TERAPIA MAGNETOTERAPIA

Tamanho: px
Começar a partir da página:

Download "TERAPIA MAGNETOTERAPIA"

Transcrição

1

2 MAGNETO

3 TERAPIA MAGNETOTERAPIA DEFINIÇÃO A Magnetoterapia é um sistema único de restabelecimento de saúde através da aplicação externa de magnetos nas áreas afetadas ou nas extremidades do corpo.

4 HISTÓRICO O uso de magnetos para tratamento não é um sistema novo, há referências a ele em registros muito antigos do conhecimento humano. Porém, o método foi quase totalmente esquecido, possivelmente pelo fato de sua aplicação estar ligada, nas culturas antigas, a práticas e mágicas, catalogadas como rituais "pagãos". Há diversas menções sobre a magnetita pelos gregos Homero (850 AC), Aritósteles (384 AC) e Platão ( AC). Posteriormente, por volta do século II, os marinheiros chineses perceberam a propriedade de alinhamento com o norte geográfico do megneto natural (magnetita( magnetita) ) e o empregaram como bússola para a navegação. O médico, alquimista e místico suíço Phillippus Aureolus Theofrascus Paracelsus ( ) representou um grande marco na história do magnetismo. Dizia ele que "aquilo que constitui um magneto é uma força atrativa, que está alem da compreensão mas que, não obstante, causa a atração do ferro e outras coisas, observando que esta força é especialmente útil para cura de doenças, inflamações, influxos e úlceras, nas doenças dos intestinos e útero, em doenças internas e externas".

5 O doutor William Gilbert ( ) de Colchester,, Inglaterra, médico da corte de Elizabeth I e reitor da escola de medicina, foi o primeiro inglês a fazer um estudo científico da eletricidade e do magnetismo. Em 1600, editou um livro que marcou época, chamado The Magnet. Posteriormente, outros cientistas fizeram experiências e as relataram: o inglês Michel Faraday ( ) deduziu os conceitos até hoje válidos de eletromagnetismo, linhas magnéticas de força, polarização magnética giratória e indução eletromagnética. Registrou experiências baseadas em investigações e pesquisas de A. M. Ampère ( ), H. C. Oerested ( ), D. F. Arago ( ) e J. B Biot ( ), demonstrando que toda matéria é magnética de um modo ou de outro, isto é, que a matéria é tanto atraída quanto repelida por um campo magnético.

6 Na Sexta edição Os Organon,, seção 287, lemos: "As forças do ímã para fins de cura podem ser usadas com muita certeza, de acordo com os efeitos positivos detalhados na Matéria Médica Pura,, sob os pólos norte e sul de uma poderosa barra magnética. Apesar de os dois pólos terem energias iguais, eles não obstante se opõem na maneira de agir. As doses podem ser modificada pela duração de tempo de contato com um ou outro pólo conforme os sintomas. A Magnetoterapia tem sido reavivada neste século em países como EUA, União Soviética, Japão e Índia, sua pátria de origem, pois a medicina ayuvédica nunca deixou de aplicá-la la. Agora,, com rigor científico, lentamente seus mistérios vão sendo desvendados. É necessário, no entanto, rememorarmos alguns aspectos do corpo humano antes de prosseguirmos.

7 EXPERIÊNCIAS BIOLÓGICAS Milhares de experiências com bactérias, insetos, ratos, pássaros, peixes e coelhos, bem como plantas, culturas de tecidos, foram realizadas, revelando fatos surpreendentes. Descobriu-se que as plantas mantidas dentro de um campo magnético cresciam mais depressa e produziam muito mais hortaliças e frutos.. Quase todas as plantas murchas puderam ser revividas pela exposição a um campo magnético, ou à água magnetizada. Assim, pelo uso dos magnetos,, o crescimento e fertilidade puderam ser aumentados, os tecidos rejuvenescidos, e as plantas melhor protegidas contra a geada e outros perigos.

8 A exposição de sementes ao campo magnético, por pouco tempo, acelera a germinação e o crescimento. Tais plantas apresentam raízes mais profundas e um crescimento mais vigoroso se comparadas com as que não tiverem suas sementes magnetizada, elas crescem mais rapidamente e produzem mais do que aquelas irrigadas com água comum. Se a água usada para a irrigação for magnetizada com o polo norte,, as plantas tendem a ficar mais altas e esguias,, enquanto que as irrigadas com o polo sul crescem baixas exposta ao polo sul se desenvolvem mais e são mais doces.. Alguns fazendeiros russos têm produzido tomates e beringelas do tamanho de melões, o que mesmo as técnicas mais avançadas de agricultura não são capazes de reproduzir. As plantas irrigadas com água polarizada com ambos pólos crescem de 20 a 40% mais rápido que as irrigadas com água comum.

9 Cientistas americanos descobriram que a reprodução de bactérias poderia ser alterada sob a influência de um campo magnético. O doutor Bnattacharya,, da Índia, implantou tecidos cancerosos em ratos e coelhos, e expôs tais animais ao campo magnético. O crescimento do câncer foi controlado e cessou. Tecidos cancerosos foram repetidamente implantados nos mesmos ratos e coelhos, e toda vez eles eram curados através da exposição aos campos magnéticos. Ovos frescos, quando mantidos dentro de um campo magnético, incubam um dos dois dias antes do normal. Experiências foram feitas quanto aos aspectos fisiológicos de ratos, especialmente no que se refere ao teor de sódio e potássio na sua urina.. Descobriu-se, na urina coletada após a exposição de ratos em campo magnético de 20 quilogauss,, que o sódio aumentava de 2.34 a 3.29 miligramas por milímetro de urina, e o potássio aumentava de 9.14 a miligramas por milímetro de urina.

10 Isso indica que o magneto tem um efeito garantido sobre a glândula supra-renal e seu hormônio, a aldosterona,, que regula o equilíbrio do sódio e do potássio no corpo. Em outras experiências, camundongos e ratos foram expostos as altas doses de raios-x, apresentando queimaduras radioativas. A maioria destes animais não se recuperou. Entanto, quando foram expostos a fortes campos magnéticos, o índice de sobrevivência aumentou significadamente.

11 COMO OS MAGNETOS AFETAM O METABOLISMO HUMANO 1.Quando um magneto é aplicado no corpo humano, ondas magnéticas passam através dos tecidos e correntes secundárias são induzidas.. Quando estas correntes se chocam com as correntes magnéticas, produzem calor de impacto sobre elétrons nas células do corpo. O calor de impacto é muito eficiente para reduzir dores e inchaços dos músculos e outros tecidos. 2.O O movimento da hemoglobina nos vasos sangüíneos é acelerado e são diminuídos os depósitos de cálcio e colesterol no sangue.. Outros materiais indesejáveis, aderidos à parede interna dos vasos, são dissolvidos. Isto porque o campo magnético aumenta o número de centros de cristalização nos líquens,, evitando os depósitos de sais e outros materiais. Com o sangue fica mais fácil, diminuindo a dor e a fadiga.

12 3.Por Por indução magnética é gerada uma sensível corrente elétrica que estimula e facilita a emissão de estímulos em todo o sistema nervoso.. As funções dos nervos autônomos são normalizados, de maneira que os órgãos internos controlados por eles readquirem sua função adequada. 4.É É promovida a secreção dos hormônios e sua distribuição é facilitada pelo maior grau de ionização. 5.O O protoplasma ionizado rejuvenesce os tecidos e ativa o metabolismo, pois através do sangue e linfa os nutrientes são fácil e eficientemente levados a cada célula do corpo. 6.As As ondas magnéticas penetram na pele, nos tecidos e ossos, revigorando os órgãos e aumentado sua resistência à doença.

13 FORMA DE APLICAÇÃO: MECANISMO DE SEDAÇÃO E TONIFICAÇÃO Tipo de estímulo Pontos que devem ser Sedados Pontos que devem ser Estimulados (Tonificados) Acupuntura recomendada Agulha de prata ou giro anti-horário Agulha de ouro ou giro no sentido horário Magnetoterapia Aplicada Pólo norte cor azul (Pólo Plano) Pólo sul cor vermelha (Pólo Rugoso)

14 Magnetos pequenos para problemas pólo norte (azul para a pele) no lado Direito e pólo sul (vermelho para a pele) no lado esquerdo. Seqüência de aplicação de pequenos magnetos em área onde o contato direto com a pele não é recomendável (ferimento, por exemplo) lado norte do imã é fixado para fora na gaze que em seguida é fixada na pele.

15 Magnetos pequenos para problemasde garganta pólo norte (azul para a pele) no lado direito e pólo sul (vermelho para a pele) no lado esquerdo Magnetos pequenos para problemas na área cervical (torcicolo por exemplo). Pólo norte (azul para a pele) no lado direito e pólo sul (vermelho para a ele) no lado esquerdo.

16 Método V (aplicação geral IV) pé direito sobre o pólo norte e pé esquerdo sobre o pólo sul.

17 Método III (aplicação geral III) mão es- querda sobre o pólo norte e pé esquerdo Sobre o pólo sul. Método IV (aplicação geral IV) mão direita sobre o pólo norte e pé direito sobre o pólo sul.

18 Aplicação local magnetos médios (1.500 gauss) ) para problemas ovarianos. Pólo Norte, 1 lado direito; pólo sul, lado esquerdo. Aplicação local magnetos médios (1.500 gauss) ) para espondilite cervical. Pólo norte na área cervical e pólo sul na palma da mão esquerda.

19 Maneira correta de se obter água magnetizada 1 garrafa com água é colocada sobre um magneto grande, a de esquerda está sobre o PN e o da direita sobre o PS após 12 horas teremos: AMN na garrafa da esquerda; AMS na garrafa da direita; AM misturando-se o conteúdo das suas garrafas.

20 Os diversos tipos de magnetos usados na magnetoterapia como exposto na presente obra: Grande, com gauss Médio, com gauss Meia lua, com 500 gauss Pequenos, com 250 gauss

21 Pontos de Acupuntura relevantes usados na magnetoterapia: vista de frente

22 Pontos de Acupuntura relevantes na magnetoterapia: Vista de lado.

23 Pontos de Acupuntura relevante Usados na magnetoterapia: vista Posterior ou de costas.

24 Eletro Acupuntura

25 ELETRO ACUPUNTURA DEFINIÇÃO Forma de estímulo que consiste em se estimular os acupontos por meio de corrente elétrica de baixa freqüência diretamente sobre os pontos ou nível do cabo de agulhas filiformes. Essa corrente é gerada por um aparelho denominado GEA 841 (Gerador de eletroacupuntura) ) ou Simiclos que surgiu quando eletroacupunturistas procuraram a KLD Biossistemas propondo o desenvolvimento de um aparelho semelhante, que possuía custo elevado e falta de assistência técnica por não ser de fabricação nacional. Através de estudos e desenvolvimentos chegou-se ao que hoje é conhecido como GEA 841 que produz uma corrente semelhante ao TENS, possuindo uma freqüência maior até Hz, não ocasionando queimaduras, mas hoje, sabe-se que não se trata da mesma, o que ocorre é uma semelhança na aplicação.

26 1. DESCRIÇÃO DOS CONTROLES DO APARELHO Painel frontal: encontram-se cinco potenciômetros com escalas de zero a nove, correspondendo a correntes de zero a cem ma nos canais de saída dos eletrodos (agulhas) que estão no painel posterior. O aparelho permite utilizar os cinco canais simultaneamente e o acionamento de cada canal é feito girando-se o botão no sentido horário. Painel superior: encontram-se os controles de programação de pulso.

