PROBABILIDADE E ESTATÍSTICA PROBABILIDADES

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "PROBABILIDADE E ESTATÍSTICA PROBABILIDADES"

Transcrição

1 PROBABILIDADE E ESTATÍSTICA PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/ Produção de Recursos Educacionais Digitais

2 Revisando - Análise combinatória Se um evento pode ocorrer de qualquer um de n 1 modos e se, quando ele ocorre, um outro evento pode realizar-se de qualquer um de n 2 modos, então o número de maneiras segundo as quais ambos os evento podem ocorrer numa dada ordem será n 1 n 2. Exemplo. Se há 2 candidatos a governador e 6 a prefeito, de quantos modos podem ser preenchidos os dois cargos? 2 X 6 = 12 modos

3 Revisando Fatorial de n O fatorial de n, é representado por n!, sendo definido como: n! = n n 1 n 2 1. Exemplo: 5! = 5 x 4 x 3 x 2 x 1 = 120 Lembrando que 0! = 1

4 Revisando Permutações Uma permutação de n objetos diferentes, tomados r de cada vez, é um arranjo de r dos n objetos, levando-se em consideração a ordem de sua disposição. Sendo representado por:. n P r ; P n, r ou P n,r e é dado por:. n P r = n! n r!

5 Exemplo. (SPIEGEL) De quantas maneiras 10 pessoas poderão sentar-se em um banco, se houver apenas 4 lugares? R = 10 x 9 x 8 x 7 = O primeiro lugar pode ser preenchido de 10 maneiras, o segundo de 9 maneiras, o terceiro de 8 maneiras e o quarto de 7 maneiras.

6 Revisando Combinações Uma combinação de n objetos diferentes, tomados r de cada vez, é uma escolha de r dos n objetos, não se levando em consideração a ordem de sua disposição. Sendo representado por:. n C r ; C n, r ; C n,r ou dado por: n r e é n r =. n P r r!

7 Exemplo. (SPIEGEL) De quantas maneiras uma comissão de 5 pessoas pode ser escolhida entre 9? R = n r = 9! 5! = 9 x 8 x 7 x 6 x 5 5 x 4 x 3 x 2 x 1 = 126

8 Revisando Conjuntos Um conjunto é uma coleção de objetos, usualmente representados por letras maiúsculas. Podendo ser por união ou intersecção. União Exemplo: Definindo C como união de A e B, (denominado algumas vezes a soma de A e B), então: C = A B Desse modo, C será formado de todos os elementos que estejam em A, ou em B, ou em ambos.

9 Intersecção Revisando Conjuntos Exemplo: Definindo D como a intersecção de A e B, (denominada algumas vezes como o produto de A e B), então: D = A B Desse modo D, será formado por todos os elementos que estão em A e em B.

10 Probabilidade Definição clássica: Se um experimento aleatório tem n resultados igualmente prováveis, e n A desses resultados pertencem a certo evento A, então a probabilidade de ocorrência do evento A é definida como: P A = n A n

11 Probabilidade Definição experimental: Seja um experimento aleatório com espaço amostral Ω e um evento A de interesse, onde esse experimento é repetido n vezes e o evento A ocorreu n(a) vezes. Então a frequência relativa do evento A é dada por: f A = n(a) n

12 Exemplo 1. (SPIEGEL) Se em lances de uma moeda resultam 529 caras, a frequência relativa das caras é de 529/1.000 = 0,529. Se em outros lances resultam 493 caras, a frequência relativa no total dos lances é de ( )/2.000 = 0,511. De acordo com a definição estatística poder-se-á chegar cada vez mais próximos de um número que será denominado probabilidade de ocorrer uma cara no único lance de uma moeda, de acordo com os resultados apresentados até agora ele será de 0,5.

13 Espaço Amostral Definição: É o conjunto de todos os resultados possíveis de um dado experimento. Sendo representado por S ou Ω. Ao se estudar um número de resultados em um espaço amostral, surgem 2 possibilidades: O espaço amostral será discreto quando este for finito ou infinito numerável. O espaço amostral será contínuo quando este for infinito não numerável.

