Algoritmos Genéticos. Princípio de Seleção Natural. Sub-áreas da Computação Evolutiva. Idéias básicas da CE. Computação Evolutiva

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Algoritmos Genéticos. Princípio de Seleção Natural. Sub-áreas da Computação Evolutiva. Idéias básicas da CE. Computação Evolutiva"

Transcrição

1 Computação Evolutiva Algoritmos Genéticos A computação evolutiva (CE) é uma área da ciência da computação que abrange modelos computacionais inspirados na Teoria da Evolução das Espécies, essencialmente no conceito de Seleção Natural, para a solução de problemas nas mais diversas áreas do conhecimento. A evolução, de uma forma geral, é um processo de otimização. A Computação Evolutiva tem sido aplicada com essa finalidade a diversas áreas, como, por exemplo, planejamento, projeto, simulação e identificação, controle e classificação. Princípio de Seleção Natural Em 859, Darwin (859), naturalista inglês, apresentou o conceito de Seleção Natural, princípio segundo o qual os indivíduos mais adaptados ao meio apresentam maior possibilidade de sobreviver e gerar descendentes. Este princípio é resultado da observação de que as mais diferentes formas de vida são suscetíveis à adaptação, que ocorre por meio de lentas transformações genéticas, conforme os indivíduos evoluem. O processo de evolução ocorre através de ciclos fixos nas gerações, ou seja, cada indivíduo nasce, cresce, normalmente gera um ou mais descendentes e morre. 2 Idéias básicas da CE Sub-áreas da Computação Evolutiva Criação de uma população de soluções, na qual os indivíduos representem de forma codificada os parâmetros que descrevem uma possível solução ao problema proposto; criação de uma função de avaliação capaz de julgar a aptidão de cada indivíduo. Atribui uma nota ao desempenho de cada um dos indivíduos da população; criação de uma série de operadores que serão aplicados à população de uma dada geração para obter os indivíduos da próxima geração. 3 Programação Evolutiva - proposta originalmente para predição de comportamento de máquinas de estados finitos. Cada indivíduo gera um único descendente por mutação. Estratégia Evolutiva - a ênfase é na auto-adaptação. Utiliza principalmente um mecanismo baseado em seleção-mutação. Aceita o operador de recombinação com um papel secundário. Algoritmos Genéticos - são o ramo mais conhecido da CE. Aplicam-se a um escopo mais amplo que a otimização - são um modelo de aprendizado de máquina. Programação Genética - ramo descendente dos Ags, em que os indivíduos são programas de computador armazenados na forma de árvores sintáticas. 4

2 Algoritmos Genéticos Algoritmos de busca e otimização baseados nos princípios da genética e da seleção natural para encontrar a solução de um problema. Princípio básico: Quanto melhor um indivíduo se adaptar ao seu meio ambiente, maior será sua chance de sobreviver e gerar seus descendentes. Funcionamento básico: Inicialmente é gerada uma população formada por um conjunto aleatório de indivíduos que podem ser vistos como possíveis soluções do problema. Durante o processo evolutivo, a população é avaliada: para cada indivíduo é dada uma nota, ou índice, refletindo sua habilidade de adaptação a determinado ambiente. Uma porcentagem dos mais adaptados é mantida, enquanto os outros são descartados. Os membros mantidos pela seleção podem sofrer modificações em suas características fundamentais por meio de mutações e cruzamento ou recombinação genética gerando descendentes para a próxima geração. Esse processo, chamado de reprodução, é repetido até que uma solução satisfatória seja encontrada. 5 6 Elementos principais do AG É um processo iterativo Usa uma função de aptidão para avaliar indivíduos Seleciona indivíduos de uma geração com base na função de aptidão Aplica operadores de cruzamento e mutação Usa parâmetros de mutação e cruzamento Adota um critério de parada AG diferem de outros métodos nos aspectos: AG trabalham com uma codificação dos dados e não com os próprios dados AG trabalham com uma população de soluções e não com uma única solução AG utilizam informações de custo ou recompensa e não derivadas ou outro conhecimento auxiliar AG usam regras de transição probabilísticas e não determinísticas 7 8

3 Fluxo básico de um AG Início t=; Iniciar P (t); Avaliar P(t); Enquanto (Condição de parada) não for satisfeita Faça Início t=t+; Selecionar P(t) de P(t-); Aplicar Cruzamento em P(t); Aplicar Mutação em P(t); Avaliar P(t); Fim Fim Representação Em um AG as possíveis soluções são codificadas em uma seqüência de caracteres e recebem o nome de cromossomos ou indivíduos Codificação binária: C = C 2 = C 3 = Codificação real: C = C 2 = C 3 = Operação de seleção Seleção é o processo em que os melhores cromossomos são selecionados (com base no valor de aptidão de cada um) e copiados para uma população intermediária, na qual serão aplicados os operadores de mutação e cruzamento. Principais métodos: Roleta Cada cromossomo ocupa um espaço na roleta proporcional ao seu valor de aptidão. Cada vez que a roleta vira, indivíduos com maior valor de aptidão têm chance de ser selecionados mais vezes Roleta Amostragem Universal Estocástica Torneio Dominância dos cromossomos mais aptos desde as primeiras gerações 2

4 Amostragem Universal Estocástica Semelhante ao método da Roleta, porém com n marcadores. Torneio n indivíduos da população são selecionados aleatoriamente. Aquele com maior aptidão, entre esses n, fica na população intermediária. O processo é repetido até que a população intermediária seja preenchida. Geralmente n = Elitismo Técnica que pode ser adicionada a qualquer método de seleção. É utilizada para contornar a possibilidade de descartar os melhores cromossomos de uma geração, que existe em qualquer método de seleção. Operação de cruzamento Consiste em escolher dois cromossomos da população para cruzar e gerar filhos, que os substituirão na geração seguinte. Responsável pela recombinação de características dos pais, permitindo que os filhos herdem essas características É aplicado com probabilidade dada pela taxa de cruzamento Principais métodos: Consiste em substituir n indivíduos da população atual por n melhores da população anterior 5 Cruzamento de ponto Cruzamento de 2 pontos Cruzamento uniforme Cruzamento max-mix aritmético 6

