Ciclos de Potência a Gás

Tamanho: px
Começar a partir da página:

Download "Ciclos de Potência a Gás"

Transcrição

1 Ciclos de Potência a Gás

2 Máquinas Térmicas e Motores Térmicos Dispositivos que operam segundo um dado ciclo de potência Ciclos de Potência: Ciclos termodinâmicos para conversão de calor em trabalho

3 Ciclo a Gás ou a Vapor Ciclo a gás: O fluido de trabalho permanece na fase gasosa durante todo o ciclo Ciclo a vapor: Há mudança de fase no ciclo (fluido de trabalho é vapor em parte do ciclo e líquido em outra)

4 Ciclo Fechado ou Aberto Ciclo fechado: O fluido de trabalho volta ao estado inicial ao fim o ciclo e recircula. Ciclo aberto: O fluido de trabalho é renovado ao fim do ciclo (ex. motor de automóvel)

5 Máquinas de Conversão de Calor em Trabalho Ciclo gás (Brayton) Ciclo vapor (Rankine) Motores de Combustão Interna

6 Motores Alternativos Otto Diesel

7 Ciclo Otto 4 Tempos 1. Aspiração 2. Compressão 3. Combustão 4. Exaustão

8 Ciclo Otto - Real 1. Aspiração V ad = 1 V ex = 0 2. Compressão V ad = 0 V ex = 0 3. Combustão centelha 4. Exaustão V ad = 0 V ex = 1

9

10 PMS Ponto morto superior posição do pistão quando ele forma o menor volume no cilindro PMI Ponto morto inferior volume no cilindro posição do pistão quando ele forma o maior Curso distância entre o PMS e PMI maior distancia que o pistão pode percorrer Espaço morto Volume mínimo formado no cilindro quando o pistão estão no PMS Volume deslocado o volume deslocado quando o pistão se move do PMI para o PMS

11 Ciclo Otto - Teórico Trabalho (área) pequeno desprezar

12 Hipótese do Padrão a Ar 1. O fluido de trabalho é o ar, comportando-se como um gás ideal 2. Todos os processos que formam o ciclos são internamente reversíveis 3. O processo de combustão é substituído por um processo de fornecimento de calor 4. O processo de exaustão é substituído por um processo de rejeição de calor que restaura o fluido de trabalho ao seu estado inicial Hipótese do Padrão a Ar Frio Outra hipótese muito utilizada para simplificar ainda mais a análise é a de que ar tem calores específicos constantes, cujos valores são determinados a temperatura ambiente.

13 Ciclo Otto - Teórico

14 Rendimento onde

15

16

17

18

19 Ciclo Otto Motor 4 e 2 tempos

20

21

22 Exemplo 1

23 Ciclo Diesel

24

25

26 Ciclo Diesel

27 Eficiência Térmica Ciclo Diesel Sendo rc razão de corte

28 Para uma mesma razão de compressão r

29

30 Ciclo Dual A aproximação do processo de combustão dos motores a combustão interna como um processo de fornecimento de calor a pressão constante ou a volume constante é algo extremamente simplista e pouco realista. Uma abordagem melhor seria modelar o processo de combustão dos motores como uma combinação de dois processos de transferência de calor, um a volume constante e outro a pressão constante. O ciclo ideal baseado nesse conceito é chamado de ciclo dual.

31 Exemplo 2 Um ciclo diesel ideal com o ar como fluido de trabalho tem uma razão de compressão de 18 e uma razão de corte de 2. No início do processo de compressão, o fluido de trabalho está a 14,7 psia, 80⁰F e 117 pol 3. Utilizando as hipóteses do padrão a ar frio, determine: a) a temperatura e a pressão do ar no final de cada processo b) o trabalho líquido produzido e a eficiência térmica

32 Ciclo Brayton Turbina a Gás

33 Ciclo Brayton Hipótese do Padrão a Ar

34

35

36 Ciclo Brayton Padrão a Ar Rendimento Razão de pressão A eficiência térmica do ciclo Brayton ideal depende da razão de pressão da turbina a gás e da razão dos calores específicos do fluido de trabalho. A eficiência térmica aumenta com esses parâmetros.

37 A temperatura mais alta ocorre ao final do processo de combustão (estado 3), e é limitada pela temperatura máxima que as pás da turbina podem suportar. Isso também limita as razões de pressão que podem ser usadas. Para um valor fixo de temperatura na entrada da turbina, o trabalho líquido aumenta com a razão de pressão, atinge um máximo e depois começa a diminuir.

38 Otimização do Ciclo Brayton

39 Otimização do Ciclo Brayton

40 Otimização do Ciclo Brayton

41 Otimização do Ciclo Brayton

42 Desenvolvimento das Turbinas a Gás As primeiras turbinas a gás tinham baixa eficiência devido as baixas eficiências dos compressores e turbinas além da baixa temperatura de entrada da turbina. Os esforços para melhora as turbinas se concentravam em três áreas. 1. Aumento das temperaturas de entrada da turbina Desenvolvimento de novos materiais e técnicas de resfriamento 2. Aumento das eficiências dos componentes das turbomáquinas Técnicas numéricas avançadas projeto de forma mais adequada a aerodinâmica 3. Acrescentando modificações ao ciclo básico Incorporação do resfriamento intermediário, regeneração e do reaquecimento

43 Exemplo 3 Uma usina a turbina a gás que operam em um ciclo Brayton ideal tem razão de pressão de 8. A temperatura do gás é de 300 K na entrada do compressor e 1300 K na entrada da turbina. Utilizando as hipóteses do padrão a ar, determine: a) A temperatura do gás nas saídas do compressor e turbina b) A razão de consumo de trabalho c) Eficiência térmica

44 Diferenças entre Ciclo de Turbinas a Gás Reais e Idealizados Queda de pressão durante processo de adição de calor Trabalho de compressão real é maior Trabalho realizado pela turbina é menor

45 Exemplo 4 Considerando uma eficiência para o compressor de 80% e uma eficiência para a turbina de 85%, em relação ao exemplo anterior, determine: a) A razão de consumo de trabalho b) A eficiência térmica c) A temperatura na saída da turbina do ciclo de turbina a gás discutido no exemplo anterior

46 Ciclo Brayton com Regeneração

47 Ciclo Brayton com Regeneração

48 Supondo que o regenerador esteja bem isolado e que todas as variações de energia cinética e potencial sejam desprezíveis, as transferências de calor real e máxima dos gases de combustão para o ar podem ser expressas como q regen,real = h 5 h 2 q regen,max = h 5 h 2 = h 4 h 2 Uma indicação do quanto um regenerador se aproxima de um regenerador ideal é chamado de efetividade: = q regen,real q regen,max = h 5 h 2 h 4 h 2 Considerando a hipótese de padrão a ar frio = T 5 T 2 T 4 T 2

49 Um regenerador com maior efetividade economiza maior quantidade de combustível, uma vez que pré-aquece o ar a uma temperatura mais alta antes da combustão Entretanto, a obtenção de uma efetividade mais alta exige o uso de um regenerador maior, que custa mais caro e causa maior queda de pressão. Dentro da hipótese de padrão a ar frio, a eficiência térmica de um ciclo Brayton ideal com regeneração é

50 Exemplo 5 Determine a eficiência térmica da turbina a gás descrita no exemplo anterior se um regenerador com efetividade de 80% for instalado.

