n. 20 EQUAÇÃO GERAL DO PLANO O plano π pode ser definido como o conjunto de todos os pontos P (x, y, z) do

Tamanho: px
Começar a partir da página:

Download "n. 20 EQUAÇÃO GERAL DO PLANO O plano π pode ser definido como o conjunto de todos os pontos P (x, y, z) do"

Transcrição

1 n. 20 EQUAÇÃO GERAL DO PLANO Seja A (x 1, y 1, z 1 ) um ponto que pertence ao plano π e n = a i + b j + c k, sendo n (0, 0, 0) um vetor ortogonal ao plano. O plano π pode ser definido como o conjunto de todos os pontos P (x, y, z) do espaço, tais que o vetor AP é ortogonal a n. O ponto P pertence a π se, e somente se: n. AP = 0 Seja n = (a, b, c) e AP = P A = (x, y, z) ( x 1, y 1, z 1 ) = (x x 1, y y 1, z z 1 ) (a, b, c). (x x 1, y y 1, z z 1 ) = 0 a (x x 1 ) + b (y y 1 ) + c(z z 1 ) = 0 a x a x 1 + b y b y 1 + c z c z 1 = 0 Fazendo a x 1 b y 1 c z 1 = d Temos: a x + b y + c z + d = 0 que é a equação geral do plano ou equação cartesiana do plano

2 d é o termo independente, uma constante que influencia na interseção entre o plano e os eixos cartesianos. EQUAÇÃO GERAL DO PLANO: a x + b y + c z + d = 0 Exemplos: 1. Escreva a equação do plano que contém o ponto A (3, 4, 5) e é ortogonal ao vetor n = (1, 2, 6) R: α: x + 2 y + 6 z + 19 = 0 2. Escreva a equação do plano π que contém o ponto A ( 3, 2, 0) e é paralelo ao plano α: 4 x + 5 y 7 z + 8 = 0. R: π: 4 x + 5 y 7 z + 2 = 0 3. Escreva a equação do plano que contém o ponto A ( 1, 3, 5) e é paralelo aos vetores u = (2, 4, 6) e v = (1, 0, 3). R: α: 3 x z 2 = 0 4. Escreva a equação do plano mediador do segmento AB, dados A (2, 1, 4) e B (4, 3, 2). R: α: x y 3z 2 = 0 Resolução dos exercícios: 1. Escreva a equação do plano que contém o ponto A (3, 4, 5) e é ortogonal ao vetor n = (1, 2, 6) Equação geral: a x + b y + c z + d = 0 (a, b, c) é o vetor normal (x 1, y 1, z 1 ) é o ponto que pertence ao plano: A (3, 4, 5) d = a x 1 b y 1 c z 1

3 1 x + 2 y + 6 z + [ 1 (3) 2 (4) 6 ( 5) ] = 0 1 x + 2 y + 6 z + [ ] = 0 A equação do plano é: x + 2 y + 6 z + 19 = 0 2. Escreva a equação do plano π que contém o ponto A ( 3, 2, 0) e é paralelo ao plano α: 4 x + 5 y 7 z + 8 = 0. Se π é paralelo ao plano α, um vetor normal é (4, 5, 7) Então a equação do plano é: 4 x + 5 y 7 z + [ 4 ( 3) 5 (2) + 7 (0)] = 0 4 x + 5 y 7 z = 0 4 x + 5 y 7 z + 2 = 0

4 3. Escreva a equação do plano que contém o ponto A ( 1, 3, 5) e é paralelo aos vetores u = (2, 4, 6) e v = (1, 0, 3). O vetor normal ao plano é o produto vetorial, ou produto externo entre u e v, ou seja, i j k n = (u x v) = = (12-0) i (6 6) j + (0 4)k = 12 i 4 k = (12, 0, - 4) a equação do plano é: 12 x + 0 y 4 z + [- 12 (- 1) 0 (3) (- 4) (- 5) ] = 0 12 x 4 z = 0 12 x 4 z 8 = 0 α: 3 x z 2 = 0

5 4. Escreva a equação do plano mediador do segmento AB, dados A (2, 1, 4) e B (4, 3, 2). O plano mediador de AB é o plano ortogonal a AB e que contém seu ponto médio. Logo, um vetor normal a este plano é AB = B A = (4, 3, 2) (2, 1, 4) = (2, 2, 6) Um ponto do plano é A + B 2 = , 1 +( 3) 2, 4 +( 2) 2 = 6 2, 4 2, 2 2 = (3, 2, 1) a equação do plano é: 2 x 2 y 6 z + [ 2 (3) ( 2) ( 2) ( 6) (1) ] = 0 2 x 2y 6 z = 0 2 x 2y 6 z 4 = 0 x y 3z 2 = 0

6 Equação vetorial do plano Seja A (x 0, y 0, z 0 ) um ponto do plano π e u = (a 1, b 1, c 1 ) e v = (a 2, b 2, c 2 ) dois vetores não paralelos pertencentes a esse plano. Um ponto P (x, y, z) pertence ao plano π, se e somente se, existem números reais h e k tais que: AP = h u + k v (adição de vetores pela construção paralelogramo) do Escrevendo a equação em coordenadas temos: AP = h u + k v P A = h (a 1, b 1, c 1 ) + k (a 2, b 2, c 2 )

7 P = A + h (a 1, b 1, c 1 ) + k (a 2, b 2, c 2 ) (x, y, z) = (x 0, y 0, z 0 ) + h (a 1, b 1, c 1 ) + k(a 2, b 2, c 2 ) equação vetorial do plano Ou (x, y, z) = (x 0 + h a 1 + k a 2, y 0 + h b 1 + k b 2, z 0 + h c 1 + k c 2 ) equação vetorial do plano Os vetores u e v são chamados de vetores diretores do plano π. Equações paramétricas do plano x = x 0 + a 1 h + a 2 k y = y 0 + b 1 h + b 2 k { z = z 0 + c 1 h + c 2 k Exemplos: 1. Escreva as equações paramétricas do plano que passa pelo ponto A (2, 1, 3) e é paralelo aos vetores u = ( 3, 3, 1) e v = (2, 1, 2). 2. Escreva as equações paramétricas do plano determinado pelos pontos A (5, 7, - 2), B (8, 2, - 3 ) e C (1, 2, 4). Resolução dos exercícios: 1. Escreva as equações paramétricas do plano que passa pelo ponto A (2, 1, 3) e é paralelo aos vetores u = ( 3, 3, 1) e v = (2, 1, 2). { x = x 0 + a 1 h + a 2 k y = y 0 + b 1 h + b 2 k z = z 0 + c 1 h + c 2 k

8 x = 2 3h + 2k { y = 1 3h + 1k z = 3 + 1h 2k Se quisermos um ponto de plano, basta atribuir valores quaisquer para h e k. Por exemplo: se h = 5 e k = 1, temos x = 2 3(5) + 2(1) x = 11 { y = 1 3(5) + 1(1) y = 13 z = 3 + 1(5) 2(1) z = 6 Logo, B (- 11, - 13, 6) é um ponto do plano. Para descobrir a equação geral do plano: O vetor normal ao plano é o produto vetorial, ou produto externo entre u e v, ou seja, i j k n = (u x v) = = (6-1) i (6 2) j + (-3+6)k = 5i 4j +3 k = (5,- 4,3) a equação do plano é: 5 x 4 y + 3 z + [ 5 (2) ( 4) (1) 3 (3) ] = 0 5 x 4 y +3z +[ ) = 0 5 x 4 y +3 z 5 = 0 α: 5 x 4y +3z 5 = 0