5 Cruzamento de ponto Um ponto de cruzamento é escolhido e, a partir dele, as informações genéticas dos pais são trocadas Cruzamento de 2 pontos Semelhante ao anterior, sendo que dois pontos de cruzamento são escolhidos. Cromossomos pais Cromossomos filhos Cromossomos pais Cromossomos filhos Ponto de cruzamento Pontos de cruzamento 7 8 Cruzamento uniforme Não utiliza pontos de cruzamento, mas determina por meio de uma máscara, quais os genes de cada cromossomo que cada filho herdará Cruzamento max-min aritmético C : 2,35 7,7 6,95 4,25 2,6 Máscara: C v : C 2 : 2,65 8,3 6,5 4,25,4 Cromossomos pais Cromossomos filhos C w : c i = a*c wi +(-a)*c vi C 3 : C 4 : c 2i = a*c vi +(-a)*c wi c 3i = min{c vi,c wi } c 4i = max{c vi,c wi } a=

6 Operação de mutação Escolhe-se aleatoriamente um gene e altera-se o seu valor. Tem a função de manter e introduzir a diversidade genética da população. Garante que a probabilidade de chegar a qualquer ponto do espaço de busca nunca será zero. Evita o problema de mínimos locais, pois muda levemente a direção da busca. É aplicado com probabilidade dada pela taxa de mutação Principais operadores: Cromossomos antes da mutação: Mutação padrão Escolhe aleatoriamente um gene da estrutura e o altera. Na codificação binária, inverte-se os dígitos e Cromossomos depois da mutação: Mutação padrão Mutação não uniforme 2 22 Mutação não uniforme Semelhante a mutação padrão, aplicável a codificação real Cromossomos antes da mutação: Cromossomos depois da mutação: Parâmetros genéticos Tamanho da população quantidade de possíveis soluções que serão tratadas pelo AG. População pequena: AG mais rápido, com pouca cobertura do espaço de soluções c k = c k + (,LS(c k )-c k ) se a= c k - (,c k -LI(c k )) se a= População grande: AG possui uma cobertura representativa do espaço de soluções, mas fica mais lento 23 24

7 Taxa de cruzamento Taxa de mutação Porcentagem esperada de cromossomos que serão atingidos pela operação de cruzamento. Muito grande: novos indivíduos são introduzidos mais rapidamente na população, mas pode ocorrer perdas de indivíduos mais aptos. Muito pequena: AG pode se tornar lento Porcentagem esperada de genes que sofrerão mutação. Muito alta: pode tornar o algoritmo desprovido de direção na busca. Recomendado: entre.5% e %. Recomendado: entre 7% e 8% Critério de parada Número máximo de gerações. Atingido esse limite, o AG para e retorna a melhor solução daquela população. Para após um certo número de gerações consecutivas em que não se obtém aperfeiçoamento da solução Exemplos Otimização de uma função simples f(x) = x 2 Problema: encontrar x no intervalo [,3] que maximiza a função f, isto é, encontrar x tal que f(x ) f(x), para todo x [,3] 27 28

8 Problema do caixeiro viajante Um vendedor deve visitar uma lista de cidades do seu território exatamente uma vez e voltar ao ponto de partida. Existem estradas diretas entre todos os pares de cidades. Dado o custo de viagem entre todas as cidades, como ele deve planejar seu itinerário para realizar uma viagem completa com Bcusto mínimo? A D E C 29 codificação Inteiros ou binários? Representação binária: Problema: mutação e cruzamento podem gerar cromossomos não legais que não estão no espaço de busca 3

Algoritmo Genético. Inteligência Artificial. Professor: Rosalvo Ferreira de Oliveira Neto

Algoritmo Genético. Inteligência Artificial. Professor: Rosalvo Ferreira de Oliveira Neto Algoritmo Genético Inteligência Artificial Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Introdução 2. Conceitos Básicos 3. Aplicações 4. Algoritmo 5. Exemplo Introdução São técnicas de busca

Leia mais

Algoritmos Genéticos. Estéfane G. M. de Lacerda DCA/UFRN Outubro/2008

Algoritmos Genéticos. Estéfane G. M. de Lacerda DCA/UFRN Outubro/2008 Estéfane G. M. de Lacerda DCA/UFRN Outubro/2008 Introdução São técnicas de busca e otimização. É a metáfora da teoria da evolução das espécies iniciada pelo Fisiologista e Naturalista inglês Charles Darwin.

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência Artificial Aula 6 Algoritmos Genéticos M.e Guylerme Velasco Roteiro Introdução Otimização Algoritmos Genéticos Representação Seleção Operadores Geneticos Aplicação Caixeiro Viajante Introdução

Leia mais

Otimização. Unidade 6: Algoritmo Genético. Jaime Arturo Ramírez. 7. Teoria do processo evolutivo num GA. 8. Aspectos avançados

Otimização. Unidade 6: Algoritmo Genético. Jaime Arturo Ramírez. 7. Teoria do processo evolutivo num GA. 8. Aspectos avançados Otimização Jaime Arturo Ramírez Conteúdo 1. Introdução 2. Analogia de mecanismos de seleção natural com sistemas artificiais 3. Algoritmo genético modelo 4. Um GA simples 5. Representação, genes e cromossomos

Leia mais

Introdução a Algoritmos Genéticos

Introdução a Algoritmos Genéticos Introdução a Algoritmos Genéticos Tiago da Conceição Mota Laboratório de Inteligência Computacional Núcleo de Computação Eletrônica Universidade Federal do Rio de Janeiro Outubro de 2007 O Que São? Busca

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência Artificial Prof. Kléber de Oliveira Andrade pdjkleber@gmail.com Algoritmos Genéticos Conteúdo Introdução O Algoritmo Genético Binário Noções de Otimização O Algoritmo Genético com Parâmetros

Leia mais

Métodos de Busca. Inteligência Artificial. Algoritmos Genéticos. Algoritmos Evolucionários. Prof. Ms. Luiz Alberto Contato:

Métodos de Busca. Inteligência Artificial. Algoritmos Genéticos. Algoritmos Evolucionários. Prof. Ms. Luiz Alberto Contato: Inteligência Artificial Prof. Ms. Luiz Alberto Contato: lasf.bel@gmail.com Métodos de Busca Busca Cega ou Exaustiva: Não sabe qual o melhor nó da fronteira a ser expandido. Apenas distingue o estado objetivo

