Dificuldades de Modelos de PNL. Onde está a solução ótima? Outro exemplo: Condição ótima Local vs. Global Quinta-feira, 25 de abril

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Dificuldades de Modelos de PNL. Onde está a solução ótima? Outro exemplo: Condição ótima Local vs. Global. 15.053 Quinta-feira, 25 de abril"

Transcrição

1 Quinta-feira, 25 de abril Teoria de Programação Não-Linear Programação Separável Dificuldades de Modelos de PNL Programa Linear: Apostilas: Notas de Aula Programas Não-Lineares 1 2 Análise gráfica de programas nãolineares em duas dimensões: Exemplo Minimize sujeito a Onde está a solução ótima? Obs.: a solução ótima não está em ponto do vértice. Ele está onde o isocontorno atinge pela primeira vez a região viável. 3 4 Outro exemplo: Minimize (x-8)2 + (y-8)2 Então, o mínimo global não restrito também é viável. A solução ótima não está no delimitador da região viável. Condição ótima Local vs. Global Definição: Deixe x ser uma solução viável, então x é uma máx global se f(x) = f(y) para cada y viável. x é uma máx local se f(x) = f(y) para cada y viável suficientemente prsximo de x (ou seja, x j -e = y j = xj + e para todos os j e alguns pequenos e). 5 Pode haver várias soluções ótimas locais. 6 1

2 Quando uma solução ótima local também é uma solução ótima global? Estamos minimizando. A função objetiva é convexa. A região viável é convexa. Pontos Extremo e de Convexidade Dizemos que um conjunto S é convexo se para cada dois pontos x e y em S e para cada número real? em [0,1],?x + (1-?)y es. A região viável de um programa linear é convexa. Dizemos que um elemento w e S é um ponto extremo (vértice) se w não for o ponto médio de algum segmento da linha contido em S. 7 8 Reconhecendo regiões viáveis convexas Se todas as restrições forem lineares, a região viável é convexa A intersecção das regiões convexas é convexa Se para todos os x e y viáveis o ponto médio de x e de y for viável, então a região será convexa (exceto em exemplos totalmente não realistas) Quais são convexos? 9 10 Funções convexas Funções convexas: para cada y e z e para 0=? =1. por exemplo: Dizemos que é uma convexidade "rígida" se o sinal for "<" para 0<? <1. Funções Côncavas Funções Côncavas: para cada y e z e para 0=? =1. por exemplo: Dizemos que é uma convexidade "rígida" se o sinal for ">" para 0<? <1. A linha juntando quaisquer pontos está acima da curva A linha juntando quaisquer pontos está abaixo da curva

3 Classifique como convexo, côncavo, ambos ou nenhum. Quais funções são convexas? todas funções lineares algumas funções quadráticas. para x > 0. para x > 0 Condição suficiente: f" (x) > 0 para todos os x Quais funções são convexas? Se f(x) for convexo e g(x) for convexo, Então, também é h(x) = a f(x) + b g(x) para a>0, b>0. Se y = f(x) for convexo, então é um conjunto convexo Propriedade Máxima (Mínima) Local Uma máx. local de uma função côncava em uma região convexa viável é também uma máx. global. Uma mín. local de uma função convexa em uma região convexa viável é também uma mín. global. A convexidade ou concavidade rígida implica que o ótimo global é único. Dado isso, podemos resolver com exatidão: Problemas de Maximização com uma função objetiva côncava e restrições lineares Problemas de Minimização com uma função objetiva convexa e restrições lineares Quais são as regiões convexas viáveis? Mais sobre as condições de otimalidade locais As técnicas para a otimização não-linear normalmente encontram o ótimo local. Isso é útil quando uma solução ótima locar for uma solução ótima global. Não é tão útil em várias situações. Conclusão: se você solucionar um PNL, tente descobrir se as soluções ótimas locais são mesmo boas

4 Solucionando PNL pelo Excel Solver Descobrindo um ótimo local para uma única variável de PNL Solucionando PNLs de variável única: máx. f(?) de forma que a =? = b A solução ótima é ou um ponto limitador ou satisfaz f' (?) = 0 e f"(?*) < Solucionando PNL de Variável Única (continuação) Se f(?) for côncavo (ou simplesmente unimodal) e diferenciável máx f(?) de forma que a =? = b Busca por Bisecção (ou Bolzano): Passo 1. Comece com a região de incerteza para? como [a, b]. Avalie f' (?) no ponto mediano? M =(a+b)/2. Passo 2. Se f' (? M ) > 0, então elimine o intervalo até? M. Se f' (? M ) < 0, então elimine o intervalo além de? M. Passo 3. Avalie f' (?) no ponto mediano do novo intervalo. Volte para o Passo 2 até que o intervalo de incerteza seja suficientemente pequeno. Funções Unimodais A função de variável única f é unimodal se houver no máximo uma máxima local (ou no máximo uma mínima local) Outras Técnicas de Busca Em vez de pegar derivados (que pode exigir muito do computador), use duas funções de avaliação para determinar o intervalo atualizado. Busca de Fibonacci Passo 1. Comece com a região de incerteza para? como [a, b]. Avalie f (? 1 ) e f (? 2 ) quanto a dois pontos simétricos? 1 <? 2. Passo 2. Se f (? 1 ) = f (? 2 ), então elimine o intervalo até? 1. Se f (? 1 ) > f (? 2 ), então elimine o intervalo além de? 2. Passo 3. Selecione um segundo ponto simétrico ao ponto já no novo intervalo, renomeie esses pontos? 1 e? 2 de modo que? 1 <? 2 e avalie f (? 1 ) e f (? 2 ). Volte ao Passo 2 até que o intervalo seja suficientemente pequeno. 23 Na busca de Fibonacci 1, 1, 2, 3, 5, 8, 13, 21, 34 Na iteração 1, a extensão do intervalo de busca é o kº número fibonacci para algum k Na iteração j, a extensão do intervalo de busca é o número fibonacci k-j+1. A técnica converge para o ótimo quando a função for unimodal. 24 4