9 2. Escreva as equações paramétricas do plano determinado pelos pontos A (5, 7, - 2), B (8, 2, - 3 ) e C (1, 2, 4). Primeiro descobrir se os pontos são colineares ou não. Logo, det = 0 colinearidade [ ] = = = Três pontos não colineares determinam um plano, assim: u = AB = B A = (8, 2, - 3) (5, 7, - 2) = (3, - 5, - 1) v = AC = C A = (1, 2, 4) (5, 7, - 2) = (- 4, - 5, 6) Logo, as paramétricas desse plano, utilizando o ponto A são: x = 5 + 3h 4k { y = 7 5h 5k z = 2 1h + 6k Exercícios:

10 1. Escreva a equação do plano π que passa pelo ponto A (3, 1, - 4) e é paralelo ao plano: α: 2 x 3 y + z 6 = 0 R: π: 2 x 3 y + z + 1 = 0 2. Determine a equação geral do plano δ que passa pelo ponto A (2, 1, - 2) e é x = 4 + 3t ortogonal à reta r: { y = 1 + 2t z = t R: δ: 3 x + 2 y + 1 z - 6 = 0 x = 1 2u + v 3. São dadas as equações paramétricas de um plano α: { y = 2 + u 2 v z = 3 + u Encontre a equação geral. R: α: 2x + y + 3z 13 = 0 4. Ache a equação geral do plano que contém os pontos A (0, 4, 1) e B (- 1, 3, 2) e têm à direção do vetor v = ( - 1, 3, 5). R: π: 2 x y + z + 3 = 0 5. Determine a equação do plano que contém A (4, -1, 2) e é ortogonal ao vetor v = ( - 2, 3, 1). R: 2x + 3y + z + 9 = 0 6. Obtenha um vetor unitário ortogonal ao plano π: 2 x + y - z + 5 = 0 R: n = ( 2 6, 1 6, 1 6 ) 7. Determine o valor de a para que o ponto P(a, 3, -1) pertença ao plano π: 2x + 11y + 8z = 27. R: a = 1 8. Determine as equações paramétricas e a equação geral do plano que passa pelos pontos A (4, - 2, 1), B (- 1, 1, - 1) e C (3, 0, 2). x = 4 5 u v R: π: x + y z 1 = 0 e π: { y = u + 2 v z = 1 2 u + v 9. Encontre a equação geral do plano que passa por P (1, 2, - 3) e é paralelo ao plano yoz. R: π: x 1 = 0

11 10. Determine a equação geral do plano que passa pelo ponto P (3, - 1, 2) e é ortogonal à reta: R: π: 2 x + y z + 9 = 0 x 1 = y = z Determine a equação geral do plano paralelo aos vetores u = (- 2, 0,1) e v = (- 1, - 2, 1) e passa pelo ponto A(1, 1, 0). R: π: 2 x + y + 4 z 3 = Encontre a equação do plano α que passa pelos pontos M ( 1, 0, 0), 2 N (0, 1, 0) e O (0, 1, 1 ) R: α: 2 x + 2 y + 4 z 1 = Calcule o valor de k para que os planos π: 3x y + z - 4 = 0 e α: k x + 3y z 2 = 0 sejam ortogonais. R: k = 4 3 Resoluções: 1. Escreva a equação do plano π que passa pelo ponto A (3, 1, - 4) e é paralelo ao plano: α: 2 x 3 y + z 6 = 0 Se os dois planos são paralelos então o vetor normal (ortogonal) ao plano α também é ortogonal ao plano π, logo n = ( 2, - 3, 1). Então a equação do plano π pode ser escrita como: 2 x 3 y + z + d = 0 Descobrindo d: d = 2 ( 3) ( 3). (1 ) 1 ( 4) + d = d = 1 Logo a equação do plano π é: 2 x 3 y + z + 1 = 0

12 2. Determine a equação geral do plano δ que passa pelo ponto A (2, 1, - 2) e é x = 4 + 3t ortogonal à reta r: { y = 1 + 2t z = t Se o plano δ é ortogonal a reta r, então o vetor diretor de r será um vetor ortogonal ao plano δ, logo, n = (3, 2, 1) então, a equação do plano pode ser escrita como: δ: 3 x + 2 y + 1 z + d = 0 3 (2) + 2 (1) + 1 ( 2) + d = d = 0 d = 6 Logo, a equação do plano δ é: δ: 3 x + 2 y + 1 z 6 = 0

13 3. São dadas as equações paramétricas de um plano: x = 1 2u + v { y = 2 + u 2 v z = 3 + u Encontre a equação geral. Os vetores u = ( 2, 1, 1) e v = (1, 2, 0) são vetores diretores do plano. O vetor u x v (produto externo) é o vetor normal ao plano, logo:

14 u x v = [ i j k 2 1 1] = 2 i + 1 j + 3 k = u x v = (2, 1, 3) Ponto do plano: A (1, 2, 3) Descobrindo o termo independente d : d = 1. (2) 2. (1) 3. (3) d = 13 Logo, a equação geral do plano é: 2 x + y + 3 z 13 = 0 4. Ache a equação geral do plano que contém os pontos A (0, 4, 1) e B (- 1, 3, 2) e têm à direção do vetor v = ( - 1, 3, 5). R: π: 2 x y + z + 3 = 0 AB = B A = (-1, 3, 2) (0, 4, 1) = ( - 1, - 1, 1) = u Outro vetor do plano: v = (-1, 3, 5) i j k u x v = = ( 5 3)i ( 5 + 1) j + ( 3 1)k = ( 8, 4, 4) n = ( - 8, 4, - 4) utilizando o ponto A d = ( 8)(0) 4 (4) ( 4) (1) d =

15 d = - 12 Logo, π: 2 x y + z + 3 = 0 5. Determine a equação do plano que contém A (4, -1, 2) e é ortogonal ao vetor v = ( - 2, 3, 1). R: π: 2x + 3y + z + 9 = 0 d = - (-2) (4) 3 (- 1) (1) 2 d = d = 9 Logo, a equação do plano é π: 2x + 3y + z + 9 = 0 6. Obtenha um vetor unitário ortogonal ao plano π: 2 x + y - z + 5 = 0 n = (2, 1, -1) n = ( 1) 2 = 6 u = n n = ( 2 6, 1 6, 1 6 ) 7. Determine o valor de a para que o ponto P(a, 3, -1) pertença ao plano π: 2x + 11y + 8z = 27. R: a = 1 d = - 2 x0 11 y0 8 z0-27 = - 2 x0 11 y0 8 z0-27 = - 2 a 11 (3) 8 (-1) 2 a = a = 2 a = 1 8. Determine as equações paramétricas e a equação geral do plano que passa pelos pontos A (4, - 2, 1), B (- 1, 1, - 1) e C (3, 0, 2). R: π: x + y z 1 = 0 e π: { x = 4 5 u v y = u + 2 v z = 1 2 u + v AB = B A = (-1, 1, -1) (4, - 2, 1) = (- 5, 3, - 2) = u

