Perceptron de Múltiplas Camadas e Backpropagation

Tamanho: px
Começar a partir da página:

Download "Perceptron de Múltiplas Camadas e Backpropagation"

Transcrição

1 Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Perceptron de Múltiplas Camadas e Backpropagation Redes Neurais Artificiais Site:

2 Perceptron de Múltiplas Camadas O Perceptron simples não consegue trabalhar com sistemas não lineares. Porém, o Perceptron de Múltiplas Camadas consegue efetuar o mapeamento não linear do espaço de entrada X para o espaço de saída y. Para resolver o problema do XOR (ou exclusivo) foi utilizado um Perceptron de uma camada intermediária (oculta) e uma função ed ativação de sinal (sgn). 2

3 MLP XOR Perceptron de Múltiplas Camadas (MLP Multi-Layer Perceptron) x 1 x 2 XOR Vamos trabalhar na implementação de uma Função Discriminativa Não-Linear usando uma camada intermediária que realiza o mapeamento não linear. 3

4 MLP XOR y. Φ(x)=( Φ 0(x) Φ 1 ( Φ 2 (x)) = ( Φ0(x0; x1; x2) Φ 1 (x 0 ; x 1 ; x 2 ) Φ 2 (x 0 ; x 1 ; x 2 )) Φ 0 = 1 ɸ 1 ɸ 2 Φ 0 (x)=1 Φ 1 (x)=sgn ( 1 2. x x x 2) X 0 =1 X 1 X 2 Φ 2 (x)=sgn ( 3 2. x 0+1. x x 2 ) y=sgn ( 1.Φ 0 +0,7.Φ 1 (x) 0,4.Φ 2 (x)) Abra o Octave, crie o vetores X, y, y_est, W, W_y, e teste essa RNA e suas sinapses. 4

5 MLP XOR x1 x2 Φ 0 Φ 1 Φ /2-7/ /2-3/ /2-3/ /2 1/2 5

6 Perceptron de Múltiplas Camadas Em geral, o perceptron com uma camada oculta calcula: H y i (x)=z i (W i. Φ(x))=Z i( k=0 H =Z i( k=0 H =Z i( k=0 W ik. F (W k. x)) d W ik. F ( j=0 W ik.φ k (x)) W kj. x j )) sendo: Z função de saída e F função da camada oculta 6

7 Perceptron de Múltiplas Camadas No modelo totalmente conectado, a função de ativação é igual para todos os neurônios da mesma camada. Características das funções Z e F: Deve ser não linear em pelo menos uma camada oculta; Deve ser diferenciável: Z'(a) deve existir. A camada oculta implementa a função de base ϕk (x); A função base não é fixa, sendo então adaptável: Poder de cálculo do MLP. 7

8 Backpropagation Vamos ver o funcionamento iterativo do backpropagation utilizando a referência de Mariusz Bernacki, Przemysław Włodarczyk, (2005) 8

9 Rede Neural Utilizada 9

10 Calculando a saída desejada... 10

11 Calculando a saída desejada... 11

12 Calculando a saída desejada... 12

13 Calculando o erro da saída 13

14 Retrocedendo com o Erro... 14

15 Retrocedendo com o Erro... 15

16 Atualizando os pesos... 16

17 Atualizando os pesos... 17

18 Atualizando os pesos... 18

19 Regra de ajuste do peso Considere: i,..., c: índice dos neurônios da camada de saída; h,, H: índice dos neurônios da camada oculta; j,, d: índice dos neurônios da camada de entrada. Sensibilidade: A S (sensibilidade) do neurônio i descreve como o erro global E(w) muda o valor de net i. A regra de ajuste do peso utiliza a sensibilidade de cada neurônio. Seu cálculo será adicionado no algoritmo... 19

20 Feed Forward: Alimentação Adiante // Entrada para Oculta Para h=0,..., H net h 0 Para j=0,...,d net h net h +W hj X j Fim Para Φ h Z (net h ) Fim Para // Oculta para Saída Para i=0,...,c net i 0 Para h=0,..., H net i net i +W ih Φ h Fim Para y i Z (net i ) Fim Para 20

21 Backpropagation Inicialização aleatória dos pesos W' e W, onde W i =1 e W h =1 Para todos os padrões X (k),k=1,...,n, em ordem aleatória : Feedfoward de X (k) : ŷ(x (k) ) Para i=1,...,c : δ i (k) = y i (k ) ŷ i (x (k) ) // Erro na saída i do padrão k S (k) i 2.δ (k) i. Z ' (net (k) i ) // Sensibilidade Para h=0,..., H : w novo ih w velho ih +η.s (k) i.z (net (k) Φ h ) h (X (k) ) // Adaptar os pesos de entrada para a camada oculta W' Para h=1,..., H : aux 0 Para i=0,...,c : aux aux+w velho (k) ih. S i Para j=0,...,d : w novo hj w velho hj +η.s (k) (k) h. X j 21

22 Metodologia de Treinamento Deve-se realizar a divisão do conjunto de dados dos n padrões X (k), k=1,, n em três conjuntos de dados: Treinar com 75% dos exemplos; Validar com 15% dos exemplos; Testar com 15% dos exemplos. Obs.: Essas porcentagens são as padrões do Matlab, mas podem ser alteradas. Antes, os dados devem ser normalizados ou estandardizados: Normalização: X = ( X min(x) ) / ( max(x) min(x) ) Estandardização: X = (X média(x) ) / σ(x). 22

Inteligência Artificial. IA Conexionista: Perceptron de Múltiplas Camadas Mapas Auto-Organizáveis. Renan Rosado de Almeida

Inteligência Artificial. IA Conexionista: Perceptron de Múltiplas Camadas Mapas Auto-Organizáveis. Renan Rosado de Almeida Inteligência Artificial IA Conexionista: Redes Neurais Artificiais Perceptron de Múltiplas Camadas Mapas Auto-Organizáveis Renan Rosado de Almeida rralmeida@inf.ufrgs.br Perceptron de Múltiplas Camadas

Leia mais

Inteligência Computacional

Inteligência Computacional Inteligência Computacional INTRODUÇÃO ÀS REDES NEURAIS ARTIFICIAIS Renato Dourado Maia Faculdade de Ciência e Tecnologia de Montes Claros Fundação Educacional Montes Claros Na Aula Passada... O que é uma

Leia mais

Relatório da Aula Prática sobre Redes Neurais Artificiais

Relatório da Aula Prática sobre Redes Neurais Artificiais Relatório da Aula Prática sobre Redes Neurais Artificiais Instituto de Informática UFRGS Carlos Eduardo Ramisch Cartão: 134657 INF01017 Redes Neurais e Sistemas Fuzzy Porto Alegre, 16 de outubro de 2006.