5 Encontrando um máximo local usando a Busca de Fibonacci. A busca encontra um máximo local, mas não necessariamente um máximo global. Extensão do intervalo Onde o máximo pode ser A busca encontra um máximo local, mas não necessariamente um máximo global. Número das avaliações de função na Busca de Fibonacci Como o novo ponto é escolhido simetricamente, a extensão l k dos intervalos de busca sucessivos é dada por: l k = l k+1 + l k+2. Solucionando essas extensões determinada a extensão do intervalo final de 1, l n = 1, dá os números de Fibonacci: 1, 2, 3, 5, 8, 13, 21, 34, Assim, se o intervalo inicial tiver a extensão 34, ele leva 8 cálculos de função para reduzir a extensão do intervalo em 1. Observação: Se a função for convexa ou unimodal, então Busca de Fibonacci convergirá para o máximo global Programação Separável Exemplos de Programas Separáveis Os programas separáveis têm a forma: Máx. de forma que Cada variável xj aparece separadamente, uma em cada função gij e uma em cada função fj no objetivo. Cada função não-linear é de uma única variável

6 Aproximando uma função não-linear com uma função de emenda linear. Aspecto 1. Escolhendo a aproximação. Aspecto 2. Quando a aproximação da emenda linear é um programa linear disfarçado? Aproximação de uma função nãolinear de variável única Aproximação de uma função nãolinear de variável única: o método? Mais sobre o método? Escolha valores diferentes de x para aproximar o eixo x Aproximação usando segmentos de emenda linear Suponha que para 3 = x = -1 representemos que x tem? 1 (-3) +? 2 (-1) onde? 1 +? 2 = 1 e? 1,? 2 = 0 Então, aproximamos f(x) como? 1 (-20) +? 2 (-7 1/3) Mais sobre o método? Suponha que para -1 = x = 1, representemos que x tem? 2 (-3) +? 3 (-1) onde? 2 +? 3 = 1 e? 2,? 3 = 0 Quase o método? Problema Original: mín x 3 /3 + 2x 5 + mais termos de forma que -3 = x = 3 + muito mais restrições Como aproximamos f( ) nesse intervalo? E se 3 = x = 1? 35 Problema aproximado: mín? 1 f(a1) +? 2 f(a 2 ) +? 3 f(a 3 ) +? 4 f(a 4 ) Mais termos lineares de forma que? 1 +? 2 +? 3 +? 4 = 1 ;? = 0 + muito mais restrições 36 6

7 Por que a aproximação é incorreta? Condição de Adjacência Problema aproximado: mín? 1 f(a1) +? 2 f(a 2 ) +? 3 f(a 3 ) +? 4 f(a 4 ) mais termos lineares de forma que? 1 +? 2 +? 3 +? 4 = 1 ;? = 0 Considere? 1 = ½ ;? 2 = 0 ;? 3 = ½ ;? 4 = 0; 1. No máximo dois pesos (?s) são positivos 2. Se exatamente dois pesos (?s) forem positivos, então eles são? j e? j+1 para algum j 3. A mesma condição se aplica a toda função aproximada. O método dá a aproximação correta se apenas dois?s consecutivos forem positivos Aproximando uma função objetiva não-linear para a PNL de minimização. Problema original: minimizar Para minimizar uma função convexa, o método? automaticamente satisfaz a propriedade de adjacência adicional. mín z =? 1 f(a1) +? 2 f(a 2 ) +? 3 f(a 3 ) +? 4 f(a 4 ) +? 5 f(a 5 ) Suponha que onde Aproxime f(y). minimize {S j? j f(a j ): S j? j a j? P} e de forma que? 1 +? 2 +? 3 +? 4 +? 5 = 1 ;? = 0 + condição de adjacência + outras restrições Obs.: quando determinada uma escolha de representar y de maneiras alternativa, a PL escolherá uma que leve ao menor valor objetivo para a aproximação Funções objetivas aproximadas viáveis sem as condições de adjacência Mas um mínimo neste caso sempre ocorre na curva da emenda linear. mín z =? 1 f(a1) +? 2 f(a 2 ) +? 3 f(a 3 ) +? 4 f(a 4 ) +? 5 f(a 5 ) de forma que? 1 +? 2 +? 3 +? 4 +? 5 = 1 ;? = 0 + outras restrições mín z =? 1 f(a1) +? 2 f(a 2 ) +? 3 f(a 3 ) +? 4 f(a 4 ) +? 5 f(a 5 ) de forma que? 1 +? 2 +? 3 +? 4 +? 5 = 1 ;? = 0 + outras restrições

8 Programação Separável (no caso de restrições lineares) Aproximação Re-expresse em termos de variáveis?: Comece com uma PNL: Transforme para Separável: para todos os j, k Aproxime usando o Método?: e as condições de adjacência Se o problema original for côncavo, você pode esquecer as condições de adjacência (elas são automaticamente satisfeitas) Como se pode construir funções separáveis? Exemplos de transformação Ex.: Termo Substituição Restrições Limitações Substitua e deixe y = x 1 + x 2 + x 3 Nenhum Nenhum Ex.: Deixe e e adicione a restrição Nenhum Resumo de PNL As funções convexa e côncava, assim como os conjuntos convexos, são propriedades importantes Técnicas de Busca de Fibonacci e Bolzano usadas para solucionar funções unimodais de variável única Programação Separável Objetivo não-linear e restrições não-lineares que são separáveis Técnica de aproximação geral 47 8

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Linear Aula 25: Programação Não-Linear - Funções de Uma única variável Mínimo; Mínimo Global; Mínimo Local; Optimização Irrestrita; Condições Óptimas; Método da Bissecção; Método de Newton.