51 Ciclo Brayton com Resfriamento Intermediário, Reaquecimento e Regeneração Para minimizar o trabalho do compressor o processo de compressão deve ser executado de forma internamente reversível (minimizando as irreversibilidades como atrito, turbulência e a compressão em não equilíbrio). Uma forma prática de se reduzir o trabalho do compressor é manter o volume específico do gás no menor nível possível durante o processo de compressão. Isso é feito mantendo a mais baixa temperatura possível para o gás durante a compressão. Uma técnica para diminuir o trabalho de compressão é realizar a compressão em múltiplos estágios com resfriamento intermediário, no qual o gás é comprimido em estágios e resfriado entre cada estágio, quando passa no por um trocador de calor chamado resfriador intermediário.

52 Ciclo Brayton com Resfriamento Intermediário, Reaquecimento e Regeneração Da mesma forma que o resfriamento no compressor diminui o trabalho, a expansão em múltiplos estágios com reaquecimento aumenta o trabalho produzido. O trabalho de compressão ou expansão em regime permanente é proporcional ao volume específico do fluido. Portanto, o volume específico do fluido de trabalho deve ser o mais baixo possível durante um processo de compressão e o mais alto possível em um processo de expansão.

53 Ciclo Brayton com Resfriamento Intermediário, Reaquecimento e Regeneração Em geral, a combustão nas turbinas a gás ocorre com quatro vezes a quantidade de ar necessária com a finalidade de efetuar uma combustão completa e evitar temperaturas excessivas. Assim, os gases de exaustão são ricos em oxigênio e o reaquecimento pode ser realizado simplesmente aspergindo combustível adicional nos gases de exaustão entre dois estágios de exaustão. Quando o resfriamento intermediário e o reaquecimento são utilizado, o fluido de trabalho deixa o compressor a uma temperatura mais baixa e a turbina a uma temperatura mais alta. Isso torna a regeneração mais atraente.

54 Ciclo Brayton com Resfriamento Intermediário, Reaquecimento e Regeneração

55 Ciclo Brayton com Resfriamento Intermediário, Reaquecimento e Regeneração O trabalho fornecido ao compressor de dois estágios é minimizado quando razões de pressão iguais são mantidas ao longo de cada estágio. Assim como esse procedimento também maximiza o trabalho realizado pela turbina. Então para obtermos o melhor desempenho:

56 Ciclo Brayton com Resfriamento Intermediário, Reaquecimento e Regeneração A razão de consumo de trabalho de um ciclo de turbina a gás melhora devido ao resfriamento intermediário e ao reaquecimento. Entretanto, o resfriamento e o reaquecimento sempre diminuem a eficiência térmica, ao menos que sejam acompanhados por regeneração. Isso acontece porque o resfriamento intermediário diminui a temperatura média com o qual o calor é fornecido, e o reaquecimento aumenta a temperatura média com a qual o calor é rejeitado.

57 Ciclo Brayton com Resfriamento Intermediário, Reaquecimento e Regeneração Se o número de estágios de compressão e expansão aumentar a eficiência térmica se aproxima do limite teórico (eficiência de Carnot). Entretanto, a contribuição de cada estágio adicional para a eficiência térmica é cada vez menor, e a utilização de mais de dois ou três estágios não se justifica economicamente.

58 Exemplo 6 Um ciclo de turbina a gás ideal com dois estágios de compressão e dois estágios de expansão tem uma razão de pressão global igual a 8 1/2. O ar entra em cada estágio do compressor a 300 K e em cada estágio da turbina a 1300 K. Determine a razão de consumo de trabalho e a eficiência térmica desse ciclo de turbina a gás, considerando a) nenhum regenerador b) um regenerador ideal com efetividade de 100%.

59 Ciclo de Propulsão a Jato Ideal O ciclo de propulsão a jato difere do ciclo Brayton, uma vez que os gases não se expandem até a pressão ambiente no interior da turbina. Em vez disso eles se expandem até uma pressão na qual a turbina produz trabalho apenas para acionar o compressor e equipamentos auxiliares, como um gerador pequeno e bombas hidráulicas. O trabalho líquido produzido é zero Os gases que deixam a turbina a uma pressão alta são acelerados em um bocal para fornecer empuxo e mover o avião.

60 Ciclo de Propulsão a Jato Ideal As turbinas a gás de aviões operam com alta razões de pressão (entre 10 e 25), e o fluido passa primeiro através de um difusor, no qual é desacelerado e sua pressão aumenta antes dele entrar no compressor. Motor a hélice grande massa de fluido pequena aceleração Motor turbojato forte aceleração de uma pequena massa de fluido Motor turboélice ou turbofan ambos

61 Ciclo de Propulsão a Jato Ideal

62 O empuxo de um turbojato é a força resultante da diferença entre as quantidade de movimento do ar a baixa velocidade que entra no motor e dos gases de exaustão a alta velocidade que deixam o motor. Para um avião na velocidade de cruzeiro constante, o empuxo é usado para superar o arrasto do ar e a força líquida que age sobre o avião é zero.

63 Potencia de Propulsão

64 Eficiência de Propulsão A eficiência de propulsão é a medida da eficiência de conversão da energia térmica liberada durante o processo de combustão em energia de propulsão.

65 Turbofan (fanjet)

66 Turbofan (fanjet)

67

68 Turboélice (propjet)

69 Turboélice

70 Os turbofan e turboélice diferem principalmente nas razões de diluição: 5 a 6 para turbofan e até 100 para turboélice Razão de diluição: razão entre a vazão em massa de ar que não escoa pela câmara de combustão e a vazão de ar que escoa através dela. O aumento da razão de diluição aumenta o empuxo. Em geral os motores a hélice são mais eficientes do que os a jato, mas se limita a operações a baixa velocidade e altitude. Turboélice necessita de menor pista para decolagem. O Airbus A320 (turbofan) alcança 900 km/h enquanto o ATR 72 (turboélice) alcança 500 km/h. Aviões turboélice alcança cerca de metros Aviões turbofan alcança cerca de metros

71

72 Exemplo 7 Um avião turbojato voa com velocidade de 850 pés/s a uma altitude onde o ar está a 5 psia e -40 ⁰F. O compressor tem uma razão de pressão de 10, e a temperatura de saída dos gases da turbina é 2000 ⁰F. O ar entra no compressor a uma taxa de 100 lbm/s. Utilizando as hipóteses do padrão a ar frio, determine: a) A temperatura e a pressão dos gases na saída da turbina b) A velocidade dos gases na saída do bocal c) A eficiência da propulsão do ciclo

MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS AULA 9-11 SISTEMAS DE POTÊNCIA A GÁS

MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS AULA 9-11 SISTEMAS DE POTÊNCIA A GÁS MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS AULA 9-11 SISTEMAS DE POTÊNCIA A GÁS PROF.: KAIO DUTRA Instalação de Potência com Turbinas a Gás As turbinas a gás tendem a ser mais leves e mais compactas que as

Leia mais

Aula 5 Energia e trabalho: Ciclos de Gás

Aula 5 Energia e trabalho: Ciclos de Gás Universidade Federal do ABC P O S M E C Aula 5 Energia e trabalho: Ciclos de Gás MEC202 Ciclo termodinâmicos Ciclos termodinâmicos podem ser divididos em duas categorias gerais: ciclos de energia e ciclos

Leia mais

Lista de Exercícios - Máquinas Térmicas

Lista de Exercícios - Máquinas Térmicas DISCIPLINA: MÁQUINAS TÉRMICAS - 2017/02 PROF.: MARCELO COLAÇO PREPARADO POR GABRIEL ROMERO (GAROMERO@POLI.UFRJ.BR) 4. Motores de combustão interna: Os calores específicos são constantes para todos os exercícios

Leia mais

Disciplina: Motores a Combustão Interna. Ciclos e Processos Ideais de Combustão

Disciplina: Motores a Combustão Interna. Ciclos e Processos Ideais de Combustão Disciplina: Motores a Combustão Interna Ciclos e Processos Ideais de Combustão Ciclos de Potência dos Motores a Pistão Aqui serão apresentados ciclos ideais de potência a ar para ciclos onde o trabalho

Leia mais

MOTORES TÉRMICOS AULA 3-7 SISTEMAS DE POTÊNCIA A VAPOR PROF.: KAIO DUTRA

MOTORES TÉRMICOS AULA 3-7 SISTEMAS DE POTÊNCIA A VAPOR PROF.: KAIO DUTRA MOTORES TÉRMICOS AULA 3-7 SISTEMAS DE POTÊNCIA A VAPOR PROF.: KAIO DUTRA Modelando Sistemas de Potência a Vapor A grande maioria das instalações elétricas de geração consiste em variações das instalações

Leia mais

Conteúdo. 1 Introdução e Comentários Preliminares, Propriedades de uma Substância Pura, 53

Conteúdo. 1 Introdução e Comentários Preliminares, Propriedades de uma Substância Pura, 53 Conteúdo 13 Conteúdo 1 Introdução e Comentários Preliminares, 21 1.1 O Sistema Termodinâmico e o Volume de Controle, 23 1.2 Pontos de Vista Macroscópico e Microscópico, 24 1.3 Estado e Propriedades de

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA TM-364 MÁQUINAS TÉRMICAS I. Máquinas Térmicas I

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA TM-364 MÁQUINAS TÉRMICAS I. Máquinas Térmicas I UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA TM-364 MÁQUINAS TÉRMICAS I Máquinas Térmicas I "Existem três tipos de pessoas: as que sabem e as que não sabem contar...

Leia mais

SISTEMAS TÉRMICOS DE POTÊNCIA

SISTEMAS TÉRMICOS DE POTÊNCIA SISTEMAS TÉRMICOS DE POTÊNCIA PROF. RAMÓN SILVA Engenharia de Energia Dourados MS - 2013 SISTEMAS DE POTÊNCIA A VAPOR 2 SIST. POTÊNCIA A VAPOR Diferente do ciclo de potência a gás, no ciclo de potência

Leia mais

Dispositivos com escoamento em regime permanente

Dispositivos com escoamento em regime permanente Dispositivos com escoamento em regime permanente Bocais e difusores Os bocais e difusores normalmente são utilizados em motores a jato, foguetes, ônibus espaciais e até mesmo em mangueiras de jardim. Um

Leia mais

SISTEMAS TÉRMICOS DE POTÊNCIA

SISTEMAS TÉRMICOS DE POTÊNCIA SISTEMAS TÉRMICOS DE POTÊNCIA SISTEMAS DE POTÊNCIA A VAPOR Prof. Dr. Ramón Silva - 2015 O objetivo dessa aula é relembrar os conceitos termodinâmicos do ciclo Rankine e introduzir aos equipamentos que

Leia mais

Módulo I Ciclo Rankine Ideal

Módulo I Ciclo Rankine Ideal Módulo I Ciclo Rankine Ideal Sistema de Potência a Vapor As usinas de potência a vapor são responsáveis pela produção da maior parte da energia elétrica do mundo. Porém, para o estudo e desenvolvimento

Leia mais

Escola Politécnica da Universidade de São Paulo. Termodinâmica. 11) Ciclos motores a ar Ciclo Brayton. v. 2.1

Escola Politécnica da Universidade de São Paulo. Termodinâmica. 11) Ciclos motores a ar Ciclo Brayton. v. 2.1 Termodinâmica 11) Ciclos motores a ar Ciclo Brayton 1 v. 2.1 Exemplos Turbinas a gás Fonte:http://www.alstom.com/products-services/product-catalogue/power-generation/gas-power/gas-turbines/gt24-gt26-gas-turbines/

Leia mais

Escola Politécnica da Universidade de São Paulo. Termodinâmica. Ciclos motores a ar

Escola Politécnica da Universidade de São Paulo. Termodinâmica. Ciclos motores a ar Termodinâmica Ciclos motores a ar 1 v. 1.2 Ciclo padrão a ar Trata-se de um modelo simplificado para representar alguns sistemas de potência com processos complexos. Exemplos: Motores de combustão interna

Leia mais

MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS

MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS AULA 4-5 SISTEMAS DE POTÊNCIA A VAPOR PROF.: KAIO DUTRA Modelando Sistemas de Potência a Vapor A grande maioria das instalações elétricas de geração consiste em

Leia mais

Módulo II Ciclo Rankine Real e Efeitos das Pressões da Caldeira e do Condensador no Ciclo Rankine

Módulo II Ciclo Rankine Real e Efeitos das Pressões da Caldeira e do Condensador no Ciclo Rankine Módulo II Ciclo Rankine Real e Efeitos das Pressões da Caldeira e do Condensador no Ciclo Rankine Ciclo Rankine Real Esses ciclos diferem do ideal devido às irreversibilidades presentes em vários componentes.

Leia mais

Aula 6 Vapor e ciclos combinados

Aula 6 Vapor e ciclos combinados Universidade Federal do ABC P O S M E C Aula 6 Vapor e ciclos combinados MEC202 Ciclos de vapor Consideramos os ciclos de alimentação de vapor, em que o fluido de trabalho é alternativamente vaporizado

Leia mais

MÁQUINAS TÉRMICAS

MÁQUINAS TÉRMICAS UNIVERSIDADE DE AVEIRO DEPARTAMENTO DE ENGENHARIA MECÂNICA EXERCÍCIOS DAS AULAS PRÁTICAS MÁQUINAS TÉRMICAS 2010-2011 DOCENTES RESPONSÁVEIS DEM Fernando Neto DEM João Oliveira DISCIPLINA Código 40544 Ano

Leia mais

Módulo I Motores de Combustão Interna e Ciclo Otto

Módulo I Motores de Combustão Interna e Ciclo Otto Módulo I Motores de Combustão Interna e Ciclo Otto Motores de Combustão Interna. Apesar de serem ciclos de potência como os estudados em todas as disciplinas anteriores que envolvem os conceitos de Termodinâmica

Leia mais

Capítulo 5: Análise através de volume de controle

Capítulo 5: Análise através de volume de controle Capítulo 5: Análise através de volume de controle Segunda lei da termodinâmica Conversão de energia EM-54 Fenômenos de Transporte Variação de entropia em um sistema Num sistema termodinâmico a equação

Leia mais

MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS

MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS AULA 6-8 MELHORANDO O DESEMPENHO PROF.: KAIO DUTRA Superaquecimento Como não estamos restritos a ter vapor saturado na entrada da turbina, uma energia adicional

Leia mais

Instruções. Leia as questões antes de respondê-las. A interpretação da questão faz parte da avaliação.