Leia mais

SOLUÇÕES HEURÍSTICAS PARA O JOGO DE DAMAS

SOLUÇÕES HEURÍSTICAS PARA O JOGO DE DAMAS Universidade Federal do Tocantins SOLUÇÕES HEURÍSTICAS PARA O JOGO DE DAMAS Diogo Rigo de Brito Guimarães Alexandre Tadeu Rossini da Silva Objetivo Implementar soluções heurísticas para o Jogo de Damas

Leia mais

Algoritmos genéticos Abordagem unificada de algoritmos evolutivos simples

Algoritmos genéticos Abordagem unificada de algoritmos evolutivos simples Introdução Inspiração biológica Histórico da computação evolutiva Algoritmo evolutivo simples Programação evolutiva Estratégias evolutivas Algoritmos genéticos Abordagem unificada de algoritmos evolutivos

Leia mais

3. ALGORITMOS GENÉTICOS

3. ALGORITMOS GENÉTICOS 1 3. ALGORITMOS GENÉTICOS PARTE 1 3.1 Analogia Física: a evolução das espécies 3.2 A Tradução Matemática: o algoritmo básico 3.3 Codificação dos Indivíduos 3.4 Avaliação da Aptidão de um Indivíduo 3.5

Leia mais

OTIMIZAÇÃO FUNÇÕES UTILIZANDO ALGORITMOS GENÉTICOS NO APLICATIVO MS EXCEL RESUMO INTRODUÇÃO

OTIMIZAÇÃO FUNÇÕES UTILIZANDO ALGORITMOS GENÉTICOS NO APLICATIVO MS EXCEL RESUMO INTRODUÇÃO OTIMIZAÇÃO FUNÇÕES UTILIZANDO ALGORITMOS GENÉTICOS NO APLICATIVO MS EXCEL Miquéias Augusto Ferreira Nantes 1, Douglas Peixoto de Carvalho 1 (Alunos do Curso de Matemática da Universidade Anhanguera - Uniderp)

Leia mais

Algoritmo Genético. Teoria da Evolução Princípio seguido pelos AGs

Algoritmo Genético. Teoria da Evolução Princípio seguido pelos AGs Algoritmo Genético Técnica de busca e otimização. Metáfora da teoria da evolução das espécies iniciada pelo Fisiologista e Naturalista inglês Charles Darwin. Desenvolvido por John Holland (1975) e seus

Leia mais

GT-JeDi - Curso de Desenv. de Jogos IA para Jogos. Gustavo Pessin 2007

GT-JeDi - Curso de Desenv. de Jogos IA para Jogos. Gustavo Pessin 2007 GT-JeDi - Curso de Desenv. de Jogos IA para Jogos Gustavo Pessin 2007 Cronograma Base conceitual Exemplo: Achando o máximo de uma função... Como criar uma pequena aplicação: Exercício-Exemplo [Animal selvagem...]

Leia mais

Buscas Informadas ou Heurísticas - Parte III

Buscas Informadas ou Heurísticas - Parte III Buscas Informadas ou Heurísticas - Parte III Prof. Cedric Luiz de Carvalho Instituto de Informática - UFG Mestrado em Ciência da Computação / 2006 BUSCA SMA* (Simplified Memory-Bounded A*) BUSCA SMA* (Simplified

Leia mais

Algoritmos Genéticos. Luis Martí LIRA/DEE/PUC-Rio. Algoritmos Genéticos

Algoritmos Genéticos. Luis Martí LIRA/DEE/PUC-Rio. Algoritmos Genéticos Luis Martí LIRA/DEE/PUC-Rio Baseado nas transparências dos professores: Teresa B. Ludermir (UFPE) Ricardo Linden (CEPEL) Marco Aurélio Pacheco (PUC-Rio) Conteúdo! Introdução! O Algoritmo Genético Binário!

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial INF 1771 Inteligência Artificial Aula 06 Algoritmos Genéticos Prof. Augusto Baffa Métodos de Busca Busca Cega ou Exaustiva: Não sabe qual o melhor nó da fronteira a ser expandido.

Leia mais

Introdução ao Algoritmo Genético

Introdução ao Algoritmo Genético Introdução ao Algoritmo Genético Sadao Massago Agosto de 2013 1 Introdução O algoritmo genético é um método de otimização bio insperado, desenvolvida por John Henry Holland em 1975. Segundo a teoria evolucionária

Leia mais

5 Modelo Kernel PCA Genético para Ajuste de Histórico

5 Modelo Kernel PCA Genético para Ajuste de Histórico 5 Modelo Kernel PCA Genético para Ajuste de Histórico Conforme descrito na seção 3.2.2.2.1, em um estudo anterior, Sarma, Durlofsky, et al. (2007) parametrizaram o campo de permeabilidade através do Kernel

Leia mais

Utilizando um Algoritmo Genético para Encontrar os Zeros de uma Função Real

Utilizando um Algoritmo Genético para Encontrar os Zeros de uma Função Real Utilizando um Algoritmo Genético para Encontrar os Zeros de uma Função Real Amarildo de Vicente 1, Rogério Luis Rizzi 1 1 Colegiado do Curso de Matemática Centro de Ciências Exatas e Tecnológicas da Universidade

Leia mais

Inteligência Computacional para Jogos Eletrônicos

Inteligência Computacional para Jogos Eletrônicos Inteligência Computacional para Jogos Eletrônicos Papéis da IA em Jogos Adversários Aliados Personagens de apoio NPC s (Non-player Character) Comentaristas Controle de câmera Geração de fases Nivelamento

Leia mais

4 Metáforas de Optimização

4 Metáforas de Optimização 4 Metáforas de Optimização O gigantesco avanço tecnológico que vem sofrendo os sistemas de computação, mais precisamente as unidades de processamento, criou a base para o uso efetivo da Inteligência Computacional,

Leia mais

3. ALGORITMOS GENÉTICOS

3. ALGORITMOS GENÉTICOS 1 3. ALGORITMOS GENÉTICOS PARTE 2 3.7 Aspectos de Implementação do Algoritmo 3.8 Seleção da Codificação 3.9 Operadores Genéticos Modificados 3.10 Outros operadores: elitismo, reinicialização e niching

Leia mais

Metaheurísticas Populacionais Baseado no livro METAHEURISTICS - From Design to Implementation El-Ghazali Talbi. Gustavo Peixoto Silva

