, aa, ab, ba, aaa, aab, aba,...} ou {x x {a, b} com pelo menos um a} {ɛ, ab, ba, abab, aabb, baba, bbaa, abba, baab,...} ou {x x {a, b} com o mesmo número de a e b} Σ Σ n Σ {ɛ} As linguagens podem ser finitas ou infinitas. Dá exemplo de cada... Pretende-se obter representações finitas para as linguagens infinitas, i.e. L = {x Σ x têm a propriedade P } Departamento de Ciência de Computadores da FCUP MC Aula 2 6

7 Problemas e Linguagens Um problema de decisão equivale a decidir se uma palavra pertence a uma dada linguagem. Portanto podemos identificar problemas e linguagens. Dado um alfabeto Σ e L uma linguagem sobre Σ (L Σ ), o problema L é: Dado w Σ, decidir se w L Exemplo: Primalidade L p L p = {x {0, 1} x é a representação binária de um número primo} Departamento de Ciência de Computadores da FCUP MC Aula 2 7

8 Revisões de Conjuntos a A a pertence a A, a é elemento de A a {a, b, c} a / A a não pertence a A d / {a, b, c} A B A contido em B, x A x B {a, b} {b, c, a} A B A contém B, B A {b, c, a} {a, b} A = B igualdade de conjuntos, A B e B A {a, b, c} = {b, c, a} A B x tal que x A e x / B ou vice-versa ou {} conjunto vazio #A ou A cardinal de A, número de elementos (finito {a, b, c} = 3 ou infinito) P(A) Conjunto dos subconjuntos de A P({a, b}) = {, {a}, {b}, {a, b}} Partição de A subconjunto de P(A), tal que os elementos são {{a}, {c, b}} não vazios, disjuntos 2 a 2 e a reunião é A A B Produto cartesiano de A e B, conjunto de pares ordenados (a, b), a A e b B R A B Relação binária de A em B Departamento de Ciência de Computadores da FCUP MC Aula 2 8

9 Operações sobre linguagens Intersecção de A com B A B = {x x A e x B} Reunião de A com B A B = {x x A ou x B} Complementar de B em A A \ B = {x x A e x / B} Complementar de A A, complementar de A em U, quando está impĺıcito um universo U Complementar de A em Σ : {x Σ x / A} Concatenação AB = {xy x A e y B} {a, ab}{b, ba} = {ab, aba, abb, abba} Normalmente AB BA Departamento de Ciência de Computadores da FCUP MC Aula 2 9

10 As potências L n de L são definidas indutivamente por: L 0 = {ɛ} L n+1 = LL n Isto é, L n = {x 1 x 2... x n x i L, 1 i n} {ab, aab} 0 = {ɛ} {ab, aab} 1 = {ab, aab} {ab, aab} 2 = {abab, abaab, aabab, aabaab} {ab, aab} 3 = {ababab,ababaab,abaabab,aababab, abaabaab,aababaab,aabaabab,aabaabaab} Departamento de Ciência de Computadores da FCUP MC Aula 2 10

11 Fecho de Kleene O fecho de Kleene L de L é a reunião de todas as potências finitas de L L = L 0 L 1 L 2 L 3... = n 0 L n ou, equivalentemente, L = {x 1 x 2... x n n 0 e x i L, 1 i n} i.e, a linguagem das palavras que são concatenação de palavras de L. Exercício 2.3. Mostrar a equivalência das duas definições. Σ, o conjunto das palavras de alfabeto Σ, é o fecho de Kleene de Σ = {ɛ} {01} = {ɛ, 01, 0101, , , ,...} {000} = {ɛ, 000, , ,...} = {0 3n n N} L + é a reunião das potências não nulas de L L + = LL = n 1 L n Departamento de Ciência de Computadores da FCUP MC Aula 2 11

12 Exercício 2.4. Seja Σ o alfabeto {0, 1}. Sendo A = {10, 11} e B = {00, 1}, determina: A B, AB,BA, A 3, A Exercício 2.5. Seja aaaba uma palavra de alfabeto {a, b}. A que linguagens pertence: (a) {a, b} (b) {aaa, bab}{ba, bb} (c) {aaa} {b} {a} (d) {a} {b} {a} (e) {aa} {a} {a, ba, bb, ɛ} Departamento de Ciência de Computadores da FCUP MC Aula 2 12

13 Algumas propriedades das operações Associatividade, e concatenação: (A B) C = A (B C), (A B) C = A (B C), (AB)C = A(BC) Comutatividade e (A B) = (B A), (A B) = (B A) é o elemento neutro para a A = A = A é elemento absorvente para a concatenação A = A = Departamento de Ciência de Computadores da FCUP MC Aula 2 13

14 e distribuem sobre uma sobre a outra (A (B C)) = (A B) (A C), (A (B C)) = (A B) (A C) Concatenação distribui sobre a (mas não sobre ) A(B C) = AB AC Leis de Morgan (A B) = A B, (A B) = A B Se L 1, L 2 Σ e L 1 L 2 então L n 1 L n 2 (n N), e L 1 L 2 Sejam L 1, L 2 Σ. L 1 L 1 L 2 Se ɛ L 1 então L 2 L 1 L 2 e se ɛ L 2 então o fecho de Kleene verifica Departamento de Ciência de Computadores da FCUP MC Aula 2 14

15 A A = A (A ) = A ({ɛ} A) = A (A B ) = (A B) = {ɛ} Exercício 2.6. Mostra todas as propriedades anteriores. Departamento de Ciência de Computadores da FCUP MC Aula 2 15

16 Alfabeto Palavra Sumário dos conceitos novos Concatenação Inversa Vazia Linguagem concatenação fecho de Kleene relação com outras operações sobre conjuntos Departamento de Ciência de Computadores da FCUP MC Aula 2 16