Instruções. Leia as questões antes de respondê-las. A interpretação da questão faz parte da avaliação. Nome: Curso: RA: Instituto de Ciências Exatas e Tecnológicas Campus Indianópolis SUB Termodinâmica Básica Turma: Data: Instruções Leia as questões antes de respondê-las. A interpretação da questão faz

Leia mais

BC1309 Termodinâmica Aplicada

BC1309 Termodinâmica Aplicada Universidade Federal do ABC BC09 ermodinâmica Aplicada Profa. Dr. Jose Rubens Maiorino Ciclo ermodinâmico a Gás Ciclo Padrão Ar - Brayton (urbina a Gás) BC09_ermodinâmica Aplicada Conteudo Ciclo Brayton-

Leia mais

Eficiência em Processos. Vimos que para um ciclo, no caso um motor térmico, a eficiência é dada por: W resultante Q

Eficiência em Processos. Vimos que para um ciclo, no caso um motor térmico, a eficiência é dada por: W resultante Q Eficiência em Processos Vimos que para um ciclo, no caso um motor térmico, a eficiência é dada por: η térmica W resultante Q H Entretanto, para um processo a definição de eficiência envolve uma comparação

Leia mais

Módulo I Motores de Combustão Interna e Ciclo Otto

Módulo I Motores de Combustão Interna e Ciclo Otto Módulo I Motores de Combustão Interna e Ciclo Otto Motores de Combustão Interna. Apesar de serem ciclos de potência como os estudados em todas as disciplinas anteriores que envolvem os conceitos de Termodinâmica

Leia mais

Escola Politécnica da Universidade de São Paulo. Termodinâmica. Ciclos motores a vapor

Escola Politécnica da Universidade de São Paulo. Termodinâmica. Ciclos motores a vapor Termodinâmica Ciclos motores a vapor 1 v. 1.1 Por que estudar ciclos? Pergunta: Quanto custa operar uma usina termelétrica de 1000 MW de potência elétrica, queimando combustível fóssil, operando segundo

Leia mais

PME 3344 Termodinâmica Aplicada

PME 3344 Termodinâmica Aplicada PME 3344 Termodinâmica Aplicada 11) Ciclos motores a vapor 1 v. 2.0 Por que estudar ciclos? Pergunta: Quanto custa operar uma usina termelétrica de 1000 MW de potência elétrica, queimando combustível fóssil,

Leia mais

CICLOS MOTORES A GÁS. Notas de Aula. Prof. Dr. Silvio de Oliveira Júnior

CICLOS MOTORES A GÁS. Notas de Aula. Prof. Dr. Silvio de Oliveira Júnior CICLOS MOORES A GÁS Notas de Aula Prof. Dr. Silio de Olieira Júnior 00 CICLO DE CARNO CICLO REAL E IDEAL DE IGNIÇÃO POR FAÍSCA CICLO OO processos a olume constante q u u C ( ) q u u C ( ) processos isentrópicos

Leia mais

Introdução. Exergia ou Disponibilidade máximo trabalho útil que pode ser obtido de um sistema em um determinado estado e em um ambiente especificado.

Introdução. Exergia ou Disponibilidade máximo trabalho útil que pode ser obtido de um sistema em um determinado estado e em um ambiente especificado. Exergia Introdução 1ª Lei da Termodinâmica conservação da energia (energia não pode ser criada nem destruída). Serve como ferramenta para contabilizar a energia durante um processo 2ª Lei da Termodinâmica

Leia mais

Termodinâmica 12. Alexandre Diehl. Departamento de Física - UFPel

Termodinâmica 12. Alexandre Diehl. Departamento de Física - UFPel Termodinâmica 12 Alexandre Diehl Departamento de Física - UFPel Ciclo termodinâmico Definição Sequência de processos termodinâmicos aplicados sobre um sistema, tal que o mesmo é levado desde o seu estado

Leia mais

TRANSFORMAÇÕES TERMODINÂMICAS. Alterações das grandezas termodinâmicas.

TRANSFORMAÇÕES TERMODINÂMICAS. Alterações das grandezas termodinâmicas. CAPÍTULO 2 - CICLOS DE AR/COMBUSTÍVEL Um ciclo de A/C é definido aqui como um processo termodinâmico idealizado, assemelhando-se ao que ocorre em algum tipo particular de motor usando como meio de trabalho

Leia mais

Profa.. Dra. Ana Maria Pereira Neto

Profa.. Dra. Ana Maria Pereira Neto Universidade Federal do ABC BC1309 Termodinâmica Aplicada Profa.. Dra. Ana Maria Pereira Neto ana.neto@ufabc.edu.br Segunda ei da Termodinâmica 1 Segunda ei da Termodinâmica Comparação com a 1ª ei da Termodinâmica;

Leia mais

PME 3344 Exercícios - Ciclos

PME 3344 Exercícios - Ciclos PME 3344 Exercícios - Ciclos 13) Exercícios sobre ciclos 1 v. 2.0 Exercício 01 Água é utilizada como fluido de trabalho em um ciclo Rankine no qual vapor superaquecido entra na turbina a 8 MPa e 480 C.

Leia mais

Refrigeração e Ar Condicionado

Refrigeração e Ar Condicionado Refrigeração e Ar Condicionado Ciclo de Refrigeração por Compressão de Vapor Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia

Leia mais

Refrigeração e Ar Condicionado

Refrigeração e Ar Condicionado Refrigeração e Ar Condicionado Introdução aos Ciclos Refrigeração por Compressão de Vapor Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade

Leia mais

TURBINAS. Engenharia Elétrica Especializada. Eng. Vlamir Botelho Ferreira 1 INTRODUÇÃO

TURBINAS. Engenharia Elétrica Especializada. Eng. Vlamir Botelho Ferreira 1 INTRODUÇÃO 1 TURBINAS Eng. Vlamir Botelho Ferreira 1 INTRODUÇÃO Turbinas são equipamentos mecânicos que transformam energia de algum fluido (água, vento, gás, etc) que se move através dela, convertendo ou a energia