Metaheurísticas Populacionais Baseado no livro METAHEURISTICS - From Design to Implementation El-Ghazali Talbi. Gustavo Peixoto Silva Metaheurísticas Populacionais Baseado no livro METAHEURISTICS - From Design to Implementation El-Ghazali Talbi Gustavo Peixoto Silva 23 de Junho de 2014 Conteúdo 1 Metaheurísticas Singulares 3 1.1 Busca

Leia mais

Aula 10: Tratabilidade

Aula 10: Tratabilidade Teoria da Computação DAINF-UTFPR Aula 10: Tratabilidade Prof. Ricardo Dutra da Silva Na aula anterior discutimos problemas que podem e que não podem ser computados. Nesta aula vamos considerar apenas problemas

Leia mais

Resolução de problemas por meio de busca. Capítulo 3 Inteligência Artificial Sistemas de Informação

Resolução de problemas por meio de busca. Capítulo 3 Inteligência Artificial Sistemas de Informação Resolução de problemas por meio de busca Capítulo 3 Inteligência Artificial Sistemas de Informação Conteúdo Um exemplo Resolução de problemas por meio de busca Exemplos de problemas Em busca de soluções

Leia mais

O USO DE ALGORITMOS GENÉTICOS PARA DETERMINAR ZEROS DE FUNÇÕES NÃO LINEARES

O USO DE ALGORITMOS GENÉTICOS PARA DETERMINAR ZEROS DE FUNÇÕES NÃO LINEARES O USO DE ALGORITMOS GENÉTICOS PARA DETERMINAR ZEROS DE FUNÇÕES NÃO LINEARES RESUMO Ediany Batista Silva Universidade Católica de Brasília Curso de Matemática Os algoritmos genéticos utilizam conceitos

Leia mais

Algoritmos Genéticos

Algoritmos Genéticos Algoritmos Genéticos Adriano Joaquim de Oliveira Cruz Universidade Federal do Rio de Janeiro Maio 2013 Adriano Cruz (DCC-UFRJ) AGs Maio 2013 1 / 155 Summary 1 Introdução 2 Termos e Definições 3 Algoritmo

Leia mais

Algoritmos Evolutivos Aplicados no Aprendizado em Jogos de Estratégia em Tempo Real

Algoritmos Evolutivos Aplicados no Aprendizado em Jogos de Estratégia em Tempo Real Algoritmos Evolutivos Aplicados no Aprendizado em Jogos de Estratégia em Tempo Real Rodrigo de Freitas Pereira Claudio Fabiano Motta Toledo Marcio Kassouf Crocomo Eduardo do Valle Simões Sumário Trabalhos

Leia mais

Evolução: As Teorias de Lamarck e Darwin

Evolução: As Teorias de Lamarck e Darwin Evolução: As Teorias de Lamarck e Darwin Evolução Ancestral comum Primeiras ideias: filósofos da Grécia Clássica Tales de Mileto (Séc. VI a.c.): água como princípio organizador dos seres vivos Xenófanes

Leia mais

Resolvendo o Problema do Cavalo do Xadrez Utilizando Algoritmo Genético

Resolvendo o Problema do Cavalo do Xadrez Utilizando Algoritmo Genético Resolvendo o Problema do Cavalo do Xadrez Utilizando Algoritmo Genético Alexandre Tadeu Rossini da Silva 1, Gustavo Setúbal Nazareno 1, André Marcelo Schneider 2 1 Bacharelado em Ciência da Computação

Leia mais

Algoritmos Genéticos Fundamentos e Aplicações. Prof. Juan Moisés Mauricio Villanueva

Algoritmos Genéticos Fundamentos e Aplicações. Prof. Juan Moisés Mauricio Villanueva Algoritmos Genéticos Fundamentos e Aplicações Prof. Juan Moisés Mauricio Villanueva jmauricio@cear.ufpb.br Conteúdo Introdução Inteligência Artificial (IA) Algoritmos Genéticos Aplicações de Algoritmos

Leia mais

3 Aprendizado por reforço

3 Aprendizado por reforço 3 Aprendizado por reforço Aprendizado por reforço é um ramo estudado em estatística, psicologia, neurociência e ciência da computação. Atraiu o interesse de pesquisadores ligados a aprendizado de máquina

Leia mais

Neodarwinismo ou Teoria sintética de evolução

Neodarwinismo ou Teoria sintética de evolução Neodarwinismo ou Teoria sintética de evolução O desenvolvimento dos conhecimentos de genética e as novas descobertas sobre hereditariedade, permitiram fazer uma nova interpretação da teoria da evolução

Leia mais

Algoritmo Genético para um sistema de Cross-Docking

Algoritmo Genético para um sistema de Cross-Docking Algoritmo Genético para um sistema de Cross-Docking Ubiratan Soares Cavalcante Netto e André Luís Shiguemoto Universidade Federal do Ceará ubiratans@gmail.com, shiguemoto@ufc.br Resumo - Cross-docking

Leia mais

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE Funções Geradoras de Variáveis Aleatórias 1 Funções Geradoras de Variáveis Aleatórias Nos programas de simulação existe um GNA e inúmeras outras funções matemáticas descritas como Funções Geradoras de

Leia mais

Inteligência Artificial. Conceitos Gerais

Inteligência Artificial. Conceitos Gerais Inteligência Artificial Conceitos Gerais Inteligência Artificial - IA IA é um campo de estudo multidisciplinar e interdisciplinar, que se apóia no conhecimento e evolução de outras áreas do conhecimento.

Leia mais

Melhoramento de espécies autógamas

Melhoramento de espécies autógamas Universidade Federal de Rondônia Curso de Eng. Florestal Melhoramento genético Florestal Melhoramento de espécies autógamas Emanuel Maia www.lahorta.acagea.net emanuel@unir.br Apresentação Introdução Efeitos

Leia mais

Amostragem. Amostragem. Técnica: possibilita realizar a pesquisa em universos infinitos.

