Laboratório de Sistemas e Sinais Análise Espectral

Tamanho: px
Começar a partir da página:

Download "Laboratório de Sistemas e Sinais Análise Espectral"

Transcrição

1 Laboratório de Sistemas e Sinais Análise Espectral Luís Caldas de Oliveira Abril 29 O objectivo deste trabalho de laboratório é o de ensinar a analisar sinais no domínio da frequência. Utilizaremos dois métodos. O primeiro consiste em representar graficamente os coeficientes da série discreta de Fourier de sinais de duração finita. O segundo método representa os coeficientes de segmentos de duração limitada de sinais que variam no tempo, criando o que é chamado de espectrograma. 1 Introdução Um sinal em tempo discreto de duração finita com p amostras pode ter a seguinte expansão em série de Fourier: se p for um número ímpar e x(n)=a + x(n)=a + 2 A k cos(kω n+φ k ) (1) p 1 k=1 p 2 A k cos(kω n+φ k ) (2) k=1 se p for par. Um sinal de duração finita pode ser considerado como um ciclo de um sinal periódico com frequência fundamentalω = 2π/p em radianos por amostra, ou f= 1/p em Hertz. Neste laboratório assumiremos que p é sempre par e faremos a representação gráfica de cada uma das componentes em frequência A,..., A p/2 para diversos sinais com o objectivo de compreender o significado desses coeficientes. De notar que cada A k dá a amplitude da componente sinusoidal do sinal à frequência kω = k2π/p, que tem como unidades radianos por amostra. Para interpretar estes coeficientes poderá ser conveniente converter esta unidade para Hertz. Se a frequência de amostragem for f s amostras por segundo, então a conversão poderá ser feita através de: (k2π/p)[radianos/amostra] f s [amostras/segundo] 2π[radianos/ciclo] = k f s p [ciclos/segundo] Assim, cada A k dá a amplitude da componente sinusoidal com frequência k f s /p Hz. Note que o Matlab não tem nenhuma função pré-definida para calcular os coeficientes da série de Fourier, tendo no entanto uma função que calcula a transformada rápida de Fourier, chamada fft. Esta função pode ser usada para calcular os coeficientes da série de Fourier através da seguinte funçãoseriefourier: function [amplitude, fase] = seriefourier(x) % SERIEFOURIER - Retorna a amplitude e a fase de cada componente % sinusoidal da expansão em série de Fourier do sinal dado como % argumento, que é interpretado como um ciclo de um sinal % periódico. Assume-se que o argumento tem um número de amostras p que % é par. O primeiro valor de retorno é um vector contendo as % amplitudes da componentes sinusoidais na expansão em série de % Fourier com frequências, 1/p, 2/p,... 1/2. O segundo valor de % retorno é um vector com as fases das componentes sinusoidais. Ambos % os vectores têm comprimento de (p/2)+1. 1

2 p = length(x); f = fft(x)/p; amplitude(1) = abs(f(1)); upper = p/2; amplitude(2:upper) = 2*abs(f(2:upper)); amplitude(upper+1) = abs(f(upper+1)); fase(1) = angle(f(1)); fase(2:upper) = angle(f(2:upper)); fase(upper+1) = angle(f(upper+1)); Se se tiver um vectorxcom comprimento par, pode-se usar a função para obter os coeficientes da DFS: [A, phi] = seriefourier(x); Os vectoresaephi contêm a amplitude e a fase de cada coeficiente. Para representar graficamente as amplitudes dos coeficientes em função da frequência basta fazer: p = length(x); frequencias = [:fs/p:fs/2]; plot(frequencias, A); xlabel( frequencia em Hertz ); ylabel( amplitude ); Em quefs terá o valor da frequência de amostragem em amostras por segundo. A linha frequencias = [:fs/p:fs/2]; requer uma análise mais cuidada. Produz um vector com o mesmo comprimento dea, ou seja 1+ p/2, em que p é o comprimento do vectorx. Os elementos do vectorfrequencias são as frequências em Hertz de cada componente da série de Fourier. 2 Trabalho para os Alunos 1. Considere o sinal produzido da seguinte forma: t = [:1/8:1-1/8]; x = sin(2*pi*8*t); Isto corresponde a 8 amostras de uma sinusóide de 8 Hz amostrada a 8 khz. Oiça o vectorx. Utilize a função seriefourier descrita anteriormente para representar graficamente a amplitude dos coeficientes da série de Fourier dex. 2. O sinal da alínea anterior pode ser visto como a amostragem da sinusóide contínua: x(t) = sin(2π8t) Repare que a frequência angular da sinusóide é a derivada em ordem ao tempo do argumento da função seno: Considere agora o sinal ω= d dt 2π8t=2π8 y(t)=sin(2π8t 2 ) A este sinal dá-se o nome de chirp. A frequência instantânea pode ser obtida pela derivada do argumento da função seno: ω(t)= d dt 2π8t2 = 4π8t Num sinal chirp a frequência varia constantemente com o tempo. Considere a amostragem a 8 khz de y(t): 2