Leia mais

PRINCÍPIOS BÁSICOS DA TERMODINÂMICA

PRINCÍPIOS BÁSICOS DA TERMODINÂMICA PRINCÍPIOS BÁSICOS DA TERMODINÂMICA... 1 1.1 Variáveis e Transformações Termodinâmicas... 1 1.2 Primeiro Princípio da Termodinâmica... 1 1.3 Segundo Princípio da Termodinâmica... 2 1.4 Expressões das Variáveis

Leia mais

Escola Politécnica da Universidade de São Paulo. Termodinâmica. 10) Ciclos motores a vapor. v. 2.5

Escola Politécnica da Universidade de São Paulo. Termodinâmica. 10) Ciclos motores a vapor. v. 2.5 Termodinâmica 10) Ciclos motores a vapor 1 v. 2.5 Por que estudar ciclos? Pergunta: Quanto custa operar uma usina termelétrica de 1000 MW de potência elétrica, queimando combustível fóssil, operando segundo

Leia mais

Disciplina : Termodinâmica. Aula 17 Processos Isentrópicos

Disciplina : Termodinâmica. Aula 17 Processos Isentrópicos Disciplina : Termodinâmica Aula 17 Processos Isentrópicos Prof. Evandro Rodrigo Dário, Dr. Eng. Processos Isentrópicos Mencionamos anteriormente que a entropia de uma massa fixa pode variar devido a (1)

Leia mais

Recursos Energéticos e Meio Ambiente. Professor Sandro Donnini Mancini. 8 Motores e Turbinas. Sorocaba, Março de 2016.

Recursos Energéticos e Meio Ambiente. Professor Sandro Donnini Mancini. 8 Motores e Turbinas. Sorocaba, Março de 2016. Instituto de Ciência e Tecnologia de Sorocaba Recursos Energéticos e Meio Ambiente Professor Sandro Donnini Mancini 8 Motores e Turbinas Sorocaba, Março de 2016. Motor: transforma energia de combustíveis

Leia mais

Máquinas térmicas, refrigeradores e 2 a lei da Termodinâmica

Máquinas térmicas, refrigeradores e 2 a lei da Termodinâmica Máquinas térmicas, refrigeradores e 2 a lei da Termodinâmica Processos irreversíveis. Máquinas térmicas. Ciclo de Carnot 2 a lei da Termodinâmica: enunciado de Kelvin-Planck. Refrigeradores. 2 a lei da

Leia mais

Aula 7 Refrigeração e bombeamento de calor

Aula 7 Refrigeração e bombeamento de calor Universidade Federal do ABC P O S M E C Aula 7 Refrigeração e bombeamento de calor MEC202 Refrigeração Transferência de calor a partir de uma região de temperatura mais baixa para uma região com temperatura

Leia mais

2ª Lei da Termodinâmica Máquinas Térmicas Refrigeradores

2ª Lei da Termodinâmica Máquinas Térmicas Refrigeradores 2ª Lei da Termodinâmica Máquinas Térmicas 2 a Lei da Termodinâmica 2 a Lei da Termodinâmica O que determina o sentido de certos fenômenos da natureza? Exemplo: Sistema organizado Sistema desorganizado

Leia mais

Geração de Energia Elétrica

Geração de Energia Elétrica Geração de Energia Elétrica Geração Termoelétrica a Joinville, 6 de Abril de 202 Escopo dos Tópicos Abordados Ciclos térmicos; Configurações emodelos de Turbinas a : Modelos dinâmicos de turbinas a vapor;

Leia mais

a) pressão máxima do ciclo; b) rendimento térmico; c) pressão média

a) pressão máxima do ciclo; b) rendimento térmico; c) pressão média Lista 1 de Motores de Combustão Interna 1. Para alguns motores Diesel é adequada a representação do ciclo motor segundo um ciclo dual, no qual parte do processo de combustão ocorre a volume constante e

Leia mais

MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS

MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS AULA 1-3 TERMODINÂMICA APLICADA AS MÁQUINAS TÉRMICAS PROF.: KAIO DUTRA Diagrama de Fases Estado líquido Mistura bifásica líquido-vapor Estado de vapor Conservação

Leia mais

MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS

MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS AULA 13 TURBINAS A VAPOR PROF.: KAIO DUTRA Usinas Termoelétricas As turbinas a vapor são máquinas que utilizam a elevada energia cinética da massa de vapor expandido

Leia mais

Capítulo 4. Ciclos de Potência a Vapor

Capítulo 4. Ciclos de Potência a Vapor Capítulo 4 Ciclos de Potência a Vapor Objetivos Estudar os ciclos de potência em que o fluido de trabalo é alternadamente vaporizado e condensado. Fornecer uma introdução aos processos de co-geração. 4..

Leia mais

TERMODINÂMICA. Aula 2 Introdução à Termodinâmica Sistema Fase Substância Equilíbrio

TERMODINÂMICA. Aula 2 Introdução à Termodinâmica Sistema Fase Substância Equilíbrio TERMODINÂMICA Aula 2 Introdução à Termodinâmica Sistema Fase Substância Equilíbrio INTRODUÇÃO Ampla área de aplicação: organismos microscópicos aparelhos domésticos até veículos sistemas de geração de

Leia mais

1 Uma propriedade é uma característica macroscópica de um sistema (massa, volume, energia, pressão, temperatura...) para a qual um valor numérico pode

1 Uma propriedade é uma característica macroscópica de um sistema (massa, volume, energia, pressão, temperatura...) para a qual um valor numérico pode 1 1 1 Uma propriedade é uma característica macroscópica de um sistema (massa, volume, energia, pressão, temperatura...) para a qual um valor numérico pode ser atribuído em um dado tempo sem o conhecimento

Leia mais

1ª Lei da Termodinâmica lei da conservação de energia

1ª Lei da Termodinâmica lei da conservação de energia 1ª Lei da Termodinâmica lei da conservação de energia É de bastante interesse em análises termodinâmicas conhecer o balanço energético dos sistemas, principalmente durante trocas de estado A 1ª Lei da

Leia mais

Módulo VI - Processos Isentrópicos Eficiência Isentrópica em Turbinas, Bombas, Bocais e Compressores.

Módulo VI - Processos Isentrópicos Eficiência Isentrópica em Turbinas, Bombas, Bocais e Compressores. Módulo VI - Processos Isentrópicos Eficiência Isentrópica em Turbinas, Bombas, Bocais e Compressores. Processos Isentrópicos O termo isentrópico significa entropia constante. Eficiência de Dispositivos

Leia mais

PME3398 Fundamentos de Termodinâmica e Transferência de Calor 1 o semestre / 2017 Profs. Bruno Souza Carmo e Antonio Luiz Pacífico

PME3398 Fundamentos de Termodinâmica e Transferência de Calor 1 o semestre / 2017 Profs. Bruno Souza Carmo e Antonio Luiz Pacífico PME3398 Fundamentos de Termodinâmica e Transferência de Calor 1 o semestre / 017 Profs. Bruno Souza Carmo e Antonio Luiz Pacífico Gabarito da Prova 1 Questão 1: Uma catapulta a vapor é muito utilizada

Leia mais

Exercícios e exemplos de sala de aula Parte 1

Exercícios e exemplos de sala de aula Parte 1 PME2398 Termodinâmica e suas Aplicações 1 o semestre / 2013 Prof. Bruno Carmo Exercícios e exemplos de sala de aula Parte 1 Propriedade das substâncias puras: 1- Um tanque rígido com volume de 1m 3 contém

Leia mais

Capítulo 5. Ciclos de Refrigeração

Capítulo 5. Ciclos de Refrigeração Capítulo 5 Ciclos de Refrigeração Objetivos Estudar o funcionamento dos ciclos frigoríficos por compressão de vapor idealizados e reais Apontar as distinções entre refrigeradores e bombas de calor 5.1.