Leia mais

4 Redes Neurais Artificiais

4 Redes Neurais Artificiais 4 Redes Neurais Artificiais Inteligência computacional pode ser definida como um conjunto de modelos, algoritmos, técnicas, ferramentas e aplicações em sistemas computadorizados que emulem características

Leia mais

Paradigmas de Aprendizagem

Paradigmas de Aprendizagem Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Paradigmas de Aprendizagem Redes Neurais Artificiais Site: http://jeiks.net E-mail: jacsonrcsilva@gmail.com

Leia mais

MLP (Multi Layer Perceptron)

MLP (Multi Layer Perceptron) MLP (Multi Layer Perceptron) André Tavares da Silva andre.silva@udesc.br Roteiro Rede neural com mais de uma camada Codificação de entradas e saídas Decorar x generalizar Perceptron Multi-Camada (MLP -

Leia mais

3. REDES DE CAMADA ÚNICA

3. REDES DE CAMADA ÚNICA 3. REDES DE CAMADA ÚNICA Perceptron Forma mais simples de RN Utilizado para classificação de padrões (linearmente separáveis) Consiste em um único neurônio, com pesos sinápticos ajustáveis e bias 3.1 Funções

Leia mais

Universidade Regional de Blumenau Centro de Ciências Exatas e Naturais Departamento de Sistemas e Computação

Universidade Regional de Blumenau Centro de Ciências Exatas e Naturais Departamento de Sistemas e Computação Universidade Regional de Blumenau Centro de Ciências Exatas e Naturais Departamento de Sistemas e Computação Desenvolvimento da Aplicação para Aprovação do Limite de Crédito Financeiro de uma Empresa Têxtil

Leia mais

Lógica Nebulosa (Fuzzy)

Lógica Nebulosa (Fuzzy) Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Lógica Nebulosa (Fuzzy) Inteligência Artificial Site: http://jeiks.net E-mail: jacsonrcsilva@gmail.com

Leia mais

Aplicações Práticas com Redes Neurais Artificiais em Java

Aplicações Práticas com Redes Neurais Artificiais em Java com em Java Luiz D Amore e Mauro Schneider JustJava 2009 17 de Setembro de 2009 Palestrantes Luiz Angelo D Amore luiz.damore@metodista.br Mauro Ulisses Schneider mauro.schneider@metodista.br http://blog.mauros.org

Leia mais

Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação. Sentenças Abertas

Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação. Sentenças Abertas Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Sentenças Abertas Lógica Computacional 1 Site: http://jeiks.net E-mail: jacsonrcsilva@gmail.com Sentença

Leia mais

Algoritmos de Aprendizado. CONTEÚDO Introdução Motivação, Objetivo, Definição, Características Básicas e Histórico. Regra de HEBB.

Algoritmos de Aprendizado. CONTEÚDO Introdução Motivação, Objetivo, Definição, Características Básicas e Histórico. Regra de HEBB. CONTEÚDO Introdução Motivação, Objetivo, Definição, Características Básicas e Histórico Conceitos Básicos Neurônio Artificial, Modos de Interconexão Processamento Neural Recall e Learning Regras de Aprendizado

Leia mais

Inteligência Artificial. Redes Neurais Artificiais

Inteligência Artificial. Redes Neurais Artificiais Curso de Especialização em Sistemas Inteligentes Aplicados à Automação Inteligência Artificial Redes Neurais Artificiais Aulas Práticas no Matlab João Marques Salomão Rodrigo Varejão Andreão Matlab Objetivos:

Leia mais

RECONHECIMENTO DE TRAJETÓRIA COM REDES NEURAIS

RECONHECIMENTO DE TRAJETÓRIA COM REDES NEURAIS 1 RECONHECIMENTO DE TRAJETÓRIA COM REDES NEURAIS Giovanni Crestan Leonardo Enomoto Araki Thiago Antonio Grandi De Tolosa Wânderson de Oliveira Assis Wilson Carlos Siqueira Lima Júnior IMT Instituto Mauá

Leia mais

Inteligência Artificial Redes Neurais Artificiais

Inteligência Artificial Redes Neurais Artificiais Pós-Graduação em Engenharia Elétrica Inteligência Artificial Redes Neurais Artificiais João Marques Salomão Rodrigo Varejão Andreão Arquitetura e composição das RNAs Uma rede neural artificial é composta

Leia mais

Redes Neurais Artificiais. Everton Gago

Redes Neurais Artificiais. Everton Gago Redes Neurais Artificiais Everton Gago Como vai ser? O que é RNA? Conglomerado de neurônios!?!? Neurônio: Neurônio: Entradas: X0 = 0 X1 = 1 X2 = 1 Neurônio: Entradas: X0 = 0 X1 = 1 X2 = 1 Pesos: W0 = 0.3

Leia mais

Previsão do Índice da Bolsa de Valores do Estado de São Paulo utilizandoredes Neurais Artificiais

Previsão do Índice da Bolsa de Valores do Estado de São Paulo utilizandoredes Neurais Artificiais Previsão do Índice da Bolsa de Valores do Estado de São Paulo utilizandoredes Neurais Artificiais Redes Neurais Artificiais Prof. Wilian Soares João Vitor Squillace Teixeira Ciência da Computação Universidade

Leia mais

Sistemas Inteligentes

Sistemas Inteligentes Sistemas Inteligentes UNIDADE 5 Redes Neurais Artificiais (Perceptron Multicamadas Conceitos) Prof. Ivan Nunes da Silva. Rede Perceptron Multicamadas Aspectos de arquitetura Redes Perceptron de Múltiplas

Leia mais

Projeto de Redes Neurais e MATLAB

Projeto de Redes Neurais e MATLAB Projeto de Redes Neurais e MATLAB Centro de Informática Universidade Federal de Pernambuco Sistemas Inteligentes IF684 Arley Ristar arrr2@cin.ufpe.br Thiago Miotto tma@cin.ufpe.br Baseado na apresentação

Leia mais

APLICAÇÃO DAS REDES NEURAIS DE BASE RADIAL NA METEOROLOGIA. PALAVRAS-CHAVE: Redes Neurais Artificiais; Rede Neural de Base Radial; Meteorologia.