3 t = [:1/8:1-1/8]; y = sin(2*pi*8*(t.*t)); Oiça o sinal e represente graficamente os coeficientes da série de Fourier. Que gama de valores toma a frequência instantânea? 3. Os coeficientes de Fourier que calculou anteriormente, descrevem a gama de frequências do chirp bem, nas não a sua dinâmica. Represente graficamente os coeficientes da série de Fourier do sinalzdado por: z = y(8:-1:1) Oiça o sinal. Compare o som dezcom o deyecompare os gráficos dos coeficientes de Fourier. 4. O sinal chirp tem uma representação em frequência que varia com o tempo. Mais precisamente, existem certas propriedades do sinal que mudam suficientemente devagar para o nosso ouvido as entender como uma variação na composição em frequência do sinal em vez de o considerar como pertencente ao próprio sinal (como o timbre ou conteúdo tonal). Note que o nosso ouvido não é sensível a frequências abaixo dos 3 Hz. Em vez disso, o nosso cérebro entende essas variações como variações na natureza do som e não como conteúdo no domínio da frequência. Os métodos de análise de Fourier usados anteriormente não reflectem esse fenómeno psico-acústico. A série de Fourier localizada procura resolver este problema. O sinal chirp tem 8 amostras num segundo, mas como não ouvimos variações abaixo dos 3 Hz como conteúdo na frequência, pode fazer sentido re-analisar o sinal ao ritmo de 3 vezes por segundo. Isto pode ser feito com a seguinte função: function espectrogramacascata(s, fs, amostrasespectro, numdeespectros) % ESPECTROGRAMACASCATA - Faz o gráfico 3-D do espectrograma do sinal % s. % % Argumentos: % s - o sinal. % fs - frequência de amostragem em amostras por segundo. % amostrasespectro - o número de amostras usadas para calcular cada % espectro. % numdeespectros - número de espectros a calcular. frequencias = [:fs/amostrasespectro:fs/2]; offset = floor((length(s)-amostrasespectro)/numdeespectros); for i=:(numdeespectros-1) start = i*offset; [A, phi] = seriefourier(s((1+start):(start+amostrasespectro))); amplitude(:,(i+1)) = A ; end waterfall(frequencias, :(numdeespectros-1), amplitude ); xlabel( frequencia ); ylabel( tempo ); zlabel( amplitude ); Esta função pode ser chamada do seguinte modo: t = [:1/8:1-1/8]; y = sin(2*pi*8*(t.*t)); espectrogramacascata(y, 8, 4, 3); Que produz o gráfico da figura 4. O gráfico mostra 3 conjuntos distintos de coeficientes de Fourier, cada um calculado com 4 das 8 amostras disponíveis. Explique como é que este gráfico descreve o que ouviu. Crie um gráfico semelhante para o chirp invertidoz. 3

4 .6.5 amplitude tempo frequencia 3 4 Figura 1: Representação da série de Fourier localizada de um sinal chirp 5. A figura 4 é fácil de interpretar graças à estrutura relativamente simples do sinal chirp. Sinais mais interessantes são mais difíceis de analisar desta forma. Uma forma de visualização alternativa do conteúdo em frequência é o espectrograma. Um espectrograma é um gráfico como o da figura 4, mas visto de cima. A altura de cada ponto é representada por uma cor diferente (ou intensidade numa imagem a preto-e-branco). No Matlab existe uma função pré-definida para gerar um espectrograma: specgram(y,512,8); Isto resulta na imagem apresentada na figura 5. Nessa imagem utilizou-se o mapa de cores por omissão (jet). Pode experimentar com outros mapas de cores usando o comando colormap. Um particularmente útil é: colormap(hot) Crie uma imagem semelhante para o chirp invertido z. Determine a gama de variação da frequência instantânea. 6. Junto a este relatório encontra alguns ficheiros de áudio. Use os seguintes comandos para os ouvir e visualizar: [y,fs] = wavread( audio1.wav ); soundsc(y,fs) subplot(2,1,1); specgram(y,124,fs,[],9) subplot(2,1,2); plot(y) 4

5 Frequency Time Figura 2: Representação da série de Fourier localizada de um sinal chirp Interprete os resultados 7. Para o sinal chirp usado anteriormente: t = [:1/8:1-1/8]; y = sin(2*pi*8*(t.*t)); produza os coeficientes da série de Fourier usando a função seriefourier. Escreva uma função Matlab que use a equação 2 para reconstruir o sinal original a partir dos coeficientes. A sua função Matlab deverá começar da seguinte forma: function x = reconstroi(amplitude, fase) % RECONSTROI - Dado um vector de amplitudes e um vector de fases, % constroi um sinal que tem estes valores como coeficientes da série % de Fourier. Assume-se que os argumentos têm comprimento ímpar, % p/2+1, e que o vector de retorno tem comprimento p. E deverá realizar a seguinte equação: p/2 n {m m< p}, x(n)= A k cos(2π f k n+φ k ) em que A k eφ k são respectivamente a amplitude e a fase dos coeficientes da série de Fourier. Tenha em atenção que os índices dos vectores em Matlab começam em 1. Note que esta função requere um número elevado de operações. Se o seu computador não for suficientemente potente, construa os coeficientes de Fourier para as primeira 1 amostras em vez das 8 e reconstrua k= 5

6 o sinal a partir desses coeficientes. Para verificar que a reconstrução funciona, subtraia o sinal reconstruído do sinal original e examine a diferença. A diferença poderá não ser exactamente zero, mas deverá ser muito pequena quando comparada com o sinal original. Desenhe o gráfico do sinal de diferença. 8. Iremos agora estudar sinais de batimento que correspondem à combinação de sinais sinusoidais com frequências próximas. Comece por usar as relações de Euler para mostrar que: em queω c,ω, t. 2 cos(ω c t) cos(ω t)=cos((ω c +ω )t)+cos((ω c ω )t) Esta identidade significa que a multiplicação de dois sinais sinusoidais com frequênciasω c eω é igual à soma de duas sinusóides com frequênciasω c +ω eω c ω. 9. Construa um sinal com a soma de duas sinusóides de frequências 79 e 81 Hz, amostradas à frequência de 8 khz e com a duração de 1 segundo. Oiça o sinal resultante e descreva o que ouve. Desenhe o gráfico das primeiras 8 amostras. Mostre como é que o gráfico ilustra o que ouviu e utilize a identidade da alínea anterior para explicar o gráfico. 1. Qual é o período do sinal da alínea anterior? Qual é a frequência fundamental da sua expansão em série de Fourier? Apresente o gráfico da amplitude dos seus coeficientes de Fourier usando a função seriefourier. Desenhe o espectrograma usando specgram. Escolha cuidadosamente os parâmetros de specgram para a imagem ser mais clara. Qual dos dois gráficos representa melhor o que ouviu? 6

Laboratório de Sistemas e Sinais L1: Matrizes, Sons e Imagens

Laboratório de Sistemas e Sinais L1: Matrizes, Sons e Imagens Laboratório de Sistemas e Sinais L1: Matrizes, Sons e Imagens Luís Caldas de Oliveira Março de 2009 O objectivo deste laboratório é o de explorar a utilização de matrizes em Matlab e de usá-las para construir