14 Espaço Amostral Finito Condições: (a) p i 0, i = 1, 2,, k (b) p 1 + p p k = 1

15 Espaço Amostral Finito Exemplo 2. (MEYER) Suponha que somente três resultados sejam possíveis em um experimento, a saber, a 1, a 2, a 3. Além disso, suponha que a 1 seja duas vezes mais provável de ocorrer que a 2, o qual por sua vez é duas vezes mais provável de ocorrer que a 3. Então: p 1 = 2p 2 e p 2 = 2p 3. p 1 + p 2 + p 3 = 1 4p 3 + 2p 3 + p 3 = 1 p 3 = 1 7 ; p 2 = 2 7 e p 1 = 4 7

16 Espaço Amostral Infinito Numerável Exemplo 3. Uma moeda ser lançada sucessivas vezes até que ocorra uma cara (K). Ω = { K, CK, CCK, CCCK, CCCCK,...,}

17 Espaço Amostral Infinito Não Numerável Exemplo 4. Uma lâmpada ao ser fabricada e ensaiada, observar o seu tempo de vida. Ω = t R t 0

18 Eventos Definição: Um evento é um subconjunto de um espaço amostral. Quando o espaço amostral for finito ou infinito numerável, todo subconjunto poderá ser considerado um evento. Quando o espaço amostral for infinito não enumerável, nem todo subconjunto poderá ser considerado um evento.

19 Operações entre eventos

20 Evento mutuamente excludentes Definição: Dois eventos são denominados excludentes se eles não puderem ocorrer juntos. Logo evento A e B serão mutuamente excludentes em: A B =

21 Exemplo 5. (MEYER) Um dispositivo eletrônico é ensaiado e o tempo total de serviço t é registrado. Admitindo que o espaço amostral seja { t t 0}. Sejam A, B e C três eventos definidos da seguinte maneira: A = {t t < 100}; B = { t 50 t 200}; C = { t t > 150}.

22 Portanto: A B = {t t 200}; A B = {t 50 t < 100}; B C = {t t 50}; B C = { t 150 < t 200}; A C = ; A C = { t t < 100 ou t > 150}; Ᾱ = { t t 100}; C = { t t 150}.

23 Exemplo 6. Se E1 é o evento extração de um às de um baralho e E2 é o da extração de um rei, logo: P(E 1 ) = 4 52 = 1 13 e P E 2 = 4 52 = 1 13, então, a probabilidade de se extrair ou um às, ou um rei, em um lance único é: P(E 1 + E 2 ) = P E 1 + P E 2 = = 2 13

24 Propriedades (1) 0 P(A) 1. (2) P (Ω) = 1. (3) Se A e B forem eventos mutuamente excludentes, P(A B) = P(A) + P(B).

25 Teoremas Teorema 1. Se for o conjunto vazio, então P( ) = 0 Demonstração: para qualquer evento (A), podemos escrever A = A, uma vez que ambas são mutuamente excludentes, e decorre da propriedade 3, que: P A = P A = P A + P( )

26 Teoremas Teorema 2. Se Ᾱ for o evento complementar de A, então: P A = 1 P(Ᾱ) Demonstração: pode-se escrever Ω = A Ᾱ e, empregando as propriedades 2 e 3, tem-se: 1 = P A + P(Ᾱ)

27 Teoremas Teorema 3. Se A e B forem dois eventos quaisquer, então: P A B = P A + P B P A B. Demonstração: esse teorema consiste em decompor A B e B em dois eventos mutuamente excludentes e, em seguida, a aplicação da Propriedade 3, logo: A B = A B Ᾱ, B = A B B Ᾱ

28 Resulta em: P A B = P A + P B Ᾱ, P(B) = P(A B + P B Ᾱ Subtraindo a segunda igualdade da primeira, têm-se: P A B P B = P A P(A B)

29 Teoremas Teorema 4. Se A, B e C forem três eventos quaisquer, então: P A B C = P A + P B + P C P A B P A C P B C + P(A B C) Demonstração: esse teorema consiste em escrever A B C na forma (A B) C e aplicar o resultado do teorema 3.

30 Teoremas Teorema 5. Se A B, então P(A) P(B) Demonstração: pode-se decompor B em dois eventos mutuamente excludentes, da seguinte forma: B = A B Ᾱ Portanto, Pois, P B = P A + P B Ᾱ P(A) P B Ᾱ 0 pela propriedade 1.

31 Probabilidade condicional Consiste em calcular a probabilidade de ocorrência de um evento (A) condicionada à ocorrência prévia de um evento (B). Essa probabilidade é representada por P(A B), ou seja, probabilidade de A dado B. Sendo assim, seja A e B eventos quaisquer, sendo P(B) > 0, a probabilidade condicional pode ser definida por: P A B = P(A B) P(A)

32 Probabilidade condicional Exemplo 7. (BARBETTA, pg 103) Seja o lançamento de 2 dados não viciados e a observação das faces voltadas para cima. Calcule: a) A probabilidade de ocorrer faces iguais, sabendo-se que a soma é menor ou igual a 5. b) A soma das faces menor ou igual a 5, sabendo que as faces são iguais.