16 AC = C A = (3, 0, 2) (4, - 2, 1) = (- 1, 2, 1) = v i j k u x v = = 7 i + 7 j 7k = (7, 7, 7) n = (7, 7, 7) Encontrando d pelo ponto A d = - 7 (4) 7 (- 2) (-7) 1 d = d = - 7 Logo, a equação geral é π: x + y z 1 = 0 Vetorial pelo ponto A: π: { x = 4 5 u v y = u + 2 v z = 1 2 u + v 9. Encontre a equação geral do plano que passa por P (1, 2, - 3) e é paralelo ao plano yoz. R: π: x - 1 = 0 como é paralelo ao yoz e a normal é ortogonal ao plano temos: n = (x, 0, 0) = ( 1,0, 0) n = (1, 0, 0) d = - 1 (1) 0 (2) 0 (- 3) d = - 1 Portanto, π: x - 1 = Determine a equação geral do plano que passa pelo ponto P (3, - 1, 2) e é ortogonal à reta: x 1 = y = z 2 1 Vetor diretor da reta: (-2, 1, -1) d = - (-2) (3) 1 (-1) (-1).(2) d = d = 9 Portanto, π: 2 x + y z + 9 = 0 R: π: 2 x + y z + 9 = Determine a equação geral do plano paralelo aos vetores u = (- 2, 0,1) e v = (- 1, - 2, 1) e passa pelo ponto A(1, 1, 0). R: π: 2 x + y + 4 z 3 = 0 Como u e v não são paralelos fazemos produto externo: i j k u x v = = 2 i ( 2 + 1)j + 4k = 2 i + j + 4k = (2, 1, 4) n = (2, 1, 4) A (1, 1, 0)

17 d = -2 (1) 1 (1) 4 (0) d = d = - 3 π: 2 x + y + 4 z 3 = Calcule o valor de k para que os planos π: 3x y + z - 4 = 0 e α: k x + 3y z 2 = 0 sejam ortogonais. R: k = 4 3 (3, -1, 1). (k, 3, -1) = 0 3 k 3 1 = 0 3 k = 4 k = Encontre a equação do plano α que passa pelos pontos M ( 1 2, 0, 0), N (0, 1 2, 0) e O (0, 1, 1 ) R: α: 2 x + 2 y + 4 z 1 = Como 3 pontos determinam um plano, então com os 3 pontos dados obtemos os vetores MN = N M =(0, 1, 0) 2 (1, 0, 0) = ( 1, 1, 0) = u MO = O M =(0, 1, 1 ) 2 2 (1, 0, 0) = ( 1, 1, 1 ) = v u x v = 1 2 i j k = 1 4 i j k = (1 4, 1 4, 1 2 ) n = (1 4, 1 4, 1 2 ) Encontrando o d a partir do ponto M ( 1 2 d = 1 4 (1 2 ) 1 4 (0) 1 2 (0), 0, 0): d = 1 8 Logo, 1 4 x y z 1 8 = 0 multiplicando tudo por 8: α: 2 x + 2 y + 4 z 1 = 0 Referências Bibliográficas BOULOS, P. e CAMARGO, I. de. Geometria analítica: um tratamento vetorial. São Paulo: McGraw-Hill, BORGES, A. J. Notas de aula. Curitiba. Set Universidade Tecnológica Federal do Paraná UTFPR.

18 NUNES, Luiz Fernando. Notas de aula: Matemática 1. Professor do Departamento de Matemática da Universidade Tecnológica Federal do Paraná UTFPR. STEINBRUCH, A. e WINTERLE, P. Geometria analítica. São Paulo: Pearson-Makron Books, VALLADARES, R. J. C. Geometria analítica do plano e do espaço. Rio de Janeiro: LTC, VENTURI, J. J. Álgebra Vetorial e Geometria Analítica. 9 ed. Curitiba

n. 9 VERSOR_EXPRESSÃO CARTESIANA_PARALELISMO_COPLANARIDADE_ COLINEARIDADE Como o versor é um vetor unitário, temos que v = 1

n. 9 VERSOR_EXPRESSÃO CARTESIANA_PARALELISMO_COPLANARIDADE_ COLINEARIDADE Como o versor é um vetor unitário, temos que v = 1 n. 9 VERSOR_EXPRESSÃO CARTESIANA_PARALELISMO_COPLANARIDADE_ COLINEARIDADE Definição Dado um vetor u 0, chama-se versor do vetor u, um vetor unitário, paralelo e de mesmo sentido que u. Logo, se considerarmos

Leia mais

n. 19 Estudo da reta: vetor normal, posições relativas, intersecção, sistemas de equações

n. 19 Estudo da reta: vetor normal, posições relativas, intersecção, sistemas de equações n. 19 Estudo da reta: vetor normal, posições relativas, intersecção, sistemas de equações Vetor normal (ortogonal) a uma reta - R plano: (x, y) Considere a reta r do plano cartesiano, de equação ax + by

Leia mais

n. 17 ESTUDO DA RETA: equações Uma direção e um ponto determinam uma reta Dois pontos determinam uma reta

n. 17 ESTUDO DA RETA: equações Uma direção e um ponto determinam uma reta Dois pontos determinam uma reta n. 17 ESTUDO DA RETA: equações Uma direção e um ponto determinam uma reta Dois pontos determinam uma reta Equação geral de uma reta Para determinar a equação geral de uma reta utilizamos os conceitos relacionados

Leia mais

n. 18 Estudo da reta: ângulo, paralelismo, ortogonalidade, coplanaridade e interseção entre retas Ângulo entre duas retas

n. 18 Estudo da reta: ângulo, paralelismo, ortogonalidade, coplanaridade e interseção entre retas Ângulo entre duas retas n. 18 Estudo da reta: ângulo, paralelismo, ortogonalidade, coplanaridade e interseção entre retas Ângulo entre duas retas Sejam as retas r1, que passa pelo ponto A (x1, y1, z1) e tem a direção de um vetor

Leia mais

n. 15 ÁREA DE UM TRIÂNGULO Logo, a área do triângulo é obtida calculando-se a metade da área do S = 1 2

n. 15 ÁREA DE UM TRIÂNGULO Logo, a área do triângulo é obtida calculando-se a metade da área do S = 1 2 n. 15 ÁREA DE UM TRIÂNGULO Do cálculo da área do paralelogramo temos: S ABCD = u x v Logo, a área do triângulo é obtida calculando-se a metade da área do paralelogramo, portanto S ABC = 1 u x v Assim,

Leia mais

Geometria Analítica. Estudo do Plano. Prof Marcelo Maraschin de Souza

Geometria Analítica. Estudo do Plano. Prof Marcelo Maraschin de Souza Geometria Analítica Estudo do Plano Prof Marcelo Maraschin de Souza Plano Equação Geral do Plano Seja A(x 1, y 1, z 1 ) um ponto pertencente a um plano π e n = a, b, c, n 0, um vetor normal (ortogonal)

Leia mais

RELEMBRANDO... CÁLCULO DA MATRIZ INVERSA:

RELEMBRANDO... CÁLCULO DA MATRIZ INVERSA: RELEMBRANDO... CÁLCULO DA MATRIZ INVERSA: determinantes Se o determinante da matriz é diferente de zero existe a inversa, logo: det M 0 M -1 1 =. M det M Quem é M? É a matriz adjunta, que é a matriz transposta

Leia mais

I Lista Introodução a Planos

I Lista Introodução a Planos Colegiado de Engenharia Elétrica Prof. Pedro Macário de Moura Pedro.mmoura@univasf.edu.br Geometria Analítica 201.2 Discente CPF Turma I Lista Introodução a Planos 01. Determine a equação do plano que

Leia mais

n. 12 PRODUTO VETORIAL ou PRODUTO EXTERNO

n. 12 PRODUTO VETORIAL ou PRODUTO EXTERNO n. 12 PRODUTO VETORIAL ou PRODUTO EXTERNO O produto vetorial é uma operação binária sobre vetores em um espaço vetorial. Seu resultado difere do produto escalar por ser também um vetor, ao invés de um

Leia mais

n. 32 Regras para achar a transformação linear correspondente

n. 32 Regras para achar a transformação linear correspondente n. 3 Regras para achar a transformação linear correspondente Lembrete: matriz da transformação linear [T] B A F(u 1 ) = a v 1 + b v F(u ) = c v 1 + d v [T] A B = [ a c b d ] Dadas às bases e a matriz da