Leia mais

Capítulo 4 Resposta em frequência

Capítulo 4 Resposta em frequência Capítulo 4 Resposta em frequência 4.1 Noção do domínio da frequência 4.2 Séries de Fourier e propriedades 4.3 Resposta em frequência dos SLITs 1 Capítulo 4 Resposta em frequência 4.1 Noção do domínio da

Leia mais

Sistemas e Sinais (LEIC) Análise em Frequência. Carlos Cardeira

Sistemas e Sinais (LEIC) Análise em Frequência. Carlos Cardeira Sistemas e Sinais (LEIC) Análise em Frequência Carlos Cardeira Análise em Frequência Até agora a análise que temos feito tem o tempo como domínio. As saídas podiam ser funções no tempo correspondentes

Leia mais

Medições de Ondas Sinusoidais

Medições de Ondas Sinusoidais Medições de Ondas Sinusoidais A figura 6 apresenta a forma de onda de saída de um gerador. Se o condutor executar uma rotação num segundo, a frequência da onda sinusoidal produzida pelo gerador é de um

Leia mais

Espectro da Voz e Conversão A/D

Espectro da Voz e Conversão A/D INSTITUTO SUPERIOR TÉCNICO LICENCIATURA EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES GUIA DO 1º TRABALHO DE LABORATÓRIO DE SISTEMAS DE TELECOMUNICAÇÕES I Espectro da Voz e Conversão A/D Ano Lectivo de

Leia mais

Capítulo 1 Definição de Sinais e Sistemas

Capítulo 1 Definição de Sinais e Sistemas Capítulo 1 Definição de Sinais e Sistemas 1.1 Introdução 1.2 Representação dos sinais como funções 1.3 Representação dos sistemas como funções 1.4 Definições básicas de funções 1.5 Definição de sinal 1.6

Leia mais

Expansão de Imagem #2

Expansão de Imagem #2 Faculdade de Engenharia da Universidade do Porto Engenharia Electrotécnica e de Computadores Expansão de Imagem #2 Televisão Digital António Alberto da Silva Marques Pedro Ricardo dos Reis Porto, 2004

Leia mais

Análise de sistemas no domínio da frequência

Análise de sistemas no domínio da frequência Análise de sistemas no domínio da frequência Quando se analisa um sistema no domínio da frequência, pretende-se essencialmente conhecer o seu comportamento no que respeita a responder a sinais periódicos,

Leia mais

2- Conceitos Básicos de Telecomunicações

2- Conceitos Básicos de Telecomunicações Introdução às Telecomunicações 2- Conceitos Básicos de Telecomunicações Elementos de um Sistemas de Telecomunicações Capítulo 2 - Conceitos Básicos de Telecomunicações 2 1 A Fonte Equipamento que origina

Leia mais

A. MANUAL DO MÓDULO ATFAR DO ECGLAB

A. MANUAL DO MÓDULO ATFAR DO ECGLAB A. MANUAL DO MÓDULO ATFAR DO ECGLAB ECGLAB Módulo atfar Projeto de Mestrado de João Luiz Azevedo de Carvalho (Eng. Elétrica), orientado pelos Profs. Adson Ferreira da Rocha (Eng. Elétrica) e Luiz Fernando

Leia mais

Amostragem e PCM. Edmar José do Nascimento (Princípios de Comunicações) http://www.univasf.edu.br/ edmar.nascimento

Amostragem e PCM. Edmar José do Nascimento (Princípios de Comunicações) http://www.univasf.edu.br/ edmar.nascimento Amostragem e PCM Edmar José do Nascimento (Princípios de Comunicações) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco Roteiro 1 Amostragem 2 Introdução O processo

Leia mais

Comunicação da informação a curta distância. FQA Unidade 2 - FÍSICA

Comunicação da informação a curta distância. FQA Unidade 2 - FÍSICA Comunicação da informação a curta distância FQA Unidade 2 - FÍSICA Meios de comunicação É possível imaginar como seria o nosso mundo sem os meios de comunicação de que dispomos? Os * * * * Aparelhos de

Leia mais

4º Laboratório de Sistemas e Sinais (LEIC Alameda 2008/09)

4º Laboratório de Sistemas e Sinais (LEIC Alameda 2008/09) 4º Laboratório de Sistemas e Sinais (LEIC Alameda 008/09) Data de realização e de entrega: aula das semanas 11-15/Maio/009. Local da realização: Laboratório de Controlo, Automação e Robótica, localizado

Leia mais

canal 1 canal 2 t t 2 T

canal 1 canal 2 t t 2 T ircuito L (Prova ) --7 f [khz] L T [s] s canal canal t t T Fig. ircuito usado Tarefas: ) Monte o circuito da figura usando o gerador de funções com sinais harmônicos como força eletromotriz. Use um resistor

Leia mais

Séries de Fourier Aplicações em Geral Transformada de Fourier (TF) Aplicações específicas da TF Conclusões

Séries de Fourier Aplicações em Geral Transformada de Fourier (TF) Aplicações específicas da TF Conclusões Sinais e Sistemas Aplicações das séries e transformadas de Fourier Séries de Fourier Aplicações em Geral Transformada de Fourier (TF) Aplicações específicas da TF Conclusões Baseado no seguinte material:

Leia mais

Estudos Iniciais do Sistema didático para análise de sinais no domínio da frequência DSA-PC: tipos de janelas temporais.

Estudos Iniciais do Sistema didático para análise de sinais no domínio da frequência DSA-PC: tipos de janelas temporais. Estudos Iniciais do Sistema didático para análise de sinais no domínio da frequência DSA-PC: tipos de janelas temporais. Patricia Alves Machado Telecomunicações, Instituto Federal de Santa Catarina machadopatriciaa@gmail.com

Leia mais

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 1

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 1 597 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Movimentos Periódicos Para estudar movimentos oscilatórios periódicos é conveniente ter algum modelo físico em mente. Por exemplo, um

Leia mais

5 Transformadas de Laplace

5 Transformadas de Laplace 5 Transformadas de Laplace 5.1 Introdução às Transformadas de Laplace 4 5.2 Transformadas de Laplace definição 5 5.2 Transformadas de Laplace de sinais conhecidos 6 Sinal exponencial 6 Exemplo 5.1 7 Sinal