33 Ω = (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) E1 = faces iguais 1,1, 2,2, 3,3, 4,4, 5,5, (6,6) E2 = soma das faces é menor ou iguail a 5 = 1,1, 1,2, 1,3, 1,4, 2,1, 2,2, 2,3, 3,1, 3,2, (4,1)

34 Portanto, E1 E2 = * 1,1, 2,2 +, esquematicamente:

35 a) A probabilidade de ocorrer faces iguais, sabendo-se que a soma é menor ou igual a 5. P E 1 E 2 = P E 1 E 2 P(E 2 ) = = 2 10 = 0, 2

36 b) A soma das faces menor ou igual a 5, sabendo que as faces são iguais. P E 2 E 1 = P E 2 E 1 P(E 1 ) = = 2 6 = 0, %

37 Regra do produto A regra do produto é uma consequência da probabilidade condicional, obtida ao isolar a probabilidade da intersecção. P A B = P(A B) P(B) P(A B) = P B. P(A B) ou P B A = P(B A) P(A) P(A B) = P A. P(B A)

38 Exemplo 8. (BARBETTA, pg 105) Uma caixa contém 4 cartões amarelos e 8 vermelhos. Retira-se ao acaso, 2 cartões um após o outro, sem reposição. Qual a probabilidade que ambos sejam amarelos? R= Chamando de A i o evento que representa cartão amarelo na i -ésima extração, e V i, o evento que representa cartão vermelho na i -ésima extração (i = 1, 2), logo: Ω = A 1, A 2, A 1, V 2, V 1, A 2, (V 1, V 2 )

39 Como a probabilidade de interesse é P (A 1, A 2 ), aplicando a regra do produto, têm-se: P A 1 = 4 12 = 1 3 existe 4 cartões amarelos dentre os 12 cartões, e P A 2 A 1 = 3 11 supondo que tenha sido extraído cartão amarelo na 1ª extração, restando 3 amarelos dentre 11 cartões, logo: P A 1 A 2 = P A 1 P A 2 A 1 = = 1 11

40 Eventos Independentes Dois ou mais eventos são independentes quando a ocorrência de um dos eventos não influencia a probabilidade de ocorrência dos outros eventos. Portanto P A B = P A e P B A = P B logo evento independente pode ser definido como: A e B são independentes P A B = P A P(B)

41 Exemplo 9. (SPIEGEL), Sejam E 1 e E 2 os eventos cara na quinta jogada e cara na sexta jogada de uma moeda, respectivamente. Então E 1 e E 2 são eventos independentes, de modo que a probabilidade de ocorrer cara em ambas as jogadas, quinta e sexta, é admitindo-se que a moeda é honesta, logo: P = E 1 E 2 = P E 1 P E 2 = = 1 4

42 Exemplo 10. (MEYER), Admita-se que dentre 6 parafusos, dois sejam menores do que um comprimento especificado. Se dois dos parafusos forem escolhidos ao acaso, qual será a probabilidade de que os dois parafusos mais curtos sejam extraídos? Seja A i o evento (o i-ésimo parafuso escolhido é curto), i = 1, 2. P A 1 A 2 = P A 2 A 1 P A 1 = = 1 15

43 Teorema da Probabilidade Total Seja E 1, E 2, E 3,, E n eventos que constituem uma partição do espaço amostral Ω, então: a) E 1 E j = para todo i j b) P(E i ) > 0, para i = 1, 2, 3, k c) E 1 E 2 E k = Ω

44 Teorema da Probabilidade Total Pela regra do produto têm-se a equação do teorema da probabilidade total. k P F = P E i P(F E i ) i=1

45 Exemplo 11. As máquinas A e B são responsáveis por 70% e 30%, respectivamente, da produção de uma empresa. A máquina A produz 2% de peças defeituosas e a máquina B produz 8% de peças defeituosas. Calcule o percentual de peças defeituosas na produção desta empresa. Solução: P(A) = 70%; P(B) 30%; P(D A) = 2%; P(D B) = 8% P D = P D A. P A + P D B. P B Teorema da Probabilidade Total P D = 0,02.0,70 + 0,08.0,030 = 0, 038 3, 8%

46 Exemplo 12. Um aluno propõe-se a resolver uma questão de um trabalho. A probabilidade de que consiga resolver a questão sem necessidade de uma pesquisa é de 40%. Caso faça a pesquisa, a probabilidade de que consiga resolver a questão é de 70%. Se a probabilidade de o aluno fazer a pesquisa é de 80%, calcule a probabilidade de que consiga resolver a questão. Solução P(Sucesso sem pesquisa) = 40%; P(Fracasso sem pesquisa) = 60%; P(Sucesso com pesquisa) = 70%; P(Fracasso com pesquisa) = 30%; P(com pesquisa) = 80%; P(sem pesquisa) = 20%