17 Leituras [Tom99] (Pág 18-21) [HMU00](Cap 1.5) Referências [HMU00] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and Computation. Addison Wesley, 2nd edition, [Tom99] Ana Paula Tomás. Apontamentos de modelos de computação. Technical report, Departamento de Ciência de Computadores, FCUP, Departamento de Ciência de Computadores da FCUP MC Aula 2 17

Linguagem (formal) de alfabeto Σ

Linguagem (formal) de alfabeto Σ Linguagem (formal) de alfabeto Σ Linguagem é qualquer subconjunto de Σ, i.e. qualquer conjunto de palavras de Σ Σ = {a, b} {aa, ab, ba, bb} ou {x x {a, b} e x = 2} {a, aa, ab, ba, aaa, aab, aba,...} ou

Leia mais

Modelos de Computação

Modelos de Computação Modelos de Computação 2.ano LCC e LERSI URL: http://www.ncc.up.pt/~nam/aulas/0405/mc Escolaridade: 3.5T e 1P Frequência:Semanalmente serão propostos trabalhos aos alunos, que serão entregues nas caixas

Leia mais

Revisões de Conjuntos

Revisões de Conjuntos Revisões de Conjuntos {, {a}, {b}, {a, b}} a A a pertence a A, a é elemento de A a {a, b, c} a / A a não pertence a A d / {a, b, c} A B A contido em B, A subconjunto de B x A x B {a, b} {b, c, a} A B A

Leia mais

Problema A Codificação Símbolos Dado um inteiro n, n é N representação de inteiros 0,1,...,b - 1 numa base b Dado um grafo G, G é conexo?

Problema A Codificação Símbolos Dado um inteiro n, n é N representação de inteiros 0,1,...,b - 1 numa base b Dado um grafo G, G é conexo? 2 Linguagens Uma linguagem de programação, ou uma língua natural como o Português ou o Inglês, pode ser vista como um conjunto de sequências de símbolos, pertencentes a um conjunto finito. Em Português

Leia mais

Autómatos finitos não determinísticos (AFND)

Autómatos finitos não determinísticos (AFND) Autómatos finitos não determinísticos (AFND) [HMU00](Cap 2.3) Computações não determinísticas: o estado seguinte não é univocamente determinado pelo estado actual.num autómato finito (não-determínistico):

Leia mais

Alfabeto, Cadeias, Operações e Linguagens

Alfabeto, Cadeias, Operações e Linguagens Linguagens de Programação e Compiladores - Aula 3 1 Alfabeto, Cadeias, Operações e Linguagens 1.Conjuntos Para representar um determinado conjunto é necessário buscar uma notação para representá-lo e ter

Leia mais

Gramáticas ( [HMU00], Cap. 5.1)

Gramáticas ( [HMU00], Cap. 5.1) Gramáticas ( [HMU00], Cap. 5.1) Vimos que a seguinte linguagem não é regular L = {0 n 1 n n 0} Contudo podemos fácilmente dar uma definição indutiva das suas palavras: 1. ɛ L 2. Se x L então 0x1 L L é

Leia mais

Linguagens Formais e Autômatos. Alfabetos, Palavras, Linguagens e Gramáticas

Linguagens Formais e Autômatos. Alfabetos, Palavras, Linguagens e Gramáticas Linguagens Formais e Autômatos Alfabetos, Palavras, Linguagens e Gramáticas Cristiano Lehrer, M.Sc. Introdução (1/3) A Teoria das Linguagens Formais foi originariamente desenvolvida na década de 1950 com

Leia mais

Teoria da Computação Linguagens e Expressões Regulares, Autómatos de Estados Finitos

Teoria da Computação Linguagens e Expressões Regulares, Autómatos de Estados Finitos Teoria da Computação Linguagens e Expressões Regulares, Autómatos de Estados Finitos Simão Melo de Sousa 12 de Outubro de 2011 Conteúdo 1 Linguagens e Expressões Regulares 2 2 Autómatos de Estados Finitos

Leia mais

Linguagens Formais - Preliminares

Linguagens Formais - Preliminares Linguagens Formais - Preliminares Regivan H. N. Santiago DIMAp-UFRN 25 de fevereiro de 2007 Regivan H. N. Santiago (DIMAp-UFRN) Linguagens Formais - Preliminares 25 de fevereiro de 2007 1 / 26 Algumas

Leia mais

Outras Máquinas de Turing

Outras Máquinas de Turing Capítulo 10 Outras Máquinas de Turing 10.1. Pequenas variações da TM padrão 10.2. MT s com dispositivos de armazenamento mais complexos 10.3. MT s não-determinísticas 10.4. A Máquina de Turing Universal

Leia mais

Autómatos de pilha e Gramáticas independentes de contexto

Autómatos de pilha e Gramáticas independentes de contexto Autómatos de pilha e Gramáticas independentes de contexto Proposição 15.1. A classe de linguagens aceites por autómatos de pilha está contida a classe das linguagens independentes de contexto. Dem. Seja

Leia mais

Autómatos de pilha e GIC

Autómatos de pilha e GIC Autómatos de pilha e GIC Proposição 17.1. A classe de linguagens aceites por autómatos de pilha está contida na classe das linguagens independentes de contexto. Dem. Seja L uma linguagem independente de

Leia mais

MD Teoria dos Conjuntos 1

MD Teoria dos Conjuntos 1 Teoria dos Conjuntos Renato Martins Assunção assuncao@dcc.ufmg.br Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br MD Teoria dos Conjuntos 1 Introdução O que os seguintes objetos têm em comum? um

Leia mais

Autómatos de Pilha. Cada transição é caracterizada pelo estado, símbolo que está ser lido e o elemento no topo da pilha. dados de entrada.