Leia mais

Notas de aula número 1: Otimização *

Notas de aula número 1: Otimização * UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL UFRGS DEPARTAMENTO DE ECONOMIA CURSO DE CIÊNCIAS ECONÔMICAS DISCIPLINA: TEORIA MICROECONÔMICA II Primeiro Semestre/2001 Professor: Sabino da Silva Porto Júnior

Leia mais

Esboço de Gráficos (resumo)

Esboço de Gráficos (resumo) Esboço de Gráficos (resumo) 1 Máximos e Mínimos Definição: Diz-se que uma função tem um valor máximo relativo (máximo local) em c se existe um intervalo ( a, b) aberto contendo c tal que f ( c) f ( x)

Leia mais

ExemResumo parcial da última. 15.053 Quinta-feira, 28 de fevereiro. Os preços-sombra podem ser encontrados ao se examinar os quadros inicial e final!

ExemResumo parcial da última. 15.053 Quinta-feira, 28 de fevereiro. Os preços-sombra podem ser encontrados ao se examinar os quadros inicial e final! 15.053 Quinta-feira, 28 de fevereiro Análise de Sensibilidade 2 Mais sobre pricing out Efeitos sobre os quadros finais Apostilas: Notas de Aula ExemResumo parcial da última O preço-sombra é a alteração

Leia mais

PROBLEMA DE TRANSPORTE: MODELO E MÉTODO DE SOLUÇÃO

PROBLEMA DE TRANSPORTE: MODELO E MÉTODO DE SOLUÇÃO PROBLEMA DE TRANSPORTE: MODELO E MÉTODO DE SOLUÇÃO Luciano Pereira Magalhães - 8º - noite lpmag@hotmail.com Orientador: Prof Gustavo Campos Menezes Banca Examinadora: Prof Reinaldo Sá Fortes, Prof Eduardo

Leia mais

1. Extremos de uma função

1. Extremos de uma função Máximo e Mínimo de Funções de Várias Variáveis 1. Extremos de uma função Def: Máximo Absoluto, mínimo absoluto Seja f : D R R função (i) Dizemos que f assume um máximo absoluto (ou simplesmente um máximo)

Leia mais

Trabalho de Casa 1. 15.053 Introdução à Otimização Para ser entregue no início da aula de quinta-feira, 14 de fevereiro de 2002

Trabalho de Casa 1. 15.053 Introdução à Otimização Para ser entregue no início da aula de quinta-feira, 14 de fevereiro de 2002 Trabalho de Casa 1 15.053 Introdução à Otimização Para ser entregue no início da aula de quinta-feira, 14 de fevereiro de 2002 1. Formulações de PL a. Dê um exemplo de uma programação linear de duas variáveis

Leia mais

Cálculo numérico. ln 1 = 0. Representação numérica. Exemplo. Exemplos. Professor Walter Cunha. ln 1. I s

Cálculo numérico. ln 1 = 0. Representação numérica. Exemplo. Exemplos. Professor Walter Cunha. ln 1. I s Representação numérica Cálculo numérico Professor Walter Cunha Um conjunto de ferramentas ou métodos usados para se obter a solução de problemas matemáticos de forma aproximada. Esses métodos se aplicam

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

MAT2454 - Cálculo Diferencial e Integral para Engenharia II

MAT2454 - Cálculo Diferencial e Integral para Engenharia II MAT454 - Cálculo Diferencial e Integral para Engenharia II a Lista de Exercícios -. Ache os pontos do hiperboloide x y + z = onde a reta normal é paralela à reta que une os pontos (,, ) e (5,, 6).. Encontre

Leia mais

Esboço de Curvas. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html

Esboço de Curvas. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Esboço de Curvas Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Roteiro para esboçar uma curva A. Verifique o domínio da função Exemplo: f(x) = 1 x {x x = 0} Roteiro para esboçar

Leia mais

Análise da sensibilidade

Análise da sensibilidade Análise da Sensibilidade Bertolo, L.A. UNIUBE Análise da sensibilidade Em todos os modelos de programação linear, os coeficientes da função objetivo e das restrições são considerados como entrada de dados

Leia mais

MATEMÁTICA I AULA 07: TESTES PARA EXTREMOS LOCAIS, CONVEXIDADE, CONCAVIDADE E GRÁFICO TÓPICO 02: CONVEXIDADE, CONCAVIDADE E GRÁFICO Este tópico tem o objetivo de mostrar como a derivada pode ser usada

Leia mais

Uma Ferramenta para otimização em Engenharia Mecânica e aplicações na Fundição Eletromagnética de Metais

Uma Ferramenta para otimização em Engenharia Mecânica e aplicações na Fundição Eletromagnética de Metais Uma Ferramenta para otimização em Engenharia Mecânica e aplicações na Fundição Eletromagnética de Metais Departamento de Engenharia Mecânica COPPE UFRJ STIC-AMSUD, Novembro de 2009 Conteúdo Preliminares

Leia mais

PROGRAMAÇÃO LINEAR. Resolução de problemas de programação linear usando o comando Solver, no Excel.

PROGRAMAÇÃO LINEAR. Resolução de problemas de programação linear usando o comando Solver, no Excel. PROGRAMAÇÃO LINEAR Resolução de problemas de programação linear usando o comando Solver, no Excel. Para além da resolução pelo método gráfico e/ou outros métodos, é possível resolver um problema de PL

Leia mais

Ricardo Bento Afonso Nº51571 Rubén Ruiz Holgado Nº64643

Ricardo Bento Afonso Nº51571 Rubén Ruiz Holgado Nº64643 Ricardo Bento Afonso Nº51571 Rubén Ruiz Holgado Nº64643 Programação não linear para que serve? A programação linear tem a função objectivo e os constrangimentos lineares. O que nem sempre acontece na realidade,

Leia mais

6. Programação Inteira

6. Programação Inteira Pesquisa Operacional II 6. Programação Inteira Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção Programação Inteira São problemas de programação matemática em que a função objetivo, bem

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1 Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA Números e Funções Reais Avaliação - GABARITO 3 de abril de 203. Determine se as afirmações a seguir são verdadeiras