Leia mais

NÍVEL BÁSICO CAPÍTULO III

NÍVEL BÁSICO CAPÍTULO III UNIVERSIDADE FEDERAL DO PARÁ CENTRO TECNOLÓGICO DEPARTAMENTO DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO PROGRAMA DE EDUCAÇÃO TUTORIAL SEMANA DOS 40 ANOS DE ENGENHARIA ELÉTRICA NÍVEL BÁSICO CAPÍTULO III PROGRAMA

Leia mais

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações 1. Movimento Oscilatório. Cinemática do Movimento Harmônico Simples (MHS) 3. MHS e Movimento

Leia mais

Capítulo 6 Filtragem, Amostragem e Reconstrução

Capítulo 6 Filtragem, Amostragem e Reconstrução Capítulo 6 Filtragem, Amostragem e Reconstrução 6. Filtragem 6.2 Amostragem e reconstrução de sinais Capítulo 6 Filtragem, Amostragem e Reconstrução 6. Filtragem 6.2 Amostragem e reconstrução de sinais

Leia mais

Sistemas Multimédia. Ano lectivo 2006-2007. Aula 11 Conceitos básicos de Audio Digital. MIDI: Musical Instrument Digital Interface

Sistemas Multimédia. Ano lectivo 2006-2007. Aula 11 Conceitos básicos de Audio Digital. MIDI: Musical Instrument Digital Interface Sistemas Multimédia Ano lectivo 2006-2007 Aula 11 Conceitos básicos de Audio Digital Sumário Aúdio digital Digitalização de som O que é o som? Digitalização Teorema de Nyquist MIDI: Musical Instrument

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

Laboratório de Circuitos Elétricos 1 2015/2. Experiência N o 02: Medidas AC

Laboratório de Circuitos Elétricos 1 2015/2. Experiência N o 02: Medidas AC Laboratório de Circuitos Elétricos 1 2015/2 Experiência N o 02: Medidas C I - Objetivos Familiarização com os equipamentos de laboratório: gerador de funções, osciloscópio e multímetro. II - Introdução

Leia mais

O AMPLIFICADOR LOCK-IN

O AMPLIFICADOR LOCK-IN O AMPLIFICADOR LOCK-IN AUTORES: RAFAEL ASTUTO AROUCHE NUNES MARCELO PORTES DE ALBUQUERQUE MÁRCIO PORTES DE ALBUQUERQUE OUTUBRO 2007-1 - SUMÁRIO RESUMO... 3 INTRODUÇÃO... 4 PARTE I: O QUE É UM AMPLIFICADOR

Leia mais

Redução de imagem no domínio espacial

Redução de imagem no domínio espacial Faculdade de Engenharia da Universidade do Porto Licenciatura em Engenharia Electrotécnica e de Computadores 5º Ano, 1º Semestre Televisão Digital - 2002/2003 Redução de imagem no domínio espacial Armando

Leia mais

GP-IB. Artur Palha n o 46724 Ana Vieira da Silva n o 46722 Pedro Ribeiro n o 46750 5-5-2002

GP-IB. Artur Palha n o 46724 Ana Vieira da Silva n o 46722 Pedro Ribeiro n o 46750 5-5-2002 GP-IB Artur Palha n o 46724 Ana Vieira da Silva n o 46722 Pedro Ribeiro n o 46750 5-5-2002 Resumo Amostragem de sinais AM e FM com gerador de RF e osciloscópio comandados por GP-IB Set up da experiência

Leia mais

Experimento 2 Gerador de funções e osciloscópio

Experimento 2 Gerador de funções e osciloscópio Experimento 2 Gerador de funções e osciloscópio 1. OBJETIVO O objetivo desta aula é introduzir e preparar o estudante para o uso de dois instrumentos muito importantes no curso: o gerador de funções e

Leia mais

Modelagem no Domínio do Tempo. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1

Modelagem no Domínio do Tempo. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1 Carlos Alexandre Mello 1 Modelagem no Domínio da Frequência A equação diferencial de um sistema é convertida em função de transferência, gerando um modelo matemático de um sistema que algebricamente relaciona

Leia mais

2. Noções de Matemática Elementar

2. Noções de Matemática Elementar 2. Noções de Matemática Elementar 1 Notação cientíca Para escrever números muito grandes ou muito pequenos é mais cómodo usar a notação cientíca, que consiste em escrever um número na forma n é o expoente

Leia mais

Sistemas e Sinais (LEE & LETI)

Sistemas e Sinais (LEE & LETI) Sistemas e Sinais (LEE & LETI) 2º semestre 213/214 Laboratório nº Introdução ao Matlab Isabel Lourtie Dezembro 213 pfpfpf Este trabalho de laboratório não é obrigatório destinando-se apenas aos alunos

Leia mais

Sinal analógico x sinal digital. Sinal analógico. Exemplos de variações nas grandezas básicas. Grandezas básicas em sinais periódicos

Sinal analógico x sinal digital. Sinal analógico. Exemplos de variações nas grandezas básicas. Grandezas básicas em sinais periódicos Plano Redes de Computadores Transmissão de Informações nálise de Sinais ula 04 Introdução Dados, sinais e transmissão Sinal analógico x sinal digital Sinais analógicos Grandezas básicas Domínio tempo x

Leia mais

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 15

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 15 Ondas (continuação) Ondas propagando-se em uma dimensão Vamos agora estudar propagação de ondas. Vamos considerar o caso simples de ondas transversais propagando-se ao longo da direção x, como o caso de

Leia mais

I-7 Digitalização e Reconstrução

I-7 Digitalização e Reconstrução I-7 Digitalização e Reconstrução (29 Novembro 2010) 1 Sumário 1. Teorema da Amostragem 1. Ritmo de Nyquist 2. Amostragem Ideal e Natural (análise no tempo e na frequência) 1. Sinais Passa Baixo 2. Sinais

Leia mais

Movimentos Periódicos: representação vetorial

Movimentos Periódicos: representação vetorial Aula 5 00 Movimentos Periódicos: representação vetorial A experiência mostra que uma das maneiras mais úteis de descrever o movimento harmônico simples é representando-o como uma projeção perpendicular

Leia mais

LEE 2006/07. Guia de Laboratório. Trabalho 3. Circuitos Dinâmicos. Resposta no Tempo