27 Chave modo: possui duas posiçòes: : P e D/D que estão intimamente relacionadas com o controle de F1 e F2, descritos a seguir. Quando colocado na posição D/D. Produz uma corrente densa/dispersa, desde que F2 não esteja na posição F2 = 0. Quando acionada à posiçào P, proporcionará trens de pulso intermitentes, intercalando freqüência de F1 e F2. Controle de ajuste F1 F2: são comandos separados que irão regular freqüências diferentes, desde que a chave modo esteja em D/D. A freqüência regulada varia de 1 a 160 Hz, ou seja de 100 a Hz, de acordo com a posição da chave. Se a chave modo estiver operando na posição P, somente a freqüência regulada por F1 estará atuando e no local onde entraria a freqüência de F2, haverá um repouso. Quando F2 estiver na posição F2 = 0, no local corresponde à freqüência de F2, atuará novamente a freqüência regulada em F1, independendo dos ajustes do comando modo.

28 Espectro: voltado para a posição X1, o aparelho produz uma freqüência que varia de 1 a 160 Hz e, na posição X10, a variação é de 100 a Hz. Monitor (Luz Vermelha): indicação visual das programações em uso. Tobiscópio (luz verde): indicação visual de pontos de acupuntura, quando se utiliza o tobiscópio cuja saída e botão de controle localizam-se na parte lateral, à direita do aparelho. Período T: seleciona a duração de F1 e F2, variando de um a cinco segundos, sendo que 1/3 desse tempo será F1 2/3 para F2, isto quando F2, é acionado, pois se o mesmo estiver na posição F2 = 0, tal controle é dispensável.

29 Ajuste de comando modo e freqüência.

30 2.Modalidade de Corrente. A corrente produzida é bifásica e assimétrica (BA), descreve um período de seiscentos e vinte e cinco microssegundos para uma freqüência de Hz, sendo que sua componente positiva tem duração de quarenta microssegundos e a negativa quinhentos e oitenta e cinco microssegundos. Com uma tensão de 0 e 45 V, ajustáveis por um controle interno, o aparelho conseguirá manter sempre a corrente selecionada no potenciômetro, independendo da resistência oferecida pelo paciente.

31 3.As Correntes Elétricas As correntes elétricas podem ser monofásicas (unidirecionais)) ou bifásicas (alternadas).

32 A. Pulsos Unidirecionais Monofásicos. Uma corrente monofásica unidirecional,, direta é o fluxo de corrente numa direção, desde o ponto ou linha isoelétrica.. O fluxo de corrente, definido como fluxo de elétrons num condutor é o descolamento de elétrons negativos de um terminal negativo (cátodo) para um positivo (ânodo). Os pulsos monofásicos se deslocam em uma direção, desde a carga zero ou linha isoelétrica.. Um pulso monofácico permanente inteiramente acima da linha basal (convencionalmente sendo descrito como pulso positivo), ou abaixo dela (um pulso negativo). Muitas formas de onda podem ser monofásicas. Formadas de onda em dentes de serra, retangulares e em pico são apenas três exemplos, mas são representativos das diferentes formas que podem permanecer unidirecionais das diferentes formas que podem permanecer em séries. A corrente de máxima amplitude ou pico ocorre no ponto de máximo desvio do pulso, acima ou abaixo de sua linha isoelétrica.

33 As correntes monofásicas têm a desvantagem potencial de causar polarização sob os eletrodos, devido ao seu fluxo iônico irregular, pois a corrente é continuamente passada em uma única direção. Este fluxo iônico pode levar à deterioração do eletrodo e à irritação da pele, especialmente quando usada por períodos prolongados, sendo que ela resulta em um único eletrodo ativo que é o cátodo (eletrodo negativo), isto porque a excitação nervosa ocorre no ponto onde a corrente deixa os nervos, ficando aumentada a quantidade de íons existentes no meio sob o eletrodo negativo.

34 B. Pulsos Bifásicos Estas formas de onda podem ser simétricas ou assimétricas. Ao considerar pulsos bifásicos,, a largura de pulso é menos simples (de ser medida) que nas formas de ondas monofásicas. As formas de ondas retangulares bifásicas simétricas possuem duas larguras de pulso componentes, uma face acima e outra abaixo da linha isoelétrica que se combinam com a largura total de pulso. As formas de ondas bifásicas podem ser geradas com ou sem intervalo intrapulso.. Quando há m intervalo intrapulso,, aumenta a tendência de se descrever a largura de pulso separadamente, como ( + ) positiva ou ( - ) negativa. A forma de onda bifásica assimétrica possui um fluxo de corrente em ambas as direções, sendo que uma direção do fluxo de corrente tem, relativamente, uma baixa amplitude e uma longa duração. Terá, portanto, um único eletrodo ativo. Devido ao fluxo iônico em ambas as direções, a irritação da pele pode ser reduzida. A forma de onda simétrica bifásica resulta em ativação dos tecidos excitáveis sob ambos os eletrodos. Uma vez que o fluxo de íons e imediatamente, a irritação é ainda reduzida.

35 EFEITOS POLARES O organismo humano pode ser entendido como formado por numerosos sistemas eletrolíticos,, separados por membranas semipermeáveis; ; cada célula forma um condutor eletrolítico (lindemann). Quando aplicamos um potencial elétrico, provocamos um potencial elétrico, uma dissociação iônica é, divisão das moléculas em seus diferentes componentes químicos, pelo fato de cada um deles Ter uma carga elétrica distinta. + - NaCl Na + Cl

36 Simultaneamente, provocará uma migração dos íons (já dissociados), para uma direção definida. Na+ pólo ( - ) ; Cl - pólo ( + ).) Fenômeno denominado de transferência de íons ou eletrólise. Após a dissociação eletrolítica ocorrerão reações químicas secundárias sob os eletrodos. No cátodo (pólo -) reação básica 2 Na + 2 H2O 2 2 Na OH = H2 No ânodo (pólo +) reação ácida 2 Cl + 2 H2O 2 HCl + O2

37 A. Efeitos Interpolares (Fisiolígcos( Fisiolígcos). A) Eletroforese B) Eletromose C) Vasodilatação da pele D) Eletrotonus

38 Eletroforese: migrações de soluções coloidais,, células de sangue, bactérias e outras células simples são influência da corrente contínua. Absorção ou oposição de íons. íons ( + ) migram para ( - ):) cataforese; íons ( - ) migram para ( + ):) anaforese. Eletrosmose: a influência da corrente sobre as estruturas membranosas produz uma "modificação" da água contida nos tecidos,, "a eletroendosmose". Assim, as células do sangue (ph( 7,35) e a molécula de água têm comportamento básico, no oxigênio existe um par de elétrons que pode receber prótons, comporta-se como um íon positivo ( + ) ( ( - ).

39 Vasodilatação da pele: no jogo de todas as reações químicas, ocorre liberação de energia e aumento da temperatura local. Na vizinhança de ambos os pólos se produz uma vasodilatação ativa, uma hiperemia (devido à estimulação química dos capilares da pele). Nota-se também que a hiperemia produzida no pólo ( - ) é mais marcada que a do pólo ( + ). Eletrotonus: modificações elétricas produzidas no potencial de repouso das membranas celulares. De acordo com a polaridade dos eletrodos temos: -cateletrotonus:: potencial despolarizante catódico negativo; -anelectrotonus:: potencial hiperpolarizante, anódico, positivo.

40 Na região do cátodo vai ocorrer uma despolarização

41 Na região do ânodo, vai ocorrer uma hiperpolarização

42 "Uma corrente catódica excita a fibra, enquanto a corrente anódica faz com que a fibra fique mais resistente à excitação do que o normal" (GUYTON)

43 Estes fenômenos podem ser explicados devido à maior ou menor permeabilidade da membrana ao sódio. Observação:! Considerando a Acupuntura Tradicional Chinesa podemos utilizar a analogia de Gyton de Pontos de Sedação para eletrodo Positivo Vermelho e Pontos de Tonificação para eletrodo negativa, preto.! O Tempo de aplicação é de 20' a 30' minutos podendo ser reduzido, sendo que além das agulhas contamos com a intensificação dos estímulos pela corrente. Efeito mecânico mais efeito elétrico (somação( somação).! As freqüências baixas de estimulação são sedantes e freqüências altas são tonificantes.! Normalmente de 20 a 80 /100 Hz sedante,, acima de 100 Hz a 1600 Hz tonificante.

44 LASER ACUPUNTURA

45 LASER ACUPUNTURA DEFINIÇÃO Forma de estimulação dos pontos de acupuntura utilizando a Laser de Baixa Potência. O recurso terapêutico, objeto deste texto, teve suas bases teóricas demonstradas e comprovadas em 1917 pelo brilhante Albert Einstein.. Naquele ano, Einstein expôs os princípios físicos da emissão estimulada, sobre os quais está apoiado o fenômeno laser. Somente em 1950, Townes, Gordon e Zeyger construíram um oscilador que operava na barba de ondas milimétricas. Era o primeiro maser. Em 1958, C. H., Townes e A.L. Schawlow demonstraram a possibilidade de construir um laser. Esta comprovação teórica foi viabilizada na prática, em 1960, por Theodore H. Maiman,, que constuiu o primeiro emissor de laser a rubi. Em 1961, foi realizada, em Nova York,, a primeira cirurgia a laser com êxito. Nessa oportunidade foi extirpado um pequeno tumor de retina.

46 Em 1962 foi desenvolvido o primeiro laser semicondutor. Em 1965, sinclair e Knoll adaptaram a radicação laser à prática terapêutica. A manipulação do infinitamente pequeno e a obtenção de uma energia que vem do íntimo da matéria.

47 BASES FÍSICAS DA RADIAÇÃO LASER INTRODUÇÃO Forma de estimulação dos pontos de acupuntura utilizando a Laser de Baixa Potência. O recurso terapêutico, objeto deste texto, teve suas bases teóricas demonstradas e comprovadas em 1917 pelo brilhante Albert Einstein.. Naquele ano, Einstein expôs os princípios físicos da emissão estimulada, sobre os quais está apoiado o fenômeno laser. Somente em 1950, Townes, Gordon e Zeyger construíram um oscilador que operava na barba de ondas milimétricas. Era o primeiro maser. Em 1958, C. H., Townes e A.L. Schawlow demonstraram a possibilidade de construir um laser. Esta comprovação teórica foi viabilizada na prática, em 1960, por Theodore H. Maiman,, que constuiu o primeiro emissor de laser a rubi. Em 1961, foi realizada, em Nova York,, a primeira cirurgia a laser com êxito. Nessa oportunidade foi extirpado um pequeno tumor de retina.

48 Em 1962 foi desenvolvido o primeiro laser semicondutor. Em 1965, sinclair e Knoll adaptaram a radicação laser à prática terapêutica. A manipulação do infinitamente pequeno e a obtenção de uma energia que vem do íntimo da matéria.

49 BASES FÍSICAS DA RADIAÇÃO LASER INTRODUÇÃO Para que possa realmente transmitir pelos difíceis caminhos da compreensão e melhor utilização do raio laser na clínica, cabe destacar alguns aspectos teóricos que, se bem apreendidos, possibilitam, sem dúvida, um melhor emprego deste recurso. ONDAS "Onda é uma perturbação ou distúrbio, transmitido através do vácuo ou de um meio gasoso, líquido ou sólido". O conceito abstrato de "onda" implica na necessidade de exemplos para sua total compreensão. São exemplos de ondas: do mar, ondas numa corda, ondas de rádio, etc.