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear AULA 1 - Matrizes Prof. Dr. Hércules A. Oliveira UTFPR - Universidade Tecnológica Federal do Paraná, Ponta Grossa Departamento Acadêmico de Matemática Ementa 1. Matrizes 2. Determinantes 3. Sistemas de

Leia mais

n. 30 TRANSFORMAÇÕES LINEARES Definição: Sejam V e W espaços vetoriais, uma transformação linear T: V W é uma função de V em W se:

n. 30 TRANSFORMAÇÕES LINEARES Definição: Sejam V e W espaços vetoriais, uma transformação linear T: V W é uma função de V em W se: n. 30 TRANSFORMAÇÕES LINEARES Uma transformação linear é um tipo particular de função entre dois espaços vetoriais que preserva as operações de adição vetorial e multiplicação por escalar. Uma transformação

Leia mais

Lista 5. Em toda a lista, as coordenadas referem-se a um sistema de coordenadas fixo (O; i, j, k)

Lista 5. Em toda a lista, as coordenadas referem-se a um sistema de coordenadas fixo (O; i, j, k) UFPR - Universidade Federal do Paraná Departamento de Matemática CM045 - Geometria Analítica Prof. José Carlos Eidam Lista 5 Em toda a lista, as coordenadas referem-se a um sistema de coordenadas fixo

Leia mais

n. 35 AUTOVALORES e AUTOVETORES ou VALORES e VETORES PRÓPRIOS ou VALORES CARACTERÍSTICOS e VETORES CARACTERÍSTICOS

n. 35 AUTOVALORES e AUTOVETORES ou VALORES e VETORES PRÓPRIOS ou VALORES CARACTERÍSTICOS e VETORES CARACTERÍSTICOS n. 35 AUTOVALORES e AUTOVETORES ou VALORES e VETORES PRÓPRIOS ou VALORES CARACTERÍSTICOS e VETORES CARACTERÍSTICOS Aplicações: estudo de vibrações, dinâmica populacional, estudos referentes à Genética,

Leia mais

O Plano no Espaço. Sumário

O Plano no Espaço. Sumário 17 Sumário 17.1 Introdução....................... 2 17.2 Equações paramétricas do plano no espaço..... 2 17.3 Equação cartesiana do plano............. 15 17.4 Exercícios........................ 21 1 Unidade

Leia mais

Geometria Analítica l - MAT Lista 6 Profa. Lhaylla Crissaff

Geometria Analítica l - MAT Lista 6 Profa. Lhaylla Crissaff Geometria Analítica l - MAT 0016 Lista 6 Profa. Lhaylla Crissaff 1. Encontre as equações paramétricas e cartesiana do plano π que passa pelos pontos A = (1, 0, ), B = (1,, 3) e C = (0, 1, ).. Prove que

Leia mais

Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria III Equação do plano e equação da reta no espaço

Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria III Equação do plano e equação da reta no espaço Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria III Equação do plano e equação da reta no espaço º Ano Plano definido por um ponto e um vetor normal : um Seja A x um ponto

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOTAS DE AULA Geometria Analítica e Álgebra Linear Vetores no Espaço Professor: Luiz Fernando Nunes, Dr. 019/Sem_01 Índice Vetores no Espaço Tridimensional... 1.1 Definição... 1. Operações com vetores...

Leia mais

TURMAS:11.ºA/11.ºB. e é perpendicular à reta definida pela condição x 2 z 0.

TURMAS:11.ºA/11.ºB. e é perpendicular à reta definida pela condição x 2 z 0. FICHA DE TRABALHO N.º 3 (GEOMETRIA ANALÍTICA DO ESPAÇO) TURMAS:11.ºA/11.ºB 2017/2018 (JANEIRO DE 2018) No âmbito da Diferenciação Pedagógica (conjunto de exercícios com diferentes níveis de dificuldade:

Leia mais

Aula 7 Equação Vetorial da Reta e Equação Vetorial do plano

Aula 7 Equação Vetorial da Reta e Equação Vetorial do plano Aula 7 Equação Vetorial da Reta e Equação Vetorial do plano Prof Luis Carlos As retas podem estar posicionadas em planos (R 2 ) ou no espaço (R 3 ). Retas no plano possuem pontos com duas coordenadas,

Leia mais

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que Capítulo 11 1. Equações da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que AP = t AB Fig. 1: Reta r passando por A e B. Como o ponto

Leia mais

n. 33 Núcleo de uma transformação linear

n. 33 Núcleo de uma transformação linear n. 33 Núcleo de uma transformação linear Chama-se núcleo de uma transformação linear f: V W ao conjunto de todos os vetores v V que são transformados em 0 W. Indica-se esse conjunto por N(f) ou Ker (f).

Leia mais

Geometria Analítica. Estudo da Reta. Prof Marcelo Maraschin de Souza

Geometria Analítica. Estudo da Reta. Prof Marcelo Maraschin de Souza Geometria Analítica Estudo da Reta Prof Marcelo Maraschin de Souza Reta Considere um ponto A(x 1, y 1, z 1 ) e um vetor não-nulo v = a, b, c. Só existe uma reta r que passa por A e tem a direção de v.

Leia mais

Planos no Espaço. Laura Goulart. 28 de Agosto de 2018 UESB. Laura Goulart (UESB) Planos no Espaço 28 de Agosto de / 31

Planos no Espaço. Laura Goulart. 28 de Agosto de 2018 UESB. Laura Goulart (UESB) Planos no Espaço 28 de Agosto de / 31 Planos no Espaço Laura Goulart UESB 28 de Agosto de 2018 Laura Goulart (UESB) Planos no Espaço 28 de Agosto de 2018 1 / 31 Equação Vetorial do Plano Um dos axiomas de Geometria Espacial nos diz que três

Leia mais

Bacharelado em Ciência e Tecnologia 2ª Lista de Exercícios - Geometria Analítica

Bacharelado em Ciência e Tecnologia 2ª Lista de Exercícios - Geometria Analítica MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS Bacharelado em Ciência e Tecnologia ª Lista de Exercícios - Geometria Analítica 008. ) São dados os pontos

Leia mais

G1 de Álgebra Linear I Gabarito

G1 de Álgebra Linear I Gabarito G1 de Álgebra Linear I 2013.1 6 de Abril de 2013. Gabarito 1) Considere o triângulo ABC de vértices A, B e C. Suponha que: (i) o vértice B do triângulo pertence às retas de equações paramétricas r : (

Leia mais

01. Determinar as equações da reta que passa pelo ponto A( 2, 3, 2) e tem a. = 2x. v são: b c

01. Determinar as equações da reta que passa pelo ponto A( 2, 3, 2) e tem a. = 2x. v são: b c 01. Determinar as equações da reta que passa pelo ponto A(, 3, ) e tem a direção do vetor v = 3 i + k. a = 3 As componentes do vetor v são: b = 0. c = Tendo em vista que b = 0, a reta se acha num plano

Leia mais

BC Geometria Analítica. Lista 4

BC Geometria Analítica. Lista 4 BC0404 - Geometria Analítica Lista 4 Nos exercícios abaixo, deve-se entender que está fixado um sistema de coordenadas cartesianas (O, E) cuja base E = ( i, j, k) é ortonormal (e positiva, caso V esteja

Leia mais

Álgebra Linear I - Lista 5. Equações de retas e planos. Posições relativas. Respostas