LEE 2006/07. Guia de Laboratório. Trabalho 3. Circuitos Dinâmicos. Resposta no Tempo Análise de Circuitos LEE 2006/07 Guia de Laboratório Trabalho 3 Circuitos Dinâmicos Resposta no Tempo INSTITUTO SUPERIOR TÉCNICO Departamento de Engenharia Electrotécnica e de Computadores Paulo Flores

Leia mais

XXIX Olimpíada Internacional de Física

XXIX Olimpíada Internacional de Física XXIX Olimpíada Internacional de Física Reykjavík, Islândia Parte Experimental Segunda-feira, 6 de Julho de 1998 Lê isto primeiro: Duração: 5 H 1. Utiliza apenas a esferográfica que te foi dada. 2. Usa

Leia mais

Curso Analises de Sinais

Curso Analises de Sinais Curso Analises de Sinais Definição e caracterização do sinal em geofísica. Aula 1 1 1.Introdução Medições realizadas em um trabalho de campo buscar inferir o desconhecido sob a Terra. Tais medidas, por

Leia mais

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA SÉRIE DE EXERCÍCIO #A22 (1) O circuito a seguir amplifica a diferença de

Leia mais

Utilidades Diversas. Aplicações Informáticas para Engenharia. SérgioCruz

Utilidades Diversas. Aplicações Informáticas para Engenharia. SérgioCruz Utilidades Diversas Habitualmente os comandos que compõem um dado programa desenvolvido em matlab não são introduzidos usando a janela de comando mas sim escritos e gravados num ficheiro.m Para criar um

Leia mais

INSTRUMENTAÇÃO INDUSTRIAL 1. INTRODUÇÃO / DEFINIÇÕES

INSTRUMENTAÇÃO INDUSTRIAL 1. INTRODUÇÃO / DEFINIÇÕES 1 INSTRUMENTAÇÃO INDUSTRIAL 1. INTRODUÇÃO / DEFINIÇÕES 1.1 - Instrumentação Importância Medições experimentais ou de laboratório. Medições em produtos comerciais com outra finalidade principal. 1.2 - Transdutores

Leia mais

2. Função polinomial do 2 o grau

2. Função polinomial do 2 o grau 2. Função polinomial do 2 o grau Uma função f: IR IR que associa a cada IR o número y=f()=a 2 +b+c com a,b,c IR e a0 é denominada função polinomial do 2 o grau ou função quadrática. Forma fatorada: a(-r

Leia mais

Análise de Circuitos Elétricos III

Análise de Circuitos Elétricos III Análise de Circuitos Elétricos III Prof. Danilo Melges (danilomelges@cpdee.ufmg.br) Depto. de Engenharia Elétrica Universidade Federal de Minas Gerais Introdução à Transformada de Laplace A Transformada

Leia mais

Circuitos RC em Regime Alternado Sinusoidal

Circuitos RC em Regime Alternado Sinusoidal 2º Laboratório de Bases de Engenharia II 2005/2006 Circuitos RC em Regime Alternado Sinusoidal Para este laboratório, as alíneas a) da Experiência 1 e da Experiência 2 devem ser calculadas préviamente,

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A FICHA 8 APLICAÇÕES E COMPLEMENTOS Sistemas Dinâmicos Discretos (1) (Problema

Leia mais

Vibrações e Ruído. Guia de Trabalho Laboratorial. Trabalho nº 5 Aquisição e Processamento de Dados em Computador

Vibrações e Ruído. Guia de Trabalho Laboratorial. Trabalho nº 5 Aquisição e Processamento de Dados em Computador Vibrações e Ruído Guia de Trabalho Laboratorial Trabalho nº 5 Aquisição e Processamento de Dados em Computador 1. Introdução As placas de aquisição de dados A/D (Analógico / Digital) permitem registar

Leia mais

Programação em papel quadriculado

Programação em papel quadriculado 4 NOME DA AULA: Programação em papel quadriculado Tempo de aula: 45 60 minutos Tempo de preparação: 10 minutos Objetivo principal: ajudar os alunos a entender como a codificação funciona. RESUMO Ao "programar"

Leia mais

REPRESENTAÇÃO FASORIAL DE SINAIS SENOIDAIS

REPRESENTAÇÃO FASORIAL DE SINAIS SENOIDAIS REPRESENTAÇÃO FASORIAL DE SINAIS SENOIDAIS Neste capítulo será apresentada uma prática ferramenta gráfica e matemática que permitirá e facilitará as operações algébricas necessárias à aplicação dos métodos

Leia mais

O esquema da Fig.1 mostra como montar a resistência de teste para medidas de tensão, corrente e resistência.

O esquema da Fig.1 mostra como montar a resistência de teste para medidas de tensão, corrente e resistência. Ano lectivo: 200-20 Medição de Tensões e Correntes Eléctricas. Leis de Ohm e de Kirchhoff. OBJECTIO Aprender a utilizar um osciloscópio e um multímetro digital. Medição de grandezas AC e DC. Conceito de

Leia mais

I-2 Sinais: classificação, propriedades e operações

I-2 Sinais: classificação, propriedades e operações I-2 Sinais: classificação, propriedades e operações Comunicações (30 de setembro de 2016) ISEL - ADEETC - Comunicações 1 Sumário 1. Classificação de sinais 2. Sinais contínuos e discretos 3. Sinais não

Leia mais

Campo Magnético de Espiras e a Lei de Faraday

Campo Magnético de Espiras e a Lei de Faraday Campo Magnético de Espiras e a Lei de Faraday Semestre I - 005/006 1.Objectivos 1) Estudo do campo magnético de espiras percorridas por corrente eléctrica. ) Estudo da lei de indução de Faraday.. Introdução

Leia mais

Problemas de Valor Inicial para Equações Diferenciais Ordinárias

Problemas de Valor Inicial para Equações Diferenciais Ordinárias Problemas de Valor Inicial para Equações Diferenciais Ordinárias Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática Aplicada - Mestrados

Leia mais

Amplificadores Operacionais

Amplificadores Operacionais Análise de Circuitos LEE 2006/07 Guia de Laboratório Trabalho 2 Amplificadores Operacionais INSTITUTO SUPERIOR TÉCNICO Departamento de Engenharia Electrotécnica e de Computadores Paulo Flores 1 Objectivos