50 Todas podem transmitir energia de um ponto a outro, sem obrigatoriamente haver transporte da matéria. "Cada tipo de onda pode ser caracterizado pela oscilação de uma ou mais variáveis ficais que se propagam através do espaço". No caso da luz (onda eletromagnética ou não-mecânica), as variáveis que sofrem oscilação são vetores "campos físicas" e "campo magnético". Na onda sonora (onda mecânica) a variável "pressão" é que sofre oscilação. Esquematicamente, as ondas são representadas da forma mostrada na figura. Ciclo: É a menor porção repetitiva da onda (veja área destacada na figura). Período: Tempo gasto para efetuar um ciclo. É representado pela letra "T" e medido em segundos (s).

51 Comprimento de onda: É a distância percorrida pela onda em um período. É representado pela letra λ (lambda) e medido em metros (m). Freqüência: é o número de ciclos realizados em um segundo. É representada pela letra "f" e sua unidade é o Hertz (Hz), onde: 1 Hz = 1 ciclo / segundo Relação Período / Freqüência: Se considerarmos que o período é o tempo gasto para realizar um ciclo e que freqüência é o número de ciclo por segundo, torna-se fácil compreender a relação inversa entre duas medida. Matematicamente:

52 T = 1 / f e f = 1 /t Isso implica em que, quanto maior for o período, menor será a freqüência e vice-versa. Velocidade de propagação: Toda onda eletromagnética e propaga a uma velocidade fixa no vácuo. Esta velocidade é de Km/s ou, mais precisamente, Km/s esta velocidade fixa é representada pela letra "c". λ = c / f ou f = c / λ

53 TIPOS DE ONDAS De acordo com meio de propagação, as ondas podem ser classificadas como: Ondas mecânicas: Necessitam de matéria para se propagar. Exemplo: Luz. Ondas não-mecânicas (eletromagnéticas): Não necessitam de matéria para se propagar. Exemplo: Luz. As ondas ainda podem ser classificadas de acordo com a direção da perturbação e propagação em: ondas transversais e longitudinais. Como exemplo da primeira temos novamente a luz e da Segunda, novamente o som.

54 No caso das transversais,, a perturbação é perpendicular à direção de propagação. Exemplo: Ondas numa corda. No caso das longitudinais a perturbação é paralela à direção de propagação. Exemplo: Perturbação numa mola. Dependendo da duração da perturbação, as ondas podem ser classificadas em:

55

56

57 PRINCÍPIO DA SUPERPOSIÇÃO Diferentemente do que acontece com matéria, as ondas podem ocupar, ao mesmo tempo, o mesmo espaço, o mesmo lugar no espaço. O efeito combinado de duas ou mais ondas num ponto é chamado de "interferência". Esse fenômeno, exclusivo do movimento ondulatório, pode ser construtivo ou destrutivo. Interferência construtiva; Quando o pulso resultante é maior do que qualquer de seus componentes. Interferência destrutiva: Quando um pulso é invertido em relação ao outro, tendem a se anular. No caso dos dois pulsos possuírem formas idênticas, porém invertidas, ocorre anulação total.

58 t = 0 t = 1 s t = 1,5 s t = 2 s t = 3 s

59 t = 0 t = 1 s t = 1,5 s t = 2 s t = 3 s

60 ESPECTRO ELETROMAGNÉTICO Ao conjunto de ondas eletromagnéticas, provenientes da variação de seus comprimentos de onda, e conseqüentemente, de suas freqüências, denominamos "espectro eletromagnético".

61

62

63 O QUE É, FISICAMENTE, O LASER? O termo laser constitui-se numa sigla (Ligtht( Amplification by Stimulated Emission of Radiation), ou seja, Amplificação da Luz por Emissão Estimulada de Radiação. Analisando esta frase, parte a parte, temos:! Amplificação da Luz: A radiação laser é constituída por ondas eletromagnéticas visíveis ou não de acordo com o comprimento de onda das mesmas. O caráter de amplificação explica-se pela alta concentração de energia que aporta conseqüente do grande número de fótons dos quais é constituída.

64 ! Emissão estimulada de radiação: O fenômeno da emissão estimulada constitui-se na emissão de luz a partir da estimulação da matéria através do fornecimento de energia aos átomos. De acordo com o tipo de substância estimulada a emitir radiação, são obtidos diferentes tipos de radiação laser, ou seja: ondas de comprimento e freqüência diferentes e, consequentemente, mais ou menos energéticas, pois segundo Albert Einstein, quanto maior a freqüência de uma onda, maior será a quantidade de energia contida em seus "quanta". A radiação laser se diferencia da luz comum sob vários aspectos:

65 Enquanto a luz comum é constituída por vários comprimentos de onda, dispostos espacialmente de maneira desordenada, a radiação laser é formada por apenas um comprimento de onda, comportando ondas coerentes entre si, tanto temporal quanto espacialmente. A A radiação laser é polarizada, o que permite seu paralelismo, o que não ocorre com a luz comum. Em decorrência da existência de apenas um comprimento de onda, radiação laser torna-se monocromática. O O caráter de amplificação da radiaçào laser confere à mesma um intenso brilho, capaz de lesar, às vezes de maneira irreversível, a retina humana após exposições extremamente curtas.

66 Observação: Enquanto a luz comum pode ser comparada com o ruído advindo de uma multidão desordenada e frenética, a radiação laser pode ser comparada ao ruído advindo de um exército marchando de forma absolutamente ordenada e compassada.

67 O QUE É ENERGIA? Basicamente se pode definir energia como "a capacidade de efetuar um trabalho". É representada pela letra "E" e medida em "joules" joules" " (J). Outra unidade de medida de energia é o "elétron-volt volt" " (ev( ev), muito usada em mecânica quântica. 1 ev = 1,602 X J Assim, quando aplicamos radiação laser no corpo humano, estamos introduzindo naquele ponto uma certa quantidade de energia. Esta energia irá efetuar um certo trabalho. Mas, o que é trabalho? Por exemplo, num chuveiro elétrico, a energia elétrica utilizará será convertida em energia térmica e executará o trabalho de aquecer a água.

68 Diferentes emissores de laser podem trabalhar em potências de emissão diferentes e, portanto, introduzir certa quantidade de energia no corpo humano em diferentes períodos de tempo. Tal fato determina a divisão da utilização médica / fisioterápica da radiação laser em dois grandes grupos: alta potência e baixa potência. P(W) = E(J)/ T(S) ou E(W) = P(W) x T(S)

69 DIFERENTES TIPOS E APLICAÇÕES DO RAIO LASER Tipos de Laser: Várias foram as áreas que se beneficiaram das inovações trazidas pela radiação laser, entre as quais: indústrias, comerciais, comerciais e médicas. Aplicações Industriais: A área industrial pôde ser beneficiada com o advento do laser a partir de novas formas de corte, usinagem e soldagem de peças. Tais métodos industriais, que envolvem tecnologias extremamente desenvolvidas, colaboraram, e continuam colaborando, com o crescente aumento no nível de qualidade de produtos e também na sensível redução de custos que possibilitam.

70 Aplicações Comerciais: O emprego do laser em áreas como na telecomunicações, de informática e em outras, também trouxe benefícios à área comercial em virtude da qualidade e da rapidez proporcionadas. Aplicações Médicas: No campo médio /fisioterápico/ a radiação laser proporcionou inúmeros avanços. Na área cirúrgica, por exemplo, tumores até então impossíveis de serem tratados através de técnicas cirúrgicas convencionais, foram viabilizados através do uso da radiação laser. No campo das aplicações médicas podemos estabelecer duas grandes áreas de atuação da radiação laser:! Aplicações cirúrgicas;! Aplicações terapêuticas.

71 CLASSIFICAÇÃO DOS TIPOS DE LASER (SEGUNDO A POTÊNCIA DE EMISSÃO) A. "Power - Laser": São radiações emitidas com alta potência. Este fator fornece à radiação um potencial destrutivo, utilizado para viabilizar as cirurgias realizadas com o uso do raio laser. B. "Mid - Laser": São radiações emitidas potências medianas, sem potencial destrutivo. Exemplos: Laser de Arseneto de Gálio (AS-Ga).

72 A. "Soft - Laser": Radiações emitidas com potências baixas, também sem potencial destrutivo. Exemplo: Laser de Hélio-Neônio (He-Ne). Em Fisioterapia, a classificação dos tipos de laser tem sido sintetizada como "Laser de Alta Potência" e "Laser de Baixa Potência". Tal fato decorre dos seguintes fatores:! Os lasers de potência, com potencial destrutivo, não pertencem ao arsenal fisioterápico e, portanto, são classificados à parte.! Os lasers sem potencial destrutivo (Mid( e Soft) constituem o arsenal fisioterápico dentro do contexto da radiação laser.

73 A diferenciação entre "Mid" Mid" " e "Soft" Soft" " deixa de Ter sentido na medida em que certos emissores de laser He Ne apresentam potência superior à potência média de certos emissores de laser As-Ga, e o que importa na fisioterapia é a potência média dos lasers As-Ga e não sua potência de pico. A. "Laser Cirúrgico": Laser de CO2 : Um dos tipos de laser mais utilizados. Tem como principal característica a absorção de seu comprimento de onda ( nm) ) pela água. Como a emissão é feita com potência elevada e ocorre dissipação de calor, a energia térmica resultante do processo se encarrega de "evaporar" a água existente nos tecidos, o que resulta na destruição do mesmo.

74 B. "Laser de Argônio: Também de larga utilização, sua radiação é absorvida pela hemoglobina e, como conseqüência, possibilita a destruição de vasos sangüíneos.

75 TIPOS DE LASER UTILIZADOS EM ACUPUNTURA INTRODUÇÃO Em acupuntura são utilizados os tipos de laser sem potencial destrutivo, ou seja, radiações emitidas com potência inferior a 1 w, considerando o limite de potência para a existência ou não de potencial destrutivo. São dois os tipos de laser basicamente utilizados em Acupuntura.! Laser de Hélio-Neônio (He-Ne);! Laser de Arsênio de Gálio (As-Ga).! "Laser Hélio-Neônio (He-Ne)": O laser He-Ne é obtido a partir da estimulação de uma mescla de gases (hélio e neônio na proporção de 9:1) e possibilita uma radiação visível, com comprimento de onda de 632,8 nm,, o que confere ao mesmo a cor vermelha.

76 Obtenção, Emissão e Características: A obtenção da radiação laser He-Ne se dá a partir de uma mescla dos gases citados. A aplicação de uma corrente elétrica contínua nesta mescla de gases faz com que os elétrons das moléculas do hélio saltem para órbitas mais distantes do núcleo. Em função disso ocorrem choques entre átomos de hélio e neônio,, o que transfere energia para os átomos de neônio. A partir dessa energia, elétrons dos átomo de neônio saltam para órbitas mais distantes do núcleo. Para que retornem às suas órbitas originais, necessitam perder a energia recebida. Isso se dá através da emissão de fótons. Como essa mescla de gases está contida num recipiente cujas extremidades são espelhos dispostos paralelamente, os fótons são refletidos e novamente estimulam a mescla de gases.

77 SUAS CARACTERÍSTICAS! Regime de emissão: contínuo.! Comprimento de onda: 632,8 nm.! Cor: Vermelha (Visível). Utilização do Laser He-Ne: A radiação laser obtida através da mescla de gases hélio e neônio se tem mostrado com grande poder terapêutico tanto em lesões tidas como superficiais como em lesões profundas. Porém, cabe ressaltar que, comparativamente ao laser As-Ga, apresenta potencial terapêutico mais destacado em lesões superficiais, como é o caso de lesões dermatológicas, estéticas ou em processo de cicatrização.

78 Formas de Aplicação: Por ser visível, o laser He-Ne permite um maior número de formas de aplicação quando comparado ao laser As-Ga. São elas: Aplicação por pontos: consiste na irradiação de um determinado ponto sobre o corpo do paciente. Normalmente são necessários vários pontos para que toda área a ser tratada seja irradiada. Normalmente, cada ponto se distancia 1 cm do outro. Laser Acupuntura.