Álgebra Linear I - Lista 5. Equações de retas e planos. Posições relativas. Respostas Álgebra Linear I - Lista 5 Equações de retas e planos. Posições relativas Respostas 1) Obtenha equações paramétricas e cartesianas: Das retas que contém aos pontos A = (2, 3, 4) e B = (5, 6, 7), A = (

Leia mais

P1 de Álgebra Linear I Gabarito. 27 de Março de Questão 1)

P1 de Álgebra Linear I Gabarito. 27 de Março de Questão 1) P1 de Álgebra Linear I 20091 27 de Março de 2009 Gabarito Questão 1) Considere o vetor v = 1, 2, 1) e os pontos A = 1, 2, 1), B = 2, 1, 0) e 0, 1, 2) de R a) Determine, se possível, vetores unitários w

Leia mais

. f3 = 4 e 1 3 e 2. f2 = e 1 e 3, g 1 = e 1 + e 2 + e 3, 2 g 2 = e 1 + e 2,

. f3 = 4 e 1 3 e 2. f2 = e 1 e 3, g 1 = e 1 + e 2 + e 3, 2 g 2 = e 1 + e 2, INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-457 Álgebra Linear para Engenharia I Segunda Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Dê a matriz de mudança

Leia mais

P1 de Álgebra Linear I de setembro de Gabarito

P1 de Álgebra Linear I de setembro de Gabarito P1 de Álgebra Linear I 2005.2 8 de setembro de 2005. Gabarito 1) (a) Considere os planos de equações cartesianas α: β : 2 x y + 2 z = 2, γ : x 5 y + z = k. Determine k para que os planos se interceptem

Leia mais

Cálculo Vetorial. Estudo da Reta Prof. Vasco Ricardo Aquino da Silva

Cálculo Vetorial. Estudo da Reta Prof. Vasco Ricardo Aquino da Silva Cálculo Vetorial Estudo da Reta Prof. Vasco Ricardo Aquino da Silva 1. Equação Vetorial da Reta r Consideremos a reta r que passa pelo ponto vetor não nulo e tem a direção do Sendo um ponto qualquer (variável)

Leia mais

1. Encontre as equações simétricas e paramétricas da reta que:

1. Encontre as equações simétricas e paramétricas da reta que: Universidade Federal de Uberlândia Faculdade de Matemática Disciplina : Geometria Analítica (GMA00) Assunto: retas; planos; interseções de retas e planos; posições relativas entre retas e planos; distância

Leia mais

A(500, 500) B( 600, 600) C(715, 715) D( 1002, 1002) E(0, 0) F (711, 0) (c) ao terceiro quadrante? (d) ao quarto quadrante?

A(500, 500) B( 600, 600) C(715, 715) D( 1002, 1002) E(0, 0) F (711, 0) (c) ao terceiro quadrante? (d) ao quarto quadrante? Universidade Federal de Ouro Preto Departamento de Matemática MTM131 - Geometria Analítica e Cálculo Vetorial Professora: Monique Rafaella Anunciação de Oliveira Lista de Exercícios 1 1. Dados os pontos:

Leia mais

5 de setembro de Gabarito. 1) Considere o ponto P = (0, 1, 2) e a reta r de equações paramétricas. r: (2 t, 1 t, 1 + t), t R.

5 de setembro de Gabarito. 1) Considere o ponto P = (0, 1, 2) e a reta r de equações paramétricas. r: (2 t, 1 t, 1 + t), t R. G1 de Álgebra Linear I 20072 5 de setembro de 2007 Gabarito 1) Considere o ponto P = (0, 1, 2) e a reta r de equações paramétricas r: (2 t, 1 t, 1 + t), t R (a) Determine a equação cartesiana do plano

Leia mais

Figura disponível em: <http://soumaisenem.com.br/fisica/conhecimentos-basicos-e-fundamentais/grandezas-escalares-egrandezas-vetoriais>.

Figura disponível em: <http://soumaisenem.com.br/fisica/conhecimentos-basicos-e-fundamentais/grandezas-escalares-egrandezas-vetoriais>. n. 7 VETORES vetor é um segmento orientado; são representações de forças, as quais incluem direção, sentido, intensidade e ponto de aplicação; o módulo, a direção e o sentido caracterizam um vetor: módulo

Leia mais

P L A N O D E E N S I N O. CARGA HORÁRIA TOTAL: 72 h/a TEORIA: 72 h/a PRÁTICA: 0

P L A N O D E E N S I N O. CARGA HORÁRIA TOTAL: 72 h/a TEORIA: 72 h/a PRÁTICA: 0 P L A N O D E E N S I N O DEPARTAMENTO: Matemática DISCIPLINA: Geometria Analítica PROFESSORA: Viviane Maria Beuter SIGLA: GAN0001 CARGA HORÁRIA TOTAL: 72 h/a TEORIA: 72 h/a PRÁTICA: 0 CURSO(S): Engenharia

Leia mais

Universidade Tecnológica Federal do Paraná Câmpus Campo Mourão Departamento de Matemática

Universidade Tecnológica Federal do Paraná Câmpus Campo Mourão Departamento de Matemática Universidade Tecnológica Federal do Paraná Câmpus Campo Mourão Departamento de Matemática GA3X1 - Geometria Analítica e Álgebra Linear Lista de Exercícios: Estudo Analítico de Retas e Planos Prof. Lilian

Leia mais

Álgebra Linear I - Lista 7. Respostas

Álgebra Linear I - Lista 7. Respostas Álgebra Linear I - Lista 7 Distâncias Respostas 1) Considere a reta r que passa por (1,0,1) e por (0,1,1). Calcule a distância do ponto (2,1,2) à reta r. Resposta: 3. 2) Ache o ponto P do conjunto { (x,

Leia mais

PLANO DE ENSINO CURSO Bacharelados e licenciaturas do Campus Curitiba da UTFPR. MATRIZ (SA) FUNDAMENTAÇÃO LEGAL

PLANO DE ENSINO CURSO Bacharelados e licenciaturas do Campus Curitiba da UTFPR. MATRIZ (SA) FUNDAMENTAÇÃO LEGAL Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Curitiba PLANO DE ENSINO CURSO Bacharelados e licenciaturas do Campus Curitiba da UTFPR. MATRIZ (SA) FUNDAMENTAÇÃO LEGAL Resolução

Leia mais

Álgebra Linear I - Aula 6. Roteiro

Álgebra Linear I - Aula 6. Roteiro Álgebra Linear I - Aula 6 1. Equação cartesiana do plano. 2. Equação cartesiana da reta. 3. Posições relativas: de duas retas, de uma reta e um plano, de dois planos. Roteiro 1 Equação cartesiana do plano

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Leia mais

A Reta no Espaço. Sumário

A Reta no Espaço. Sumário 16 A Reta no Espaço Sumário 16.1 Introdução....................... 2 16.2 Equações paramétricas da reta no espaço...... 2 16.3 Equação simétrica da reta no espaço........ 8 16.4 Exercícios........................