Leia mais

FACULDADE CAMPO LIMPO PAULISTA MESTRADO EM CIÊNCIA DA COMPUTAÇÃO. Projeto e Análise de Algoritmos II Lista de Exercícios 2

FACULDADE CAMPO LIMPO PAULISTA MESTRADO EM CIÊNCIA DA COMPUTAÇÃO. Projeto e Análise de Algoritmos II Lista de Exercícios 2 FACULDADE CAMPO LIMPO PAULISTA MESTRADO EM CIÊNCIA DA COMPUTAÇÃO Projeto e Análise de Algoritmos II Lista de Exercícios 2 Prof. Osvaldo. 1. Desenvolva algoritmos para as operações abaixo e calcule a complexidade

Leia mais

FILTRAGEM NO DOMÍNIO DAS FREQUÊNCIAS (TRANSFORMADA DE FOURIER) Daniel C. Zanotta 04/06/2015

FILTRAGEM NO DOMÍNIO DAS FREQUÊNCIAS (TRANSFORMADA DE FOURIER) Daniel C. Zanotta 04/06/2015 FILTRAGEM NO DOMÍNIO DAS FREQUÊNCIAS (TRANSFORMADA DE FOURIER) Daniel C. Zanotta 04/06/2015 FREQUÊNCIA EM IMAGENS DIGITAIS Análise da intensidade dos NCs da imagem Banda 7 Landsat TM ao longo da distância:

Leia mais

Ruído. 1) Introdução. 2) Principais grandezas e parâmetros definidores do som

Ruído. 1) Introdução. 2) Principais grandezas e parâmetros definidores do som 1) Introdução A movimentação mecânica de cargas pode ser definida como o conjunto de ações, de materiais e de meios que permitem, de um modo planeado e seguro, movimentar cargas de um determinado local

Leia mais

Lista 3. Física Experimental III (F 329 C) Rafael Alves Batista

Lista 3. Física Experimental III (F 329 C) Rafael Alves Batista Lista 3 Física Experimental III (F 329 C) Rafael Alves Batista 1) Considere uma fonte de tensão alternada senoidal. A partir do gráfico abaixo, faça o que se pede. a) Estime o período da onda. b) Estime

Leia mais

I-2 Sinais: classificação, propriedades e operações

I-2 Sinais: classificação, propriedades e operações I-2 Sinais: classificação, propriedades e operações Comunicações (24 de março de 2017) ISEL - ADEETC - Comunicações 1 Sumário 1. Classificação de sinais 2. Sinais contínuos e discretos 3. Sinais não periódicos

Leia mais

Sinais Senoidais. A unidade de freqüência no SI é o Hertz (Hz) e o tempo é dado em segundos (s).

Sinais Senoidais. A unidade de freqüência no SI é o Hertz (Hz) e o tempo é dado em segundos (s). Campus Serra COORDENADORIA DE AUTOMAÇÂO INDUSTRIAL Disciplina: ELETRÔNICA BÁSICA Professor: Vinícius Secchin de Melo Sinais Senoidais Os sinais senoidais são utilizados para se representar tensões ou correntes

Leia mais

- SISTEMAS DIGITAIS II

- SISTEMAS DIGITAIS II FEI NE772/7720-2.a PROVA - SISTEMAS DIGITAIS II - 29/11/2006 Turma A Duração 80min Prova sem consulta - Permitido o uso de calculadora Interpretação faz parte da prova. Nome...Nota... N.o N.o Lista 1.a

Leia mais

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5 Cálculo em Computadores - 2007 - trajectórias Trajectórias Planas Índice Trajectórias. exercícios............................................... 2 2 Velocidade, pontos regulares e singulares 2 2. exercícios...............................................

Leia mais

Departamento: Matemática Curso: Eng a Madeiras Ano: 1 o Semestre: 2 o Ano Lectivo: 2006/2007. Aula prática n o 1 - Introdução ao MATLAB

Departamento: Matemática Curso: Eng a Madeiras Ano: 1 o Semestre: 2 o Ano Lectivo: 2006/2007. Aula prática n o 1 - Introdução ao MATLAB Instituto Politécnico de Viseu Escola Superior de Tecnologia Departamento: Matemática Métodos Numéricos Curso: Eng a Madeiras Ano: 1 o Semestre: 2 o Ano Lectivo: 2006/2007 Aula prática n o 1 - Introdução

Leia mais

CORRENTE CONTÍNUA E CORRENTE ALTERNADA

CORRENTE CONTÍNUA E CORRENTE ALTERNADA CORRENTE CONTÍNUA E CORRENTE ALTERNADA Existem dois tipos de corrente elétrica: Corrente Contínua (CC) e Corrente Alternada (CA). A corrente contínua tem a característica de ser constante no tempo, com

Leia mais

Módulo 3 Teoria da Amostragem Sistemas Multimédia Ana Tomé José Vieira

Módulo 3 Teoria da Amostragem Sistemas Multimédia Ana Tomé José Vieira Módulo 3 Teoria da Amostragem Sistemas Multimédia Ana Tomé José Vieira Departamento de Electrónica, Telecomunicações e Informática Universidade de Aveiro 1 Sumário Noção de filtro Conversão A/D Amostragem

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 8 FUNÇÕES CRESCENTES OU DECRESCENTES... 9 SINAL DE UMA

Leia mais

Aula 13 Análise no domínio da frequência

Aula 13 Análise no domínio da frequência Aula 13 Análise no domínio da frequência A resposta em frequência é a resposta do sistema em estado estacionário (ou em regime permanente) quando a entrada do sistema é sinusoidal. Métodos de análise de

Leia mais

Medição de Tensões e Correntes Eléctricas Leis de Ohm e de Kirchoff (Rev. 03/2008) 1. Objectivo:

Medição de Tensões e Correntes Eléctricas Leis de Ohm e de Kirchoff (Rev. 03/2008) 1. Objectivo: LEO - MEBiom Medição de Tensões e Correntes Eléctricas Leis de Ohm e de Kirchoff (Rev. 03/2008) 1. Objectivo: Aprender a medir tensões e correntes eléctricas com um osciloscópio e um multímetro digital