Autómatos de Pilha. Cada transição é caracterizada pelo estado, símbolo que está ser lido e o elemento no topo da pilha. dados de entrada. Autómatos de Pilha Um autómato de pilha (não determinístico) (AP) é um autómato finito não determinístico com transições ɛ, acrescido de uma memória infinita a pilha mas em que o modo de acesso à informação

Leia mais

Capítulo 5. Linguagens livres de contexto

Capítulo 5. Linguagens livres de contexto Capítulo 5 Linguagens livres de contexto 5.1. Gramáticas livres de contexto 5.2. Parsing e ambiguidade 5.3. CFG e linguagens de programação 221 5.1. 1Gramáticas ái livres de contexto na parte esquerda

Leia mais

Exercicios. 7.2 Quais das seguintes afirmações são verdadeiras? Justifica. (d) abcd L((a(cd) b) )

Exercicios. 7.2 Quais das seguintes afirmações são verdadeiras? Justifica. (d) abcd L((a(cd) b) ) Exercicios 7.1 Escreve expressões regulares para cada uma das seguintes linguagens de Σ = {a, b}: (a) palavras com não mais do que três as (b) palavras com um número de as divisível por três (c) palavras

Leia mais

Noções de grafos (dirigidos)

Noções de grafos (dirigidos) Noções de grafos (dirigidos) Grafo G = (V, E) é um conjunto de vértices (ou nós) V e um conjunto de arcos E V V. 1 2 5 3 4 G = ({1, 2, 3, 4, 5}, {(1, 2), (2, 3), (2, 4), (3, 2), (3, 4), (4, 4)}) Um arco

Leia mais

Linguagens Formais e Problemas de Decisão

Linguagens Formais e Problemas de Decisão Linguagens Formais e Problemas de Decisão Mário S. Alvim (msalvim@dcc.ufmg.br) Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02) Mário S. Alvim (msalvim@dcc.ufmg.br) Linguagens Formais e Problemas

Leia mais

Teoria da Computação Aula 02 Introdução

Teoria da Computação Aula 02 Introdução Teoria da Computação Aula 02 Introdução Prof. Esp. Pedro Luís Antonelli Anhanguera Educacional Alfabeto Um alfabeto é um conjunto finito de símbolos ou caracteres, representado pela letra sigma ( ). Portanto:

Leia mais

Gramáticas Livres de Contexto

Gramáticas Livres de Contexto Gramáticas Livres de Contexto 25 de novembro de 2011 Definição 1 Uma Regra (ou produção) é um elemento do conjunto V (V Σ). Sendo que V é um conjunto finito de elementos chamados de variáveis e Σ um conjunto

Leia mais

Prof. Dr. Marcos Castilho. Departamento de Informática/UFPR. 27 de Fevereiro de 2018

Prof. Dr. Marcos Castilho. Departamento de Informática/UFPR. 27 de Fevereiro de 2018 27 de Fevereiro de 2018 Definição: Concatenação Sejam u, v Σ. A concatenação de u e v, denotado por uv é a operação binária sobre Σ assim definida (i) BASE: Se tamanho(v) = 0 então v = λ e uv = u. (ii)

Leia mais

Teoria das Linguagens. Linguagens Formais e Autómatos (Linguagens)

Teoria das Linguagens. Linguagens Formais e Autómatos (Linguagens) Teoria das Lic. em Ciências da Computação Formais e Autómatos () Carla Mendes Dep. Matemática e Aplicações Universidade do Minho 2010/2011 Teoria das - LCC - 2010/2011 Dep. Matemática e Aplicações - Univ.

Leia mais

Conceitos Básicos. Vocabulário Cadeias Linguagens Expressões Regulares Problema X Linguagem

Conceitos Básicos. Vocabulário Cadeias Linguagens Expressões Regulares Problema X Linguagem Conceitos Básicos Vocabulário Cadeias Linguagens Expressões Regulares Problema X Linguagem Alfabeto ou Vocabulário: Conjunto finito não vazio de símbolos. Símbolo é um elemento qualquer de um alfabeto.

Leia mais

Exercícios de Teoria da Computação Autómatos finitos não deterministas

Exercícios de Teoria da Computação Autómatos finitos não deterministas Licenciatura em Engenharia Informática e de Computadores - LEIC Licenciatura em Engenharia de Redes de Comunicações - LERC Exercícios de Teoria da Computação Autómatos finitos não deterministas Secção

Leia mais

Programa de Formação Contínua em Matemática para Professores do 1.º e 2.º Ciclos do Ensino Básico. I. Conjuntos

Programa de Formação Contínua em Matemática para Professores do 1.º e 2.º Ciclos do Ensino Básico. I. Conjuntos I. Conjuntos 1. Introdução e notações 1.1. Relação de pertença 1.2. Modos de representar um conjunto 1.3. Classificação de conjuntos quanto ao número de elementos 1.4. Noção de correspondência 2. Relações

Leia mais

Capítulo Métodos para transformar gramáticas ái Duas formas Normais (Chomsky e Greibach) ADC/TC/Cap.6/ /LEI/DEIFCTUC 268

Capítulo Métodos para transformar gramáticas ái Duas formas Normais (Chomsky e Greibach) ADC/TC/Cap.6/ /LEI/DEIFCTUC 268 Capítulo 6 Simplificação de gramáticas livres de contexto e Formas Normais 61 6.1. Métodos para transformar gramáticas ái 62 6.2. Duas formas Normais (Chomsky e Greibach) 268 6.1. Métodos para transformar

Leia mais

Matemática Discreta para Ciência da Computação

Matemática Discreta para Ciência da Computação Matemática Discreta para Ciência da Computação P. Blauth Menezes blauth@inf.ufrgs.br Departamento de Informática Teórica Instituto de Informática / UFRGS Matemática Discreta para Ciência da Computação

Leia mais

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO TEORIA DA COMPUTAÇÃO Aula 02 Introdução à Teoria da Computação Prof.ª Danielle Casillo Linguagem: é uma forma precisa de expressar

Leia mais

MT como calculadoras de funções parciais

MT como calculadoras de funções parciais MT como calculadoras de funções parciais Uma máquina de Turing pode ser vista como uma calculadora de funções parciais dos inteiros nos inteiros: f : N k p N Suponhamos que os inteiros estão codificados

Leia mais

As linguagens regulares são I.C Proposição Qualquer linguagem regular é independente de contexto.