Leia mais

Novo Espaço Matemática A, 10.º ano Proposta de teste de avaliação [janeiro 2019]

Novo Espaço Matemática A, 10.º ano Proposta de teste de avaliação [janeiro 2019] Proposta de teste de avaliação [janeiro 09] Nome: Ano / Turma: N.º: Data: - - Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado. As cotações dos itens encontram-se

Leia mais

Geometria Analítica I - MAT Lista 2 Profa. Lhaylla Crissaff

Geometria Analítica I - MAT Lista 2 Profa. Lhaylla Crissaff 1. Encontre as equações paramétricas das retas que passam por P e Q nos casos a seguir: (a) P = (1, 3) e Q = (2, 1). (b) P = (5, 4) e Q = (0, 3). 2. Dados o ponto P = (2, 1) e a reta r : y = 3x 5, encontre

Leia mais

Universidade Federal do Pará Curso de Licenciatura em Matemática PARFOR Lista de Exercícios Referentes a Prova Substitutiva de Geometria Analítica

Universidade Federal do Pará Curso de Licenciatura em Matemática PARFOR Lista de Exercícios Referentes a Prova Substitutiva de Geometria Analítica 1 Universidade Federal do Pará Curso de Licenciatura em Matemática PARFOR Lista de Exercícios Referentes a Prova Substitutiva de Geometria Analítica 1. Determine a distância entre os pontos A(-2, 7) e

Leia mais

P L A N O D E E N S I N O. CARGA HORÁRIA TOTAL: 72 h/a TEORIA: 72 h/a PRÁTICA: 0

P L A N O D E E N S I N O. CARGA HORÁRIA TOTAL: 72 h/a TEORIA: 72 h/a PRÁTICA: 0 P L A N O D E E N S I N O DEPARTAMENTO: Matemática PROFESSORA: Katiani da Conceição Loureiro katiani.loureiro@udesc.br DISCIPLINA: Geometria Analítica SIGLA: GAN 0001 CARGA HORÁRIA TOTAL: 72 h/a TEORIA:

Leia mais

PLANEJAMENTO SEMESTRAL PERÍODO LETIVO 2018/01

PLANEJAMENTO SEMESTRAL PERÍODO LETIVO 2018/01 PLANEJAMENTO SEMESTRAL PERÍODO LETIVO 2018/01 1. IDENTIFICAÇÃO Nome da Atividade de ensino: SNP33D05/1 GEOMETRIA ANALÍTICA Curso de Oferecimento: LICENCIATURA PLENA EM MATEMÁTICA Caráter: Obrigatório Pré-requisitos:

Leia mais

P L A N O D E E N S I N O. CARGA HORÁRIA TOTAL: 72 h/a TEORIA: 72 h/a PRÁTICA: 0

P L A N O D E E N S I N O. CARGA HORÁRIA TOTAL: 72 h/a TEORIA: 72 h/a PRÁTICA: 0 P L A N O D E E N S I N O DEPARTAMENTO: Matemática PROFESSORA: Ivanete Zuchi Siple DISCIPLINA: Álgebra I SIGLA: ALG1001 CARGA HORÁRIA TOTAL: 72 h/a TEORIA: 72 h/a PRÁTICA: 0 CURSO(S): turma não exclusiva

Leia mais

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba PLANO DE ENSINO

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba PLANO DE ENSINO Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba PLANO DE ENSINO CURSOS Bacharelados e Licenciaturas MATRIZ SA (Informação do Sistema Acadêmico) FUNDAMENTAÇÃO LEGAL Resolução

Leia mais

A Reta. Docente Pedro Macário de Moura

A Reta. Docente Pedro Macário de Moura A Reta Docente Pedro Macário de Moura A Matemática é a única linguagem que temos em comum com a natureza. Hawking. A Matemática é a honra do espírito 2 Equação Vetorial da Reta Seja r uma reta que passa

Leia mais

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 2 a Lista de Exercícios - 1 o semestre de f 1 = 2 e 1 e 2 e 3,

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 2 a Lista de Exercícios - 1 o semestre de f 1 = 2 e 1 e 2 e 3, MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 2 a Lista de Exercícios - 1 o semestre de 2015 1 Sendo E = { e 1 e 2 e 3 } F = { f 1 f 2 f 3 } bases com: f 1 = 2 e 1 e 3 f 2 = e 2 + 2 e 3 f 3 = 7 e 3 e w = e

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Álgebra Linear e Geometria Analítica Prof. Aline Paliga EMENTA Vetores Dependência Linear Bases Produto Escalar Produto Vetorial Produto Misto Coordenadas Cartesianas

Leia mais

MAT VETORES E GEOMETRIA - IF/IME 1 o SEMESTRE Suponha fixado um sistema de coordenadas ortogonal cuja base é positiva.

MAT VETORES E GEOMETRIA - IF/IME 1 o SEMESTRE Suponha fixado um sistema de coordenadas ortogonal cuja base é positiva. MAT 11 - VETORES E GEOMETRIA - IF/IME 1 o SEMESTRE 015 LISTA Suponha fixado um sistema de coordenadas ortogonal cuja base é positiva. 1. Sejam A = (1, 1, 1), B = (0, 0, 1) e r : X = (1, 0, 0) + λ(1, 1,

Leia mais

2 Igualdade e Operações com pares ordenados. 1 Conjunto R 2. 3 Vetores. 2.1 Igualdade. 1.2 Coordenadas Cartesianas no Plano

2 Igualdade e Operações com pares ordenados. 1 Conjunto R 2. 3 Vetores. 2.1 Igualdade. 1.2 Coordenadas Cartesianas no Plano 1 Conjunto R 1.1 Definição VETORES NO PLANO Representamos por R o conjunto de todos os pares ordenados de números reais, ou seja: R = {(x, y) x R y R} 1. Coordenadas Cartesianas no Plano Em um plano α,

Leia mais

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Bacharelado em Meteorologia 1604 / Física. Ênfase

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Bacharelado em Meteorologia 1604 / Física. Ênfase Curso 1701 - Bacharelado em Meteorologia 1604 / 1605 - Física Ênfase Identificação Disciplina 0007003A - Cálculo Vetorial e Geometria Analítica Docente(s) Maria Ednéia Martins Salandim Unidade Faculdade

Leia mais

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba PLANO DE ENSINO

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba PLANO DE ENSINO Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba PLANO DE ENSINO CURSOS Bacharelados e Licenciaturas MATRIZ SA (Informação do Sistema Acadêmico) FUNDAMENTAÇÃO LEGAL Resolução

Leia mais

GAAL /1 - Simulado - 2 produto escalar, produto vetorial, retas e planos. Exercício 1: Determine a equação do plano em cada situação descrita.

GAAL /1 - Simulado - 2 produto escalar, produto vetorial, retas e planos. Exercício 1: Determine a equação do plano em cada situação descrita. GAAL - 2013/1 - Simulado - 2 produto escalar, produto vetorial, retas e planos SOLUÇÕES Exercício 1: Determine a equação do plano em cada situação descrita. (a) O plano passa pelo ponto A = (2, 0, 2) e

Leia mais

Lista 3 com respostas

Lista 3 com respostas Lista 3 com respostas Professora Nataliia Goloshchapova MAT0105-1 semestre de 2018 Exercício 1. Sendo que w = ( u v) ( u + v), determine o ângulo entre os vetores u e v, sabendo que u = v = w = 1 e u v

Leia mais

Geometria Analítica. Cleide Martins. Turmas E1 e E3. DMat - UFPE Cleide Martins (DMat - UFPE ) Retas e Planos Turmas E1 e E3 1 / 18

Geometria Analítica. Cleide Martins. Turmas E1 e E3. DMat - UFPE Cleide Martins (DMat - UFPE ) Retas e Planos Turmas E1 e E3 1 / 18 Geometria Analítica Cleide Martins DMat - UFPE - 2017.1 Turmas E1 e E3 Cleide Martins (DMat - UFPE - 2017.1) Retas e Planos Turmas E1 e E3 1 / 18 Agora que já denimos um sistema de coordenadas, adotaremos

Leia mais

1 Segmentos orientados e vetores, adição e multiplicação

1 Segmentos orientados e vetores, adição e multiplicação MAP2110 Modelagem e Matemática 1 o Semestre de 2007 Resumo 1 - Roteiro de estudos - 07/05/2007 Espaços vetoriais bi e tri-dimensionais (plano ou espaço bidimensional E 2, e espaço tridimensional E 3 )