Amostragem. Amostragem. Técnica: possibilita realizar a pesquisa em universos infinitos. Técnica: possibilita realizar a pesquisa em universos infinitos. A Estatística pode ser estendida ao estudo das populações chamadas infinitas nas quais não temos a possibilidade de observar todos os elementos

Leia mais

Introdução aos Números Pseudo-aleatórios. Profa. Dra. Soraia Raupp Musse

Introdução aos Números Pseudo-aleatórios. Profa. Dra. Soraia Raupp Musse Introdução aos Números Pseudo-aleatórios Profa. Dra. Soraia Raupp Musse Conceito: Um gerador de número pseudo-aleatório é um algoritmo que gera uma seqüência de números, os quais são aproximadamente independentes

Leia mais

Universidade Estadual do Rio Grande do Sul Curso Superior de Tecnologia em Gestão Ambiental Biologia Aplicada Aula 7

Universidade Estadual do Rio Grande do Sul Curso Superior de Tecnologia em Gestão Ambiental Biologia Aplicada Aula 7 Universidade Estadual do Rio Grande do Sul Curso Superior de Tecnologia em Gestão Ambiental Biologia Aplicada Aula 7 Professor Antônio Ruas 1. Créditos: 60 2. Carga horária semanal: 4 3. Semestre: 1 4.

Leia mais

O ALEATÓRIO EM COMPUTAÇÃO. Por Diogo Anderson Integrante do Grupo PET Computação

O ALEATÓRIO EM COMPUTAÇÃO. Por Diogo Anderson Integrante do Grupo PET Computação O ALEATÓRIO EM COMPUTAÇÃO Por Diogo Anderson (diogo@dsc.ufcg.edu.br) Integrante do Grupo PET Computação AGENDA Introdução Definição Aplicações Números aleatórios Números aleatórios vs pseudo-aleatórios

Leia mais

Complemento IV Introdução aos Algoritmos Genéticos

Complemento IV Introdução aos Algoritmos Genéticos Complemento IV Introdução aos Algoritmos Genéticos Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações e

Leia mais

Um Algoritmo Genético para o Problema de Roteamento de Veículos com Janelas de Tempo

Um Algoritmo Genético para o Problema de Roteamento de Veículos com Janelas de Tempo Um Algoritmo Genético para o Problema de Roteamento de Veículos com Janelas de Tempo Francisco Henrique de Freitas Viana Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio Departamento de Informática

Leia mais

Implementação de um Algoritmo Genético

Implementação de um Algoritmo Genético 1 Implementação de um Algoritmo Genético Frederico G. Guimarães e Marcelo C. Ramalho Abstract Uma discussão sobre os Algoritmos Genéticos, sua estrutura e seus componentes, é apresentada neste trabalho.

Leia mais

Otimização por Enxame de Partículas (PSO) e Otimização por Colônias de Formigas (ASO) aplicadas ao Problema do Caixeiro Viajante (TSP)

Otimização por Enxame de Partículas (PSO) e Otimização por Colônias de Formigas (ASO) aplicadas ao Problema do Caixeiro Viajante (TSP) Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Otimização por Enxame de Partículas (PSO) e Otimização por Colônias de Formigas (ASO) aplicadas ao Problema do Caixeiro Viajante

Leia mais

Paradigmas de Linguagens

Paradigmas de Linguagens Paradigmas de Linguagens Aula 2: Tipos de dados Professora Sheila Cáceres Tipos de dados Dados são a matéria prima da computação junto com os programas. LPs precisam manipular dados. LPS utilizam os conceitos

Leia mais

Árvores B. Hashing. Estrutura de Dados II Jairo Francisco de Souza

Árvores B. Hashing. Estrutura de Dados II Jairo Francisco de Souza Árvores B Hashing Estrutura de Dados II Jairo Francisco de Souza Funções Hashing Divisão Compressão de chaves alfanuméricas Multiplicação Enlaçamento Deslocado Limite Função Meio-Quadrado Extração Transformação

Leia mais

UNIVERSIDADE DE MOGI DAS CRUZES Centro de Ciências Exatas e Tecnológicas

UNIVERSIDADE DE MOGI DAS CRUZES Centro de Ciências Exatas e Tecnológicas UNIVERSIDADE DE MOGI DAS CRUZES Centro de Ciências Exatas e Tecnológicas Tecnologia em Desenvolvimento de Sistemas 8º Semestre Inteligência Artificial II 1. Introdução A Inteligência Artificial (IA) é

Leia mais

Resumo. Como um agente busca de seqüência de ações para alcançar seus objetivos.

Resumo. Como um agente busca de seqüência de ações para alcançar seus objetivos. Resumo Inteligência Artificial Russel e Norvig Capítulos 3,4 e 5 Prof. MsC Ly Freitas UEG Resolução de problemas por meio de busca Como um agente busca de seqüência de ações para alcançar seus objetivos.

Leia mais

CAPÍTULO 2 Visão Geral da Abordagem de Modelagem da Pesquisa Operacional 7

CAPÍTULO 2 Visão Geral da Abordagem de Modelagem da Pesquisa Operacional 7 SUMÁRIO CAPÍTULO 1 Introdução 1 1.1 A origem da pesquisa operacional 1 1.2 A natureza da pesquisa operacional 2 1.3 O impacto da pesquisa operacional 3 1.4 Algoritmos e/ou courseware 3 Referências selecionadas

Leia mais

Otimização de funções reais multidimensionais utilizando algoritmo genético contínuo

Otimização de funções reais multidimensionais utilizando algoritmo genético contínuo Gustavo Pinho Kretzer de Souza Otimização de funções reais multidimensionais utilizando algoritmo genético contínuo Florianópolis 2014 Gustavo Pinho Kretzer de Souza Otimização de funções reais multidimensionais

Leia mais

Organismos em seus ambientes. Prof. Dr. Francisco Soares Santos Filho UESPI

Organismos em seus ambientes. Prof. Dr. Francisco Soares Santos Filho UESPI Organismos em seus ambientes Prof. Dr. Francisco Soares Santos Filho UESPI Em biologia, nada tem sentido, exceto à luz da evolução (Theodosius Dobzhansky) O significado da Adaptação É muito comum dizermos

Leia mais

Otimização em Colônias de Formigas. Prof. Eduardo R. Hruschka (Slides adaptados dos originais elaborados pelo Prof. André C. P. L. F.