Leia mais

Aula 2P - Comandos básicos do Matlab aplicados a PDS

Aula 2P - Comandos básicos do Matlab aplicados a PDS Aula 2P - Comandos básicos do Matlab aplicados a PDS Bibliografia HAYKIN, S. S.; VAN VEEN, B. Sinais e sistemas, Bookman, 2001. ISBN 8573077417. Páginas 71-76. INGLE, V. K.; PROAKIS, J. G. Digital signal

Leia mais

Matriz do Teste de Avaliação de Física e Química A - 11.º ano 1 de fevereiro de 2016 120 minutos

Matriz do Teste de Avaliação de Física e Química A - 11.º ano 1 de fevereiro de 2016 120 minutos Ano Letivo 2015/ 2016 Matriz do Teste de Avaliação de Física e Química A - 11.º ano 1 de fevereiro de 2016 120 minutos Objeto de avaliação O teste tem por referência o programa de Física e Química A para

Leia mais

Razão de Rejeição a Fonte de Potência (PSRR)

Razão de Rejeição a Fonte de Potência (PSRR) 215 Outra unidade que expressa de forma direta o efeito da CMRR. Pode ser obtida observando que a tensão de offset V CM é expressa por: V CM = V C. 1/CMRR = V C.CMRR -1 Agora como CMRR -1 expressa-lo em

Leia mais

Disciplina: Processamento Digital de Sinais Aula 04 - Análise Tempo-Frequência

Disciplina: Processamento Digital de Sinais Aula 04 - Análise Tempo-Frequência de Disciplina: Processamento Digital de Sinais Aula 04 - Prof. (eduardo.simas@ufba.br) Departamento de Engenharia Elétrica Universidade Federal da Bahia Conteúdo de 1 2 de 3 4 5 6 de Em muitos casos práticos

Leia mais

Análise de parâmetros ultra-sónicos no domínio da frequência

Análise de parâmetros ultra-sónicos no domínio da frequência Análise de parâmetros ultra-sónicos no domínio da frequência 1 TRABALHO LABORATORIAL Nº 4 Análise de parâmetros ultra-sónicos no domínio da frequência Introdução: Em controlo não destrutivo por ultra-sons

Leia mais

Manual de Laboratório Física Experimental I- Hatsumi Mukai e Paulo R.G. Fernandes

Manual de Laboratório Física Experimental I- Hatsumi Mukai e Paulo R.G. Fernandes Pêndulo Simples 6.1 Introdução: Capítulo 6 Um pêndulo simples se define como uma massa m suspensa por um fio inextensível, de comprimento com massa desprezível em relação ao valor de m. Se a massa se desloca

Leia mais

Processamento Digital de Sinais Aula 05 Professor Marcio Eisencraft fevereiro 2012

Processamento Digital de Sinais Aula 05 Professor Marcio Eisencraft fevereiro 2012 Aula 05 - Sistemas de tempo discreto Classificação Bibliografia OPPENHEIM, A.V.; WILLSKY, A. S. Sinais e Sistemas, 2a edição, Pearson, 2010. ISBN 9788576055044. Páginas 25-36. HAYKIN, S. S.; VAN VEEN,

Leia mais

Curso de Introdução ao SIMULINK

Curso de Introdução ao SIMULINK 4.3 - Modelando Sistemas Não Lineares O SIMULINK fornece uma variedade de blocos para a modelagem de sistemas não lineares. Esses blocos estão na biblioteca Nonlinear. O comportamento destes blocos não

Leia mais

Vetores, Matrizes e Gráficos

Vetores, Matrizes e Gráficos Programação de Computadores I UFOP DECOM 2013 2 Aula prática 3 Vetores, Matrizes e Gráficos Resumo Nesta aula você irá utilizar vetores para resolver diversos tipos de problemas. Para expressar a solução

Leia mais

Resolução dos Exercícios 8 e 10 da lista 7.

Resolução dos Exercícios 8 e 10 da lista 7. Resolução dos Exercícios 8 e 10 da lista 7. 8) Seja T : R 3 R 3 a transformação linear tal que T (e 3 ) = 3e 1 + e 2 2e 3, T (e 2 + e 3 ) = e 1, T (e 1 + e 2 + e 3 ) = e 2 + e 3, a) Calcule T (2e 1 e 2

Leia mais

I-2 Sinais: classificação propriedades, operações

I-2 Sinais: classificação propriedades, operações I-2 Sinais: classificação propriedades, operações (30 de Setembro de 2013) 1 Sumário 1. Sinais contínuos e discretos 2. Sinais não periódicos e periódicos Pulso rectangular e sinc A onda quadrada e a sinusóide

Leia mais

O AMPLIFICADOR LOCK-IN

O AMPLIFICADOR LOCK-IN O AMPLIFICADOR LOCK-IN AUTORES: MARCELO PORTES DE ALBUQUERQUE LEONARDO CORREIA RESENDE JORGE LUÍS GONZALEZ RAFAEL ASTUTO AROUCHE NUNES MAURÍCIO BOCHNER FEVEREIRO 2008 SUMÁRIO RESUMO... 3 1. INTRODUÇÃO...

Leia mais

Medida de Grandezas Eléctricas

Medida de Grandezas Eléctricas Medida de Grandezas Eléctricas As grandezas eléctricas normalmente medidas são: Tensão Corrente Potência eléctrica Energia eléctrica Os valores destas grandezas podem ser obtidas por diferentes formas,

Leia mais

Díodo de Junção Semicondutora

Díodo de Junção Semicondutora íodo de Junção emicondutora ispositivos Eletrónicos Licenciatura em Engenharia Electrónica C. Ferreira Fernandes 2012-13 Laboratório de ispositivos Electrónicos ÍOO E JUNÇÃO Material utilizado: Placa de

Leia mais

Cátia Homem, 9 de Janeiro de 2008 Página 1

Cátia Homem, 9 de Janeiro de 2008 Página 1 Escola Secundária Vitorino Nemésio Física e Química A Componente de física 11º ano Actividade Laboratorial 2.1 Osciloscópio Nome: Turma: Nº: Classificação: docente: 1. Questão problema: Perante o aumento