APLICAÇÃO DAS REDES NEURAIS DE BASE RADIAL NA METEOROLOGIA. PALAVRAS-CHAVE: Redes Neurais Artificiais; Rede Neural de Base Radial; Meteorologia. APLICAÇÃO DAS REDES NEURAIS DE BASE RADIAL NA METEOROLOGIA Emerson Yoshio Maeda (IC, FUNDAÇÃO ARAUCÁRIA), (UNESPAR/FECILCAM), math.maeda@gmail.com Juliano Fabiano da Mota (OR), (UNESPAR/FECILCAM), jfmota@fecilcam.br

Leia mais

Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 20 - Backpropagation

Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 20 - Backpropagation Inteligência Artificial Prof. Tiago A. E. Ferreira Aula 20 - Backroagation Introdução Redes de uma camada resolvem aenas roblemas linearmente searáveis Solução: utilizar mais de uma camada Camada 1: uma

Leia mais

Inteligência Artificial

Inteligência Artificial Universidade Federal de Campina Grande Departamento de Sistemas e Computação Pós-Graduação em Ciência da Computação Inteligência Artificial Aprendizagem Outras Técnicas Prof. a Joseana Macêdo Fechine Régis

Leia mais

ESTUDO DE ALGORITMO MLP COMO APROXIMADOR DE FUNÇÃO

ESTUDO DE ALGORITMO MLP COMO APROXIMADOR DE FUNÇÃO Congresso Técnico Científico da Engenharia e da Agronomia CONTECC 2016 Rafain Palace Hotel & Convention Center- Foz do Iguaçu - PR 29 de agosto a 1 de setembro de 2016 ESTUDO DE ALGORITMO MLP COMO APROXIMADOR

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Professor: Rosalvo Ferreira de Oliveira Neto Disciplina: Inteligência Artificial Tópicos 1. Definições 2. Tipos de aprendizagem 3. Paradigmas de aprendizagem 4. Modos de aprendizagem

Leia mais

Figura 5.1.Modelo não linear de um neurônio j da camada k+1. Fonte: HAYKIN, 2001

Figura 5.1.Modelo não linear de um neurônio j da camada k+1. Fonte: HAYKIN, 2001 47 5 Redes Neurais O trabalho em redes neurais artificiais, usualmente denominadas redes neurais ou RNA, tem sido motivado desde o começo pelo reconhecimento de que o cérebro humano processa informações

Leia mais

REDES NEURONAIS Conceitos. Jorge M. Santos

REDES NEURONAIS Conceitos. Jorge M. Santos REDES NEURONIS Conceitos Jorge M. Santos jms@isep.ipp.pt Definição e enquadramento histórico neural network is a massively parallel distributed processor made up of simple processing units that has a natural

Leia mais

RNAs, Classificação de Padrões e Motivação Geométrica. Conteúdo

RNAs, Classificação de Padrões e Motivação Geométrica. Conteúdo RNAs, Classificação de Padrões e Motiação Geométrica Conteúdo. O problema do OU-eclusio.... Um problema mais geral de mapeamento não-linear... 0 3. Mapeamentos não-lineares genéricos... 4 4. Redes neurais

Leia mais

Relatório de uma Aplicação de Redes Neurais

Relatório de uma Aplicação de Redes Neurais UNIVERSIDADE ESTADUAL DE MONTES CLAROS CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE CIÊNCIAS DA COMPUTACAÇÃO ESPECIALIZAÇÃO EM ENGENHARIA DE SISTEMAS DISCIPLINA: REDES NEURAIS PROFESSOR: MARCOS

Leia mais

Redes Neurais. A IA clássica segue o paradigma da computação simbólica

Redes Neurais. A IA clássica segue o paradigma da computação simbólica Abordagens não simbólicas A IA clássica segue o paradigma da computação simbólica Redes Neurais As redes neurais deram origem a chamada IA conexionista, pertencendo também a grande área da Inteligência

Leia mais

Otimização por Descida de Gradiente

Otimização por Descida de Gradiente Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Otimização por Descida de Gradiente Redes Neurais Artificiais Site: http://jeiks.net E-mail: jacsonrcsilva@gmail.com

Leia mais

Proposições e Conectivos

Proposições e Conectivos Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Proposições e Conectivos Lógica Computacional 1 Site: http://jeiks.net E-mail: jacsonrcsilva@gmail.com

Leia mais

Redes Neurais Artificiais: Funções de Base Radial

Redes Neurais Artificiais: Funções de Base Radial Treinamento COELCE CEFET UFC MÓDULO II 2008.1 Redes Neurais Artificiais: Funções de Base Radial Prof. Dr. Guilherme de Alencar Barreto Depto. Engenharia de Teleinformática (DETI/UFC) URL: www.deti.ufc.br/~guilherme

Leia mais

Universidade Federal do Espírito Santo Departamento de Informática 1 o Trabalho de Algoritmos Numéricos I - 14/2 Sistemas Lineares

Universidade Federal do Espírito Santo Departamento de Informática 1 o Trabalho de Algoritmos Numéricos I - 14/2 Sistemas Lineares Universidade Federal do Espírito Santo Departamento de Informática 1 o Trabalho de Algoritmos Numéricos I - 14/2 Sistemas Lineares (Cursos: Engenharia de Computação e Ciência da Computação) Data de entrega:

Leia mais

Redes Neurais. Profa. Flavia Cristina Bernardini

Redes Neurais. Profa. Flavia Cristina Bernardini Redes Neurais Profa. Flavia Cristina Bernardini Introdução Cérebro & Computador Modelos Cognitivos Diferentes Cérebro Computador Seqüência de Comandos Reconhecimento de Padrão Lento Rápido Rápido Lento

Leia mais

PRODUÇÃO INDUSTRIAL DE SUÍNOS E O USO DE REDES NEURAIS ARTIFICIAIS PARA PREDIÇÃO DE ÍNDICES ZOOTÉCNICOS NA FASE DE GESTAÇÃO E MATERNIDADE RESUMO