Leia mais

Programa de Unidade Curricular

Programa de Unidade Curricular Programa de Unidade Curricular Faculdade Engenharia Licenciatura Engenharia e Gestão Industrial Unidade Curricular Termodinâmica Semestre: 3 Nº ECTS: 6,0 Regente Professor Doutor Manuel Alves da Silva

Leia mais

PME3398 Fundamentos de Termodinâmica e Transferência de Calor 1 o semestre / 2016 Profs. Bruno Souza Carmo e Antonio Luiz Pacífico

PME3398 Fundamentos de Termodinâmica e Transferência de Calor 1 o semestre / 2016 Profs. Bruno Souza Carmo e Antonio Luiz Pacífico PME3398 Fundamentos de ermodinâmica e ransferência de Calor 1 o semestre / 2016 Profs Bruno Souza Carmo e Antonio Luiz Pacífico Gabarito da Prova 2 Questão 1: Considere o dispositivo indicado abaixo destinado

Leia mais

SISTEMAS TÉRMICOS DE POTÊNCIA

SISTEMAS TÉRMICOS DE POTÊNCIA SISTEMAS TÉRMICOS DE POTÊNCIA PROF. RAMÓN SILVA Engenharia de Energia Dourados MS - 2013 TURBINAS A GÁS TURBINAS A GÁS Turbogeradores são sistemas de geração de energia onde o acionador primário é uma

Leia mais

CICLOS MOTORES A VAPOR. Notas de Aula. Prof. Dr. Silvio de Oliveira Júnior

CICLOS MOTORES A VAPOR. Notas de Aula. Prof. Dr. Silvio de Oliveira Júnior CICLOS MOTORES A VAPOR Notas de Aula Prof. Dr. Silvio de Oliveira Júnior 2001 CICLO RANKINE ESQUEMA DE UMA CENTRAL TERMELÉTRICA A VAPOR REPRESENTAÇÃO ESQUEMÁTICA DA TERMELÉTRICA DIAGRAMAS DO CICLO IDEAL

Leia mais

Centrais de cogeração em edifícios: o caso da Sonae Sierra

Centrais de cogeração em edifícios: o caso da Sonae Sierra Centrais de cogeração em edifícios: o caso da Sonae Sierra Miguel Gil Mata 29 Maio 2009 FEUP Semana da Energia e Ambiente 1 Centrais de Cogeração em edifícios o caso da Sonae Sierra 1. O conceito de Cogeração

Leia mais

Capítulo 3 A Segunda Lei da Termodinâmica

Capítulo 3 A Segunda Lei da Termodinâmica Capítulo 3 A Segunda Lei da Termodinâmica 3.1 Enunciados da Lei 3.2 Máquinas Térmicas 3.3 Escalas de Temperaturas Termodinâmicas 3.4 Entropia 3.5 Variações da Entropia de um Gás Ideal 3.6 A Terceira Lei

Leia mais

INSTITUTO TECNOLÓGICO DE AERONÁUTICA CENTRO DE REFERÊNCIA EM TURBINAS A GÁS E ENERGIA CENTRO DE REFERÊNCIA EM TURBINAS A GÁS E ENERGIA

INSTITUTO TECNOLÓGICO DE AERONÁUTICA CENTRO DE REFERÊNCIA EM TURBINAS A GÁS E ENERGIA CENTRO DE REFERÊNCIA EM TURBINAS A GÁS E ENERGIA CENTRO DE REFERÊNCIA EM TURBINAS A GÁS E ENERGIA Grupo de Turbinas 2010 OBJETIVOS formar e capacitar recursos humanos para atuar em áreas ligadas a turbinas a gás e energia desenvolver pesquisa em áreas

Leia mais

Motores Térmicos. 8º Semestre 4º ano

Motores Térmicos. 8º Semestre 4º ano Motores Térmicos 8º Semestre 4º ano Aula 23 Turbinas a Gás - Tópicos Introdução Ciclo-padrão de Brayton Princípio de Funcionamento Classificação das Turbinas Turbinas Turbofan Câmara de Combustão Turbinas

Leia mais

Escola Politécnica da Universidade de São Paulo. Aula 12 Ciclo Otto e Ciclo Diesel

Escola Politécnica da Universidade de São Paulo. Aula 12 Ciclo Otto e Ciclo Diesel Escola Politécnica da Universidade de São Paulo Aula 12 Ciclo Otto e Ciclo Diesel Ciclo de Potência dos Motores Alternativos Deslocamento de todos cilindros: V desl =N ciclo (V max V min )=N ciclo A ciclo

Leia mais

Projeto e Simulação de Sistemas Térmicos 2017/2

Projeto e Simulação de Sistemas Térmicos 2017/2 Projeto e Simulação de Sistemas Térmicos 2017/2 Lista 2 Resolva os seguintes exercícios: 1. Calcule o desempenho (eficiência e back work ratio) de um ciclo simples de turbina a gás, operando nas seguintes

Leia mais

PME 3344 Termodinâmica Aplicada

PME 3344 Termodinâmica Aplicada PME 3344 Termodinâmica Aplicada 12) Ciclos de Refrigeração 1 v. 3.0 Ciclos de refrigeração A transferência de calor de compartimentos de baixa temperatura para outros a temperaturas maiores é chamada de

Leia mais

MOTORES DE COMBUSTÃO INTERNA I

MOTORES DE COMBUSTÃO INTERNA I Departamento de Engenharia de Biossistemas ESALQ/USP MOTORES DE COMBUSTÃO INTERNA I LEB0332 Mecânica e Máquinas Motoras Prof. Leandro M. Gimenez 2017 TÓPICOS Motores de combustão interna I Aspectos teóricos,

Leia mais

MÁQUINAS E EQUIPAMENTOS TÉRMICOS

MÁQUINAS E EQUIPAMENTOS TÉRMICOS MÁQUINAS E EQUIPAMENTOS TÉRMICOS MOTORES ALTERNATIVOS DE COMBUSTÃO INTERNA Prof. Dr. Ramón Silva - 2015 MACI Ciclo Otto Em 1862, Beau de Rochas enunciou o ciclo de quatro tempos que, primeiramente, o alemão

Leia mais

PME 3344 Termodinâmica Aplicada

PME 3344 Termodinâmica Aplicada PME 3344 Termodinâmica Aplicada Aula de exercícios 01 1 v. 1.3 Exercício 01 Considere o conjunto mostrado na figura. O pistão pode mover-se sem atrito entre os dois conjuntos de batentes. Quando o pistão