Leia mais

MINISTÉRIO DA EDUCAÇÃO

MINISTÉRIO DA EDUCAÇÃO IDENTIFICAÇÃO Unidade Curricular: Geometria Analitica MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICAS INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS

Leia mais

P1 de Álgebra Linear I

P1 de Álgebra Linear I P1 de Álgebra Linear I 2008.1 Gabarito 1) Decida se cada afirmação a seguir é verdadeira ou falsa e marque COM CANETA sua resposta no quadro a seguir. Itens V F N 1.a x 1.b x 1.c x 1.d x 1.e x 1.a) Para

Leia mais

Lista 3: Geometria Analítica

Lista 3: Geometria Analítica Lista 3: Geometria Analítica A. Ramos 25 de abril de 2017 Lista em constante atualização. 1. Equação da reta e do plano; 2. Ângulo entre retas e entre planos. Resumo Equação da reta Equação vetorial. Uma

Leia mais

Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos

Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos º Ano No plano Mediatriz de um segmento de reta [AB] Sendo M o ponto

Leia mais

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CONSELHO DE GRADUAÇÃO

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CONSELHO DE GRADUAÇÃO DISCIPLINA: GEOMETRIA ANALÍTICA E ÁLGEBRA VETORIAL CÓDIGO: 2DB.004 VALIDADE: Início: 01/2013 Término: Eixo: Matemática Carga Horária: Total: 75 horas/ 90 horas-aula Semanal: 06 aulas Créditos: 6 Modalidade:

Leia mais

Aula Distância entre duas retas paralelas no espaço. Definição 1. Exemplo 1

Aula Distância entre duas retas paralelas no espaço. Definição 1. Exemplo 1 Aula 1 Sejam r 1 = P 1 + t v 1 t R} e r 2 = P 2 + t v 2 t R} duas retas no espaço. Se r 1 r 2, sabemos que r 1 e r 2 são concorrentes (isto é r 1 r 2 ) ou não se intersectam. Quando a segunda possibilidade

Leia mais

Lista de Exercícios de Geometria

Lista de Exercícios de Geometria Núcleo Básico de Engenharias Geometria - Geometria Analítica Professor Julierme Oliveira Lista de Exercícios de Geometria Primeira Parte: VETORES 1. Sejam os pontos A(0,0), B(1,0), C(0,1), D(-,3), E(4,-5)

Leia mais

2 a Lista de Exercícios de MAT2457 Escola Politécnica 1 o semestre de 2014

2 a Lista de Exercícios de MAT2457 Escola Politécnica 1 o semestre de 2014 a Lista de Eercícios de MAT4 Escola Politécnica o semestre de 4. Determine u tal que u = e u é ortogonal a v = (,, ) e a w = (, 4, 6). Dos u s encontrados, qual é o que forma um ângulo agudo com o vetor

Leia mais

Aula Exemplos e aplicações. Exemplo 1. Nesta aula apresentamos uma série de exemplos e aplicações dos conceitos vistos.

Aula Exemplos e aplicações. Exemplo 1. Nesta aula apresentamos uma série de exemplos e aplicações dos conceitos vistos. Aula 16 Nesta aula apresentamos uma série de exemplos e aplicações dos conceitos vistos. 1. Exemplos e aplicações Exemplo 1 Considere os pontos A = (1, 2, 2), B = (2, 4, 3), C = ( 1, 4, 2), D = (7, 1,

Leia mais

14/03/2013. Cálculo Vetorial. Professor: Wildson Cruz

14/03/2013. Cálculo Vetorial. Professor: Wildson Cruz Estudamos os vetores do ponto de vista geométrico e, no caso, eles eram representados por um segmento de reta orientado. E agora vamos mostrar uma outra forma de representá-los: os segmentos orientados

Leia mais

Geometria Analítica - Retas e Planos

Geometria Analítica - Retas e Planos Geometria Analítica - Retas e Planos Cleide Martins DMat - UFPE Turmas E1 e E3 Cleide Martins (DMat - UFPE) Ângulos Turmas E1 e E3 1 / 10 Objetivos 1 Estudar ângulos entre retas, entre planos e entre retas

Leia mais

Geometria Analítica I

Geometria Analítica I Geom. Analítica I Respostas do Módulo I - Aula 3 1 Geometria Analítica I 14/0/011 Respostas dos Exercícios do Módulo I - Aula 3 Aula 3 1. Procedendo como na definição da equação paramétrica da reta (página

Leia mais

Prof. Fernando Carneiro Rio de Janeiro, Outubro de 2015

Prof. Fernando Carneiro Rio de Janeiro, Outubro de 2015 Ga - retas e planos na solução de problemas 1 GA - Retas e planos na solução de problemas Prof. Fernando Carneiro Rio de Janeiro, Outubro de 2015 1 Reta concorrente a duas retas dadas Este tipo de problema

Leia mais

2. Na gura abaixo, representa-se um cubo. Desenhe a echa de origem H que representa ! DN =! DC

2. Na gura abaixo, representa-se um cubo. Desenhe a echa de origem H que representa ! DN =! DC 1 Universidade Estadual de Santa Catarina Centro de Ciências Tecnológicas -DMAT ALG- CCI Professores: Ivanete, Elisandra e Rodrigo I Lista - vetores, retas e planos 1. Dados os vetores ~u e ~v da gura,

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre 2012 Aluno(a): Número: Turma: 1) Resolva

Leia mais

tenha tamanho igual a 5. Determinar o valor de k, se existir, para que os vetores u k,2,k

tenha tamanho igual a 5. Determinar o valor de k, se existir, para que os vetores u k,2,k Vetores Questão 1 Determine o valor de k para que o vetor v (2k,k, 3k) tenha tamanho igual a 5. Questão 2 Ache w tal que w i k 2 i k 2 i j k e w 6. Questão 3 Determinar o valor de k, se existir, para que

Leia mais

Álgebra Linear e Geometria Anaĺıtica. Vetores, Retas e Planos

Álgebra Linear e Geometria Anaĺıtica. Vetores, Retas e Planos universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 3 Vetores, Retas e lanos roduto interno em R n [3 01] Dados os vetores X =

Leia mais

GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1).

GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1). GAAL - Exame Especial - /julho/3 SOLUÇÕES Questão : Considere os pontos A = (,, 3), B = (, 3, ), C = (3,, ) e D = (,, ) (a) Chame de α o plano que passa pelos pontos A, B e C e de β o plano que passa pelos

Leia mais

EXERCÍCIOS RESOLVIDOS Prova de 23/07/2009 Todas as questões se referem a um sistema ortogonal de coordenadas

EXERCÍCIOS RESOLVIDOS Prova de 23/07/2009 Todas as questões se referem a um sistema ortogonal de coordenadas EXERCÍCIOS RESOLVIDOS 1 SINUÊ DAYAN BARBERO LODOVICI Resumo Exercícios Resolvidos - Geometria Analítica BC 0404 1 Prova de 23/07/2009 Todas as questões se referem a um sistema ortogonal de coordenadas

Leia mais

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 2015

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 2015 MAT27 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 201 Nesta prova considera-se fixada uma orientação do espaço e um sistema de coordenadas Σ (O, E) em E 3, em que E é uma base

Leia mais

Disciplina: Álgebra Linear e Geometria Analítica

Disciplina: Álgebra Linear e Geometria Analítica Disciplina: Álgebra Linear e Geometria Analítica Vigência: a partir de 2002/1 Período letivo: 1 semestre Carga horária Total: 60 h Código: S7221 Ementa: Geometria Analítica: O Ponto, Vetores, A Reta, O