Otimização em Colônias de Formigas. Prof. Eduardo R. Hruschka (Slides adaptados dos originais elaborados pelo Prof. André C. P. L. F. Otimização em Colônias de Formigas Prof. Eduardo R. Hruschka (Slides adaptados dos originais elaborados pelo Prof. André C. P. L. F. de Carvalho) Principais tópicos Introdução Colônias de Formigas Formação

Leia mais

Fundamentos de Teste de Software

Fundamentos de Teste de Software Núcleo de Excelência em Testes de Sistemas Fundamentos de Teste de Software Módulo 2- Teste Estático e Teste Dinâmico Aula 5 Técnicas de Especificação SUMÁRIO INTRODUÇÃO... 3 TÉCNICAS PARA PROJETO DE CASOS

Leia mais

Sistemas numéricos e a Representação Interna dos Dado no Computador

Sistemas numéricos e a Representação Interna dos Dado no Computador Sistemas numéricos e a Representação Interna dos Dado no Computador Ricardo Azambuja Silveira INE-CTC-UFSC E-Mail: silveira@inf.ufsc.br URL: http://www.inf.ufsc.br~silveira Material elaborado pelo prof

Leia mais

CARACTERÍSTICAS ESTÁTICAS DE SISTEMAS DE MEDIÇÃO

CARACTERÍSTICAS ESTÁTICAS DE SISTEMAS DE MEDIÇÃO DETERMINAÇÃO DA DERIVA DO ZERO: ENSAIO: Manter P o = 0 e variar a temperatura T dentro da faixa de temperaturas ambientes [T max, T min ] previstas para uso do SM. Os ensaios feitos em CÂMARA de temperatura

Leia mais

Algoritmos Genéticos em Ambientes Paralelos

Algoritmos Genéticos em Ambientes Paralelos Algoritmos Genéticos em Ambientes Paralelos Michele Alves de Freitas Batista Instituto Nacional de Pesquisas Espaciais michele.afreitas@gmail.com Lamartine Nogueira Frutuoso Guimarães Instituto Nacional

Leia mais

Proposta de Algoritmo Genético Seqüencial e Paralelo para o Problema da Mochila

Proposta de Algoritmo Genético Seqüencial e Paralelo para o Problema da Mochila Proposta de Algoritmo Genético Seqüencial e Paralelo para o Problema da Mochila Ricardo de Jesus Carvalho, Gustavo Andrade Lemos, Adenevaldo da Silva Machado Junior, Lairton Reis, Wilton Oliveira Ferreira,

Leia mais

Fernando Nogueira Simulação 1

Fernando Nogueira Simulação 1 Simulação a Eventos Discretos Fernando Nogueira Simulação Introdução Simulação não é uma técnica de otimização: estima-se medidas de performance de um sistema modelado. Modelos Contínuos X Modelos Discretos

Leia mais

Busca com informação e exploração. Inteligência Artificial. Revisão da aula passada: Heurística Admissível. Revisão da aula passada: Busca A *

Busca com informação e exploração. Inteligência Artificial. Revisão da aula passada: Heurística Admissível. Revisão da aula passada: Busca A * Inteligência Artificial Aula 6 Profª Bianca Zadrozny http://www.ic.uff.br/~bianca/ia Busca com informação e exploração Capítulo 4 Russell & Norvig Seção 4.2 e 4.3 Revisão da aula passada: Busca A * Idéia:

Leia mais

INTELIGÊNCIA COMPUTACIONAL

INTELIGÊNCIA COMPUTACIONAL Rafael D. Ribeiro, M.Sc. rafaeldiasribeiro@gmail.com http://www.rafaeldiasribeiro.com.br A Inteligência Computacional (IC), denominada originalmente de Inteligência Artificial (IA), é uma das ciências

Leia mais

Um modelo estocástico para o fluxo de caixa de um plano de previdência de um indivíduo 15

Um modelo estocástico para o fluxo de caixa de um plano de previdência de um indivíduo 15 2 Simulação estocástica A simulação computacional consiste em empregar técnicas matemáticas em computadores com o propósito de gerar ensaios que tentam reproduzir de maneira análoga um processo ou operação

Leia mais

Avaliação Quantitativa de Sistemas

Avaliação Quantitativa de Sistemas Avaliação Quantitativa de Sistemas Contexto A Avaliação Quantitativa de Sistemas permite a avaliação de sistemas antes mesmo da sua implementação física. Dessa forma, é possível avaliar um sistema projetado

Leia mais

CTC-17 Inteligência Artificial Busca Competitiva e Busca Iterativa. Prof. Paulo André Castro

CTC-17 Inteligência Artificial Busca Competitiva e Busca Iterativa. Prof. Paulo André Castro CTC-17 Inteligência Artificial Busca Competitiva e Busca Iterativa Prof. Paulo André Castro pauloac@ita.br www.comp.ita.br/~pauloac Sala 110, IEC-ITA Sumário Busca Competitiva Para Ambientes multiagentes...

Leia mais

Seleção Natural. Fundamentos de Ecologia e Modelagem Ambiental Aplicados à Conservação da Biodiversidade

Seleção Natural. Fundamentos de Ecologia e Modelagem Ambiental Aplicados à Conservação da Biodiversidade Seleção Natural Fundamentos de Ecologia e Modelagem Ambiental Aplicados à Conservação da Biodiversidade Aluna: Michelle Andrade Furtado Profº Dalton e Profª Silvana Definição Seleção Natural pode ser definida

Leia mais

Uma Proposta de Algoritmos Genéticos para a Resolução do Problema das 8 Rainhas

Uma Proposta de Algoritmos Genéticos para a Resolução do Problema das 8 Rainhas Uma Proposta de Algoritmos Genéticos para a Resolução do Problema das 8 Rainhas Valdirene Neves, Douglas Mendes de Brito, Moisés Lima, Raurício Mendes, Fabiano Fagundes Curso de Sistemas de Informação

Leia mais

Simulação de Sistemas. Adaptado de material de Júlio Pereira Machado (AULA 17)

Simulação de Sistemas. Adaptado de material de Júlio Pereira Machado (AULA 17) Simulação de Sistemas Adaptado de material de Júlio Pereira Machado (AULA 17) Análise dos Dados de Saída Além das tarefas de modelagem e validação, devemos nos preocupar com a análise apropriada dos resultados

Leia mais

AMOSTRAGEM. É a parte da Teoria Estatística que define os procedimentos para os planejamentos amostrais e as técnicas de estimação utilizadas.