47 P sucesso = P sucesso sem pesquisa + P sucesso com pesquisa = P(sucesso sem pesquisa). P(sem pesquisa) + P(sucesso sem pesquisa). P(sem pesquisa) Teorema da Probabilidade Total P D = 0,40 0,20 + 0,70 0,08 = 0,08 + 0,56 = 0, 64 64%

48 Teorema de Bayes Considere eventos E 1 mutuamente excludentes e um evento F qualquer cuja união representa o espaço amostral Ω, isto é, um dos eventos necessariamente deve ocorrer. Ou seja, o Teorema de Bayes permite obter a probabilidade de que um dos eventos E i ocorra, sabendo-se que o evento F ocorreu. Portanto, P(E i F) = P E i P(F E i ) P(F)

49 Teorema de Bayes Exemplo 13. As máquinas A e B são responsáveis por 60% e 40%, respectivamente, da produção de uma empresa. Os índices de peças defeituosas na produção destas máquinas valem 3% e 7% respectivamente. Se uma peça defeituosa foi selecionada da produção desta empresa, qual é a probabilidade de que tenha sido produzida pela máquina B? Solução A: peça produzida por A B: peça produzido por B d: peça defeituosa P(d A) = 3% = 0,03 P(d B) = 7% = 0,07 P(A) = 60% = 0,60 P(B) = 40% = 0,40

50 O exercício pede a probabilidade P(B d). Pelo Teorema de Bayes, P(B d) = P d B. P(B) P d A P A + P d B P(B) P B d = 0,07 0,4P B 0,03 0,6 + 0,07 0,4 = 0, , 87%

51 Teorema de Bayes Exemplo 14. (MEYER), Uma determinada peça é manufaturada por três fábricas (1, 2, 3). Sabe-se que a peça 1 produz o dobro de peças que 2, e 2 e 3 produzem o mesmo número de peças. Sabe-se também que 2% das peças produzidas por 1 e por 2 são defeituosas, enquanto 4% daquelas produzidas por 3 são defeituosas. Todas as peças produzidas são colocadas em um depósito, e depois uma peça é extraída ao acaso. Qual é a probabilidade de que tenha sido produzida na fábrica 1?

52 Pelo Teorema de Bayes P(B i A) = P A B i P(B i ) k i=1 P A B j P(B j ) i = 1, 2,, k P B i A = 0, , , , = 0,40 40%

53 Referências SPIEGEL, M. R. Estatística.3ª Edição. São Paulo -SP, BARBETTA, P. A. REIS, M. M. BORNIA, A. C. Estatística para Cursos de Engenharia e Informática. 3ª Edição. Atlas S.A. São Paulo - SP, MEYER, P. L. Probabilidade: Aplicação à estatística. 2ª Edição. LTC. Rio de Janeiro RJ, Bertolo, L.A. Probabilidades, Teorema da Probabilidade Total e Teorema de Bayes. IMES- Catanduva. Disponível em: < o.pdf>. Acesso em Outubro de 2013.

ELEMENTOS DE PROBABILIDADE. Prof. Paulo Rafael Bösing 25/11/2015

ELEMENTOS DE PROBABILIDADE. Prof. Paulo Rafael Bösing 25/11/2015 ELEMENTOS DE PROBABILIDADE Prof. Paulo Rafael Bösing 25/11/2015 ELEMENTOS DE PROBABILIDADE Def.: Um experimento é dito aleatório quando o seu resultado não for previsível antes de sua realização, ou seja,

Leia mais

Cap. 4 - Probabilidade

Cap. 4 - Probabilidade Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 4 - Probabilidade APOIO: Fundação de Apoio à Pesquisa

Leia mais

Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva

Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Probabilidade Probabilidade Experimento Aleatório Um experimento é dito aleatório quando satisfaz

Leia mais

Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω.

Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω. PROBABILIDADE 1.0 Conceitos Gerais No caso em que os possíveis resultados de um experimento aleatório podem ser listados (caso discreto), um modelo probabilístico pode ser entendido como a listagem desses

Leia mais

Tipos de Modelo. Exemplos. Modelo determinístico. Causas. Efeito. Exemplos. Modelo probabilístico. Causas. Efeito. Determinístico.