Leia mais

Lista 3.2: Retas - Planos e Distâncias PARTE 1: RETAS. 1. Verificar se os pontos P 1 (5, 5,6) e P 2 (4, 1,12) pertencem à reta r : x 3 1 = y + 1

Lista 3.2: Retas - Planos e Distâncias PARTE 1: RETAS. 1. Verificar se os pontos P 1 (5, 5,6) e P 2 (4, 1,12) pertencem à reta r : x 3 1 = y + 1 Curso:Licenciatura em Matemática Professor: Luis Gustavo Longen Lista 3.: Retas - Planos e Distâncias PARTE 1: RETAS 1. Verificar se os pontos P 1 (5, 5,6) e P (4, 1,1) pertencem à reta r : x 3 1 = y +

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOTAS DE AULA Geoetria Analítica e Álgebra Linear Reta e Plano Professor: Lui Fernando Nunes, Dr. Índice Geoetria Analítica e Álgebra Linear ii Estudo da Reta e do Plano... -. A Reta no Espaço... -.. Equação

Leia mais

Sistemas de equações lineares com três variáveis

Sistemas de equações lineares com três variáveis 18 Sistemas de equações lineares com três variáveis Sumário 18.1 Introdução....................... 18. Sistemas de duas equações lineares........... 18. Sistemas de três equações lineares........... 8

Leia mais

BANCO DE QUESTÕES MATEMÁTICA A 10. O ANO

BANCO DE QUESTÕES MATEMÁTICA A 10. O ANO BANCO DE QUESTÕES MATEMÁTICA A 0 O ANO DOMÍNIO: Geometria Analítica Para um certo valor de k real, o ponto de coordenadas (, k 4) contém as bissetrizes dos quadrante pares Qual é esse valor de k? pertence

Leia mais

Aula Exemplos e aplicações - continuação. Exemplo 8. Nesta aula continuamos com mais exemplos e aplicações dos conceitos vistos.

Aula Exemplos e aplicações - continuação. Exemplo 8. Nesta aula continuamos com mais exemplos e aplicações dos conceitos vistos. Aula 1 Nesta aula continuamos com mais exemplos e aplicações dos conceitos vistos. 1. Exemplos e aplicações - continuação Exemplo 8 Considere o plano π : x + y + z = 3 e a reta r paralela ao vetor v =

Leia mais

DISCIPLINA: Geometria Analítica e Álgebra Linear SIGLA: ALGA001 T/A. CARGA HORÁRIA TOTAL: 72 h/a TEORIA: 72 h/a

DISCIPLINA: Geometria Analítica e Álgebra Linear SIGLA: ALGA001 T/A. CARGA HORÁRIA TOTAL: 72 h/a TEORIA: 72 h/a P L A N O D E E N S I N O DEPARTAMENTO: Matemática PROFESSOR: Rafael Camargo Rodrigues de Lima DISCIPLINA: Geometria Analítica e Álgebra Linear SIGLA: ALGA001 T/A CARGA HORÁRIA TOTAL: 72 h/a TEORIA: 72

Leia mais

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com três variáveis - Parte 1. Terceiro Ano do Ensino Médio

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com três variáveis - Parte 1. Terceiro Ano do Ensino Médio Material Teórico - Sistemas Lineares e Geometria Anaĺıtica Sistemas com três variáveis - Parte 1 Terceiro Ano do Ensino Médio Autor: Prof Fabrício Siqueira Benevides Revisor: Prof Antonio Caminha M Neto

Leia mais

Prova tipo A. Gabarito. Data: 8 de outubro de ) Decida se cada afirmação a seguir é verdadeira ou falsa. 1.a) Considere os vetores de R 3

Prova tipo A. Gabarito. Data: 8 de outubro de ) Decida se cada afirmação a seguir é verdadeira ou falsa. 1.a) Considere os vetores de R 3 Prova tipo A P2 de Álgebra Linear I 2004.2 Data: 8 de outubro de 2004. Gabarito Decida se cada afirmação a seguir é verdadeira ou falsa..a Considere os vetores de R 3 v = (, 0,, v 2 = (2,, a, v 3 = (3,,

Leia mais

1. Operações com vetores no espaço

1. Operações com vetores no espaço Capítulo 10 1. Operações com vetores no espaço Vamos definir agora as operações de adição de vetores no espaço e multiplicação de um vetor espacial por um número real. O processo é análogo ao efetuado

Leia mais

Tarefa nº_ 2.2. (A) Um ponto (B) Uma reta (C) Um plano (D) Nenhuma das anteriores

Tarefa nº_ 2.2. (A) Um ponto (B) Uma reta (C) Um plano (D) Nenhuma das anteriores Tarefa nº_. MATEMÁTICA Geometria Nome: 11º Ano Data / / 1. Num referencial o.n. Oxyz, qual das seguintes condições define uma recta paralela ao eixo Oz? (A) x = y = 1 (C) z = 1 (B) (x, y, z) = (1,,0) +

Leia mais

10. Determine as equações cartesianas das famílias de retas que fazem um ângulo de π/4 radianos com a reta y = 2x + 1.

10. Determine as equações cartesianas das famílias de retas que fazem um ângulo de π/4 radianos com a reta y = 2x + 1. Geometria Analítica. 1. Determine as posições relativas e as interseções entre os conjuntos em R abaixo. Em cada item também faça um esboço dos dois conjuntos dados no mesmo sistema de eixos. (a) C : (x

Leia mais

Componente Curricular: ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA PLANO DE CURSO

Componente Curricular: ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA PLANO DE CURSO C U R S O D E E N G E N H A R IA C IVIL Autorizado pela Portaria nº 276, de 30/05/15 DOU de 31/03/15 Componente Curricular: ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA Código: Pré-requisito: ----- Período Letivo:

Leia mais

REPÚBLICA FEDERATIVA DO BRASIL ESTADO DE SANTA CATARINA Universidade do Estado de Santa Catarina - UDESC CENTRO DE CIÊNCIAS TECNOLÓGICAS - UDESC/CCT

REPÚBLICA FEDERATIVA DO BRASIL ESTADO DE SANTA CATARINA Universidade do Estado de Santa Catarina - UDESC CENTRO DE CIÊNCIAS TECNOLÓGICAS - UDESC/CCT Curso: CCI-BAC - Bacharelado em Ciência da Computação Departamento: DMA - Matemática Disciplina: ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA I Código: ALG1002 Carga horária: 72 Período letivo: 2018/1 Professor:

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Álgebra Linear e Geometria Analítica Prof. Aline Paliga EMENTA Vetores Dependência Linear Bases Produto Escalar Produto Vetorial Produto Misto Coordenadas Cartesianas

Leia mais

Da aula passada... Posição relativa entre duas retas no espaço: { paralelas concorrentes COPLANARES. NÃO COPLANARES = reversas

Da aula passada... Posição relativa entre duas retas no espaço: { paralelas concorrentes COPLANARES. NÃO COPLANARES = reversas Simulados Na semana passada foi divulgado o primeiro simulado de gaal: vetores e produto escalar. Hoje será divulgado o segundo simulado: retas, planos e produto vetorial. Procure Monitoria GAAL 2013/1

Leia mais

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Medianeira PLANO DE ENSINO. CURSO Engenharia Elétrica MATRIZ 548

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Medianeira PLANO DE ENSINO. CURSO Engenharia Elétrica MATRIZ 548 Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Medianeira PLANO DE ENSINO CURSO Engenharia Elétrica MATRIZ 548 FUNDAMENTAÇÃO LEGAL Processo N 00/11, aprovado pela Resolução n.

Leia mais