As linguagens regulares são I.C Proposição Qualquer linguagem regular é independente de contexto. As linguagens regulares são I.C Proposição 16.1. Qualquer linguagem regular é independente de contexto. Dem. Seja L Σ uma linguagem regular, e seja r uma expressão regular tal que L = L(r).Por indução

Leia mais

Conceitos básicos de Teoria da Computação

Conceitos básicos de Teoria da Computação Folha Prática Conceitos básicos de 1 Conceitos básicos de Métodos de Prova 1. Provar por indução matemática que para todo o número natural n: a) 1 + 2 + 2 2 + + 2 n = 2 n+1 1, para n 0 b) 1 2 + 2 2 + 3

Leia mais

Problemas decidíveis para LICs

Problemas decidíveis para LICs Problemas decidíveis para LICs Dada uma gramática independente de contexto G, L(G) =? Dada uma gramática independente de contexto G, L(G) é finita? Dada uma gramática independente de contexto G, L(G) é

Leia mais

Linguagens, Gramáticas e Máquinas

Linguagens, Gramáticas e Máquinas Linguagens, Gramáticas e Máquinas 1 INTRODUÇÃO Pode-se olhar um computador como uma máquina M que tem as propriedades descritas a seguir. A cada instante, M tem um "estado interno", M lê alguma "entrada",

Leia mais

Apostila 03 Linguagens Livres de Contexto

Apostila 03 Linguagens Livres de Contexto Cursos: Bacharelado em Ciência da Computação e Bacharelado em Sistemas de Informação Disciplinas: (1493A) Teoria da Computação e Linguagens Formais, (4623A) Teoria da Computação e Linguagens Formais e

Leia mais

IBM1088 Linguagens Formais e Teoria da

IBM1088 Linguagens Formais e Teoria da IBM1088 Linguagens Formais e Teoria da Computação Linguagens e Gramáticas Evandro Eduardo Seron Ruiz evandro@usp.br Universidade de São Paulo E.E.S. Ruiz (USP) LFA 1 / 47 Frase do dia Sofremos muito com

Leia mais

Formas normais. Forma normal de Greibach (FNG) todas as produções são da forma

Formas normais. Forma normal de Greibach (FNG) todas as produções são da forma Formas normais Em muitas aplicações, é útil que as GIC tenham regras de tipos especiais. Para tal é necessário que se possa transformar qualquer gramática numa equivalente (isto é que gere a mesma linguagem)

Leia mais

A.Tomás, N.Moreira Modelos de Computação DCC-FCUP

A.Tomás, N.Moreira Modelos de Computação DCC-FCUP 1.1. NOTAÇÃO PARA CONJUNTOS 4 Capítulo 1 Preliminares 1.1 Notação para conjuntos Nesta secção vamos essencialmente rever alguma da notação que usaremos para conjuntos. Sendo A e B conjuntos, a A a pertence

Leia mais

Linguagens Formais e Autômatos P. Blauth Menezes

Linguagens Formais e Autômatos P. Blauth Menezes Linguagens Formais e Autômatos P. Blauth Menezes blauth@inf.ufrgs.br Departamento de Informática Teórica Instituto de Informática / UFRGS Matemática Discreta para Ciência da Computação - P. Blauth Menezes

Leia mais

Fundamentos de Teoria da Computação

Fundamentos de Teoria da Computação Fundamentos de Teoria da Computação (Versão preliminar em constante modificação) Prof. Celso Antônio Alves Kaestner, Dr. Eng. Universidade Tecnológica Federal do Paraná celsokaestner@utfpr.edu.br 28 de

Leia mais

Problemas decidíveis para LICs

Problemas decidíveis para LICs Problemas decidíveis para LICs Dada uma gramática independente de contexto G, L(G) =? Dada uma gramática independente de contexto G, L(G) é finita? Dada uma gramática independente de contexto G, L(G) é

Leia mais

formais e autómatos Linguagens g recursivas e recursivamente enumeráveis Gramáticas não-restringidas

formais e autómatos Linguagens g recursivas e recursivamente enumeráveis Gramáticas não-restringidas Capítulo 11 Uma hierarquia de linguagens formais e autómatos 11.1. Linguagens g recursivas e recursivamente enumeráveis. 11.2. Gramáticas não-restringidas 11.3. Gramáticas e linguagens dependentes do contexto

Leia mais

7.1. Autómatos de pilha não-determinísticos (NPDA) 7.3. Autómatos de pilha determinísticos e linguagens livres de contexto determinísticas.

7.1. Autómatos de pilha não-determinísticos (NPDA) 7.3. Autómatos de pilha determinísticos e linguagens livres de contexto determinísticas. Capítulo 7 Autómatos de pilha 7.1. Autómatos de pilha não-determinísticos (NPDA) 7.2. Autómatos de pilha e linguagens livres de contexto 7.3. Autómatos de pilha determinísticos e linguagens livres de contexto

Leia mais

Roteiro da Aula 3. Sintaxe. 2 Exemplos. 4 Propriedades de Fechamento. Teoria da. 116360 Aula 3. Roteiro

Roteiro da Aula 3. Sintaxe. 2 Exemplos. 4 Propriedades de Fechamento. Teoria da. 116360 Aula 3. Roteiro 636 da Finitos Nãoterminísticos Finitos Não-terminísticos Sintaxe Semântica 2 3 4 5 636 Finitos Nãoterminísticos Sintaxe Semântica Não-terminismo Determinístico Exatamente uma trajetória sobre uma w Σ.