Leia mais

CI202 - Métodos Numéricos

CI202 - Métodos Numéricos CI202 - Métodos Numéricos Lista de Exercícios 2 Zeros de Funções Obs.: as funções sen(x) e cos(x) devem ser calculadas em radianos. 1. Em geral, os métodos numéricos para encontrar zeros de funções possuem

Leia mais

2. A FERRAMENTA SOLVER (EXCEL)

2. A FERRAMENTA SOLVER (EXCEL) Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção 2. A FERRAMENTA SOLVER (EXCEL) Diversas ferramentas para solução de problemas de otimização, comerciais ou acadêmicos, sejam eles lineares

Leia mais

PROJETO SALA DE AULA

PROJETO SALA DE AULA PROJETO SALA DE AULA 1. Identificação: Título: APRENDENDO FUNÇÕES BRINCANDO Série: 1º série do Ensino Fundamental Softwares Necessários: Cabri-Géomètre, Jogos de Funções e Graphmatica Tempo previsto: Seis

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais

Resolução da Lista 2 - Modelos determinísticos

Resolução da Lista 2 - Modelos determinísticos EA044 - Planejamento e Análise de Sistemas de Produção Resolução da Lista 2 - Modelos determinísticos Exercício 1 a) x ij são as variáveis de decisão apropriadas para o problemas pois devemos indicar quantos

Leia mais

Complexidade de Algoritmos. Edson Prestes

Complexidade de Algoritmos. Edson Prestes Edson Prestes Caminhos de custo mínimo em grafo orientado Este problema consiste em determinar um caminho de custo mínimo a partir de um vértice fonte a cada vértice do grafo. Considere um grafo orientado

Leia mais

Í N D I C E Introdução Função Constante... 01 Função Linear... 02

Í N D I C E Introdução Função Constante... 01 Função Linear... 02 UNIVERSIDADE CRUZEIRO DO SUL Conhecendo a teoria III Curso: Pós-graduação / MBA Campus Virtual Cruzeiro do Sul - 009 Professor Responsável: Carlos Henrique de Jesus Costa Professores Conteudistas: Carlos

Leia mais

Investigação Operacional- 2009/10 - Programas Lineares 3 PROGRAMAS LINEARES

Investigação Operacional- 2009/10 - Programas Lineares 3 PROGRAMAS LINEARES Investigação Operacional- 2009/10 - Programas Lineares 3 PROGRAMAS LINEARES Formulação A programação linear lida com problemas nos quais uma função objectivo linear deve ser optimizada (maximizada ou minimizada)

Leia mais

Microsoft Excel na resolução de problemas de optimização

Microsoft Excel na resolução de problemas de optimização Universidade do Minho Escola de Engenharia Departamento Campus de Gualtar de Produção 4710-057 Braga e Sistemas Microsoft Excel na resolução de problemas de optimização Manual da disciplina de Métodos

Leia mais

ESPAÇOS QUOCIENTES DANIEL SMANIA. [x] := {y X t.q. x y}.

ESPAÇOS QUOCIENTES DANIEL SMANIA. [x] := {y X t.q. x y}. ESPAÇOS QUOCIENTES DANIEL SMANIA 1. Relações de equivalência Seja uma relação de equivalência sobre um conjunto X, isto é, uma rel ção binária que satisfaz as seguintes propriedades i. (Prop. Reflexiva.)

Leia mais

CÁLCULO DE ZEROS DE FUNÇÕES REAIS

CÁLCULO DE ZEROS DE FUNÇÕES REAIS 15 CÁLCULO DE ZEROS DE FUNÇÕES REAIS Um dos problemas que ocorrem mais frequentemente em trabalhos científicos é calcular as raízes de equações da forma: f() = 0. A função f() pode ser um polinômio em

Leia mais

OTIMIZAÇÃO VETORIAL. Formulação do Problema

OTIMIZAÇÃO VETORIAL. Formulação do Problema OTIMIZAÇÃO VETORIAL Formulação do Problema Otimização Multiobjetivo (também chamada otimização multicritério ou otimização vetorial) pode ser definida como o problema de encontrar: um vetor de variáveis

Leia mais

FUNÇÃO REAL DE UMA VARIÁVEL REAL

FUNÇÃO REAL DE UMA VARIÁVEL REAL Hewlett-Packard FUNÇÃO REAL DE UMA VARIÁVEL REAL Aulas 01 a 04 Elson Rodrigues, Gabriel Carvalho e Paulo Luís Ano: 2015 Sumário INTRODUÇÃO AO PLANO CARTESIANO... 2 PRODUTO CARTESIANO... 2 Número de elementos

Leia mais

Lista 1 para a P2. Operações com subespaços

Lista 1 para a P2. Operações com subespaços Lista 1 para a P2 Observação 1: Estes exercícios são um complemento àqueles apresentados no livro. Eles foram elaborados com o objetivo de oferecer aos alunos exercícios de cunho mais teórico. Nós sugerimos

Leia mais

Exp e Log. Roberto Imbuzeiro Oliveira. 21 de Fevereiro de 2014. 1 O que vamos ver 1. 2 Fatos preliminares sobre espaços métricos 2

Exp e Log. Roberto Imbuzeiro Oliveira. 21 de Fevereiro de 2014. 1 O que vamos ver 1. 2 Fatos preliminares sobre espaços métricos 2 Funções contínuas, equações diferenciais ordinárias, Exp e Log Roberto Imbuzeiro Oliveira 21 de Fevereiro de 214 Conteúdo 1 O que vamos ver 1 2 Fatos preliminares sobre espaços métricos 2 3 Existência

Leia mais

Utilização do SOLVER do EXCEL

Utilização do SOLVER do EXCEL Utilização do SOLVER do EXCEL 1 Utilização do SOLVER do EXCEL José Fernando Oliveira DEEC FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO MAIO 1998 Para ilustrar a utilização do Solver na resolução de

Leia mais

Pesquisa Operacional. Função Linear - Introdução. Função do 1 Grau. Função Linear - Exemplos Representação no Plano Cartesiano. Prof.