Leia mais

Lista de Exercícios Solução em Sala

Lista de Exercícios Solução em Sala Lista de Exercícios Solução em Sala 1) Um conjunto pistão-cilindro área de seção transversal igual a 0,01 m². A massa do pistão é 101 kg e ele está apoiado nos batentes mostrado na figura. Se a pressão

Leia mais

PROGRAMA. CONCEITOS E PROPRIEDADES TERMODINÂMICAS & TRABALHO E CALOR (Parte 1) 1ª, 2ª, 3ª e 4ª semanas. PRIMEIRA LEI DA TERMODINÂMICA (Parte 2)

PROGRAMA. CONCEITOS E PROPRIEDADES TERMODINÂMICAS & TRABALHO E CALOR (Parte 1) 1ª, 2ª, 3ª e 4ª semanas. PRIMEIRA LEI DA TERMODINÂMICA (Parte 2) PROGRAMA CONCEITOS E PROPRIEDADES TERMODINÂMICAS & TRABALHO E CALOR (Parte 1) 1ª, 2ª, 3ª e 4ª semanas. PRIMEIRA LEI DA TERMODINÂMICA (Parte 2) 5ª, 6ª, 7ª, 8ª e 9ª semanas; 1ª prova individual. SEGUNDA

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA TURBINAS A VAPOR

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA TURBINAS A VAPOR UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA TURBINAS A VAPOR Prof. FERNANDO BÓÇON, Dr.Eng. Curitiba, setembro de 2015 IV - TURBINAS A VAPOR 1. GENERALIDADES 1.1

Leia mais

TERMODINÂMICA APLICADA

TERMODINÂMICA APLICADA TERMODINÂMICA APLICADA Livro Texto adotado: Fundamentos da Termodinâmica Claus Borgnakke/ Richard E. Sonntag Editora Blucher. Samuel Sander de Carvalho samuel.carvalho@ifsudestemg.edu.br Juiz de Fora -MG

Leia mais

PROVA DE SELEÇÃO DO PPGEM DA UFES DE 2018 CIÊNCIAS MECÂNICAS. Termodinâmica - Transferência de Calor - Mecânica dos Fluidos

PROVA DE SELEÇÃO DO PPGEM DA UFES DE 2018 CIÊNCIAS MECÂNICAS. Termodinâmica - Transferência de Calor - Mecânica dos Fluidos UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO TECNOLOGICO PROGRAMA DE PÓS-GRADUAÇÃO EM EMGENHARIA MECÂNICA CANDIDATO: NOTA: MESTRADO ( X ) DOUTORADO ( X ) PROVA DE SELEÇÃO DO PPGEM DA UFES DE 018 CIÊNCIAS

Leia mais

Física 3 Cap 19 - Máquinas Térmicas

Física 3 Cap 19 - Máquinas Térmicas Física 3 Cap 19 - Máquinas Térmicas Baseado em parte em slides pelo Prof. Carlos Eduardo Souza Máquinas Térmicas Máquina Térmica: um dispositivo que opera em ciclos convertendo calor em trabalho útil.

Leia mais

Módulo II Processo Reversível e Irreversível, Ciclos (Potência, Refrigeração e Bomba de Calor) de Carnot

Módulo II Processo Reversível e Irreversível, Ciclos (Potência, Refrigeração e Bomba de Calor) de Carnot Módulo II Processo Reversível e Irreversível, Ciclos (Potência, Refrigeração e Bomba de Calor) de Carnot Processos Reversíveis e Irreversíveis Nenhuma máquina térmica pode ter eficiência 100% de acordo

Leia mais

Física 20 Questões [Fácil]

Física 20 Questões [Fácil] Física 20 Questões [Fácil] 01 - (ITA SP) Uma máquina térmica reversível opera entre dois reservatórios térmicos de temperaturas 100 C e 127 C, respectivamente, gerando gases aquecidos para acionar uma

Leia mais

Máquinas térmicas, bombas de calor e refrigeradores 1

Máquinas térmicas, bombas de calor e refrigeradores 1 Máquinas térmicas, bombas de calor e refrigeradores 1 Física I (4302112) IFUSP 2017 1 Transformando energia Alguns livros didáticos definem energia como a capacidade de realizar trabalho, entendida como

Leia mais

Módulo V Balanço de Entropia para Sistemas Fechados. Balanço de Entropia para Volume de Controle.

Módulo V Balanço de Entropia para Sistemas Fechados. Balanço de Entropia para Volume de Controle. Módulo V Balanço de Entropia para Sistemas Fechados. Balanço de Entropia para Volume de Controle. Balanço de Entropia para Sistemas Fechados O balanço de entropia é uma expressão da segunda lei conveniente

Leia mais

CONCURSO PÚBLICO / Professor Efetivo - Campus Juiz de Fora - IF SUDESTE MG

CONCURSO PÚBLICO / Professor Efetivo - Campus Juiz de Fora - IF SUDESTE MG Dados do Num. Inscrição 00002 Num. Recurso 1 Assunto questao 09 Anexo DANIEL DE ALMEIDA E SOUZA Data/Hora Envio 04/02/2014-21:28:08 Dados da Segundo o livro indicado no edital para bibliografia Motores

Leia mais

TERMODINÂMICA APLICADA

TERMODINÂMICA APLICADA TERMODINÂMICA APLICADA Livro Texto adotado: Fundamentos da Termodinâmica Claus Borgnakke/ Richard E. Sonntag Editora Blucher. Samuel Sander de Carvalho samuel.carvalho@ifsudestemg.edu.br Juiz de Fora -MG

Leia mais

Termodinâmica e Estrutura da Matéria (MEFT)

Termodinâmica e Estrutura da Matéria (MEFT) Termodinâmica e Estrutura da Matéria (MEFT) 2014-2015 Vasco Guerra Carlos Augusto Santos Silva carlos.santos.silva@tecnico.ulisboa.pt Versão 1.0 24-1-2014 1. Um inventor diz que desenvolveu uma máquina

Leia mais

Ciclo de potência a vapor

Ciclo de potência a vapor Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica Ciclo de potência a vapor 2 semestre/2017 1 Ciclo de Carnot Forma de conversão contínua de calor, proveniente

Leia mais

SISTEMAS DE POTÊNCIA A VAPOR (SPV)

SISTEMAS DE POTÊNCIA A VAPOR (SPV) SISTEMAS DE POTÊNCIA A VAPOR (SPV) Prof. Dr. Paulo H. D. Santos psantos@utfpr.edu.br AULA 1 06/06/2013 Apresentação do curso; Modelagem dos Sistemas de Potência a Vapor; Sistemas de Potência a Vapor -

Leia mais

Capítulo 4: Análise de Sistemas - 1ª e 2ª Leis da Termodinâmica

Capítulo 4: Análise de Sistemas - 1ª e 2ª Leis da Termodinâmica Capítulo 4: Análise de Sistemas - 1ª e 2ª Leis da Termodinâmica A segunda lei da termodinâmica Máquinas térmicas e bombas de calor Ciclos reversíveis Ciclo de Carnot A segunda lei da termodinâmica O que