Leia mais

Fundamentos da Teoria da Computação

Fundamentos da Teoria da Computação Fundamentos da Teoria da Computação Primeira Lista de Exercícios - Aula sobre dúvidas Sérgio Mariano Dias 1 1 Doutorando em Ciência da Computação Estagiário em docência II Departamento de Ciência da Computação

Leia mais

Gramáticas Regulares

Gramáticas Regulares Capítulo 3 Expressões Regulares, Linguagens Regulares es e Gramáticas Regulares 3.1. Expressões Regulares (RE) 3.2. Relação entre ER e Linguagens Regulares (LR) 3.3. Gramáticas Regulares (GR) 3.4. Síntese

Leia mais

Conceitos Básicos. Vocabulário Cadeias Linguagens Problema

Conceitos Básicos. Vocabulário Cadeias Linguagens Problema Conceitos Básicos Vocabulário Cadeias Linguagens Problema Alfabeto ou Vocabulário: Conjunto finito não vazio de símbolos. Símbolo é um elemento qualquer de um alfabeto. Ex: {A,B,C,.Z} alfabeto latino (maiúsculas)

Leia mais

Breve referência à Teoria de Anéis. Álgebra (Curso de CC) Ano lectivo 2005/2006 191 / 204

Breve referência à Teoria de Anéis. Álgebra (Curso de CC) Ano lectivo 2005/2006 191 / 204 Breve referência à Teoria de Anéis Álgebra (Curso de CC) Ano lectivo 2005/2006 191 / 204 Anéis Há muitos conjuntos, como é o caso dos inteiros, dos inteiros módulo n ou dos números reais, que consideramos

Leia mais

Computação efectiva. Que linguagens podem ser reconhecidas por algum tipo de autómato?

Computação efectiva. Que linguagens podem ser reconhecidas por algum tipo de autómato? Computação efectiva Que linguagens podem ser reconhecidas por algum tipo de autómato? O que é ser computável? Que linguagens são computáveis? Existem linguagens que não são computáveis? Isto é, existem

Leia mais

Modelos de Computação Folha de trabalho n. 8

Modelos de Computação Folha de trabalho n. 8 Modelos de Computação Folha de trabalho n. 8 Nota: Os exercícios obrigatórios marcados de A a D constituem os problemas que devem ser resolvidos individualmente. A resolução em papel deverá ser depositada

Leia mais

Notas de Aula - Álgebra de Boole Parte 1

Notas de Aula - Álgebra de Boole Parte 1 Universidade de Brasília Departamento de Engenharia Elétrica Sistemas Digitais 1 Prof. Dr. Alexandre Romariz Revisado em 27/4/06 Notas de Aula - Álgebra de Boole Parte 1 1 Introdução Fundamentos, Teoremas

Leia mais

Apostila 05 Assunto: Linguagens dos tipos 0 e 1

Apostila 05 Assunto: Linguagens dos tipos 0 e 1 Cursos: Bacharelado em Ciência da Computação e Bacharelado em Sistemas de Informação Disciplinas: (1493A) Teoria da Computação e Linguagens Formais, (4623A) Teoria da Computação e Linguagens Formais e

Leia mais

1 INTRODUÇÃO E CONCEITOS BÁSICOS

1 INTRODUÇÃO E CONCEITOS BÁSICOS 1 INTRODUÇÃO E CONCEITOS BÁSICOS Inicia com uma breve história do surgimento e do desenvolvimento dos conceitos, resultados e formalismos nos quais a Teoria da Computação é baseada. Formalização dos conceitos

Leia mais

Linguagens Formais e Autômatos 02/2015. LFA Aula 02. introdução 28/09/2015. Celso Olivete Júnior.

Linguagens Formais e Autômatos 02/2015. LFA Aula 02. introdução 28/09/2015. Celso Olivete Júnior. LFA Aula 02 Linguagens regulares - introdução 28/09/2015 Celso Olivete Júnior olivete@fct.unesp.br 1 Na aula passada... Visão geral Linguagens regulares expressões regulares autômatos finitos gramáticas

Leia mais

Os limites da computação algorítmica

Os limites da computação algorítmica Capítulo 12 Os limites da computação algorítmica 12.1. Problemas que não podem ser resolvidos pelas MT. 12.2. Problemas indecidíveis para LRE 12.3. Problema da correspondência de Post 12.4. Problemas indecidíveis

Leia mais

Álgebra Booleana. Introdução ao Computador 2010/01 Renan Manola

Álgebra Booleana. Introdução ao Computador 2010/01 Renan Manola Álgebra Booleana Introdução ao Computador 2010/01 Renan Manola Histórico George Boole (1815-1864) Considerado um dos fundadores da Ciência da Computação, apesar de computadores não existirem em seus dias.