Pesquisa Operacional. Função Linear - Introdução. Função do 1 Grau. Função Linear - Exemplos Representação no Plano Cartesiano. Prof. Pesquisa Operacional Prof. José Luiz Prof. José Luiz Função Linear - Introdução O conceito de função é encontrado em diversos setores da economia, por exemplo, nos valores pagos em um determinado período

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) II Métodos numéricos para encontrar raízes (zeros) de funções reais. Objetivos:

Leia mais

Cálculo Diferencial e Integral I Vinícius Martins Freire

Cálculo Diferencial e Integral I Vinícius Martins Freire UNIVERSIDADE FEDERAL DE SANTA CATARINA - CAMPUS JOINVILLE CENTRO DE ENGENHARIAS DA MOBILIDADE Cálculo Diferencial e Integral I Vinícius Martins Freire MARÇO / 2015 Sumário 1. Introdução... 5 2. Conjuntos...

Leia mais

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF)

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF) Métodos Estatísticos II 1 o. Semestre de 010 ExercíciosProgramados1e VersãoparaoTutor Profa. Ana Maria Farias (UFF) Esses exercícios abrangem a matéria das primeiras semanas de aula (Aula 1) Os alunos

Leia mais

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas?

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas? Recorrências Muitas vezes não é possível resolver problemas de contagem diretamente combinando os princípios aditivo e multiplicativo. Para resolver esses problemas recorremos a outros recursos: as recursões

Leia mais

MAT1154 ANÁLISE QUALITATIVA DE PONTOS DE EQUILÍBRIO DE SISTEMAS NÃO-LINEARES

MAT1154 ANÁLISE QUALITATIVA DE PONTOS DE EQUILÍBRIO DE SISTEMAS NÃO-LINEARES MAT1154 ANÁLISE QUALITATIVA DE PONTOS DE EQUILÍBRIO DE SISTEMAS NÃO-LINEARES VERSÃO 1.0.2 Resumo. Este texto resume e complementa alguns assuntos dos Capítulo 9 do Boyce DiPrima. 1. Sistemas autônomos

Leia mais

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação).

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação). 5. FUNÇÕES DE UMA VARIÁVEL 5.1. INTRODUÇÃO Devemos compreender função como uma lei que associa um valor x pertencente a um conjunto A a um único valor y pertencente a um conjunto B, ao que denotamos por

Leia mais

INSTITUTO SUPERIOR DE GESTÃO

INSTITUTO SUPERIOR DE GESTÃO INSTITUTO SUPERIOR DE GESTÃO INVESTIGAÇÃO OPERACIONAL PROGRAMAÇÃO NÃO LINEAR (Exercícios) ( Texto revisto para o ano lectivo 1- ) António Carlos Morais da Silva Professor de I.O. / ISG Recomendações 1.

Leia mais

ão: modelagem e técnicas

ão: modelagem e técnicas Curso de Especialização em Gestão Empresarial (MBA Executivo Turma 15) Disciplina: Pesquisa Operacional Prof. Dr. Álvaro José Periotto 3. Otimização ão: modelagem e técnicas de resolução Passando da daetapa

Leia mais

Aula 03 - Modelagem em PPLIM

Aula 03 - Modelagem em PPLIM Thiago A. O. 1 1 Universidade Federal de Ouro Preto 1 Componentos do modelo 2 3 4 5 6 Componentes de uma modelagem matemática Elementos; Conjuntos; Parâmetros; Variáveis; Objetivo; Restições; Elementos

Leia mais

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Introdução O Cálculo Numérico

Leia mais

Agrupamento de dados

Agrupamento de dados Organização e Recuperação de Informação: Agrupamento de dados Marcelo K. A. Faculdade de Computação - UFU Agrupamento de dados / 7 Overview Agrupamento: introdução Agrupamento em ORI 3 K-médias 4 Avaliação

Leia mais

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 3.2 O Espaço Nulo de A: Resolvendo Ax = 0 11 O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 Esta seção trata do espaço de soluções para Ax = 0. A matriz A pode ser quadrada ou retangular. Uma solução imediata

Leia mais

Máximos, mínimos e pontos de sela Multiplicadores de Lagrange

Máximos, mínimos e pontos de sela Multiplicadores de Lagrange Máximos, mínimos e pontos de sela Multiplicadores de Lagrange Anderson Luiz B. de Souza Livro texto - Capítulo 14 - Seção 14.7 Encontrando extremos absolutos Determine o máximo e mínimo absolutos das funções

Leia mais

Lista de Exercícios - Integrais

Lista de Exercícios - Integrais Lista de Exercícios - Integrais 4) Calcule as integrais indefinidas: 5) Calcule as integrais indefinidas: 1 6) Suponha f(x) uma função conhecida e que queiramos encontrar uma função F(x), tal que y = F(x)

Leia mais

2 Modelo para o Sistema de Controle de Estoque (Q, R)

2 Modelo para o Sistema de Controle de Estoque (Q, R) Modelo para o Sistema de Controle de Estoque (, ) Neste capítulo é apresentado um modelo para o sistema de controle de estoque (,). Considera-se que a revisão dos estoques é continua e uma encomenda de

Leia mais

Flutuações. Choques, Incerteza e a Escolha de Consumo/Poupança

Flutuações. Choques, Incerteza e a Escolha de Consumo/Poupança Flutuações. Choques, Incerteza e a Escolha de Consumo/Poupança Olivier Blanchard* Abril de 2002 *14.452. 2º Trimestre de 2002. Tópico 2. 14.452. 2º Trimestre de 2002 2 Quero iniciar com um modelo com dois

Leia mais

Equações do primeiro grau

Equações do primeiro grau Módulo 1 Unidade 3 Equações do primeiro grau Para início de conversa... Você tem um telefone celular ou conhece alguém que tenha? Você sabia que o telefone celular é um dos meios de comunicação que mais