PRODUÇÃO INDUSTRIAL DE SUÍNOS E O USO DE REDES NEURAIS ARTIFICIAIS PARA PREDIÇÃO DE ÍNDICES ZOOTÉCNICOS NA FASE DE GESTAÇÃO E MATERNIDADE RESUMO PRODUÇÃO INDUSTRIAL DE SUÍNOS E O USO DE REDES NEURAIS ARTIFICIAIS PARA PREDIÇÃO DE ÍNDICES ZOOTÉCNICOS NA FASE DE GESTAÇÃO E MATERNIDADE RESUMO HÉLITON PANDORFI 1 IRAN JOSÉ OLIVEIRA DA SILVA 2 JEFFERSON

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Professor: Rosalvo Ferreira de Oliveira Neto Disciplina: Inteligência Artificial Tópicos 1. Definições 2. Tipos de aprendizagem 3. Paradigmas de aprendizagem 4. Modos de aprendizagem

Leia mais

Identificação de Caracteres com Rede Neuronal Artificial com Interface Gráfica

Identificação de Caracteres com Rede Neuronal Artificial com Interface Gráfica Identificação de Caracteres com Rede Neuronal Artificial com Interface Gráfica João Paulo Teixeira*, José Batista*, Anildio Toca**, João Gonçalves**, e Filipe Pereira** * Departamento de Electrotecnia

Leia mais

DIAGNÓSTICO AUTOMATIZADO DE DOENÇAS NO COLO DO ÚTERO BASEADO EM REDES NEURAIS ARTIFICIAIS E PROCESSAMENTO DE IMAGENS DIGITAIS

DIAGNÓSTICO AUTOMATIZADO DE DOENÇAS NO COLO DO ÚTERO BASEADO EM REDES NEURAIS ARTIFICIAIS E PROCESSAMENTO DE IMAGENS DIGITAIS DIAGNÓSTICO AUTOMATIZADO DE DOENÇAS NO COLO DO ÚTERO BASEADO EM REDES NEURAIS ARTIFICIAIS E PROCESSAMENTO DE IMAGENS DIGITAIS Edroaldo Lummertz da Rocha 1 Evânio Ramos Nicoleit 2 Merisandra Cortes de Mattos

Leia mais

Grafos: caminhos (matriz adjacência)

Grafos: caminhos (matriz adjacência) Grafos: caminhos (matriz adjacência) Algoritmos e Estruturas de Dados 2 Graça Nunes 1 O problema do menor caminho Um motorista deseja encontrar o caminho mais curto possível entre duas cidades do Brasil

Leia mais

Roteiro para o Terceiro Laboratório de Cálculo Numérico /1

Roteiro para o Terceiro Laboratório de Cálculo Numérico /1 Roteiro para o Terceiro Laboratório de Cálculo Numérico - 2008/1 Prof. Dr. Waldeck Schützer June 23, 2008 DM/UFSCar Nesta terceira aula de laboratório, vamos utilizar o Octave para aproximar funções e

Leia mais

A metodologia utilizada neste trabalho consiste basicamente de três etapas: ensaio, pré-processamento e simulações.

A metodologia utilizada neste trabalho consiste basicamente de três etapas: ensaio, pré-processamento e simulações. SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GCE 20 14 a 17 Outubro de 2007 Rio de Janeiro - RJ GRUPO XIV GRUPO DE ESTUDO DE CONSERVAÇÃO DE ENERGIA ELÉTRICA UTILIZAÇÃO DE REDES

Leia mais

Distorções Dinâmicas no Tempo & Pesquisa. Distorção dinâmica no tempo Pesquisa Algoritmos gráficos de pesquisa Algoritmos de programação dinâmica

Distorções Dinâmicas no Tempo & Pesquisa. Distorção dinâmica no tempo Pesquisa Algoritmos gráficos de pesquisa Algoritmos de programação dinâmica Distorções Dinâmicas no Tempo & Pesquisa Distorção dinâmica no tempo Pesquisa Algoritmos gráficos de pesquisa Algoritmos de programação dinâmica 1 Casamento de Template Baseado em Palavra Medida de Característica

Leia mais

Emails: slsnazario@aluno.feis.unesp.br, hcbo@cin.ufpe.br, kitano@dee.feis.unesp.br, jacira@agr.feis.unesp.br, tokio@dee.feis.unesp.

Emails: slsnazario@aluno.feis.unesp.br, hcbo@cin.ufpe.br, kitano@dee.feis.unesp.br, jacira@agr.feis.unesp.br, tokio@dee.feis.unesp. CLASSIFICAÇÃO DO TEOR DE GORDURA EM LEITE UHT UTILIZANDO TÉCNICAS DE ULTRA-SOM E REDES NEURAIS EM FUNÇÃO DA TEMPERATURA Sérgio Luiz Sousa Nazario, Humberto Cesar Brandao de Oliveira, Claudio Kitano, Jacira

Leia mais

Cálculo Numérico Faculdade de Ciências Sociais Aplicadas e Comunicação FCSAC Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Ciências Sociais Aplicadas e Comunicação FCSAC Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Ciências Sociais Aplicadas e Comunicação FCSAC Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) REVISÃO DA 1ª PARTE

Leia mais

SELEÇÃO DE CARACTERÍSTICAS DE DADOS UTILIZANDO REDES NEURAIS ARTIFICIAIS

SELEÇÃO DE CARACTERÍSTICAS DE DADOS UTILIZANDO REDES NEURAIS ARTIFICIAIS ÁLVARO HENRIQUE NOGUEIRA DE LIMA SELEÇÃO DE CARACTERÍSTICAS DE DADOS UTILIZANDO REDES NEURAIS ARTIFICIAIS LAVRAS MG 2012 ÁLVARO HENRIQUE NOGUEIRA DE LIMA SELEÇÃO DE CARACTERÍSTICAS DE DADOS UTILIZANDO

Leia mais

UMA ABORDAGEM DE PODA PARA MÁQUINAS DE APRENDIZADO EXTREMO VIA ALGORITMOS GENÉTICOS

UMA ABORDAGEM DE PODA PARA MÁQUINAS DE APRENDIZADO EXTREMO VIA ALGORITMOS GENÉTICOS UMA ABORDAGEM DE PODA PARA MÁQUINAS DE APRENDIZADO EXTREMO VIA ALGORITMOS GENÉTICOS Alisson S. C. Alencar, Ajalmar R. da Rocha Neto Departamento de Computação, Instituto Federal do Ceará (IFCE). Programa