79 Aplicação por zona: Consiste na aplicação, de uma só vez, de uma área maior do que um ponto. Para isso, utilizam-se recursos como fibra óptica e lentes divergentes. Aplicação por varredura: Consiste na aplicação onde se movimenta, à maneira de um pincel, a caneta aplicadora,, fazendo com que o ponto iluminado "varra" toda uma região.

80 "LASER DE ARSÊNIO DE GÁLIO (As-Ga)" O laser As-Ga é uma radiação obtida a partir da estimulação de um ponto de um diodo semicondutor, formado por cristais de arsenieto de gálio, e por isso também é chamado de laser semicondutor ou laser diódico. Considere dois cristais de arsenieto de gálio. Adicionando-se telúrio a um deles, estaremos conferindo ao mesmo características elétricas positivas, pois o resultado da reação proporciona falta de elétrons. Ao segundo cristal será adicionado zinco, o que conferirá ao mesmo característica elétricas negativas, pois da reação resultará um número excessivo de elétrons. Unindo-se os dois cristais formar-se-á um diodo. Uma corrente elétrica contínuo aplicada a este diodo proporcionará a combinação dos elétrons em nações e nascem certas quantidades de energia que, amplificadas pelas extremidades polidas do diodo, escapam do mesmo na forma da radiação laser.

81 A Emissão nesse tipo de laser ocorre de forma pulsada,, ao contrário do que acontece com o laser As-Ga. Suas características básicas são:! Regime de emissão: Pulsado.! Comprimento de onda: 904 nm. Cor: Infravermelha (Invisível)

82 Utilização do Laser As-Ga: Ambos os tipos de laser apresentam potencial terapêutico elevado em lesões superficiais e profundas. Porém, comparativamente o laser He-Ne, que se destaca em lesões superficiais profundas do tipo articular, muscular, etc. Formas de Aplicação: O fato de não ser visível o laser As-Ga no que se refere às formas de aplicação. Não que aplicações por zona ou mesmo em varredura sejam contra- indicações, mas como não é possível ver a dimensão da zona que se está irradiando, nem mesmo ter a idéia da dispersão que o afastamento da caneta aplicadora apresenta quando de uma aplicação em varredura, é aconselhável que, com esse tipo de laser, se utilize apenas a aplicação por pontos sendo muito usado em Acupuntura.

83 DIFERENÇAS NOS EFEITOS TERAPÊUTICOS Em determinado momento da história da utilização do raio percebeu- se, de maneira empírica, que havia maior efetividade do laser He- Ne em lesões superficiais e maior efetividade do laser As-Ga em lesões profundas. Como a potência de pico do laser As-Ga é muito superior à potência dos emissores da laser He-Ne, apressou-se em relacionar o fato à maior penetração da radiação laser As-Ga no corpo humano, decorrente de sua maior potência. Como já comentado, o que importa no laser As-Ga não é sua potência de pico e sim sua potência média, ponto que será mais profundamente abordado no tópico relativo ao cálculo de tempo de aplicação. A potência média de alguns emissores de laser As-Ga muitas vezes é inferior à potência de emissão dos aparatos de laser He-Ne. É por isso inclusive que hoje se abandonam as denominações "Mid" Mid" " e "Soft" Soft-laser" para adotar a denominação "Laser de Baixa Potência", comum aos dois tipos.

84 Além disso, se considerarmos que uma maior potência proporciona uma maior penetração da radiação, como compreender que nas incisões cirúrgicas proporcionadas pelo laser de CO2, que trabalha com potências extremamente elevadas, a profundidade atingida não ultrapassa 1 ou 2 mm? A explicação mais lógica para o fato vem de Albert Einstein,, que afirmou que as ondas de maior freqüências são mais energéticas do que as ondas de menor freqüência, ou seja, uma onda de maior freqüência traz mais energia em um único "quantum" quantum" " do que uma onda de menor freqüência. Uma onda mais energética tem maior potencial de interação do que uma onda menos energética.

85 Ao considerarmos os dois tipos de laser em questão, percebemos que laser He-Ne é mais energético do que o laser As-Ga, pois se a freqüência é inversamente proporcional ao comprimento de onda, o laser He-Ne (632,8 nm), de comprimento menor que o As-Ga (904 nm), apresenta freqüência superior ao laser As-Ga e, consequentemente, carrega mais energia em seus "quanta". Como uma onda mais energética interage com maior facilidade do que uma onda menos energética, provavelmente a radiação He-Ne, mais energética, interage com superfície do paciente imediatamente após sua incidência, o que não ocorre com a radiação As-Ga, que demora um pouco mais para interagir com as estruturas do organismo do indivíduo tratado. O ponto apresentado resulta de especulações teóricas, a partir da comparação dos efeitos causados pelos diferentes tipos de ultravioleta que, por possuírem comprimentos de onda diferentes, agem em diferentes níveis da pele dos seres humanos.

86 Outro fator que provavelmente interfere na penetração das radiações é a existência, quantidade e disposição espacial de certas estruturas absorventes. Tais estruturas, como moléculas absorventes, em maior ou menor quantidade e dispostas de uma ou outra maneira, interferem na quantidade de radiação absorvida nos diferentes níveis da pele. Cabe ressaltar que não queremos, aqui afirmar que o Laser He-Ne se apresenta eficaz apenas em lesões superficiais e o laser As-Ga apenas em lesões profundas. Segundo o Prof.. Roberto Miranda da Universidade de Perugia, "os dois tipos de laser apresentam efeitos semelhantes e potencializados quando usados concomitantemente". Destacamos que há, sim, uma maior efetividade do laser As-Ga e do laser He_Ne em, respectivamente, lesões profundas e superficiais, que resultam provavelmente em menor tempo de tratamento e não na maior ou menor eficácia de um ou de outro.

87 MECANISMO DE AÇÃO E EFEITOS DA RADIAÇÃO LASER Embora muito do conhecimento sobre a ação da radiação laser tenha sido obtido de maneira empírica há um esforço no sentido de buscar explicações científicas para inúmeros pontos de dúvida. Muito do enfoque teórico que do enfoque teórico que objetivamos fundamenta-se em hipóteses razoavelmente aceitáveis nunca em virtudes tidas como absolutas e imutáveis. Temos a certeza de que a simples organização sistemática dos aspectos teóricos considerável já constitui em colaboração para o alcance de melhores níveis científicos.

88 DIFERENÇAS ENTRE LASERTERAPIA E LASERACUPUNTURA A Acupuntura arte milenar, tem sido aplicada utilizando-se como instrumento de "puntura" puntura" " a radiação laser. O relato de aplicações práticas de acupuntura por profissionais de renome indica a existência de algo sério, digno das melhores referências. A acupuntura possui bases que não são alteradas pela introdução do laser, que aqui se presta apenas como instrumento de viabilização dos mesmos efeitos proporcionais pelas agulhas. Autores de renome sustentam posições de maior efetividade do feixe laser quando comparado com as agulhas.

89 Comparativamente à acupuntura, a laserterapia procura, a partir da avaliação dos efeitos proporcionados pelo aporte energético da radiação, compreender e utilizar estas reações como recursos terapêuticos. A teoria do bioplasma,, tida como um dos principais alicerces da acupuntura, é até hoje utilizada para fundamentar certos efeitos da laserterapia.

90 TEORIA DO BIOPLASMA Experimentos com colônias de células proporcionaram o conhecimento e a aceitação da existência de um relacionamento eletromagnético entre as células do corpo humano. Esses experimentos foram realizados através do estudo de reações de duas colônias de células. Umas das colônias foi estimulada a entrar em mitose. A segunda, que não foi estimulada, inesperadamente também reagiu ao estímulo e passou a se multiplicar. Levantou-se, num primeiro momento, a hipótese de haver um intercâmbio energético entre as colônias de células, a partir de radiações eletromagnéticas extremamente débeis, situadas na banda dos raios ultravioletas. Utilizando-se recursos de espectrofotometria,, constatou-se que este intercâmbio existia, mas só a partir de radiações ultravioletas, como também a partir de um conjunto de ondas extremamente débeis, situadas na faixa que vai desde o infravermelho até o ultravioleta.

91 Partindo-se dessa evidência, tornou-se óbvio inferir sobre a existência desse mesmo inter-relacionamento entre as células do organismo humano. A esse continente energético, que coexiste com o continente físico das pessoas, chamou-se bioplasma. Esse bioplasma seria suscetível de interferência a partir de alterações no físico das pessoas, da mesma forma que alterações no campo energético garantiam interferências no contingente físico. Com isso, a partir da normalização energética do bioplasma,, que pode ser obtida a partir da radiação laser, cessariam as alterações ocorridas no continente físico.

92 ESTUDOS SOBRE A AÇÃO DA RADIAÇÃO LASER Ao observar os resultados de aplicações de laser no processo de cicatrização de feridas através de microcospia eletrônica, evidenciou:! Aumento de fibroblastos;! Aumento de fibras colágenas;! Aumento de corpúsculos intracelulares do tipo lisossoma;! Aumento de vesícula intracelulares. -Comprovou, através de vias histoquímicas,, as seguintes reações em processos de cicatrização de feridas em ratas:! Aumento da atividade da sucinildesdrogenase das células epiteliais basais; Aumento das atividades da lactodesidrogenase e esterases não-

93 PENETRAÇÃO E ABSORÇÃO DA RADIAÇÃO LASER Muito se tem discutido a respeito da penetração, absorção e, de modo geral, do comportamento da radiação laser no corpo humano. Diferenças individuais, regiões específicas dos corpo, ou mesmo detalhes relativos à forma de aplicação, têm a capacidade de interferir significativamente no aproveitamento da radiação laser que se aplica a qualquer indivíduo. De modo geral, a quantidade de radiação absorvida depende, em parte, da quantidade e da distribuição espacial de estruturas absorventes (pigmentos) que, de pessoa para pessoa, se apresentam de maneira e quantidades diferentes. Mesmo num só indivíduo, diferentes regiões do corpo possuem maior ou menor quantidade de estruturas absorventes. Num mesmo indivíduo, a quantidade de radiação absorvida pode variar de acordo com a região do corpo irradiada.

94 Por exemplo, uma aplicação na face anterior do antebraço certamente proporcionará maior quantidade de radiação absorvida do que na região calcânea da planta do pé, onde, via de regra, há maior espessamento da epiderme. Um indivíduo negro absorverá maior quantidade de radiação do que um indivíduo branco, em função da maior quantidade de pigmentos existentes. Parece, inclusive, que o estado nutricional do indivíduo também tem a capacidade de interferir na quantidade de radiação absorvida. Apesar da grande quantidade de variáveis que interferem no comportamento da radiação, laser incidindo no corpo humano, se pode estabelecer um esquema básico que, se não preenche lacunas importantes sobre este ponto ao menos possibilita um melhor entendimento quanto aos fenômenos envolvidos quando da incidência do raio sobre o corpo humano.

95 FENÔMENOS ÓPTICOS A SEREM CONSIDERADOS Quando da incidência da radiação laser sobre o corpo humano, certamente ocorrem os seguintes fenômenos. A.Reflexão; B.Transmissão; C.Difusão; D.Absorção. A. Transmissão: Parte da radiação incidente ultrapassará as diferentes camadas da pele. B. Difusão: Na medida em que a radiação está transpondo diferentes camadas, parte dela é retida e difundida pelos diferentes estratos da pele.