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Lista 4. 2 de junho de 2014

Lista 4. 2 de junho de 2014 Lista 4 2 de junho de 24 Seção 5.. (a) Estime a área do gráfico de f(x) = cos x de x = até x = π/2 usando quatro retângulos aproximantes e extremidades direitas. Esboce os gráficos e os retângulos. Sua

Leia mais

CURSO ONLINE RACIOCÍNIO LÓGICO

CURSO ONLINE RACIOCÍNIO LÓGICO AULA QUINZE: Matrizes & Determinantes (Parte II) Olá, amigos! Pedimos desculpas por não ter sido possível apresentarmos esta aula na semana passada. Motivos de força maior nos impediram de fazê-lo, mas

Leia mais

Inteligência Artificial Prof. Marcos Quinet Pólo Universitário de Rio das Ostras PURO Universidade Federal Fluminense UFF

Inteligência Artificial Prof. Marcos Quinet Pólo Universitário de Rio das Ostras PURO Universidade Federal Fluminense UFF Inteligência Artificial Prof. Marcos Quinet Pólo Universitário de Rio das Ostras PURO Universidade Federal Fluminense UFF No capítulo anterior... Estratégias de busca auxiliadas por heurísticas (A*, BRPM)

Leia mais

Otimização Aplicada à Engenharia de Processos

Otimização Aplicada à Engenharia de Processos Otimização Aplicada à Engenharia de Processos Aula 1: Introdução Felipe Campelo http://www.cpdee.ufmg.br/~fcampelo Programa de Pós-Graduação em Engenharia Elétrica Belo Horizonte Março de 2013 Antes de

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

O USO DA FERRAMENTA SOLVER DO EXCEL NA RESOLUÇÃO DE PROBLEMAS DE PROGRAMAÇÃO LINEAR

O USO DA FERRAMENTA SOLVER DO EXCEL NA RESOLUÇÃO DE PROBLEMAS DE PROGRAMAÇÃO LINEAR O USO DA FERRAMENTA SOLVER DO EXCEL NA RESOLUÇÃO DE PROBLEMAS DE PROGRAMAÇÃO LINEAR João Batista de Jesus FATEC-JAHU Célio Favoni 2 FATEC-JAHU Resumo Este trabalho expõe de maneira sintetizada as funcionalidades

Leia mais

FUNÇÕES. 1. Equação. 2. Gráfico. 3. Tabela.

FUNÇÕES. 1. Equação. 2. Gráfico. 3. Tabela. FUNÇÕES Em matemática, uma função é dada pela relação entre duas ou mais quantidades. A função de uma variável f(x) relaciona duas quantidades, sendo o valor de f dependente do valor de x. Existem várias

Leia mais

Função Quadrática Função do 2º Grau

Função Quadrática Função do 2º Grau Colégio Adventista Portão EIEFM MATEMÁTICA Função Quadrática 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 5 º Bimestre/13 Aluno(a): Número: Turma: Função Quadrática

Leia mais

Programação Linear com o Microsoft Excel R

Programação Linear com o Microsoft Excel R Programação Linear com o Microsoft Excel R Adriano Verdério 1, Clezio A. Braga 1 1 Colegiado do Curso de Matemática - Centro de Ciências Exatas e Tecnológicas da Universidade Estadual do Oeste do Paraná

Leia mais

ESTRATÉGIAS DE RESOLUÇÃO DE PROBLEMAS DE PESQUISA OPERACIONAL

ESTRATÉGIAS DE RESOLUÇÃO DE PROBLEMAS DE PESQUISA OPERACIONAL ESTRATÉGIAS DE RESOLUÇÃO DE PROBLEMAS DE PESQUISA OPERACIONAL André Luis Trevisan Universidade Tecnológica Federal do Paraná andrelt@utfpr.edu.br Magna Natalia Marin Pires Universidade Estadual de Londrina

Leia mais

Utilizando o EXCEL Solver

Utilizando o EXCEL Solver Utilizando o EXCEL Solver Outubro de 2000 2 A opção Solver no Excel pode ser utilizada para resolver problemas de otimização lineares e nãolineares. As restrições de inteiros podem ser colocadas nas variáveis

Leia mais

Este apêndice resume os conceitos de álgebra matricial, inclusive da álgebra de probabilidade,

Este apêndice resume os conceitos de álgebra matricial, inclusive da álgebra de probabilidade, D Resumo de Álgebra Matricial Este apêndice resume os conceitos de álgebra matricial, inclusive da álgebra de probabilidade, necessária para o estudo de modelos de regressão linear múltipla usando matrizes,

Leia mais

1. Método Simplex. Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Pesquisa Operacional II Profa. Dra. Lílian Kátia de Oliveira

1. Método Simplex. Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Pesquisa Operacional II Profa. Dra. Lílian Kátia de Oliveira Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Método Simple.. Solução eata para os modelos de Programação Linear O modelo de Programação Linear (PL) reduz um sistema real a um conjunto

Leia mais

Lista 2 - Modelos determinísticos

Lista 2 - Modelos determinísticos EA044 - Planejamento e Análise de Sistemas de Produção Lista 2 - Modelos determinísticos Exercício 1 A Companhia Ferroviária do Brasil (CFB) está planejando a alocação de vagões a 5 regiões do país para

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Linear Aula 26: Programação Não-Linear - Funções de Uma única variável (Prática) Método da Bissecção; Método de Newton. 2 Considere o seguinte problema Faculdade de Engenharia Optimização

Leia mais

CURSO DE MICROECONOMIA 2

CURSO DE MICROECONOMIA 2 CURSO DE MICROECONOMIA 2 TEORIA DOS CONTRATOS - Seleção Adversa PROF Mônica Viegas e Flavia Chein Cedeplar/UFMG 2/2009 Cedeplar/UFMG (Institute) MICRO 2 2/2009 1 / 25 O Modelo Padrão Agente que troca um

Leia mais

CURSO DE MICROECONOMIA 2

CURSO DE MICROECONOMIA 2 CURSO DE MICROECONOMIA 2 TEORIA DOS CONTRATOS - Seleção Adversa PROF Mônica Viegas e Flavia Chein Cedeplar/UFMG 2/2009 Cedeplar/UFMG (Institute) MICRO 2 2/2009 1 / 30 Seleção Adversa Seleção adversa: se

Leia mais

Forças internas. Objetivos da aula: Mostrar como usar o método de seções para determinar as cargas internas em um membro.