Leia mais

Prof. Dr. Marcos Castilho. Departamento de Informática/UFPR. 22 de Fevereiro de 2018

Prof. Dr. Marcos Castilho. Departamento de Informática/UFPR. 22 de Fevereiro de 2018 22 de Fevereiro de 2018 Motivação O que é um computador? O que é um algoritmo? Para que serve um algoritmo? Quando um algoritmo é bom? A análise de um algoritmo depende do computador? Motivação Em teoria

Leia mais

RELAÇÕES BINÁRIAS Produto Cartesiano A X B

RELAÇÕES BINÁRIAS Produto Cartesiano A X B RELAÇÕES BINÁRIAS PARES ORDENADOS Um PAR ORDENADO, denotado por (x,y), é um par de elementos onde x é o Primeiro elemento e y é o Segundo elemento do par A ordem é relevante em um par ordenado Logo, os

Leia mais

Linguaguens recursivamente enumeráveis e recursivas

Linguaguens recursivamente enumeráveis e recursivas Linguaguens recursivamente enumeráveis e recursivas Uma linguagem diz-se recursivamente enumerável (r.e) ou semi-decidível se é aceite por uma máquina de Turing. SD: classe de linguagens recursivamente

Leia mais

Complexidade de Algoritmos

Complexidade de Algoritmos Complexidade de Algoritmos Classes de Complexidades de Problemas Prof. Osvaldo Luiz de Oliveira Estas anotações devem ser complementadas por apontamentos em aula. Tempo polinomial Um algoritmo A, com entrada

Leia mais

Elementos de Matemática Discreta

Elementos de Matemática Discreta Elementos de Matemática Discreta Prof. Marcus Vinícius Midena Ramos Universidade Federal do Vale do São Francisco 9 de junho de 2013 marcus.ramos@univasf.edu.br www.univasf.edu.br/~marcus.ramos Marcus

Leia mais

AULA 6 LÓGICA DOS CONJUNTOS

AULA 6 LÓGICA DOS CONJUNTOS Disciplina: Matemática Computacional Crédito do material: profa. Diana de Barros Teles Prof. Fernando Zaidan AULA 6 LÓGICA DOS CONJUNTOS Intuitivamente, conjunto é a coleção de objetos, que em geral, tem

Leia mais

Definição 2.2 (Palavra) As sequências finitas de letras são designadas por palavras sobre o alfabeto V.

Definição 2.2 (Palavra) As sequências finitas de letras são designadas por palavras sobre o alfabeto V. Capítulo 2 Definição de Linguagens 2.1 Linguagens Formais Definição 2.1 (Alfabeto) Um conjunto finito e não vazio de símbolos arbitrários é designado por um alfabeto, e é denotado por V. Os elementos de

Leia mais

Linguaguens recursivamente enumeráveis

Linguaguens recursivamente enumeráveis Linguaguens recursivamente enumeráveis Uma palavra x Σ é aceite por uma máquina de Turing M ( x L(M)) se M iniciando com a palavra x na fita e no estado inicial, pára num estado final. Caso contrário,

Leia mais

Árvores (ordenadas) Departamento de Ciência de Computadores da FCUP MC Aula 11 1

Árvores (ordenadas) Departamento de Ciência de Computadores da FCUP MC Aula 11 1 Árvores (ordenadas) Recordemos que, uma árvore é grafo (não dirigido) em que o número de vértices excede em 1 o número de arcos. Um vértice é acessível a todos os outros: a raiz. Os vértices que são acessíveis

Leia mais

Linguagens, Reconhecedores e Gramáticas

Linguagens, Reconhecedores e Gramáticas Linguagens, Reconhecedores e Gramáticas Já vimos que Linguagem é um conjunto de cadeias de símbolos sobre um alfabeto/vocabulário, V. É um subconjunto específico de V*. Estas cadeias são denominadas sentenças

Leia mais

Apostila 01 Fundamentação da Teoria da Computação e Linguagens Formais

Apostila 01 Fundamentação da Teoria da Computação e Linguagens Formais Cursos: Bacharelado em Ciência da Computação e Bacharelado em Sistemas de Informação Disciplinas: (1493A) Teoria da Computação e Linguagens Formais, (4623A) Teoria da Computação e Linguagens Formais e

Leia mais

SISTEMAS DIGITAIS Prof. Ricardo Rodrigues Barcelar http://www.ricardobarcelar.com

SISTEMAS DIGITAIS Prof. Ricardo Rodrigues Barcelar http://www.ricardobarcelar.com - Aula 3 - ÁLGEBRA BOOLEANA 1. Introdução O ponto de partida para o projeto sistemático de sistemas de processamento digital é a chamada Álgebra de Boole, trabalho de um matemático inglês que, em um livro

Leia mais

Apontamentos de Modelos de Computação. Ana Paula Tomás

Apontamentos de Modelos de Computação. Ana Paula Tomás Apontamentos de Modelos de Computação Ana Paula Tomás Departamento de Ciência de Computadores Faculdade de Ciências da Universidade do Porto 1999 Conteúdo 1 Preliminares 3 1.1 Notação para conjuntos.................................

Leia mais

Linguagens Formais e Autômatos

Linguagens Formais e Autômatos Linguagens Formais e Autômatos (notas da primeira aula 1 Definições básicas 1.1 Conjuntos Definição 1. Um conjunto é uma coleção de objetos, denominados elementos. Notação 1. Para indicar que um elemento

Leia mais

Pró-Reitoria de Ensino de Graduação P L A N O D E E N S I N O

Pró-Reitoria de Ensino de Graduação P L A N O D E E N S I N O Pró-Reitoria de Ensino de Graduação P L A N O D E E N S I N O Curso: Ciência da Computação Unidade Curricular: Linguagem Formais e Autômatos Modalidade: Presencial (X ) Semipresencial ( ) Período: 4º Ano/

Leia mais

Fundamentos da Teoria da Computação

Fundamentos da Teoria da Computação Fundamentos da Teoria da Computação Terceira Lista de Exercícios - Aula sobre dúvidas Sérgio Mariano Dias 1 1 Mestrando em Ciência da Computação Departamento de Ciência da Computação Universidade Federal

Leia mais

Teoria da Computação Gramáticas, Linguagens Algébricas e Autómatos de Pilha

Teoria da Computação Gramáticas, Linguagens Algébricas e Autómatos de Pilha Teoria da Computação Gramáticas, Linguagens Algébricas e Autómatos de Pilha Simão Melo de Sousa 12 de Outubro de 2011 Conteúdo 1 Gramáticas e Definições básicas 1 2 Gramáticas e Linguagens 4 2.1 Gramáticas