96 C. Reflexão: A parcela de radiação emitida que não sofreu reflexão é então incorporada pelo corpo humano em diferentes camadas da pele. D. Absorção: Certamente a absorção é o ponto de maior importância do esquema apresentado. É a absorção ou o processo de incorporação da radiação laser que dterminará seus efeitos e, portanto, deve-se zelar para que a maior quantidade de radiação possível seja absorvida. Para isso é importante destacar:

97 ! A incidência da radiação deve ser sempre perpendicular, de modo a dificultar a reflexão.! A parte do corpo a ser irradiada deve estar isenta de barreiras mecânicas como: suor; cremes; pêlos em excesso, etc. Aconselha-se, portanto, proceder à limpeza exaustiva da região a ser irradiada antes da aplicação.

98 COMPORTAMENTO DA RADIAÇÃO LASER He-Ne As-Ga 65% 65% EPIDERME DERME 17% 21% HIPODERME 82% 86%

99 PENETRAÇÃO DA RADIAÇÃO LASER Dentro da polêmica existente sobre o comportamento da radiação laser no corpo humano, o ponto de maior aquecimento da discussão é a profundidade a que esta radiação é capaz de chegar. A afirmação de que a radiação de qualquer um deles não ultrapassa a camada muscular gera a dúvida quanto à forma de atuação em estruturas profundas como os ossos. Parece difícil que a radiação laser tenha capacidade de ultrapassar a camada muscular uma vez que o tecido muscular é extremamente denso e tido como o que impõe maior resistência à passagem da radiação. Como explicar, então, a atuação terapêutica da radiação laser em lesões do tipo fratura óssea?

100 Acredita-se que, embora a absorção da radiação laser (ação) ocorra em níveis superficiais, suas conseqüências (efeitos) sejam percebidas inclusive em níveis mais profundos (efeitos regionais). Há relatos de professores, como os do Prof.. Mário Trelles,, uma das maiores autoridades mundiais no assunto, demonstrando a existência de efeitos regionais e, inclusive, generalizados.

101 COMPORTAMENTO DA RADIAÇÃO LASER Absorção da Radiação Laser.

102 Ação e Efeitos: Radiação Absorvida EFEITOS PRIMÁRIOS OUDIRETOS Efeito Bioquímico Efeito Bioelétrico Efeito Bionergético Efeitos Indiretos Estímulo à Microcirculação Estímulo Trófico Celular Efeitos Terapêuticos Efeitos Analgésico Efeitos Antiinflamatório Efeito Antiedematoso Efeito estimulante do trofismo dos Tecidos

103 EFEITOS PRIMÁRIOS DA RADIAÇÃO Os efeitos primários da radiação laser de baixa potência estão subdivididos em:!efeito Bioquímico!Efeito Bioelétrico Efeito Bioenergético

104 EFEITOS BIOQUÍMICO Basicamente, os efeitos bioquímicos da radiação laser reúnem: Liberação de Substâncias Pré-Formadas: Ocorre, em decorrência da incorporação da radiação laser, a liberação de substâncias como a histamina,, a serotonina e a bradicinina pré-formadas. Destaque-se que não há, aqui, referências quanto à produção dessas substâncias, mas apenas à liberação de parte do contingente já produzido.

105 Modificações em Reações Enzimáticas: A incorporação do aporte energético da radiação laser proporciona modificações estimulatórias em reações enzimáticas normais, como são a produção de ATP e a síntese de prostaglandinas. Outro importante efeito bioquímico da radiação laser é o aumento da "lise" lise" " de fibrina,, fato que determina importantes vantagens nos efeitos terapêuticos.

106 EFEITOS BIOELÉTRICO As células têm seu interior negativo em relação ao seu exterior. Essa diferença de potencial deve-se à existência de diferentes concentrações de íons positivos ou negativos dentro ou fora da célula. A partir da existência desse gradiente gradiente elétrico e de concentração, há uma tendência natural à neutralização por processo de difusão, que só não se completa devido à existência de um mecanismo "bomba de sódio e potássio". A bomba de sódio e potássio trabalha constatemente contra os gradientes elétricos e de concentração existentes. Para isso, consome energia, advinda o ATP. Como citado no item relativo a efeitos bioquímicos, a radiação laser proporciona aumento na produção de ATP. A eficiência da bomba de sódio e potássio se vê melhora a partir de uma maior disponibilidade de ATP.

107 Com isso, a diferença de potencial elétrico existente entre o interior e o exterior da célula é mantida com maior eficiência. Dessa forma, o efeito bioelétrico da radiação laser se resume à "manutenção do potencial de membrana". Há possibilidade, também, dessa manutenção do potencial de membrana ser favorecida pela radiação laser a partir da interferência direta sobre a mobilidade iônica.

108 EFEITOS BIOENERGÉTICOS O efeito Bioenergético da radiação laser diz respeito à normalidade energética que a radiação laser proporciona ao bioplasma. Defende-se o aporte energético da radiação laser tem a capacidade de normalizar o contigente energético que coexiste com o contigente físico dos indivíduos. Tal normalização proporcionará benefícios terapêuticos, pois há interferência do contigente energético sobre o físico e vice-versa.

109 EFEITOS SECUNDÁRIOS DA RADIAÇÃO LASER Secundariamente, a radiação laser proporcionará os seguinte efeitos:! Estímulo à microcirculação.! Estímulo ao trofismo celular. ESTÍMULO À MICROCIRCULAÇÃO No sistema circulatório, as artérias se dividem e diminuem progressivamente de calibre até que, posteriormente às arteríolas, abre-se chamada rede capilar. Os capilares são vasos de calibre extremamente reduzido e com paredes com a espessura de até uma única célula. É nessa região que ocorrem as trocas de nutrientes e restos metabólicos.

LASER. Prof. Gabriel Villas-Boas

LASER. Prof. Gabriel Villas-Boas LASER Prof. Gabriel Villas-Boas INTRODUÇÃO O termo Laser constitui-se numa sigla que significa: Amplificação da Luz por Emissão Estimulada da Radiação. Esta radiação é constituída por ondas eletromagnéticas,

Leia mais

Introdução. Light Amplification by Stimulated Emission of Radition. Amplificação da Luz por Emissão Estimulada de Radiação.

Introdução. Light Amplification by Stimulated Emission of Radition. Amplificação da Luz por Emissão Estimulada de Radiação. L.A.S.E.R. Introdução Light Amplification by Stimulated Emission of Radition. Amplificação da Luz por Emissão Estimulada de Radiação. Introdução Em 1900 o físico alemão Max Planck apresentou uma explanação

Leia mais

TERAPIA FOTODINÂMICA

TERAPIA FOTODINÂMICA TERAPIA FOTODINÂMICA Terapia Fotodinâmica Estudo e desenvolvimento de novas tecnologias. Seu uso por podólogos brasileiros é anterior a 1995. Usado por podólogos em outros países, desde a década de 80.

Leia mais

Descobertas do electromagnetismo e a comunicação

Descobertas do electromagnetismo e a comunicação Descobertas do electromagnetismo e a comunicação Porque é importante comunicar? - Desde o «início dos tempos» que o progresso e o bem estar das sociedades depende da sua capacidade de comunicar e aceder

Leia mais

Biofísica 1. Ondas Eletromagnéticas

Biofísica 1. Ondas Eletromagnéticas Biofísica 1 Ondas Eletromagnéticas Ondas Ondas são o modo pelo qual uma perturbação, seja som, luz ou radiações se propagam. Em outras palavras a propagação é a forma na qual a energia é transportada.

Leia mais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais LEI DE OHM Conceitos fundamentais Ao adquirir energia cinética suficiente, um elétron se transforma em um elétron livre e se desloca até colidir com um átomo. Com a colisão, ele perde parte ou toda energia

Leia mais

DS100: O SINAL ELÉTRICO

DS100: O SINAL ELÉTRICO DS100: O SINAL ELÉTRICO Emmanuel M. Pereira I. Objetivo O propósito deste artigo é esclarecer aos clientes da Sikuro, usuários do eletroestimulador modelo DS100 (C ou CB), no que se refere ao tipo de onda

Leia mais

ESPECTRO ELETROMAGNÉTICO

ESPECTRO ELETROMAGNÉTICO COLÉGIO ESTADUAL RAINHA DA PAZ, ENSINO MÉDIO REPOSIÇÃO DAS AULAS DO DIA 02 e 03/07/2012 DAS 1 ª SÉRIES: A,B,C,D,E e F. Professor MSc. Elaine Sugauara Disciplina de Química ESPECTRO ELETROMAGNÉTICO As ondas

Leia mais

Comunicação da informação a curta distância. FQA Unidade 2 - FÍSICA

Comunicação da informação a curta distância. FQA Unidade 2 - FÍSICA Comunicação da informação a curta distância FQA Unidade 2 - FÍSICA Meios de comunicação É possível imaginar como seria o nosso mundo sem os meios de comunicação de que dispomos? Os * * * * Aparelhos de

Leia mais

Estabilizada de. PdP. Autor: Luís Fernando Patsko Nível: Intermediário Criação: 22/02/2006 Última versão: 18/12/2006

Estabilizada de. PdP. Autor: Luís Fernando Patsko Nível: Intermediário Criação: 22/02/2006 Última versão: 18/12/2006 TUTORIAL Fonte Estabilizada de 5 Volts Autor: Luís Fernando Patsko Nível: Intermediário Criação: 22/02/2006 Última versão: 18/12/2006 PdP Pesquisa e Desenvolvimento de Produtos http://www.maxwellbohr.com.br

Leia mais

Água e Solução Tampão

Água e Solução Tampão União de Ensino Superior de Campina Grande Faculdade de Campina Grande FAC-CG Curso de Fisioterapia Água e Solução Tampão Prof. Dra. Narlize Silva Lira Cavalcante Fevereiro /2015 Água A água é a substância

Leia mais

Espectometriade Fluorescência de Raios-X

Espectometriade Fluorescência de Raios-X FRX Espectometriade Fluorescência de Raios-X Prof. Márcio Antônio Fiori Prof. Jacir Dal Magro FEG Conceito A espectrometria de fluorescência de raios-x é uma técnica não destrutiva que permite identificar

Leia mais

Título ONDULATÓRIA Extensivo Aula 29. Professor Edson Osni Ramos (Cebola) Disciplina. Física B

Título ONDULATÓRIA Extensivo Aula 29. Professor Edson Osni Ramos (Cebola) Disciplina. Física B Título ONDULATÓRIA Extensivo Aula 29 Professor Edson Osni Ramos (Cebola) Disciplina Física B RADIAÇÕES ELETROMAGNÉTICAS ONDA ELETROMAGNÉTICA Sempre que uma carga elétrica é acelerada ela emite campos elétricos

Leia mais

Prof. Rogério Eletrônica Geral 1

Prof. Rogério Eletrônica Geral 1 Prof. Rogério Eletrônica Geral 1 Apostila 2 Diodos 2 COMPONENTES SEMICONDUTORES 1-Diodos Um diodo semicondutor é uma estrutura P-N que, dentro de seus limites de tensão e de corrente, permite a passagem

Leia mais

DIODOS. Professor João Luiz Cesarino Ferreira

DIODOS. Professor João Luiz Cesarino Ferreira DIODOS A união de um cristal tipo p e um cristal tipo n, obtém-se uma junção pn, que é um dispositivo de estado sólido simples: o diodo semicondutor de junção. Figura 1 Devido a repulsão mútua os elétrons

Leia mais

OSCILAÇÕES E ONDAS E. E. Maestro Fabiano Lozano

OSCILAÇÕES E ONDAS E. E. Maestro Fabiano Lozano OSCILAÇÕES E ONDAS E. E. Maestro Fabiano Lozano Professor Mário Conceição Oliveira índice Oscilações e ondas...1 Tipos de Ondas...2 Tipo de deslocamento das ondas...2 Movimento ondulatório...2 Ondas Mecânicas...3

Leia mais

FUNDAMENTOS DE ONDAS, Prof. Emery Lins Curso Eng. Biomédica

FUNDAMENTOS DE ONDAS, Prof. Emery Lins Curso Eng. Biomédica FUNDAMENTOS DE ONDAS, RADIAÇÕES E PARTÍCULAS Prof. Emery Lins Curso Eng. Biomédica Questões... O que é uma onda? E uma radiação? E uma partícula? Como elas se propagam no espaço e nos meios materiais?