Forças internas. Objetivos da aula: Mostrar como usar o método de seções para determinar as cargas internas em um membro. Forças internas Objetivos da aula: Mostrar como usar o método de seções para determinar as cargas internas em um membro. Generalizar esse procedimento formulando equações que podem ser representadas de

Leia mais

Aplicações de Derivadas

Aplicações de Derivadas Aplicações de Derivadas f seja contínua no [a,b] e que f '(x) exista no intervalo aberto a x b. Então, existe pelo menos um valor c entre a eb, tal que f '(c) f (b) f (a) b a. pelo menos um ponto c (a,

Leia mais

Poliminós e o Tabuleiro de Xadrez Prof. Onofre Campos (onofrecampos@secrel.com.br) Prof. Carlos Shine (cyshine@yahoo.com)

Poliminós e o Tabuleiro de Xadrez Prof. Onofre Campos (onofrecampos@secrel.com.br) Prof. Carlos Shine (cyshine@yahoo.com) Poliminós e o Tabuleiro de Xadrez Prof. Onofre Campos (onofrecampos@secrel.com.br) Prof. Carlos Shine (cyshine@yahoo.com) 1. O dominó Você já deve conhecer o dominó. Não vamos pensar no jogo de dominós

Leia mais

Integrais Duplas e Coordenadas Polares. 3.1 Coordenadas Polares: Revisão

Integrais Duplas e Coordenadas Polares. 3.1 Coordenadas Polares: Revisão Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Integrais Duplas e Coordenadas Polares Nas primeiras aulas discutimos integrais duplas em algumas regiões bem adaptadas às coordenadas

Leia mais

2. Estude o sinal da função f cujo gráfico é a reta de inclinação 3 e que passa pelo ponto ( 5, 2).

2. Estude o sinal da função f cujo gráfico é a reta de inclinação 3 e que passa pelo ponto ( 5, 2). MAT1157 Cálculo a uma Variável A - 2014.1 Lista de Exercícios 7 PUC-Rio Função afim: 1. (a) Qual é a inclinação de uma reta horizontal (paralela ao eixo-x)? (b) Qual é a expressão da função cujo gráfico

Leia mais

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Lic. Eng. Biomédica e Bioengenharia-2009/2010 Para determinarmos um valor aproximado das raízes de uma equação não linear, convém notar inicialmente

Leia mais

PRODUÇÃO - Conceitos Iniciais

PRODUÇÃO - Conceitos Iniciais PRODUÇÃO - Conceitos Iniciais 1. Conceito - é a atividade de transformação (processo) de matéria-prima em utilidades necessárias ao consumidor. * Nenhuma organização sobrevive, a menos que produza alguma

Leia mais

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

Programação Não Linear Otimização Univariada E Multivariada Sem Restrições

Programação Não Linear Otimização Univariada E Multivariada Sem Restrições Programação Não Linear Otimização Univariada E Multivariada Sem Restrições A otimização é o processo de encontrar a melhor solução (ou solução ótima) para um prolema. Eiste um conjunto particular de prolemas

Leia mais

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel. Matemática Essencial Equações do Primeiro grau Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ Resumo: Notas de

Leia mais

O Método Simplex para

O Método Simplex para O Método Simplex para Programação Linear Formas de Programas Lineares O problema de Programação Matemática consiste na determinação do valor de n variáveis x 1, x 2,, x n que tornam mínimo ou máximo o

Leia mais

Guia do professor. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância.

Guia do professor. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância. números e funções Guia do professor Objetivos da unidade 1. Analisar representação gráfica de dados estatísticos; 2. Familiarizar o aluno com gráfico de Box Plot e análise estatística bivariada; 3. Utilizar

Leia mais

15.053 Quinta-feira, 14 de março. Introdução aos Fluxos de Rede Handouts: Notas de Aula

15.053 Quinta-feira, 14 de março. Introdução aos Fluxos de Rede Handouts: Notas de Aula 15.053 Quinta-feira, 14 de março Introdução aos Fluxos de Rede Handouts: Notas de Aula 1 Modelos de Rede Modelos de programação linear que exibem uma estrutura muito especial. Podem utilizar essa estrutura

Leia mais

Método Simplex - Variantes V 1.1, V.Lobo, EN / ISEGI, 2008

Método Simplex - Variantes V 1.1, V.Lobo, EN / ISEGI, 2008 Revisões Variantes sobre o método Simplex: Método do grande M Simplex básico Solução óptima multipla Em simplex: valores 0 na função custo Solução degenerada Em simplex: empates na variável a sair, variáveis

Leia mais

Programação Linear. SOLVER EXCEL Prof. José Luiz. Solução via Excel

Programação Linear. SOLVER EXCEL Prof. José Luiz. Solução via Excel Programação Linear SOLVER EXCEL Prof. José Luiz Solução via Excel 1. Organizar os dados na planilha 1. Reservar células na planilha para representar o coeficiente de cada variável de decisão no modelo

Leia mais

Variantes sobre o método Simplex: Método do grande M

Variantes sobre o método Simplex: Método do grande M Variantes sobre o método Simplex: Método do grande M Revisões Simplex básico Solução óptima multipla Em simplex: valores 0 na função custo Solução degenerada Em simplex: empates na variável a sair, variáveis