AMOSTRAGEM. É a parte da Teoria Estatística que define os procedimentos para os planejamentos amostrais e as técnicas de estimação utilizadas. AMOSTRAGEM É a parte da Teoria Estatística que define os procedimentos para os planejamentos amostrais e as técnicas de estimação utilizadas. Nos planejamentos amostrais, a coleta dos dados deve ser realizada

Leia mais

EVOLUÇÃO. Prof. Gilmar Marques

EVOLUÇÃO. Prof. Gilmar Marques EVOLUÇÃO 1 As teorias evolucionistas Nosso planeta apresenta uma imensa variedade de espécies, vivendo nos mais diferentes habitats. A Teoria da evolução tenta explicar como isso torno-se possível. 2 Fixismo

Leia mais

Busca com informação e exploração. Capítulo 4 Russell & Norvig Seção 4.2 e 4.3

Busca com informação e exploração. Capítulo 4 Russell & Norvig Seção 4.2 e 4.3 Busca com informação e exploração Capítulo 4 Russell & Norvig Seção 4.2 e 4.3 1 Revisão da aula passada: Busca A * Idéia: evitar expandir caminhos que já são caros Função de avaliação f(n) = g(n) + h(n)

Leia mais

Hashing: conceitos. Hashing

Hashing: conceitos. Hashing Hashing: conceitos hashing é uma técnica conhecida como espalhamento, mapeamento ou randomização que tenta distribuir dados em posições aleatórias de uma tabela (array) associa cada objeto (de um determinado

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência Artificial Aula 7 Programação Genética M.e Guylerme Velasco Programação Genética De que modo computadores podem resolver problemas, sem que tenham que ser explicitamente programados para isso?

Leia mais

Algoritmos e Programação

Algoritmos e Programação Algoritmos e Programação Aula 5 Estruturas de Repetição Profa. Marina Gomes marinagomes@unipampa.edu.br 26/04/2017 Engenharia de Computação - Unipampa 1 Aula de Hoje Estrutura de repetição Comando for

Leia mais

EVOLUÇÃO: IDÉIAS E EVIDÊNCIAS. Professor Fláudio

EVOLUÇÃO: IDÉIAS E EVIDÊNCIAS. Professor Fláudio EVOLUÇÃO: IDÉIAS E EVIDÊNCIAS Professor Fláudio EVIDÊNCIAS DE EVOLUÇÃO EVOLUÇÃO conjunto de processos que levam a modificações nos seres vivos ao longo do tempo, podendo dar origem a novas espécies Entender

Leia mais

INTELIGÊNCIA COMPUTACIONAL EM AMBIENTES DE PROCESSAMENTO PARALELO. Lamartine N. F. Guimarães.

INTELIGÊNCIA COMPUTACIONAL EM AMBIENTES DE PROCESSAMENTO PARALELO. Lamartine N. F. Guimarães. INTELIGÊNCIA COMPUTACIONAL EM AMBIENTES DE PROCESSAMENTO PARALELO Lamartine N. F. Guimarães. Roteiro Inteligência Computacional: Problemas. Os BEOWULFS do IEAv. Possibilidades de Paralelismo. Redes neurais:

Leia mais

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO TEORIA DA COMPUTAÇÃO Aula 03 Programas (Monolítico e Iterativo) Prof.ª Danielle Casillo Programas, Máquinas e Computações Diferentes

Leia mais

CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO

CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO Ana Paula Araujo Correa Eder Queiroz Newton Trevisan DEFINIÇÃO É um teste de hipóteses que se destina a encontrar um valor da dispersão para duas variáveis

Leia mais

Linguagens Regulares. Prof. Daniel Oliveira

Linguagens Regulares. Prof. Daniel Oliveira Linguagens Regulares Prof. Daniel Oliveira Linguagens Regulares Linguagens Regulares ou Tipo 3 Hierarquia de Chomsky Linguagens Regulares Aborda-se os seguintes formalismos: Autômatos Finitos Expressões

Leia mais

Sistemas de Numeração

Sistemas de Numeração Sistemas de Numeração Módulo 1.1 1 Sistemas de Numeração O sistema de numeração com o qual estamos mais familiarizados é o decimal, cujo alfabeto (coleção de símbolos) é formado por 10 dígitos acima mostrados.

Leia mais

PROBABILIDADE E ESTATÍSTICA. Aula 2 Professor Regina Meyer Branski

PROBABILIDADE E ESTATÍSTICA. Aula 2 Professor Regina Meyer Branski PROBABILIDADE E ESTATÍSTICA Aula 2 Professor Regina Meyer Branski Probabilidade 1. Conceitos básicos de probabilidade 2. Probabilidade condicional 3. Eventos Dependentes e Independentes 4. Regra da Multiplicação

Leia mais

Biologia Evolutiva. A Biologia Evolutiva é o estudo da história da vida e dos processos que levam à sua diversidade.

Biologia Evolutiva. A Biologia Evolutiva é o estudo da história da vida e dos processos que levam à sua diversidade. 2017 Biologia Evolutiva A Biologia Evolutiva é o estudo da história da vida e dos processos que levam à sua diversidade. Biologia Evolutiva Análises e metodologias reducionistas e composicionistas (propriedades

Leia mais

Projeto de ensino MONITORIA NÃO-SUBSIDIADA Fundamentos de Organização de Computadores

Projeto de ensino MONITORIA NÃO-SUBSIDIADA Fundamentos de Organização de Computadores Universidade Federal de Santa Maria Centro de Tecnologia Curso de Ciência da Computação Núcleo de Ciência da Computação Projeto de ensino MONITORIA NÃO-SUBSIDIADA Fundamentos de Organização de Computadores

Leia mais

Medida do Tempo de Execução de um Programa. David Menotti Algoritmos e Estruturas de Dados II DInf UFPR

Medida do Tempo de Execução de um Programa. David Menotti Algoritmos e Estruturas de Dados II DInf UFPR Medida do Tempo de Execução de um Programa David Menotti Algoritmos e Estruturas de Dados II DInf UFPR Classes de Comportamento Assintótico Se f é uma função de complexidade para um algoritmo F, então

Leia mais

Plano. Aspectos Relevantes de HMMs. Teoria de HMMs. Introdução aos Modelos Escondidos de Markov

Plano. Aspectos Relevantes de HMMs. Teoria de HMMs. Introdução aos Modelos Escondidos de Markov Plano Esta apresentação é para pessoas sem conhecimento prévio de HMMs Introdução aos Modelos Escondidos de Markov 2004 Objetivos: Ensinar alguma coisa, não tudo (Visão geral, sem muitos detalhes). Tentar