Leia mais

Algoritmos geométricos

Algoritmos geométricos Algoritmos geométricos introdução a conceitos básicos de geometria computacional que serão abordados de forma mais avançada na disciplina Computação Gráfica disciplina de computação gráfica arquitetura

Leia mais

AVALIAÇÃO DE IMÓVEIS UTILIZANDO ANÁLISE MULTICRITÉRIO E REDES NEURAIS ARTIFICIAIS

AVALIAÇÃO DE IMÓVEIS UTILIZANDO ANÁLISE MULTICRITÉRIO E REDES NEURAIS ARTIFICIAIS XXX ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO Maturidade e desafios da Engenharia de Produção: competitividade das empresas, condições de trabalho, meio ambiente. São Carlos, SP, Brasil, 12 a15 de outubro

Leia mais

UNIVERSIDADE DO VALE DO ITAJAÍ CENTRO DE CIÊNCIAS TECNOLÓGICAS DA TERRA E DO MAR CURSO DE CIÊNCIA DA COMPUTAÇÃO

UNIVERSIDADE DO VALE DO ITAJAÍ CENTRO DE CIÊNCIAS TECNOLÓGICAS DA TERRA E DO MAR CURSO DE CIÊNCIA DA COMPUTAÇÃO UNIVERSIDADE DO VALE DO ITAJAÍ CENTRO DE CIÊNCIAS TECNOLÓGICAS DA TERRA E DO MAR CURSO DE CIÊNCIA DA COMPUTAÇÃO REDES NEURAIS ARTIFICIAIS X ANÁLISE MULTIVARIADA NA PREDIÇÃO DE JAR TEST Área de Inteligência

Leia mais

Paradigmas de Representação de Conhecimento

Paradigmas de Representação de Conhecimento Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Paradigmas de Representação de Conhecimento Inteligência Artificial Site: http://jeiks.net E-mail:

Leia mais

ENGL71 - TEAU-Dados Espaciais Aplicados a Transportes e Geodésia

ENGL71 - TEAU-Dados Espaciais Aplicados a Transportes e Geodésia ENGL71 - TEAU-Dados Espaciais Aplicados a Transportes e Geodésia CIRA SOUZA PITOMBO UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE TRANSPORTES O QUE VIMOS ATÉ AQUI? RECAPITULANDO... OS

Leia mais

RENATO DE FREITAS LARA. Departamento de Ciência da Computação - Universidade Presidente Antônio Carlos (UNIPAC) - Barbacena - MG Brasil

RENATO DE FREITAS LARA. Departamento de Ciência da Computação - Universidade Presidente Antônio Carlos (UNIPAC) - Barbacena - MG Brasil RECONHECIMENTO DE CADEIAS DE NÚMEROS NAS ETIQUETAS IDENTIFICADORAS DOS BLOCOS DE AÇO, UTILIZANDO PROCESSAMENTO DIGITAL DE IMAGENS E REDES NEURAIS ARTIFICIAIS RENATO DE FREITAS LARA Departamento de Ciência

Leia mais

Lista de Exercícios 06 Modularização (Procedimentos e Funções)

Lista de Exercícios 06 Modularização (Procedimentos e Funções) Lista de Exercícios 06 Modularização (Procedimentos e Funções) Procedimentos: Passagem de parâmetros. 1) Escreva um procedimento que receba um número inteiro e imprima o mês correspondente ao número. Por

Leia mais

Introdução às Redes Neurais Artificiais. Eduardo Simas

Introdução às Redes Neurais Artificiais. Eduardo Simas Introdução às Redes Neurais Artificiais Eduardo Simas (eduardo.simas@ufba.br) Sumário O que são as Redes Neurais Artificiais? Para que servem? Processamento da Informação Tipos de Redes Neurais Modos de

Leia mais

Comparação de Modelos Neurais Aplicados a Resistência de Fornos de Redução do Alumínio Primário

Comparação de Modelos Neurais Aplicados a Resistência de Fornos de Redução do Alumínio Primário Trabalho apresentado no DINCON, Natal - RN, 2015. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics Comparação de Modelos Neurais Aplicados a Resistência de Fornos de

Leia mais

Matlab - Neural Networw Toolbox. Ana Lívia Soares Silva de Almeida

Matlab - Neural Networw Toolbox. Ana Lívia Soares Silva de Almeida 27 de maio de 2014 O que é a Neural Networw Toolbox? A Neural Network Toolbox fornece funções e aplicativos para a modelagem de sistemas não-lineares complexos que não são facilmente modelados com uma

Leia mais

INTELIGÊNCIA ARTIFICIAL COM REDES NEURAIS PARA SISTEMAS DESKTOP

INTELIGÊNCIA ARTIFICIAL COM REDES NEURAIS PARA SISTEMAS DESKTOP RODRIGO MORAES DE OLIVEIRA RA 0502007 8º SEMESTRE, CIÊNCIA DA COMPUTAÇÃO INTELIGÊNCIA ARTIFICIAL COM REDES NEURAIS PARA SISTEMAS DESKTOP Jaguariúna 2008 RODRIGO MORAES DE OLIVEIRA RA 0502007 8º SEMESTRE,

Leia mais

Complemento II Noções Introdutória em Redes Neurais

Complemento II Noções Introdutória em Redes Neurais Complemento II Noções Introdutória em Redes Neurais Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações

Leia mais

APLICAÇÃO DE REDES NEURAIS PARA DETECÇÃO DE LINHAS DE IMPULSO ENTUPIDAS EM MEDIÇÕES DE VAZÃO

APLICAÇÃO DE REDES NEURAIS PARA DETECÇÃO DE LINHAS DE IMPULSO ENTUPIDAS EM MEDIÇÕES DE VAZÃO APLICAÇÃO DE REDES NEURAIS PARA DETECÇÃO DE LINHAS DE IMPULSO ENTUPIDAS EM MEDIÇÕES DE VAZÃO Denis Borg borgdenis@yahoo.com.br Universidade de São Paulo (USP) Rodrigo Palucci Pantoni rodrigoppantoni@yahoo.com.br