Leia mais

Física IV. Interferência

Física IV. Interferência Física IV Interferência Sears capítulo 35 Prof. Nelson Luiz Reyes Marques Interferência Arco-íris = Bolha de sabão refração interferência Princípio da superposição Quando duas ou mais ondas se superpõem,

Leia mais

EFEITO FOTOELÉTRICO. J.R. Kaschny

EFEITO FOTOELÉTRICO. J.R. Kaschny EFEITO FOTOELÉTRICO J.R. Kaschny Histórico 1886-1887 Heinrich Hertz realizou experimentos que pela primeira vez confirmaram a existência de ondas eletromagnéticas e a teoria de Maxwell sobre a propagação

Leia mais

1- Fonte Primária 2- Fonte Secundária. 3- Fonte Puntiforme 4- Fonte Extensa

1- Fonte Primária 2- Fonte Secundária. 3- Fonte Puntiforme 4- Fonte Extensa Setor 3210 ÓPTICA GEOMÉTRICA Prof. Calil A Óptica estuda a energia denominada luz. 1- Quando nos preocupamos em estudar os defeitos da visão e como curá-los, estamos estudando a Óptica Fisiológica. Estudar

Leia mais

INTERAÇÃO DOS RAIOS-X COM A MATÉRIA

INTERAÇÃO DOS RAIOS-X COM A MATÉRIA INTERAÇÃO DOS RAIOS-X COM A MATÉRIA RAIOS-X + MATÉRIA CONSEQUÊNCIAS BIOLÓGICAS EFEITOS DAZS RADIAÇÕES NA H2O A molécula da água é a mais abundante em um organismo biológico, a água participa praticamente

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3 Linhas de Força Mencionamos na aula passada que o físico inglês Michael Faraday (79-867) introduziu o conceito de linha de força para visualizar a interação elétrica entre duas cargas. Para Faraday, as

Leia mais

Projeto Embuá Unidade de Aprendizagem: ENERGIA

Projeto Embuá Unidade de Aprendizagem: ENERGIA Projeto Embuá Unidade de Aprendizagem: ENERGIA Energia para realizar reações químicas: eletrólise do iodeto de potássio aquoso Existem reações químicas não espontâneas, mas que são realizadas com rapidez

Leia mais

CONTEÚDOS OBJETIVOS PERÍODO

CONTEÚDOS OBJETIVOS PERÍODO ESCOLA BÁSICA2,3 EUGÉNIO DOS SANTOS 2013 2014 página 1 ESCOLA BÁSICA DO 2.º E 3.º CICLOS EUGÉNIO DOS SANTOS PLANIFICAÇÃO E METAS DE APRENDIZAGEM DA DISCIPLINA DE CIÊNCIAS FÍSICO-QUÍMICAS 8.º ANO DE ESCOLARIDADE

Leia mais

Quanto à origem uma onda pode ser classificada em onda mecânica e onda eletromagnética.

Quanto à origem uma onda pode ser classificada em onda mecânica e onda eletromagnética. CLASSIFICAÇÃO DAS ONDAS Podemos classificar as ondas quanto à: sua origem direção de oscilação tipo de energia transportada. ONDAS QUANTO À ORIGEM Quanto à origem uma onda pode ser classificada em onda

Leia mais

Prof. Eduardo Loureiro, DSc.

Prof. Eduardo Loureiro, DSc. Prof. Eduardo Loureiro, DSc. Transmissão de Calor é a disciplina que estuda a transferência de energia entre dois corpos materiais que ocorre devido a uma diferença de temperatura. Quanta energia é transferida

Leia mais

Lei dos transformadores e seu princípio de funcionamento

Lei dos transformadores e seu princípio de funcionamento Lei dos transformadores e seu princípio de funcionamento Os transformadores operam segundo a lei de Faraday ou primeira lei do eletromagnetismo. Primeira lei do eletromagnetismo Uma corrente elétrica é

Leia mais

Eletricidade Aula 1. Profª Heloise Assis Fazzolari

Eletricidade Aula 1. Profª Heloise Assis Fazzolari Eletricidade Aula 1 Profª Heloise Assis Fazzolari História da Eletricidade Vídeo 2 A eletricidade estática foi descoberta em 600 A.C. com Tales de Mileto através de alguns materiais que eram atraídos entre

Leia mais

COLÉGIO NOSSA SENHORA DA PIEDADE. Programa de Recuperação Paralela. 2ª Etapa 2014

COLÉGIO NOSSA SENHORA DA PIEDADE. Programa de Recuperação Paralela. 2ª Etapa 2014 COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Paralela 2ª Etapa 2014 Disciplina: Física Série: 3ª Professor (a): Marcos Vinicius Turma: FG Caro aluno, você está recebendo o conteúdo de recuperação.

Leia mais

REVISÃO ENEM. Prof. Heveraldo

REVISÃO ENEM. Prof. Heveraldo REVISÃO ENEM Prof. Heveraldo Fenômenos Elétricos e Magnéticos Carga elétrica e corrente elétrica. Lei de Coulomb. Campo elétrico e potencial elétrico. Linhas de campo. Superfícies equipotenciais. Poder

Leia mais

Corrente elétrica corrente elétrica.

Corrente elétrica corrente elétrica. Corrente elétrica Vimos que os elétrons se deslocam com facilidade em corpos condutores. O deslocamento dessas cargas elétricas é chamado de corrente elétrica. A corrente elétrica é responsável pelo funcionamento

Leia mais

ENEM 2014/2015 Física (Prova Amarela) Prof. Douglas Almeida

ENEM 2014/2015 Física (Prova Amarela) Prof. Douglas Almeida Questão 46 Nesta questão, o candidato precisa saber que um filtro de luz realiza a refração seletiva, deixando passar as cores que o compõe e absorvendo substancialmente as outras cores. Assim, para absorver

Leia mais

FORMAS DE TRANSFERÊNCIA DE CALOR ENTRE HOMEM E MEIO AMBIENTE

FORMAS DE TRANSFERÊNCIA DE CALOR ENTRE HOMEM E MEIO AMBIENTE AMBIENTE TÉRMICO O ambiente térmico pode ser definido como o conjunto das variáveis térmicas do posto de trabalho que influenciam o organismo do trabalhador, sendo assim um fator importante que intervém,

Leia mais

QUÍMICA QUESTÃO 41 QUESTÃO 42

QUÍMICA QUESTÃO 41 QUESTÃO 42 Processo Seletivo/UNIFAL- janeiro 2008-1ª Prova Comum TIPO 1 QUÍMICA QUESTÃO 41 Diferentes modelos foram propostos ao longo da história para explicar o mundo invisível da matéria. A respeito desses modelos

Leia mais

Neste capítulo trataremos das propriedades gerais de um laser, bem como das características de um laser a fibra de cavidades acopladas.

Neste capítulo trataremos das propriedades gerais de um laser, bem como das características de um laser a fibra de cavidades acopladas. 3 Laser a Fibra Neste capítulo trataremos das propriedades gerais de um laser, bem como das características de um laser a fibra de cavidades acopladas. 3.1 Propriedades Gerais A palavra LASER é um acrônimo

Leia mais

Aula de Véspera - Inv-2009 Professor Leonardo

Aula de Véspera - Inv-2009 Professor Leonardo 01. Dois astronautas, A e B, encontram-se livres na parte externa de uma estação espacial, sendo desprezíveis as forças de atração gravitacional sobre eles. Os astronautas com seus trajes espaciais têm

Leia mais

EXTERNATO MATER DOMUS

EXTERNATO MATER DOMUS EXTERNATO MATER DOMUS RUA PASCAL, 1403 CAMPO BELO SP CEP 04616/004 - Fone: 5092-5825 MATÉRIA: FÍSICA PROFESSORA: RENATA LEITE QUARTIERI ALUNO: Nº Série: 3º TURMA: Única DATA: 02 /03/2015 ASSINATURA DO

Leia mais

Separação de Isótopos de Terras Raras usando Laser. Nicolau A.S.Rodrigues Instituto de Estudos Avançados

Separação de Isótopos de Terras Raras usando Laser. Nicolau A.S.Rodrigues Instituto de Estudos Avançados Separação de Isótopos de Terras Raras usando Laser Nicolau A.S.Rodrigues Instituto de Estudos Avançados Roteiro 1. Motivação: - Isótopos: o que são porque um determinado isótopo é mais interessantes que

Leia mais

O olho humano permite, com o ar limpo, perceber uma chama de vela em até 15 km e um objeto linear no mapa com dimensão de 0,2mm.

O olho humano permite, com o ar limpo, perceber uma chama de vela em até 15 km e um objeto linear no mapa com dimensão de 0,2mm. A Visão é o sentido predileto do ser humano. É tão natural que não percebemos a sua complexidade. Os olhos transmitem imagens deformadas e incompletas do mundo exterior que o córtex filtra e o cérebro

Leia mais

Fenómenos Ondulatórios. Reflexão, refracção, difracção

Fenómenos Ondulatórios. Reflexão, refracção, difracção Fenómenos Ondulatórios Reflexão, refracção, difracção Natureza dualística da radiação electromagnética A radiação electromagnética é um fenómeno ondulatório envolvendo a propagação de um campo magnético

Leia mais

Formas regulares e simétricas assim como a ordenação das partículas que os formam. Cristalografia e Difração em Raio X - Michele Oliveira

Formas regulares e simétricas assim como a ordenação das partículas que os formam. Cristalografia e Difração em Raio X - Michele Oliveira Formas regulares e simétricas assim como a ordenação das partículas que os formam. Cristalografia e Difração em Raio X - Michele Oliveira 2 Cristais são arranjos atômicos ou moleculares cuja estrutura

Leia mais

Circuitos de Corrente Contínua

Circuitos de Corrente Contínua Circuitos de Corrente Contínua Conceitos básicos de eletricidade Fundamentos de Eletrostática Potencial, Diferença de Potencial, Corrente Tipos de Materiais Circuito Elétrico Resistores 1 Circuitos de

Leia mais

2. Fundamentos Físicos: Laser e Luz Intensa Pulsada

2. Fundamentos Físicos: Laser e Luz Intensa Pulsada 2. Fundamentos Físicos: Laser e Luz Intensa Pulsada A luz está presente em praticamente todos os momentos de nossas vidas e tem fundamental importância para a sobrevivência da vida no planeta. Atualmente,

Leia mais

ATIVIDADES DE RECUPERAÇÃO PARALELA 3º TRIMESTRE 8º ANO DISCIPLINA: FÍSICA

ATIVIDADES DE RECUPERAÇÃO PARALELA 3º TRIMESTRE 8º ANO DISCIPLINA: FÍSICA ATIVIDADES DE RECUPERAÇÃO PARALELA 3º TRIMESTRE 8º ANO DISCIPLINA: FÍSICA Observações: 1- Antes de responder às atividades, releia o material entregue sobre Sugestão de Como Estudar. 2 - Os exercícios

Leia mais

Antena Escrito por André

Antena Escrito por André Antena Escrito por André Antenas A antena é um dispositivo passivo que emite ou recebe energia eletromagnéticas irradiada. Em comunicações radioelétricas é um dispositivo fundamental. Alcance de uma Antena

Leia mais

Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Departamento de Informática

Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Departamento de Informática Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Departamento de Informática Francisco Erberto de Sousa 11111971 Saulo Bezerra Alves - 11111958 Relatório: Capacitor, Resistor, Diodo

Leia mais

ÓPTICA GEOMÉTRICA PREGOLINI

ÓPTICA GEOMÉTRICA PREGOLINI ÓPTICA GEOMÉTRICA PREGOLINI ÓPTICA GEOMÉTRICA É a parte da Física que estuda os fenômenos relacionados com a luz e sua interação com meios materiais quando as dimensões destes meios é muito maior que o

Leia mais

POTENCIAL ELÉTRICO. alvaro.unespbauru@hotmail.com

POTENCIAL ELÉTRICO. alvaro.unespbauru@hotmail.com POTENCIAL ELÉTRICO alvaro.unespbauru@hotmail.com Potenciais elétricos Potencial de membrana: é a diferença de potencial elétrico, em Volts (V), gerada a partir de um gradiente eletroquímico através de

Leia mais

15/09/2015 1 PRINCÍPIOS DA ÓPTICA O QUE É A LUZ? A luz é uma forma de energia que não necessita de um meio material para se propagar.