Leia mais

3. Um gás ideal passa por dois processos em um arranjo pistão-cilindro, conforme segue:

3. Um gás ideal passa por dois processos em um arranjo pistão-cilindro, conforme segue: 1. Um arranjo pistão-cilindro com mola contém 1,5 kg de água, inicialmente a 1 Mpa e título de 30%. Esse dispositivo é então resfriado até o estado de líquido saturado a 100 C. Calcule o trabalho total

Leia mais

Análise Energética para Sistemas Abertos (Volumes de Controles)

Análise Energética para Sistemas Abertos (Volumes de Controles) UTFPR Termodinâmica 1 Análise Energética para Sistemas Abertos (Volumes de Controles) Princípios de Termodinâmica para Engenharia Capítulo 4 Parte III Análise de Volumes de Controle em Regime Permanente

Leia mais

Professor Dr. Evandro Rodrigo Dário Curso: Engenharia Mecânica Disciplina: Termodinâmica. Processos reversíveis e Irreversíveis

Professor Dr. Evandro Rodrigo Dário Curso: Engenharia Mecânica Disciplina: Termodinâmica. Processos reversíveis e Irreversíveis Processos reversíveis e Irreversíveis Um processo reversível é definido como um processo que pode ser invertida sem deixar nenhum vestígio no ambiente. Ou seja, tanto o sistema e o ambiente são devolvidos

Leia mais

Módulo III Desigualdade de Clausis, Entropia, Geração de Entropia.

Módulo III Desigualdade de Clausis, Entropia, Geração de Entropia. Módulo III Desigualdade de Clausis, Entropia, Geração de Entropia. Desigualdade de Clausius Aplicável para qualquer ciclo reversível ou irreversível. Ela foi desenvolvida pelo físico alemão R. J. E. Clausius

Leia mais

Ciclo de potência a vapor

Ciclo de potência a vapor Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica Ciclo de potência a vapor 2 semestre/2016 1 Ciclo de Carnot Forma de conversão contínua de calor, proveniente

Leia mais

Aula 6 A 2a lei da termodinâmica Física II UNICAMP 2012

Aula 6 A 2a lei da termodinâmica Física II UNICAMP 2012 Aula 6 A 2a lei da termodinâmica Física II UNICAMP 2012 http://en.wikipedia.org/wiki/steam_car Caldeira de carro a vapor de 1924. Populares até a década de 1930, perderam prestígio com a popularização

Leia mais

Máquinas térmicas. Máquina térmica Dispositivo que converte calor em energia mecânica (trabalho) Reservatório a alta temperatura T H

Máquinas térmicas. Máquina térmica Dispositivo que converte calor em energia mecânica (trabalho) Reservatório a alta temperatura T H 9/Mar/208 ula 5 Segunda lei da termodinâmica Máquinas térmicas; eficiência. Formulação de Kelvin Máquinas frigoríficas (e bombas de calor): princípio de funcionamento e eficiência Formulação de lausius

Leia mais

MÁQUINAS TÉRMICAS Prof. Dr. Charles Assunção

MÁQUINAS TÉRMICAS Prof. Dr. Charles Assunção MÁQUINAS TÉRMICAS Prof. Dr. Charles Assunção APLICAÇÃO DO ESTUDO DE MÁQUINAS TÉRMICAS Fonte: Wylen; Sonntag; Borgnakke. Fundamentos da termodinâmica. Blucher. APLICAÇÃO DO ESTUDO DE MÁQUINAS TÉRMICAS Fonte:

Leia mais

2ª Lei da Termodinâmica. Prof. Matheus Fontanelle Pereira

2ª Lei da Termodinâmica. Prof. Matheus Fontanelle Pereira 2ª Lei da Termodinâmica Prof. Matheus Fontanelle Pereira Introdução Trabalho poderia ser obtido. Oportunidades de gerar trabalho Qual é o máximo valor teórico do trabalho que poderia ser obtido? Quais

Leia mais

27/Fev/2013 Aula 5 Segunda lei da termodinâmica Máquinas térmicas; eficiência. Formulação de Kelvin

27/Fev/2013 Aula 5 Segunda lei da termodinâmica Máquinas térmicas; eficiência. Formulação de Kelvin 7/Fev/03 ula 5 Segunda lei da termodinâmica Máquinas térmicas; eficiência. Formulação de Kelvin Máquinas frigoríficas (e bombas de calor): princípio de funcionamento e eficiência Formulação de lausius

Leia mais

Sumário. Capítulo 1 Introdução... 1 Referências... 8

Sumário. Capítulo 1 Introdução... 1 Referências... 8 Sumário Capítulo 1 Introdução... 1 Referências... 8 Capítulo 2 Exergia A Qualidade da Energia... 9 2.1 Conceito de Exergia... 9 2.1.1 Análise Exergética... 15 2.1.2 Método de Análise... 16 Capítulo 3 Eficiência

Leia mais

GABARITO - QUESTÕES DE MULTIPLA ESCOLHA

GABARITO - QUESTÕES DE MULTIPLA ESCOLHA Instituto de Ciências Exatas e Tecnológicas P2 Termodinâmica Básica Nome: Curso: RA: Turma: Data: Instruções Leia as questões antes de respondê-las. A interpretação da questão faz parte da avaliação. É

Leia mais

UFABC Fenômenos Térmicos Prof. Germán Lugones. Aula 10: Segunda lei da Termodinâmica Máquinas térmicas

UFABC Fenômenos Térmicos Prof. Germán Lugones. Aula 10: Segunda lei da Termodinâmica Máquinas térmicas UFABC Fenômenos Térmicos Prof. Germán Lugones Aula 10: Segunda lei da Termodinâmica Máquinas térmicas Segunda lei da termodinâmica Na aula passada definimos a variação de entropia para um processo reversível

Leia mais

Máquinas Térmicas Turbinas a Gas. Jurandir Itizo Yanagihara

Máquinas Térmicas Turbinas a Gas. Jurandir Itizo Yanagihara Máquinas Térmicas Turbinas a Gas 1 Vantagens da Vantagens Turbinas a gás tendem a ser mais compactas, isto é, tem uma maior razão potência/peso (até 70% em relação a outros motores). Por isso, elas são

Leia mais

Disciplina : Termodinâmica. Aula 14 Segunda Lei da Termodinâmica

Disciplina : Termodinâmica. Aula 14 Segunda Lei da Termodinâmica Disciplina : Termodinâmica Aula 14 Segunda Lei da Termodinâmica Prof. Evandro Rodrigo Dário, Dr. Eng. Introdução a segunda lei da termodinâmica Uma xícara de café quente deixado em uma sala mais fria,

Leia mais

Máquinas de Fluidos. Prof. Ms Sérgio Neves

Máquinas de Fluidos. Prof. Ms Sérgio Neves Máquinas de Fluidos Prof. Ms Sérgio Neves Histórico Século XIX: desenvolvimento das máquinas de fluido: Utilização de conhecimentos em termodinâmica e em aerodinâmica; Surgimento de novos materiais; Mais

Leia mais