Leia mais

Automatização do processo de determinação do número de ciclos de treinamento de uma Rede Neural Artificial

Automatização do processo de determinação do número de ciclos de treinamento de uma Rede Neural Artificial Automatização do processo de determinação do número de ciclos de treinamento de uma Rede Neural Artificial André Ricardo Gonçalves; Maria Angélica de Oliveira Camargo Brunetto Laboratório Protem Departamento

Leia mais

Classificação de pacientes com transtorno de dislexia usando Redes Neurais Artificiais

Classificação de pacientes com transtorno de dislexia usando Redes Neurais Artificiais Classificação de pacientes com transtorno de dislexia usando Redes Neurais Artificiais Raimundo José Macário Costa Programa de Engenharia de Sistemas, COPPE/UFRJ E-mail: macario@cos.ufrj.br Telma Silveira

Leia mais

Aula 2 RNA Arquiteturas e Treinamento

Aula 2 RNA Arquiteturas e Treinamento 2COP229 Aula 2 RNA Arquiteturas e Treinamento 2COP229 Sumário 1- Arquiteturas de Redes Neurais Artificiais; 2- Processos de Treinamento; 2COP229 1- Arquiteturas de Redes Neurais Artificiais -Arquitetura:

Leia mais

A computação aplicada à resolução de sistemas lineares

A computação aplicada à resolução de sistemas lineares Universidade Federal de Campina Grande Centro de Engenharia Elétrica e Informática Departamento de Sistemas e Computação Programa de Educação Tutorial (PET) A computação aplicada à resolução de sistemas

Leia mais

Transformação de Imagens Digitais em Código CNC Aprimoradas com Redes Neurais Artificiais

Transformação de Imagens Digitais em Código CNC Aprimoradas com Redes Neurais Artificiais Transformação de Imagens Digitais em Código CNC Aprimoradas com Redes Neurais Artificiais Abstract. Jader Teixeira 1, Alex Vinícios Telocken 1 1 Universidade de Cruz Alta (UNICRUZ) jader033139@unicruz.edu.br,

Leia mais

Trabalho: Algoritmos de Busca e Ordenação. 1 Introdução. Prof. Bruno Emerson Gurgel Gomes IFRN - Câmpus Currais Novos. 31 de outubro de 2012

Trabalho: Algoritmos de Busca e Ordenação. 1 Introdução. Prof. Bruno Emerson Gurgel Gomes IFRN - Câmpus Currais Novos. 31 de outubro de 2012 Trabalho: Algoritmos de Busca e Ordenação Prof. Bruno Emerson Gurgel Gomes IFRN - Câmpus Currais Novos 31 de outubro de 2012 1 Introdução Os algoritmos de busca e de ordenação compreendem um conjunto de

Leia mais

PREVISÃO DE TEMPERATURA ATRAVÉS DE REDES NEURAIS ARTIFICIAIS

PREVISÃO DE TEMPERATURA ATRAVÉS DE REDES NEURAIS ARTIFICIAIS PREVISÃO DE TEMPERATURA ATRAVÉS DE REDES NEURAIS ARTIFICIAIS Alexandre Pinhel Soares 1 André Pinhel Soares 2 Abstract : The temperature monitoring is a quasi-continuous and judicious task that gives a

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 04/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproximados para as soluções (raízes) de equações da

Leia mais

Um algoritmo para aproximação da fronteira de Pareto em problemas de programação inteira multiobjectivo

Um algoritmo para aproximação da fronteira de Pareto em problemas de programação inteira multiobjectivo Um algoritmo para aproximação da fronteira de Pareto em problemas de programação inteira multiobjectivo Manuela Fernandes, Vladimir Bushenkov A. I. de Matemática, E.S.T.T., Instituto Politécnico de Tomar,

Leia mais

Redes Neurais no MATLAB 6.1

Redes Neurais no MATLAB 6.1 Redes Neurais no MATLAB 6.1 Redes Neurais no MATLAB Duas formas de utilização: Linhas de comando, e m-files Interface gráfica (NNTool) 1 Redes Neurais no MATLAB Duas formas de utilização: Linhas de comando,,

Leia mais

Capítulo 1 - Erros e Aritmética Computacional

Capítulo 1 - Erros e Aritmética Computacional Capítulo 1 - Erros e Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil e Electrotécnica Carlos Balsa Métodos Numéricos 1/ 21 Sumário

Leia mais

Cálculo A. José Carlos de Souza Junior.

Cálculo A. José Carlos de Souza Junior. Cálculo A José Carlos de Souza Junior http://www.unifal-mg.edu.br/matematica/?q=disc_jc Universidade Federal de Alfenas - Instituto de Ciências Exatas Abril - 2014 O que é o GeoGebra? GeoGebra é um software

Leia mais

Máquinas de suporte vetorial e sua aplicação na detecção de spam

Máquinas de suporte vetorial e sua aplicação na detecção de spam e sua aplicação na detecção de spam Orientador: Paulo J. S. Silva (IME-USP) Universidade de São Paulo Instituto de Matemática e Estatística Departamento de Ciência da Computação MAC499 Trabalho de Formatura

Leia mais

Universidade Federal do Espírito Santo Centro de Ciências Agrárias Departamento de Engenharia Rural

Universidade Federal do Espírito Santo Centro de Ciências Agrárias Departamento de Engenharia Rural Universidade Federal do Espírito Santo Centro de Ciências Agrárias Departamento de Engenharia Rural Professor: Gustavo Willam Pereira Disciplina: ENG10082 Programação II Data: 25/10/2011 Trabalho Final

Leia mais

Curso de Redes Neurais utilizando o MATLAB

Curso de Redes Neurais utilizando o MATLAB Curso de Redes Neurais utilizando o MATLAB Victoria Yukie Matsunaga Belém-Pará-Brasil 2012 Esta apostila tem como principal objetivo fornecer um material de auxílio ao Curso de Redes Neurais utilizando

Leia mais

Rede MLP: Perceptron de Múltiplas Camadas

Rede MLP: Perceptron de Múltiplas Camadas Rede MLP: Perceptron de Múltiplas Camadas Conteúdo. Neurônio artificial.... Eemplos mais usuais de funções de ativação... 3 3. Produto interno e projeção... 5 4. Função de epansão ortogonal... 7 5. Redes