Leia mais

Linguagens recursivamente enumeráveis

Linguagens recursivamente enumeráveis Linguagens recursivamente enumeráveis Uma palavra x Σ é aceite por uma máquina de Turing M ( x L(M)) se M iniciando com a palavra x na fita e no estado inicial, pára num estado final. Caso contrário, M

Leia mais

Conceitos de Análise Sintática

Conceitos de Análise Sintática Conceitos de Análise Sintática Pro.f. Marcus Ramos UNIVASF Atualizado em 28 de outubro de 2016 The Theory of Parsing, Translation and Compiling Volume I: Parsing Alfred V. Aho Jeffrey D. Ullman Prentice

Leia mais

Exemplos de autómatos finitos

Exemplos de autómatos finitos Exemplos de utómtos finitos s s 2 reconhece lingugem: {x {, } x termin em e não têm s consecutivos} s s 2 reconhece lingugem {x x {, } e tem como suplvr} Deprtmento de Ciênci de Computdores d FCUP MC Aul

Leia mais

Autômatos a pilha. UFRN/DIMAp/DIM0330 Linguagens formais. David Déharbe. http://www.consiste.dimap.ufrn.br/ david/enseignement/2003.

Autômatos a pilha. UFRN/DIMAp/DIM0330 Linguagens formais. David Déharbe. http://www.consiste.dimap.ufrn.br/ david/enseignement/2003. UFRN/DIMAp/DIM0330 Linguagens formais http://www.consiste.dimap.ufrn.br/ david/enseignement/2003.1/dim0330 1/36 Autômatos a pilha David Déharbe UFRN/DIMAp Campus Universitário, Lagoa Nova, 59072-970 Natal,

Leia mais

BCC242. Alfabeto, Strings, Linguagens. Registro aqui o agradecimento à Profa. Lucília por ceder slides que fazem parte deste material.

BCC242. Alfabeto, Strings, Linguagens. Registro aqui o agradecimento à Profa. Lucília por ceder slides que fazem parte deste material. BCC242 Alfabeto, Strings, Linguagens Registro aqui o agradecimento à Profa. Lucília por ceder slides que fazem parte deste material. Exemplo: Máquina de Venda A máquina de venda retorna uma cocacola por

Leia mais

Databases. Dependências Funcionais

Databases. Dependências Funcionais Databases Dependências Funcionais P. Serendero, 2011-13 Referências e exemplos tirados de diversas fontes, excetuando aqueles relacionados com embarcações Dependências Funcionais (DF) Uma Base de Dados,

Leia mais

Lista de exercícios 1

Lista de exercícios 1 UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS AGRÁRIAS CCA/ UFES Departamento de Engenharia Rural Lista de exercícios 1 Disciplina: Linguagens Formais e Autômatos Professora: Juliana Pinheiro

Leia mais

MÉTODOS DISCRETOS EM TELEMÁTICA

MÉTODOS DISCRETOS EM TELEMÁTICA 1 MÉTODOS DISCRETOS EM TELEMÁTICA MATEMÁTICA DISCRETA Profa. Marcia Mahon Grupo de Pesquisas em Comunicações - CODEC Departamento de Eletrônica e Sistemas - UFPE Outubro 2003 2 CONTEÚDO 1 - Introdução

Leia mais

Sistemas Digitais Álgebra de Boole Binária e Especificação de Funções

Sistemas Digitais Álgebra de Boole Binária e Especificação de Funções Sistemas Digitais Álgebra de Boole Binária e Especificação de Funções João Paulo Baptista de Carvalho joao.carvalho@inesc.pt Álgebra de Boole Binária A Álgebra de Boole binária através do recurso à utiliação

Leia mais

COMPILADORES. Revisão Linguagens formais Parte 01. Geovane Griesang

COMPILADORES. Revisão Linguagens formais Parte 01. Geovane Griesang Universidade de Santa Cruz do Sul UNISC Departamento de informática COMPILADORES Revisão Linguagens formais Parte 01 geovanegriesang@unisc.br Legenda: = sigma (somatório) = delta ε = épsilon λ = lambda

Leia mais

Histórico e motivação

Histórico e motivação Expressões regulares 1. Histórico e motivação 2. Definição a) Sintaxe b) Semântica c) Precedência dos operadores 3. Exemplos 4. Leis algébricas 5. Dialetos 6. Aplicações 7. Exercícios Pré-requisito: básico

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/59 2 - FUNDAMENTOS 2.1) Teoria dos Conjuntos 2.2) Números

Leia mais

Expressões e Gramáticas Regulares e Autómatos Finitos

Expressões e Gramáticas Regulares e Autómatos Finitos Folha Prática Expressões e Gramáticas Regulares e Autómatos Finitos 1 Expressões e Gramáticas Regulares e Autómatos Finitos Expressões Regulares e Autómatos Finitos 1. Determine e implemente computacionalmente

Leia mais

CAPÍTULO 5 LINGUAGENS LIVRES DE CONTEXTO

CAPÍTULO 5 LINGUAGENS LIVRES DE CONTEXTO CAPÍTULO 5 LINGUAGEN LIVRE DE CONTEXTO 5.1. Introdução 181 5.2 Gramáticas livres de contexto 181 5.2.1. Definição e exemplos 183 5.2.2 Derivação pela extrema direita e pela extrema esquerda 188 5.2.3.Árvores

Leia mais

1 introdução. capítulo. O que é uma solução computável? Quais são os limites do que pode ser computado? Existem problemas sem solução computacional?