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 5 PROPRIEDADES ONDULATÓRIAS DA MATÉRIA Primeira Edição junho de 2005 CAPÍTULO 5 PROPRIEDADES ONDULATÓRIAS DA MATÉRIA ÍNDICE 5.1- Postulados

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

Ondas II F-228 UNICAMP

Ondas II F-228 UNICAMP Ondas II F-228 UNICAMP http://thenonist.com/index.php/thenonist/permalink/stick_charts/ Superposição de ondas Resumo de ondas mecânicas Superposição de ondas Exemplos Representação matemática Interferência

Leia mais

ANÁLISE DE CIRCUITOS LABORATÓRIO O CONDENSADOR

ANÁLISE DE CIRCUITOS LABORATÓRIO O CONDENSADOR ANÁLISE DE CIRCUITOS LABORATÓRIO O CONDENSADOR Introdução ao uso do Osciloscópio. Ano Lectivo 20 / 20 Curso Grupo Classif. Rubrica Além do estudo do condensador, pretende-se com este trabalho obter uma

Leia mais

Revisão de Estatística Básica:

Revisão de Estatística Básica: Revisão de Estatística Básica: Estatística: Um número é denominado uma estatística (singular). Ex.: As vendas de uma empresa no mês constituem uma estatística. Estatísticas: Uma coleção de números ou fatos

Leia mais

Conversores D/A e A/D

Conversores D/A e A/D Conversores D/A e A/D Introdução Um sinal analógico varia continuamente no tempo. Som Temperatura Pressão Um sinal digital varia discretamente no tempo. Processamento de sinais digitais Tecnologia amplamente

Leia mais

Redes de Computadores. Comunicação de Dados e Representação de Sinais Analógicos e Digitais Aula 02 Profa. Priscila Solís Barreto

Redes de Computadores. Comunicação de Dados e Representação de Sinais Analógicos e Digitais Aula 02 Profa. Priscila Solís Barreto Redes de Computadores Comunicação de Dados e Representação de Sinais Analógicos e Digitais Aula 02 Profa. Priscila Solís Barreto Bits, números e informação Bit: numero com valor 0 ou 1 n bits: representação

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 5.º ANO PLANIFICAÇÃO GLOBAL ANO LETIVO 2012/2013 Planificação Global 5º Ano 2012-2013 1/7 NÚMEROS

Leia mais

MODULAÇÃO AM E DEMODULADOR DE ENVELOPE

MODULAÇÃO AM E DEMODULADOR DE ENVELOPE 204/ MODULAÇÃO AM E DEMODULADOR DE ENVELOPE 204/ Objetivos de Estudo: Desenvolvimento de um modulador AM e um demodulador, utilizando MatLab. Visualização dos efeitos de modulação e demodulação no domínio

Leia mais

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Teoria de Erros

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Teoria de Erros Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Lic. Eng. Biomédica e Bioengenharia-2009/2010 O que é a Análise Numérica? Ramo da Matemática dedicado ao estudo e desenvolvimento de métodos (métodos

Leia mais

p. 1/2 Resumo Especificação de Filtros Filtro de Butterworth Filtro de Chebyshev Filtros de Primeira Ordem Filtros de Segunda Ordem

p. 1/2 Resumo Especificação de Filtros Filtro de Butterworth Filtro de Chebyshev Filtros de Primeira Ordem Filtros de Segunda Ordem p. 1/2 Resumo Especificação de Filtros Filtro de Butterworth Filtro de Chebyshev Filtros de Primeira Ordem Filtros de Segunda Ordem Introdução Os primeiros filtros construídos eram circuitos LC passivos.

Leia mais

MATERIAIS DE APOIO ÀS SESSÕES PRÁTICAS

MATERIAIS DE APOIO ÀS SESSÕES PRÁTICAS MATERIAIS DE APOIO ÀS SESSÕES PRÁTICAS I. Simplesmente Funções Considera: a função f, de domínio IR \ 4, definida por 2 f x ; 4 x a função g, de domínio IR, definida por 1 3 3 2 g x x x 4x 5 6 2 1. Determina

Leia mais

PLANIFICAÇÃO ANUAL DO NOVO PROGRAMA DE MATEMÁTICA

PLANIFICAÇÃO ANUAL DO NOVO PROGRAMA DE MATEMÁTICA PLANIFICAÇÃO ANUAL DO NOVO PROGRAMA DE MATEMÁTICA 5º ano 2012/2013 UNIDADE: Números e Operações 1 - NÚMEROS NATURAIS OBJECTIVOS GERAIS: - Compreender e ser capaz de usar propriedades dos números inteiros

Leia mais

CURSO EFA 2012 / 2013

CURSO EFA 2012 / 2013 Avaliação CURSO EFA 2012 / 2013 Formando: Data: / / ÁREA/Assunto: Formando Formador / Mediador: Formador FICHA INFORMATIVA E DE TRABALHO MÓDULO: 0774 INSTALAÇÃO DE SOFTWARE BASE CONTEÚDOS Segurança no

Leia mais

Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros

Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros 2º ciclo PCA - 6º ano Planificação Anual 2013-2014 MATEMÁTICA METAS CURRICULARES

Leia mais

Valor lógico UM (Verdade, 1): 5 Volts. Valor lógico ZERO (FALSO, 0): 0 Volts.

Valor lógico UM (Verdade, 1): 5 Volts. Valor lógico ZERO (FALSO, 0): 0 Volts. I FUNÇÔES E LOCOS LÓGICOS I.1 - SISTEMS DIGITIS - INTRODUÇÃO Sistemas Digitais Notas de ula 1 O mundo real apresenta duas representações para as medidas. Representação analógica e a representação digital.

Leia mais

Utilização do SOLVER do EXCEL

Utilização do SOLVER do EXCEL Utilização do SOLVER do EXCEL 1 Utilização do SOLVER do EXCEL José Fernando Oliveira DEEC FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO MAIO 1998 Para ilustrar a utilização do Solver na resolução de

Leia mais

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial. Transformada de Laplace

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial. Transformada de Laplace Resumo Sinais e Sistemas Transformada de aplace lco@ist.utl.pt Instituto Superior Técnico Definição da transformada de aplace. Região de convergência. Propriedades da transformada de aplace. Sistemas caracterizados

Leia mais