Leia mais

UNISINOS - UNIVERSIDADE DO VALE DO RIO DOS SINOS

UNISINOS - UNIVERSIDADE DO VALE DO RIO DOS SINOS UNISINOS - UNIVERSIDADE DO VALE DO RIO DOS SINOS Curso: Informática Disciplina: Redes Neurais Prof. Fernando Osório E-mail: osorio@exatas.unisinos.br EXEMPLO DE QUESTÕES DE PROVAS ANTIGAS 1. Supondo que

Leia mais

Previsão do Mercado de Ações Brasileiro utilizando Redes Neurais Artificiais

Previsão do Mercado de Ações Brasileiro utilizando Redes Neurais Artificiais Previsão do Mercado de Ações Brasileiro utilizando Redes Neurais Artificiais Elisângela Lopes de Faria (a) Marcelo Portes Albuquerque (a) Jorge Luis González Alfonso (b) Márcio Portes Albuquerque (a) José

Leia mais

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA LUGAR DAS RAÍZES

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA LUGAR DAS RAÍZES MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA LUGAR DAS RAÍZES A função de transferência do circuito abaixo em malha fechada é: F(s) = C(s) = G(s)

Leia mais

RECONHECIMENTO DE ACORDES MUSICAIS: UMA ABORDAGEM VIA PERCEPTRON MULTICAMADAS

RECONHECIMENTO DE ACORDES MUSICAIS: UMA ABORDAGEM VIA PERCEPTRON MULTICAMADAS Mecánica Computacional Vol XXIX, págs 9169-9175 (artículo completo) Eduardo Dvorkin, Marcela Goldschmit, Mario Storti (Eds) Buenos Aires, Argentina, 15-18 Noviembre 2010 RECONHECIMENTO DE ACORDES MUSICAIS:

Leia mais

Organização e Arquitetura de Computadores I

Organização e Arquitetura de Computadores I Universidade Federal de Campina Grande Departamento de Sistemas e Computação Curso de Bacharelado em Ciência da Computação Organização e Arquitetura de Computadores I Circuitos Lógicos Combinacionais (Parte

Leia mais

GUIA RÁPIDO DE UTILIZAÇÃO KIT MERCURIOIV OSCILOSCÓPIO E GERADOR DE SINAIS

GUIA RÁPIDO DE UTILIZAÇÃO KIT MERCURIOIV OSCILOSCÓPIO E GERADOR DE SINAIS GUIA RÁPIDO DE UTILIZAÇÃO KIT MERCURIOIV OSCILOSCÓPIO E GERADOR DE SINAIS Revisão 05 setembro/2014 Versão do Firmware: 2.1.8 Versão do software Osciloscópio para Windows: 2.0.19 1. Sumário 1.Introdução...3

Leia mais

Palavras chave: defeitos de solda, pulso eco, redes neurais artificiais, transformada de wavelet

Palavras chave: defeitos de solda, pulso eco, redes neurais artificiais, transformada de wavelet DETECÇÃO DE DEFEITOS EM JUNTAS SOLDADAS UTILIZANDO UM CLASSIFICADOR NEURAL ALIMENTADO POR SINAIS ULTRASSÔNICOS PRÉ- PROCESSADOS PELA TRANSFORMADA DE WAVELET Francisco G. de Paula¹, Maria Cléa S. de Albuquerque

Leia mais

ANÁLISE COMPARATIVA DE FERRAMENTAS DE REDES NEURAIS ARTIFICIAIS

ANÁLISE COMPARATIVA DE FERRAMENTAS DE REDES NEURAIS ARTIFICIAIS ANÁLISE COMPARATIVA DE FERRAMENTAS DE REDES NEURAIS ARTIFICIAIS Ivan Luis Suptitz (UNISC) ivansuptitz@gmail.com Rejane Frozza (UNISC) frozza@unisc.br Rolf Fredi Molz (UNISC) rolf@unisc.br Este artigo promove

Leia mais

[1] Na terceira sessão, analisamos o Perceptron de Múltiplas Camadas inclusive um problema típico como o XOR.

[1] Na terceira sessão, analisamos o Perceptron de Múltiplas Camadas inclusive um problema típico como o XOR. Deolinda M. P. Aguieiras de Lima Nilton Alves Jr. naj@cat.cbpf.br [1] Resumo Este trabalho tem como finalidade servir de primeira leitura para aqueles alunos que desejam iniciar se no estudo de Redes Neurais.

Leia mais

Previsão de Falhas em Manutenção Industrial Usando Redes Neurais

Previsão de Falhas em Manutenção Industrial Usando Redes Neurais 1 Previsão de Falhas em Manutenção Industrial Usando Redes Neurais 2 Rubião Gomes Torres Júnior 1 Maria Augusta Soares Machado, Dsc,1 Jorge Muniz Barreto rubtor@attglobal.net mmachado@ibmecrj.br barreto@inf.ufsc.br

Leia mais

Exercícios: Comandos de Repetição

Exercícios: Comandos de Repetição Universidade Federal de Uberlândia - UFU Faculdade de Computação - FACOM Lista de exercícios de programação em linguagem C Exercícios: Comandos de Repetição 1. Faça um programa que determine o mostre os

Leia mais

Automatização do processo de determinação do número de ciclos de treinamento de uma Rede Neural Artificial

Automatização do processo de determinação do número de ciclos de treinamento de uma Rede Neural Artificial Automatização do processo de determinação do número de ciclos de treinamento de uma Rede Neural Artificial André Ricardo Gonçalves 1, Maria Angélica de Oliveira Camargo Brunetto 2 1,2 Laboratório de Pesquisa

Leia mais

Circuitos Combinacionais Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 2h/60h

Circuitos Combinacionais Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 2h/60h Circuitos Combinacionais Prof. Rômulo Calado Pantaleão Camara Carga Horária: 2h/60h Circuitos Combinacionais Nessa aula será abordados os seguintes conceitos: Circuitos Exclusive-OR e Exclusive-NOR; Escalas

Leia mais

IC Inteligência Computacional Redes Neurais. Redes Neurais

IC Inteligência Computacional Redes Neurais. Redes Neurais Universidade Federal do Rio de Janeiro PÓS-GRADUAÇÃO / 2008-2 IC Inteligência Computacional Redes Neurais www.labic.nce.ufrj.br Antonio G. Thomé thome@nce.ufrj.br Redes Neurais São modelos computacionais