1 introdução. capítulo. O que é uma solução computável? Quais são os limites do que pode ser computado? Existem problemas sem solução computacional? capítulo 1 introdução A ciência da computação é o conhecimento sistematizado da computação. Sua origem é milenar, tendo se desenvolvido em diferentes regiões e épocas. A teoria da computação é a base fundamental

Leia mais

Linguagens Formais e Autômatos

Linguagens Formais e Autômatos Prof. Diógenes Furlan Linguagens Formais e Autômatos Módulo 1 2016 VII BIBLIOGRAFIA BÁSICA Bibliografia HOPCROFT, John E. Introdução à teoria de autômatos, linguagens e computação. Rio de Janeiro: Elsevier;

Leia mais

Tratamentos Tempo de Armazenamento T F secagem 0 mês 6 meses ( C) (m 3 /minuto/t) (hora) D 1 D 2 D 3 Médias D 1 D 2 D 3 Médias 42 26,9 0 10,4 10,8

Tratamentos Tempo de Armazenamento T F secagem 0 mês 6 meses ( C) (m 3 /minuto/t) (hora) D 1 D 2 D 3 Médias D 1 D 2 D 3 Médias 42 26,9 0 10,4 10,8 Tratamentos Tempo de Armazenamento T F secagem 0 mês 6 meses ( C) (m 3 /minuto/t) (hora) D 1 D 2 D 3 Médias D 1 D 2 D 3 Médias 42 26,9 0 10,4 10,8 10,9 10,7 12,8 11,6 12,0 12,1 4 11,1 10,6 10,9 10,9 13,1

Leia mais

Linguagens Formais. Aula 01 - Conceitos Básicos. Prof. Othon Batista Mestre em Informática

Linguagens Formais. Aula 01 - Conceitos Básicos. Prof. Othon Batista Mestre em Informática Linguagens Formais Aula 01 - Conceitos Básicos Prof. Othon Batista Mestre em Informática Sumário Introdução à Linguagem Alfabeto Cadeias de Símbolos, Palavras Tamanho de Palavra Prefixo, Sufixo ou Subpalavra

Leia mais

Máquinas Universais. Departamento de Ciência de Computadores da FCUP MC Aula 23 1

Máquinas Universais. Departamento de Ciência de Computadores da FCUP MC Aula 23 1 Máquinas Universais Um modelo de computação diz-se universal se todo o problema efectivamente computável o for nesse modelo. Um modelo universal é suficientemente poderoso para se aceitar a si próprio:

Leia mais

Aula1 Noções de matemática Discreta Técnicas de Demonstração. Prof. Dr. Ricardo Luis de Azevedo da Rocha

Aula1 Noções de matemática Discreta Técnicas de Demonstração. Prof. Dr. Ricardo Luis de Azevedo da Rocha Aula1 Noções de matemática Discreta Técnicas de Demonstração Prof. Dr. Ricardo Luis de Azevedo da Rocha Matemática Discreta seleção de tópicos de Matemática essenciais para o estudo da Ciência da Computação

Leia mais

Universidade Estadual de Santa Cruz. Departamento de Ciências Exatas e Tecnológicas. Especialização em Matemática. Disciplina: Estruturas Algébricas

Universidade Estadual de Santa Cruz. Departamento de Ciências Exatas e Tecnológicas. Especialização em Matemática. Disciplina: Estruturas Algébricas 1 Universidade Estadual de Santa Cruz Departamento de Ciências Exatas e Tecnológicas Especialização em Matemática Disciplina: Estruturas Algébricas Profs.: Elisangela S. Farias e Sérgio Motta Operações

Leia mais

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT. Lista de Exercícios 01.

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT. Lista de Exercícios 01. UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT Curso de Bacharel em Ciência da Computação Disciplina: Matemática Discreta Professor: Rafael Stubs Parpinelli ) Diga se é verdadeiro

Leia mais

II. DEFINIÇÕES INICIAIS 1

II. DEFINIÇÕES INICIAIS 1 -1- ELPO: Definições Iniciais [MSL] II. DEFINIÇÕES INICIAIS 1 No que se segue, U é um conjunto qualquer e X, Y,... são os subconjuntos de U. Ex.: U é um quadrado e X, Y e Z são três círculos congruentes

Leia mais

Fundamentos da Teoria da Computação

Fundamentos da Teoria da Computação Fundamentos da Teoria da Computação Primeira Lista de Exercícios - Aula sobre dúvidas da lista Sérgio Mariano Dias 1 1 UFMG/ICEx/DCC Entrega da 1 a lista: 31/03/2009 Sérgio Mariano Dias (UFMG) Fundamentos

Leia mais

13.2. Sistemas de Post Sistemas de rescrita Cálculo Lambda. ADC/TC/Cap.13/ /LEI/DEIFCTUC 497

13.2. Sistemas de Post Sistemas de rescrita Cálculo Lambda. ADC/TC/Cap.13/ /LEI/DEIFCTUC 497 Capítulo 13 Outros modelos de computação 13.1. 1 Funções recursivas 13.2. Sistemas de Post 13.3. Sistemas de rescrita 13.4. Cálculo Lambda 497 Máquinas de Turing (1936): os modelos de computação mais gerais

Leia mais

Capítulo 2. Álgebra e imagens binárias. 2.1 Subconjuntos versus funções binárias

Capítulo 2. Álgebra e imagens binárias. 2.1 Subconjuntos versus funções binárias Capítulo 2 Álgebra e imagens binárias Em Análise de Imagens, os objetos mais simples que manipulamos são as imagens binárias. Estas imagens são representadas matematicamente por subconjuntos ou, de maneira

Leia mais

Autómatos Finitos Determinísticos (AFD)

Autómatos Finitos Determinísticos (AFD) Folha Prática Autómatos Finitos 1 Autómatos Finitos Determinísticos (AFD) 1. Determine e implemente computacionalmente um AFD que aceita todas as cadeias de cada uma das seguintes linguagens sobre o alfabeto

Leia mais