Tipos de Modelo. Exemplos. Modelo determinístico. Causas. Efeito. Exemplos. Modelo probabilístico. Causas. Efeito. Determinístico. Tipos de Modelo Sistema Real Determinístico Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Probabilístico Modelo determinístico Exemplos Gravitação F GM 1 M 2 /r 2 Causas Efeito

Leia mais

INTRODUÇÃO À PROBABILIDADE

INTRODUÇÃO À PROBABILIDADE INTRODUÇÃO À PROBABILIDADE Foto extraída em http://www.alea.pt Profª Maria Eliane Universidade Estadual de Santa Cruz USO DE PROBABILIDADES EM SITUAÇÕES DO COTIDIANO Escolhas pessoais Previsão do tempo

Leia mais

1 Definição Clássica de Probabilidade

1 Definição Clássica de Probabilidade Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 4 Professor: Carlos Sérgio UNIDADE 2 - Probabilidade: Definições (Notas de aula) 1 Definição Clássica

Leia mais

Probabilidades- Teoria Elementar

Probabilidades- Teoria Elementar Probabilidades- Teoria Elementar Experiência Aleatória Experiência aleatória é uma experiência em que: não se sabe exactamente o resultado que se virá a observar, mas conhece-se o universo dos resultados

Leia mais

3 NOÇÕES DE PROBABILIDADE

3 NOÇÕES DE PROBABILIDADE 3 NOÇÕES DE PROILIDDE 3.1 Conjuntos Um conjunto pode ser considerado como uma coleção de objetos chamados elementos do conjunto. Em geral denota-se conjunto por letras maiúsculas,, C,... e a sua representação

Leia mais

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios. PROBABILIDADE A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios. Os experimentos

Leia mais

Introdução à Probabilidade

Introdução à Probabilidade A Teoria de Probabilidade é responsável pelo estudo de fenômenos que envolvem a incerteza (é impossível prever antecipadamente o resultado) e teve origem na teoria de jogos, servindo como ferramenta para

Leia mais

Conceitos básicos de teoria da probabilidade

Conceitos básicos de teoria da probabilidade Conceitos básicos de teoria da probabilidade Experimento Aleatório: procedimento que, ao ser repetido sob as mesmas condições, pode fornecer resultados diferentes Exemplos:. Resultado no lançamento de

Leia mais

3. Probabilidade P(A) =

3. Probabilidade P(A) = 7 3. Probabilidade Probabilidade é uma medida numérica da plausibilidade de que um evento ocorrerá. Assim, as probabilidades podem ser usadas como medidas do grau de incerteza e podem ser expressas de

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Capítulo 2 Teoria das Probabilidades 2.1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento

Leia mais

Experiências Aleatórias. Espaço de Resultados. Acontecimentos

Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiência Aleatória É uma experiência em que: não se sabe exactamente o resultado que se virá a observar; conhece-se o universo dos resultados

Leia mais

EST029 Cálculo de Probabilidade I Cap. 3: Probabilidade Condicional e Independência

EST029 Cálculo de Probabilidade I Cap. 3: Probabilidade Condicional e Independência EST029 Cálculo de Probabilidade I Cap. 3: Probabilidade Condicional e Independência Prof. Clécio da Silva Ferreira Depto Estatística - UFJF 1 Perguntas 1. Um novo aparelho para detectar um certo tipo de

Leia mais

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios. PROBABILIDADE Prof. Aurimenes A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios.

Leia mais

Estatística Empresarial. Fundamentos de Probabilidade

Estatística Empresarial. Fundamentos de Probabilidade Fundamentos de Probabilidade A probabilidade de chuva é de 90% A probabilidade de eu sair é de 5% Conceitos Básicos Conceitos Básicos 1. Experiência Aleatória (E) Processo de obtenção de uma observação

Leia mais

NOÇÕES DE PROBABILIDADE

NOÇÕES DE PROBABILIDADE NOÇÕES DE PROBABILIDADE ALEATORIEDADE Menino ou Menina me? CARA OU COROA? 3 Qual será o rendimento da Caderneta de Poupança no final deste ano? E qual será a taxa de inflação acumulada em 014? Quem será

Leia mais

CAPÍTULO 3 PROBABILIDADE

CAPÍTULO 3 PROBABILIDADE CAPÍTULO 3 PROBABILIDADE 1. Conceitos 1.1 Experimento determinístico Um experimento se diz determinístico quando repetido em mesmas condições conduz a resultados idênticos. Exemplo 1: De uma urna que contém

Leia mais

PROBABILIDADE. Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti

PROBABILIDADE. Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti PROBABILIDADE Dizemos que a probabilidade é uma medida da quantidade de incerteza que existe em um determinado experimento.