15/09/2015 1 PRINCÍPIOS DA ÓPTICA O QUE É A LUZ? A luz é uma forma de energia que não necessita de um meio material para se propagar. O QUE É A LUZ? A luz é uma forma de energia que não necessita de um meio material para se propagar. PRINCÍPIOS DA ÓPTICA A luz do Sol percorre a distância de 150 milhões de quilômetros com uma velocidade

Leia mais

ELETRODO OU SEMIPILHA:

ELETRODO OU SEMIPILHA: ELETROQUÍMICA A eletroquímica estuda a corrente elétrica fornecida por reações espontâneas de oxirredução (pilhas) e as reações não espontâneas que ocorrem quando submetidas a uma corrente elétrica (eletrólise).

Leia mais

O Princípio da Complementaridade e o papel do observador na Mecânica Quântica

O Princípio da Complementaridade e o papel do observador na Mecânica Quântica O Princípio da Complementaridade e o papel do observador na Mecânica Quântica A U L A 3 Metas da aula Descrever a experiência de interferência por uma fenda dupla com elétrons, na qual a trajetória destes

Leia mais

GOVERNO DO ESTADO DE MATO GROSSO DO SUL SECRETARIA DE ESTADO DE EDUCAÇÃO CENTRO DE EDUCAÇÃO PROFISSIONAL EZEQUIEL F. LIMA ATERRAMENTO E BLINDAGEM

GOVERNO DO ESTADO DE MATO GROSSO DO SUL SECRETARIA DE ESTADO DE EDUCAÇÃO CENTRO DE EDUCAÇÃO PROFISSIONAL EZEQUIEL F. LIMA ATERRAMENTO E BLINDAGEM GOVERNO DO ESTADO DE MATO GROSSO DO SUL SECRETARIA DE ESTADO DE EDUCAÇÃO CENTRO DE EDUCAÇÃO PROFISSIONAL EZEQUIEL F. LIMA ATERRAMENTO E BLINDAGEM Os sistemas de cabeamento estruturado foram desenvolvidos

Leia mais

Hoje estou elétrico!

Hoje estou elétrico! A U A UL LA Hoje estou elétrico! Ernesto, observado por Roberto, tinha acabado de construir um vetor com um pedaço de papel, um fio de meia, um canudo e um pedacinho de folha de alumínio. Enquanto testava

Leia mais

OBJETIVOS: CARGA HORÁRIA MÍNIMA CRONOGRAMA:

OBJETIVOS: CARGA HORÁRIA MÍNIMA CRONOGRAMA: ESTUDO DIRIGIDO COMPONENTE CURRICULAR: Controle de Processos e Instrumentação PROFESSOR: Dorival Rosa Brito ESTUDO DIRIGIDO: Métodos de Determinação de Parâmetros de Processos APRESENTAÇÃO: O rápido desenvolvimento

Leia mais

Luz, olho humano e óculos Capítulo 12 (pág. 219)

Luz, olho humano e óculos Capítulo 12 (pág. 219) Luz, olho humano e óculos Capítulo 12 (pág. 219) Raios de Luz - Alguns filósofos gregos pensavam que nossos olhos emitiam raios que permitiam enxergar os objetos; - Só nos é possível ver quando há luz

Leia mais

1 Fibra Óptica e Sistemas de transmissão ópticos

1 Fibra Óptica e Sistemas de transmissão ópticos 1 Fibra Óptica e Sistemas de transmissão ópticos 1.1 Introdução Consiste em um guia de onda cilíndrico, conforme ilustra a Figura 1, formado por núcleo de material dielétrico (em geral vidro de alta pureza),

Leia mais

Conteúdo Eletromagnetismo Aplicações das ondas eletromagnéticas

Conteúdo Eletromagnetismo Aplicações das ondas eletromagnéticas AULA 22.2 Conteúdo Eletromagnetismo Aplicações das ondas eletromagnéticas Habilidades: Frente a uma situação ou problema concreto, reconhecer a natureza dos fenômenos envolvidos, situando-os dentro do

Leia mais

c) A corrente induzida na bobina imediatamente após a chave S ser fechada terá o mesmo sentido da corrente no circuito? Justifique sua resposta.

c) A corrente induzida na bobina imediatamente após a chave S ser fechada terá o mesmo sentido da corrente no circuito? Justifique sua resposta. Questão 1 Um estudante de física, com o intuito de testar algumas teorias sobre circuitos e indução eletromagnética, montou o circuito elétrico indicado na figura ao lado. O circuito é composto de quatro

Leia mais

DEPARTAMENTO DE ENGENHARIA ELÉTRICA DEE CURSO DE ENGENHARIA ELÉTRICA

DEPARTAMENTO DE ENGENHARIA ELÉTRICA DEE CURSO DE ENGENHARIA ELÉTRICA LABORATÓRIO 6: Máquina Síncrona em Barramento Infinito Objetivo: Verificar, experimentalmente, como é feita a ligação de um gerador síncrono no barramento infinito. Teoria: As necessidades de energia elétrica

Leia mais

AVALIAÇÃO DIAGNÓSTICA

AVALIAÇÃO DIAGNÓSTICA O trabalho se inicia com uma avaliação diagnóstica (aplicação de um questionário) a respeito dos conhecimentos que pretendemos introduzir nas aulas dos estudantes de física do ensino médio (público alvo)

Leia mais

Nosso objetivo será mostrar como obter informações qualitativas sobre a refração da luz em um sistema óptico cilíndrico.

Nosso objetivo será mostrar como obter informações qualitativas sobre a refração da luz em um sistema óptico cilíndrico. Introdução Nosso objetivo será mostrar como obter informações qualitativas sobre a refração da luz em um sistema óptico cilíndrico. A confecção do experimento permitirá também a observação da dispersão

Leia mais

Microfone e altifalante. Conversão de um sinal sonoro num sinal elétrico. sinal elétrico num sinal sonoro.

Microfone e altifalante. Conversão de um sinal sonoro num sinal elétrico. sinal elétrico num sinal sonoro. Microfone e altifalante Conversão de um sinal sonoro num sinal elétrico. Conversão de um sinal elétrico num sinal sonoro. O funcionamento dos microfones e dos altifalantes baseia-se na: - acústica; - no

Leia mais

Roteiro 25 Interferência sonora e batimento sonoro

Roteiro 25 Interferência sonora e batimento sonoro Roteiro 25 Interferência sonora e batimento sonoro 1 INTRODUÇÃO A interferência sonora consiste em um recebimento de duas ou mais ondas de fontes diferentes. Neste caso, teremos uma região do espaço na

Leia mais

Seleção de comprimento de onda com espectrômetro de rede

Seleção de comprimento de onda com espectrômetro de rede Seleção de comprimento de onda com espectrômetro de rede Fig. 1: Arranjo do experimento P2510502 O que você vai necessitar: Fotocélula sem caixa 06779.00 1 Rede de difração, 600 linhas/mm 08546.00 1 Filtro

Leia mais

-2014- CONTEÚDO SEPARADO POR TRIMESTRE E POR AVALIAÇÃO CIÊNCIAS 9º ANO 1º TRIMESTRE

-2014- CONTEÚDO SEPARADO POR TRIMESTRE E POR AVALIAÇÃO CIÊNCIAS 9º ANO 1º TRIMESTRE -2014- CONTEÚDO SEPARADO POR TRIMESTRE E POR AVALIAÇÃO CIÊNCIAS 9º ANO 1º TRIMESTRE DISCURSIVA OBJETIVA QUÍMICA FÍSICA QUÍMICA FÍSICA Matéria e energia Propriedades da matéria Mudanças de estado físico

Leia mais

------------------------------------------------------------------------------ - Modelos de células de condutância. Procedimento Experimental

------------------------------------------------------------------------------ - Modelos de células de condutância. Procedimento Experimental QMC5351 Química Analítica Instrumental CONDUTIMETRIA A condutimetria é um método de análise que se fundamenta na medida da condutividade elétrica de uma solução eletrolítica. A condução da eletricidade

Leia mais

Introdução. Criar um sistema capaz de interagir com o ambiente. Um transdutor é um componente que transforma um tipo de energia em outro.

Introdução. Criar um sistema capaz de interagir com o ambiente. Um transdutor é um componente que transforma um tipo de energia em outro. SENSORES Introdução Criar um sistema capaz de interagir com o ambiente. Num circuito eletrônico o sensor é o componente que sente diretamente alguma característica física do meio em que esta inserido,

Leia mais

RESUMOS TEÓRICOS de QUÍMICA GERAL e EXPERIMENTAL

RESUMOS TEÓRICOS de QUÍMICA GERAL e EXPERIMENTAL RESUMOS TEÓRICOS de QUÍMICA GERAL e EXPERIMENTAL 5 ESTUDO DA MATÉRIA 1 DEFINIÇÕES Matéria é tudo que ocupa lugar no espaço e tem massa. Nem tudo que existe no universo e matéria. Por exemplo, o calor e

Leia mais

Tânia observa um lápis com o auxílio de uma lente, como representado nesta figura:

Tânia observa um lápis com o auxílio de uma lente, como representado nesta figura: PROVA DE FÍSICA QUESTÃO 0 Tânia observa um lápis com o auxílio de uma lente, como representado nesta figura: Essa lente é mais fina nas bordas que no meio e a posição de cada um de seus focos está indicada

Leia mais

DIODO SEMICONDUTOR. Conceitos Básicos. Prof. Marcelo Wendling Ago/2011

DIODO SEMICONDUTOR. Conceitos Básicos. Prof. Marcelo Wendling Ago/2011 DIODO SEMICONDUTOR Prof. Marcelo Wendling Ago/2011 Conceitos Básicos O diodo semicondutor é um componente que pode comportar-se como condutor ou isolante elétrico, dependendo da forma como a tensão é aplicada

Leia mais

28-02-2015. Sumário. Atmosfera da Terra. Interação Radiação-Matéria 23/02/2015

28-02-2015. Sumário. Atmosfera da Terra. Interação Radiação-Matéria 23/02/2015 Sumário Na : Radiação, Matéria e Estrutura Unidade temática 2. O ozono como filtro protetor da Terra. Formação e decomposição do ozono na atmosfera. Filtros solares. Alternativas aos CFC. Como se mede

Leia mais

Roteiro 23 Difração e Interferência de ondas bidimensionais num meio líquido

Roteiro 23 Difração e Interferência de ondas bidimensionais num meio líquido Roteiro 23 Difração e Interferência de ondas bidimensionais num meio líquido 1 INTRODUÇÃO As ondas podem sofrer o efeito de diversos fenômenos, dentre eles estão a difração e a interferência. A difração

Leia mais

Professor Felipe Técnico de Operações P-25 Petrobras

Professor Felipe Técnico de Operações P-25 Petrobras Professor Felipe Técnico de Operações P-25 Petrobras Contatos : Felipe da Silva Cardoso professorpetrobras@gmail.com www.professorfelipecardoso.blogspot.com skype para aula particular online: felipedasilvacardoso

Leia mais

Classificação das fontes Todos os corpos visíveis são fontes de luz e podem classificar-se em primária ou secundária.