Leia mais

CONTROLE AUTOMATIZADO DA IRRIGAÇÃO UTILIZANDO UM CONTROLADOR LÓGICO PROGRAMÁVEL ASSOCIADO A UM INVERSOR DE FREQUÊNCIA

CONTROLE AUTOMATIZADO DA IRRIGAÇÃO UTILIZANDO UM CONTROLADOR LÓGICO PROGRAMÁVEL ASSOCIADO A UM INVERSOR DE FREQUÊNCIA UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIENCIAS AGRÁRIAS DEPARTAMENTO DE ENGENHARIA AGRÍCOLA LEMA LABORATÓRIO DE ELETRÔNICA E CONTROLE AUTOMATIZADO DA IRRIGAÇÃO UTILIZANDO UM CONTROLADOR LÓGICO PROGRAMÁVEL

Leia mais

Análise de Imagens. Aula 20: Sistemas com Múltiplos Classificadores. Prof. Alexandre Xavier Falcão.

Análise de Imagens. Aula 20: Sistemas com Múltiplos Classificadores. Prof. Alexandre Xavier Falcão. A.X. Falcão p.1/17 Análise de Imagens Aula 20: Sistemas com Múltiplos Classificadores (Fusão) Prof. Alexandre Xavier Falcão afalcao@ic.unicamp.br. IC - UNICAMP A.X. Falcão p.2/17 Roteiro da Aula Sistemas

Leia mais

Híbrido Baseado em Rede e Colônia de Formigas

Híbrido Baseado em Rede e Colônia de Formigas Um Sistema Híbrido Baseado em Rede Neural e Colônia de Formigas Trabalho de Conclusão de Curso Engenharia da Computaçãoo Aluno: Saulo Medeiros de Oliveira Corrêa dos Santos Orientador: Prof. Dr. Mêuser

Leia mais

Universidade Federal do Rio de Janeiro. Escola Politécnica. Departamento de Eletrônica e de Computação

Universidade Federal do Rio de Janeiro. Escola Politécnica. Departamento de Eletrônica e de Computação Universidade Federal do Rio de Janeiro Escola Politécnica Departamento de Eletrônica e de Computação Reconhecimento de Caracteres de Placa Veicular Usando Redes Neurais Autor: Orientador: Allan Almeida

Leia mais

APLICAÇÃO DE TÉCNICAS DE INTELIGÊNCIA ARTIFICIAL EM PROBLEMAS DE MECÂNICA QUÂNTICA. Bruno Gomes Werneck* (IC), Arnaldo Dal Pino Jr.

APLICAÇÃO DE TÉCNICAS DE INTELIGÊNCIA ARTIFICIAL EM PROBLEMAS DE MECÂNICA QUÂNTICA. Bruno Gomes Werneck* (IC), Arnaldo Dal Pino Jr. APLICAÇÃO DE TÉCNICAS DE INTELIGÊNCIA ARTIFICIAL EM PROBLEMAS DE MECÂNICA QUÂNTICA Bruno Gomes Werneck* (IC), Arnaldo Dal Pino Jr. (PQ) Departamento de Física Instituto Tecnológico de Aeronáutica CTA,

Leia mais

ESTIMAÇÃO DA DEMANDA DE INSTALAÇÕES ELÉTRICAS DE EDIFICAÇÕES COM MÚLTIPLAS UNIDADES DE CONSUMO

ESTIMAÇÃO DA DEMANDA DE INSTALAÇÕES ELÉTRICAS DE EDIFICAÇÕES COM MÚLTIPLAS UNIDADES DE CONSUMO UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO THALES AUGUSTO DE OLIVEIRA RAMOS ESTIMAÇÃO DA DEMANDA DE INSTALAÇÕES ELÉTRICAS

Leia mais

Modelagem de Superfícies Seletivas de Freqüência e Antenas de Microfita utilizando Redes Neurais Artificiais

Modelagem de Superfícies Seletivas de Freqüência e Antenas de Microfita utilizando Redes Neurais Artificiais UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE Universidade Federal do Rio Grande do Norte Centro de Tecnologia Programa de Pós-Graduação em Engenharia Elétrica Modelagem de Superfícies Seletivas de Freqüência

Leia mais

Arquitetura e Organização de Computadores

Arquitetura e Organização de Computadores UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DEPARTAMENTO DE CIÊNCIAS CIÊNCIAS EXATAS E E NATURAIS NATURAIS CURSO DE CIÊNCIA DA COMPUTAÇÃO CURSO DE CIÊNCIA DA COMPUTAÇÃO Arquitetura e Organização

Leia mais

Reconhecimento de padrões de Código de Barras a partir da Utilização de Redes Neurais Artificiais

Reconhecimento de padrões de Código de Barras a partir da Utilização de Redes Neurais Artificiais Reconhecimento de padrões de Código de Barras a partir da Utilização de Redes Neurais Artificiais Márcio José Conte 1,2, Merisandra Côrtes de Mattos 1,2, Priscyla Waleska Targino de Azevedo Simões 1,2,3,

Leia mais

Tabela 4.1 Distribuição dos indicadores por tipo Tipo de Indicador No. de indicadores. Indicadores de Evento 93. Indicadores de Tendência 37

Tabela 4.1 Distribuição dos indicadores por tipo Tipo de Indicador No. de indicadores. Indicadores de Evento 93. Indicadores de Tendência 37 4 Estudo de Casos A metodologia proposta no capítulo 3 foi aplicada em casos reais coletados de equipamentos Caterpillar da Sotreq. As falhas aqui estudadas são referentes a dois componentes do caminhão:

Leia mais

Códigos de bloco. Instituto Federal de Santa Catarina Curso superior de tecnologia em sistemas de telecomunicação Comunicações móveis 2

Códigos de bloco. Instituto Federal de Santa Catarina Curso superior de tecnologia em sistemas de telecomunicação Comunicações móveis 2 Instituto Federal de Santa Catarina Curso superior de tecnologia em sistemas de telecomunicação Comunicações móveis 2 Códigos de bloco Prof. Diego da Silva de Medeiros São José, maio de 2012 Codificação

Leia mais