Leia mais

Projeto de Redes Neurais e MATLAB

Projeto de Redes Neurais e MATLAB Projeto de Redes Neurais e MATLAB Centro de Informática Universidade Federal de Pernambuco Sistemas Inteligentes IF684 Arley Ristar arrr2@cin.ufpe.br Thiago Miotto tma@cin.ufpe.br Baseado na apresentação

Leia mais

Problemas de Satisfação de Restrições

Problemas de Satisfação de Restrições Problemas de Satisfação de Restrições Texto base: Stuart Russel e Peter Norving - Inteligência Artificial David Poole, Alan Mackworth e Randy Goebel - Computational Intelligence A logical approach junho/2007

Leia mais

O Problema do Transporte. Pesquisa Operacional. Formulação do Problema. Descrição Geral de um problema de transporte. Parte 2

O Problema do Transporte. Pesquisa Operacional. Formulação do Problema. Descrição Geral de um problema de transporte. Parte 2 Pesquisa Operacional Parte Graduação em Engenharia de Produção DEPROT / UFRGS Prof. Flavio Fogliatto, Ph.D. O Problema do Transporte Descrição Geral de um problema de transporte:. Um conjunto de m pontos

Leia mais

Cálculo Numérico Aula 1: Computação numérica. Tipos de Erros. Aritmética de ponto flutuante

Cálculo Numérico Aula 1: Computação numérica. Tipos de Erros. Aritmética de ponto flutuante Cálculo Numérico Aula : Computação numérica. Tipos de Erros. Aritmética de ponto flutuante Computação Numérica - O que é Cálculo Numérico? Cálculo numérico é uma metodologia para resolver problemas matemáticos

Leia mais

1. FUNÇÕES NO EXCEL 2007

1. FUNÇÕES NO EXCEL 2007 1. FUNÇÕES NO EXCEL 2007 Funções são fórmulas predefinidas que efetuam cálculos usando valores específicos, denominados argumentos, em uma determinada ordem ou estrutura. As funções podem ser usadas para

Leia mais

Análise Combinatória. Prof. Thiago Figueiredo

Análise Combinatória. Prof. Thiago Figueiredo Análise Combinatória Prof. Thiago Figueiredo (Escola Naval) Um tapete de 8 faixas deve ser pintado com cores azul, preta e branca. A quantidade de maneiras que podemos pintar esse tapete de modo que as

Leia mais

MINISTÉRIO DA EDUCAÇÃO DEPARTAMENTO DO ENSINO SECUNDÁRIO MATEMÁTICA B 12º ANO

MINISTÉRIO DA EDUCAÇÃO DEPARTAMENTO DO ENSINO SECUNDÁRIO MATEMÁTICA B 12º ANO MINISTÉRIO DA EDUCAÇÃO DEPARTAMENTO DO ENSINO SECUNDÁRIO MATEMÁTICA B 12º ANO Curso Científico-Humanístico de Artes Visuais 1 Cursos Tecnológicos de Construção Civil e Edificações, de Electrotecnia e Electrónica,

Leia mais

Representação no Plano Cartesiano INTRODUÇÃO A FUNÇÃO

Representação no Plano Cartesiano INTRODUÇÃO A FUNÇÃO INTRODUÇÃO A FUNÇÃO Def: Dado dois conjuntos que tenham uma relação, chama-se função quando todo elemento do primeiro tiver associado um único elemento do segundo conjunto. Ou seja, f é função de A em

Leia mais

Análise e Complexidade de Algoritmos

Análise e Complexidade de Algoritmos Análise e Complexidade de Algoritmos Uma visão de Intratabilidade, Classes P e NP - redução polinomial - NP-completos e NP-difíceis Prof. Rodrigo Rocha prof.rodrigorocha@yahoo.com http://www.bolinhabolinha.com

Leia mais

DÉCIMA SEGUNDA LISTA DE EXERCÍCIOS Cálculo III MATEMÁTICA DCET UESC Humberto José Bortolossi http://www.arbelos.kit.net.

DÉCIMA SEGUNDA LISTA DE EXERCÍCIOS Cálculo III MATEMÁTICA DCET UESC Humberto José Bortolossi http://www.arbelos.kit.net. DÉCIMA SEGUNDA LISTA DE EXERCÍCIOS Cálculo III MATEMÁTICA DCET UESC Humberto José Bortolossi http://www.arbelos.kit.net A regra da cadeia (Entregar os exercícios [16] e [18] até o dia 06/08/2003) [01]

Leia mais

Finanças e Economia no Excel

Finanças e Economia no Excel Finanças e Economia no Excel Minicurso de Economia e Estatística Computacionais Universidade Federal do Rio Grande do Sul Semana Acadêmica da Economia 2012 Ronald Otto Hillbrecht Fabrício Tourrucôo Rodrigo

Leia mais

PROBLEMAS DE OTIMIZAÇÃO

PROBLEMAS DE OTIMIZAÇÃO (Tóp. Teto Complementar) PROBLEMAS DE OTIMIZAÇÃO 1 PROBLEMAS DE OTIMIZAÇÃO Este teto estuda um grupo de problemas, conhecido como problemas de otimização, em tais problemas, quando possuem soluções, é

Leia mais

Grupo I Perguntas de resposta rápida (1 valor cada)

Grupo I Perguntas de resposta rápida (1 valor cada) ISCTE INSTITUTO UNIVERSITÁRIO de LISBOA Mestrado de Economia Mestrado de Economia Monetária e Financeira MACROECONOMIA e ANÁLISE da CONJUNTURA Teste Exemplo 4 Dezembro 2009 Duração: 2.00 h SOLUÇÕES Grupo

Leia mais

Análise e Projeto de Algoritmos

Análise e Projeto de Algoritmos Análise e Projeto de Algoritmos Prof. Eduardo Barrére www.ufjf.br/pgcc www.dcc.ufjf.br eduardo.barrere@ice.ufjf.br www.barrere.ufjf.br Complexidade de Algoritmos Computabilidade: Um problema é computável

Leia mais