Classificação das fontes Todos os corpos visíveis são fontes de luz e podem classificar-se em primária ou secundária. Luz: é uma onda eletromagnética, que tem comprimento de onda (do espectro visível) na faixa de 400 nm a 700 nm (nm = nanômetros = 10-9 m). Além da luz visível, existem outras onda eletromagnéticas om diferentes

Leia mais

CAPÍTULO 08/ MÓDULO 01: ONDAS.

CAPÍTULO 08/ MÓDULO 01: ONDAS. FÍSICA PROF. HELTON CAPÍTULO 08/ MÓDULO 01: ONDAS. MOVIMENTO PERIÓDICO Um fenômeno é periódico quando se repete identicamente em intervalos de tempos iguais. Exemplos: DEFINIÇÕES: Amplitude: distância

Leia mais

Você sabia que, por terem uma visão quase. nula, os morcegos se orientam pelo ultra-som?

Você sabia que, por terem uma visão quase. nula, os morcegos se orientam pelo ultra-som? A U A UL LA Ultra-som Introdução Você sabia que, por terem uma visão quase nula, os morcegos se orientam pelo ultra-som? Eles emitem ondas ultra-sônicas e quando recebem o eco de retorno são capazes de

Leia mais

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de?

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de? Física 01. Um fio metálico e cilíndrico é percorrido por uma corrente elétrica constante de. Considere o módulo da carga do elétron igual a. Expressando a ordem de grandeza do número de elétrons de condução

Leia mais

478 a.c. Leucipo e seu discípulo Demócrito

478 a.c. Leucipo e seu discípulo Demócrito MODELOS ATÔMICOS 478 a.c. Leucipo e seu discípulo Demócrito - A matéria após sofrer várias subdivisões, chegaria a uma partícula indivisível a que chamaram de átomo. - ÁTOMO a = sem tomos = divisão - Esta

Leia mais

Modos de Propagação. Tecnologia em Redes de Computadores 5º Período Disciplina: Sistemas e Redes Ópticas Prof. Maria de Fátima F.

Modos de Propagação. Tecnologia em Redes de Computadores 5º Período Disciplina: Sistemas e Redes Ópticas Prof. Maria de Fátima F. Modos de Propagação Tecnologia em Redes de Computadores 5º Período Disciplina: Sistemas e Redes Ópticas Prof. Maria de Fátima F. Bueno Marcílio 1 Modos de Propagação Antes de iniciarmos o estudo dos tipos

Leia mais

Qualificação de Procedimentos

Qualificação de Procedimentos Qualificação de Procedimentos Os equipamentos em geral são fabricados por meio de uniões de partes metálicas entre si empregando-se soldas. Há, portanto a necessidade de se garantir, nestas uniões soldadas,

Leia mais

CALORIMETRIA, MUDANÇA DE FASE E TROCA DE CALOR Lista de Exercícios com Gabarito e Soluções Comentadas

CALORIMETRIA, MUDANÇA DE FASE E TROCA DE CALOR Lista de Exercícios com Gabarito e Soluções Comentadas COLÉGIO PEDRO II PRÓ-REITORIA DE PÓS-GRADUAÇÃO, PESQUISA, EXTENSÃO E CULTURA PROGRAMA DE RESIDÊNCIA DOCENTE RESIDENTE DOCENTE: Marcia Cristina de Souza Meneguite Lopes MATRÍCULA: P4112515 INSCRIÇÃO: PRD.FIS.0006/15

Leia mais

Instalações Máquinas Equipamentos Pessoal de produção

Instalações Máquinas Equipamentos Pessoal de produção Fascículo 6 Arranjo físico e fluxo O arranjo físico (em inglês layout) de uma operação produtiva preocupa-se com o posicionamento dos recursos de transformação. Isto é, definir onde colocar: Instalações

Leia mais

Filtros de sinais. Conhecendo os filtros de sinais.

Filtros de sinais. Conhecendo os filtros de sinais. Filtros de sinais Nas aulas anteriores estudamos alguns conceitos importantes sobre a produção e propagação das ondas eletromagnéticas, além de analisarmos a constituição de um sistema básico de comunicações.

Leia mais

História dos Raios X. 08 de novembro de 1895: Descoberta dos Raios X Pelo Professor de física teórica Wilhelm Conrad Röntgen.

História dos Raios X. 08 de novembro de 1895: Descoberta dos Raios X Pelo Professor de física teórica Wilhelm Conrad Röntgen. História dos Raios X 08 de novembro de 1895: Descoberta dos Raios X Pelo Professor de física teórica Wilhelm Conrad Röntgen. História dos Raios X 22 de dezembro de 1895, Röntgen fez a primeira radiografia

Leia mais

U = R.I. Prof.: Geraldo Barbosa Filho AULA 06 CORRENTE ELÉTRICA E RESISTORES 1- CORRENTE ELÉTRICA

U = R.I. Prof.: Geraldo Barbosa Filho AULA 06 CORRENTE ELÉTRICA E RESISTORES 1- CORRENTE ELÉTRICA AULA 06 CORRENTE ELÉTRICA E RESISTORES 1- CORRENTE ELÉTRICA Movimento ordenado dos portadores de carga elétrica. 2- INTENSIDADE DE CORRENTE É a razão entre a quantidade de carga elétrica que atravessa

Leia mais

TC DE FÍSICA 2 a SÉRIE ENSINO MÉDIO

TC DE FÍSICA 2 a SÉRIE ENSINO MÉDIO TC DE FÍSICA 2 a SÉRIE ENSINO MÉDIO Professor(es): Odair Mateus 14/6/2010 1.Na(s) questão(ões) a seguir, escreva no espaço apropriado a soma dos itens corretos. Sobre os conceitos e aplicações da Eletricidade

Leia mais

GABARITO DO GUIA DE ESTUDO 3 POLARIZAÇÃO

GABARITO DO GUIA DE ESTUDO 3 POLARIZAÇÃO GABARTO DO GUA DE ESTUDO POLARZAÇÃO GE.) Placas polarizadoras. GE..) Um vendedor alega que os óculos de sol que ele deseja lhe vender possuem lentes com filtro polaróide; porém, você suspeita que as lentes

Leia mais

Questão 1. Questão 2. Resposta. Resposta

Questão 1. Questão 2. Resposta. Resposta Questão 1 Na natureza, muitos animais conseguem guiar-se e até mesmo caçar com eficiência, devido à grande sensibilidade que apresentam para a detecção de ondas, tanto eletromagnéticas quanto mecânicas.

Leia mais

ELECTROMAGNETISMO. Dulce Godinho 1. Nov-09 Dulce Godinho 1. Nov-09 Dulce Godinho 2

ELECTROMAGNETISMO. Dulce Godinho 1. Nov-09 Dulce Godinho 1. Nov-09 Dulce Godinho 2 Dulce Godinho 1 Dulce Godinho 2 Dulce Godinho 1 Dulce Godinho 3 Dulce Godinho 4 Dulce Godinho 2 Dulce Godinho 5 Dulce Godinho 6 Dulce Godinho 3 Dulce Godinho 7 Dulce Godinho 8 Dulce Godinho 4 Dulce Godinho

Leia mais

Prova 3 Física QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE FÍSICA. QUESTÕES OBJETIVAS GABARITO 3

Prova 3 Física QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE FÍSICA. QUESTÕES OBJETIVAS GABARITO 3 Prova 3 QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE FÍSICA. UEM Comissão Central do Vestibular Unificado FÍSICA 01 O diagrama abaixo mostra um brinquedo

Leia mais

RECEPTOR AM DSB. Transmissor. Circuito Receptor AM DSB - Profº Vitorino 1

RECEPTOR AM DSB. Transmissor. Circuito Receptor AM DSB - Profº Vitorino 1 RECEPTOR AM DSB Transmissor Circuito Receptor AM DSB - Profº Vitorino 1 O receptor super-heteródino O circuito demodulador que vimos anteriormente é apenas parte de um circuito mais sofisticado capaz de

Leia mais

Técnico em Eletrotécnica

Técnico em Eletrotécnica Técnico em Eletrotécnica Caderno de Questões Prova Objetiva 2015 01 Em uma corrente elétrica, o deslocamento dos elétrons para produzir a corrente se deve ao seguinte fator: a) fluxo dos elétrons b) forças

Leia mais

Circuitos Elétricos 1º parte. Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento

Circuitos Elétricos 1º parte. Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento Circuitos Elétricos 1º parte Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento Introdução Um circuito elétrico é constituido de interconexão de vários

Leia mais

Curso superior em Agronomia GESA- Grupo de estudo em solos agrícolas Absorção de nutrientes e Fotossíntese Bambuí-MG 2009 Alunas: Erica Marques Júlia Maluf É o processo pelo qual a planta sintetiza compostos

Leia mais

1. Analisa a seguinte imagem e responde às questões que se seguem:

1. Analisa a seguinte imagem e responde às questões que se seguem: C.F.Q. 8ºA Outubro 1 1. Analisa a seguinte imagem e responde às questões que se seguem: 1.1. Qual é o detetor de luz? O olho. 1.2. Qual é o recetor de luz? A bola. 1.3. De que cor veremos a bola se ela

Leia mais

Multiplexação. Multiplexação. Multiplexação - FDM. Multiplexação - FDM. Multiplexação - FDM. Sistema FDM

Multiplexação. Multiplexação. Multiplexação - FDM. Multiplexação - FDM. Multiplexação - FDM. Sistema FDM Multiplexação É a técnica que permite a transmissão de mais de um sinal em um mesmo meio físico. A capacidade de transmissão do meio físico é dividida em fatias (canais), com a finalidade de transportar

Leia mais

MOTORES ELÉTRICOS Princípios e fundamentos

MOTORES ELÉTRICOS Princípios e fundamentos MOTORES ELÉTRICOS Princípios e fundamentos 1 Classificação 2 3 Estator O estator do motor e também constituido por um núcleo ferromagnético laminado, nas cavas do qual são colocados os enrolamentos alimentados

Leia mais

Introdução aos Sistemas de Informação Geográfica

Introdução aos Sistemas de Informação Geográfica Introdução aos Sistemas de Informação Geográfica Mestrado Profissionalizante 2015 Karla Donato Fook karladf@ifma.edu.br IFMA / DAI Motivação Alguns princípios físicos dão suporte ao Sensoriamento Remoto...

Leia mais

Lição 3. Instrução Programada

Lição 3. Instrução Programada Lição 3 É IMPORTANTE A ATENTA LEITURA DAS INSTRUÇÕES FORNECIDAS NAS LIÇÕES 1 e 2. NOSSO CURSO NÃO SE TRATA DE UM CURSO POR COR RESPONDENCIA; NÃO NOS DEVERÃO SER MAN- DADAS FOLHAS COM AS QUESTÕES PARA SEREM

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 5 PROPRIEDADES ONDULATÓRIAS DA MATÉRIA Primeira Edição junho de 2005 CAPÍTULO 5 PROPRIEDADES ONDULATÓRIAS DA MATÉRIA ÍNDICE 5.1- Postulados

Leia mais