Leia mais

Noções sobre Probabilidade

Noções sobre Probabilidade Noções sobre Probabilidade Introdução Vimos anteriormente como apresentar dados em tabelas e gráficos, e também como calcular medidas que descrevem características específicas destes dados. Mas além de

Leia mais

Definição de Probabilidade

Definição de Probabilidade INTRODUÇÃO A TEORIA DAS PROBABILIDADES A teoria das probabilidade nada mais é do que o bom senso transformado em cálculo A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número

Leia mais

2 Conceitos Básicos de Probabilidade

2 Conceitos Básicos de Probabilidade CE003 1 1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento de técnicas estatísticas

Leia mais

Noções de Probabilidade

Noções de Probabilidade Noções de Probabilidade Joel M. Corrêa da Rosa 2011 A estatística descritiva é ferramenta indispensável para extrair informação em um conjunto de dados. Entretanto, a tomada de decisões está fortemente

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Primeira Lista de Exercícios de junho de 0 Quantos códigos de quatro letras podem ser construídos usando-se as letras a, b, c, d, e, f se: a nenhuma letra puder ser repetida? b qualquer

Leia mais

Modelos de Probabilidade e Inferência Estatística

Modelos de Probabilidade e Inferência Estatística Modelos de Probabilidade e Inferência Estatística Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Probabilidade Condicional 03/14 1 / 48 É provável que você

Leia mais

ESTATÍSTICA EXPLORATÓRIA

ESTATÍSTICA EXPLORATÓRIA ESTATÍSTICA EXPLORATÓRIA Prof Paulo Renato A. Firmino praf62@gmail.com Aulas 07-08 Probabilidade Apanhado Geral Seguimos nossas discussões sobre a Incerteza Decidir usualmente envolve incerteza Uma presa

Leia mais

Definição: É uma coleção bem definida de

Definição: É uma coleção bem definida de EST029 Cálculo de Probabilidade I Cap. 1: Introdução à Probabilidade Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Conjuntos: Definição e notação Definição: É uma coleção bem definida de objetos,

Leia mais

EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais

EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Introdução Considere o experimento: Lançamento de uma moeda. Resultados

Leia mais

Estatística Básica. Probabilidade. Renato Dourado Maia. Instituto de Ciências Agrárias. Universidade Federal de Minas Gerais

Estatística Básica. Probabilidade. Renato Dourado Maia. Instituto de Ciências Agrárias. Universidade Federal de Minas Gerais Estatística Básica Probabilidade Renato Dourado Maia Instituto de Ciências Agrárias Universidade Federal de Minas Gerais Probabilidade Condicional Dados dois eventos A e B, a probabilidade condicional

Leia mais

Métodos Estatísticos Básicos

Métodos Estatísticos Básicos Aula 6 - Introdução à probabilidade Departamento de Economia Universidade Federal de Pelotas (UFPel) Maio de 2014 Experimento Experimento aleatório (E ): é um experimento que pode ser repetido indenidamente

Leia mais

Experiência Aleatória

Experiência Aleatória Probabilidades Experiência Aleatória Experiência aleatória é uma experiência em que: não se sabe exactamente o resultado que se virá a observar, mas conhece-se o universo dos resultados possíveis. Exemplo

Leia mais

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Probabilidade I 07/16 1 / 23

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Probabilidade I 07/16 1 / 23 I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Probabilidade I 07/16 1 / 23 Probabilidade As definições de probabilidade apresentadas anteriormente podem

Leia mais

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal.

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Estatística Probabilidade Profa. Ivonete Melo de Carvalho Conteúdo Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Objetivos Utilizar a probabilidade como estimador

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Aula 3 Professora: Rosa M. M. Leão Probabilidade e Estatística Conteúdo: 1.1 Por que estudar? 1.2 O que é? 1.3 População e Amostra 1.4 Um exemplo 1.5 Teoria da Probabilidade 1.6 Análise Combinatória 3

Leia mais

ESTATÍSTICA I LISTA DE EXERCÍCIOS 2 GABARITO

ESTATÍSTICA I LISTA DE EXERCÍCIOS 2 GABARITO ESTATÍSTICA I LISTA DE EXERCÍCIOS 2 GABARITO 1. (Magalhães e Lima, pg 40) Para cada um dos casos abaixo, escreva o espaço amostral correspondente e conte seus elementos: (a) Uma moeda é lançada duas vezes

Leia mais

CE Estatística I

CE Estatística I CE 002 - Estatística I Agronomia - Turma B Professor Walmes Marques Zeviani Laboratório de Estatística e Geoinformação Departamento de Estatística Universidade Federal do Paraná 1º semestre de 2012 Zeviani,

Leia mais

Métodos Quantitativos para Ciência da Computação Experimental. Jussara Almeida DCC-UFMG 2013

Métodos Quantitativos para Ciência da Computação Experimental. Jussara Almeida DCC-UFMG 2013 Métodos Quantitativos para Ciência da Computação Experimental Jussara Almeida DCC-UFMG 2013 Revisão de Probabilidade e Estatística Concentrado em estatística aplicada Estatística apropriada para medições

Leia mais

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Experiência para o qual o. modelo probabilístico é adequado.