Leia mais

Algoritmos e Estruturas de Dados I1 Prof. Eduardo 1

Algoritmos e Estruturas de Dados I1 Prof. Eduardo 1 Algoritmos e Estruturas de Dados I1 Prof. Eduardo 1 ORDENAÇÃO E BUSCA Ordenação: Bublesort, seleção direta e inserção direta. Busca: linear e binária 1 - ORDENAÇÃO (CLASSIFICAÇÃO) DE DADOS Em diversas

Leia mais

Evolução Biológica Conceitos e pensamentos

Evolução Biológica Conceitos e pensamentos Profº Marcelo Morcegão Evolução Biológica Conceitos e pensamentos Fixismo Doutrina Filosófica que defende que desde o seu aparecimento as espécies são imutáveis e não sofrem transformações. Aristóteles

Leia mais

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO Prof.ª Danielle Casillo Proposta por Alan Turing em 1936; É universalmente conhecida e aceita como formalização de algoritmo; Teoria

Leia mais

Roteirização de veículo para realização de coleta utilizando algoritmo evolucionários

Roteirização de veículo para realização de coleta utilizando algoritmo evolucionários Departamento de Sistemas e Computação FURB Curso de Ciência da Computação Trabalho de conclusão de curso 2014/01 Roteirização de veículo para realização de coleta utilizando algoritmo evolucionários Acadêmico:

Leia mais

População e Amostra. População: O conjunto de todas as coisas que se pretende estudar. Representada por tudo o que está no interior do desenho.

População e Amostra. População: O conjunto de todas as coisas que se pretende estudar. Representada por tudo o que está no interior do desenho. População e Amostra De importância fundamental para toda a análise estatística é a relação entre amostra e população. Praticamente todas as técnicas a serem discutidas neste curso consistem de métodos

Leia mais

ALGORITMOS GENÉTICOS SEMINÁRIO APRESENTADO PARA A DISCIPLINA OTIMIZAÇÃO COMBINATÓRIA E

ALGORITMOS GENÉTICOS SEMINÁRIO APRESENTADO PARA A DISCIPLINA OTIMIZAÇÃO COMBINATÓRIA E UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA MESTRADO EM INFORMÁTICA RÔMULO FERREIRA DOURO ALGORITMOS GENÉTICOS SEMINÁRIO APRESENTADO PARA A DISCIPLINA OTIMIZAÇÃO COMBINATÓRIA

Leia mais

Francisco das Chagas Souza Júnior, M.Sc. Instituto de Educação, Ciências e Tecnologia do Rio Grande do Norte IFRN

Francisco das Chagas Souza Júnior, M.Sc. Instituto de Educação, Ciências e Tecnologia do Rio Grande do Norte IFRN A Importância das Técnicas de Programação nos Sistemas Elétricos de Proteção Francisco das Chagas Souza Júnior, M.Sc. Instituto de Educação, Ciências e Tecnologia do Rio Grande do Norte IFRN Sistema de

Leia mais

Aula 2. ESTATÍSTICA E TEORIA DAS PROBABILIDADES Conceitos Básicos

Aula 2. ESTATÍSTICA E TEORIA DAS PROBABILIDADES Conceitos Básicos Aula 2 ESTATÍSTICA E TEORIA DAS PROBABILIDADES Conceitos Básicos 1. DEFINIÇÕES FENÔMENO Toda modificação que se processa nos corpos pela ação de agentes físicos ou químicos. 2. Tudo o que pode ser percebido

Leia mais

Introdução à Lógica de Programação

Introdução à Lógica de Programação Sistemas Operacionais e Introdução à Programação Introdução à Lógica de Programação 1 Resolução de problemas usando computador Computador: ferramenta para processamento automático de dados Processamento

Leia mais

Buscas Informadas ou Heurísticas - Parte II

Buscas Informadas ou Heurísticas - Parte II Buscas Informadas ou Heurísticas - Parte II Prof. Cedric Luiz de Carvalho Instituto de Informática - UFG Graduação em Ciência da Computação / 2006 FUNÇÕES HEURÍSTICAS - 1/7 FUNÇÕES HEURÍSTICAS - 2/7 Solução

Leia mais

Aula 6 Melhoramento de Espécies com Propagação Assexuada

Aula 6 Melhoramento de Espécies com Propagação Assexuada Aula 6 Melhoramento de Espécies com Propagação Assexuada Prof. Dr. Isaias Olívio Geraldi Piracicaba, 2011 Cronograma de Aula 1. Objetivos do Melhoramento 2. Vantagens do Uso da Propagação Assexuada 3.

Leia mais

Noções de Amostragem. Universidade Estadual de Santa Cruz Gustavo Fragoso

Noções de Amostragem. Universidade Estadual de Santa Cruz Gustavo Fragoso Noções de Amostragem Universidade Estadual de Santa Cruz Gustavo Fragoso Motivação Raramente se consegue obter a distribuição exata de alguma variável, ou porque isso é muito dispendioso, ou muito demorado

Leia mais

SUBESTRUTURA POPULACIONAL E FLUXO GÊNICO

SUBESTRUTURA POPULACIONAL E FLUXO GÊNICO SUBESTRUTURA POPULACIONAL E FLUXO GÊNICO AULA 5 Mariana Fonseca Rossi mfonsecarossi@gmail.com RELEMBRANDO... Equilíbrio de Hardy-Weiberng: RELEMBRANDO... Equilíbrio de Hardy-Weiberng: Frequência dos genótipos

Leia mais

Introdução a Teste de Software

Introdução a Teste de Software Universidade Católica de Pelotas Tecnólogo em Análise e Desenvolvimento de Sistemas Disciplina de Qualidade de Software Introdução a Teste de Software Prof. Luthiano Venecian 1 Conceitos Teste de software

Leia mais

Árvores Auto-ajustadas

Árvores Auto-ajustadas Árvores Árvores Auto-ajustadas As árvores binárias de pesquisa são projetadas para um acesso rápido à informação. A velocidade das operações de inserção, remoção e busca realizadas sobre as árvores é mais

Leia mais

Everton Amorim 14/11/2013. Biologia

Everton Amorim 14/11/2013. Biologia Biologia Tema: Everton Amorim 1) Introdução é o processo de transformações hereditárias e adaptações que vem ocorrendo nos seres vivos desde que surgiram no planeta Terra. o =Fato o Ciência que estuda

Leia mais