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Experiência para o qual o. modelo probabilístico é adequado. Sistema Real Determinístico Probabilístico Causas Efeito X Causas Efeito Eperiência para o qual o modelo probabilístico é adequado. ❶ Não é possível prever um resultado particular, mas pode-se enumerar

Leia mais

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Probabilidade Condicional 08/16 1 / 56 Introdução É provável que você ganhe um aumento....

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA

UNIVERSIDADE FEDERAL DA PARAÍBA UNIVERSIDADE FEDERAL DA PARAÍBA Probabilidade Departamento de Estatística UFPB Luiz Medeiros Introdução Encontramos na natureza dois tipos de fenômenos Determinísticos: Os resultados são sempre os mesmos

Leia mais

Métodos Estatísticos Básicos

Métodos Estatísticos Básicos Aula 7 - Probabilidade condicional e independência Departamento de Economia Universidade Federal de Pelotas (UFPel) Maio de 2014 Probabilidade condicional Seja (Ω, A, P) um espaço de probabilidade. Se

Leia mais

Prof. Luiz Alexandre Peternelli

Prof. Luiz Alexandre Peternelli Exercícios propostos 1. Numa prova há 7 questões do tipo verdadeiro-falso ( V ou F ). Calcule a probabilidade de acertarmos todas as 7 questões se: a) Escolhermos aleatoriamente as 7 respostas. b) Escolhermos

Leia mais

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas Professor Fernando Porto Lançam-se 3 moedas. Seja X o número de ocorrências da face cara. O espaço amostral do experimento é: W = {(c,c,c),(c,c,r),(c,r,c),(c,r,r),(r,c,c),(r,c,r),(r,r,c),(r,r,r)}

Leia mais

Curso de Farmácia Estatística Vital Aula 05 Comentários Adicionais. Prof. Hemílio Fernandes Depto. de Estatística - UFPB

Curso de Farmácia Estatística Vital Aula 05 Comentários Adicionais. Prof. Hemílio Fernandes Depto. de Estatística - UFPB Curso de Farmácia Estatística Vital Aula 05 Comentários Adicionais Prof. Hemílio Fernandes Depto. de Estatística - UFPB Um pouco de Probabilidade Experimento Aleatório: procedimento que, ao ser repetido

Leia mais

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA PROBABILIDADE São duas as questões pertinentes na resolução de um problema envolvendo probabilidades. Primeiro, é preciso quantificar o conjunto de todos os resultados possíveis, que será chamado de espaço

Leia mais

TEORIA DAS PROBABILIDADES

TEORIA DAS PROBABILIDADES TEORIA DAS PROBABILIDADES 1.1 Introdução Ao estudarmos um fenômeno coletivo, verificamos a necessidade de descrever o próprio fenômeno e o modelo matemático associado ao mesmo, que permita explicá-lo da

Leia mais

T o e r o ia a da P oba ba i b lida d de

T o e r o ia a da P oba ba i b lida d de Teoria da Probabilidade Prof. Joni Fusinato Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso cotidiano. Usa o princípio básico do aprendizado humano que

Leia mais

FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ

FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ ESTATÍSTICA II Nota de aula 1 Prof. MSc. Herivelto T Marcondes dos Santos Fevereiro /2009 1 Modelos de probabilidade 1.1 Variável aleatória Definição: Sejam ε um

Leia mais

Introdução à Probabilidade

Introdução à Probabilidade Introdução à Probabilidade Silvia Shimakura silvia.shimakura@ufpr.br Probabilidade O que é probabilidade? Medida que quantifica a incerteza de um acontecimento futuro. Como quantificar incerteza? Definição

Leia mais

Probabilidade - aula II

Probabilidade - aula II 2012/02 1 Interpretações de Probabilidade 2 3 Amostras Aleatórias e Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades de eventos conjuntos. Interpretar e calcular probabilidades

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 11/2014 Variáveis Aleatórias Variáveis Aleatórias Probabilidade e Estatística 3/41 Variáveis Aleatórias Colete

Leia mais

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1 dado

Leia mais

PROBABILIDADE PROPRIEDADES E AXIOMAS

PROBABILIDADE PROPRIEDADES E AXIOMAS PROBABILIDADE ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. A este conjunto de elementos denominamos de espaço amostral ou conjunto universo, simbolizado por

Leia mais

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e):

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Adição de probabilidades O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Dois eventos A e B são ditos mutuamente exclusivos se, e somente se, A B

Leia mais

CAPÍTULO 4 PROBABILIDADE PROBABILIDADE PPGEP Espaço Amostral e Eventos Espaço Amostral e Eventos UFRGS. Probabilidade.

CAPÍTULO 4 PROBABILIDADE PROBABILIDADE PPGEP Espaço Amostral e Eventos Espaço Amostral e Eventos UFRGS. Probabilidade. PROBABILIDADE CAPÍTULO 4 PROBABILIDADE UFRGS A Teoria das s estuda os fenômenos aleatórios. Fenômeno Aleatório: são os fenômenos cujo resultado não pode ser previsto exatamente. Se o fenômeno se repetir,

Leia mais

Estatística Aplicada. Prof. Carlos Alberto Stechhahn PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL.

Estatística Aplicada. Prof. Carlos Alberto Stechhahn PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL. Estatística Aplicada Administração p(a) = n(a) / n(u) PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL Prof. Carlos Alberto Stechhahn 2014 1. Noções de Probabilidade Chama-se experimento

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aulas passadas Motivação Exemplos de aplicação de probabilidade e estatística Informações do curso Aula de hoje Espaço amostral Álgebra de Eventos Eventos

Leia mais

Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES

Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES 1) Determine a probabilidade de cada evento: a) Um nº par aparece no lançamento de um dado; b) Uma figura

Leia mais

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável Aleatória

Leia mais

Fernando de Pol Mayer. Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR)

Fernando de Pol Mayer. Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

PROBABILIDADE. Prof. Patricia Caldana

PROBABILIDADE. Prof. Patricia Caldana PROBABILIDADE Prof. Patricia Caldana Estudamos probabilidade com a intenção de prevermos as possibilidades de ocorrência de uma determinada situação ou fato. Para determinarmos a razão de probabilidade,

Leia mais

Chama-se evento todo subconjunto de um espaço amostral. PROBABILIDADE. Introdução

Chama-se evento todo subconjunto de um espaço amostral. PROBABILIDADE. Introdução Introdução PROBABILIDADE Há certos fenômenos (ou experimentos) que, embora sejam repetidos muitas vezes e sob condições idênticas, não apresentam os mesmos resultados. Por exemplo, no lançamento de uma

Leia mais

Probabilidade - aula II

Probabilidade - aula II 25 de Março de 2014 Interpretações de Probabilidade Amostras Aleatórias e Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades de eventos conjuntos. Interpretar e calcular

Leia mais

Processos Estocásticos. Luiz Affonso Guedes

Processos Estocásticos. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Variáveis Aleatórias Funções de Uma Variável Aleatória Funções de Várias Variáveis Aleatórias Momentos e Estatística Condicional Teorema

Leia mais

3. A probabilidade do evento de números pares. 4. O evento formado por número menor que três. 5. A probabilidade do evento número menor que três.

3. A probabilidade do evento de números pares. 4. O evento formado por número menor que três. 5. A probabilidade do evento número menor que três. 1 a Lista de Exercício - Estatística (Probabilidade) Profa. Ms. Ulcilea A. Severino Leal Algumas considerações importantes sobre a resolução dos exercícios. (i) Normas da língua culta, sequência lógica

Leia mais

Será que vai chover amanhã? Quantificando a incerteza. Probabilidades Aula 1

Será que vai chover amanhã? Quantificando a incerteza. Probabilidades Aula 1 Será que vai chover amanhã? Quantificando a incerteza Probabilidades Aula 1 Nosso dia-a-dia está cheio de incertezas Vai chover amanhã? Quanto tempo levarei de casa até a universidade? Em quanto tempo

Leia mais

Probabilidade Aula 02

Probabilidade Aula 02 0303200 Probabilidade Aula 02 Magno T. M. Silva Escola Politécnica da USP Março de 2017 Sumário 2.3 Técnicas de contagem 2.4 Probabilidade condicional 2.3 Princípio fundamental da contagem Suponhamos que

Leia mais

Probabilidade. Experiências aleatórias

Probabilidade. Experiências aleatórias Probabilidade Experiências aleatórias 1 Experiências aleatórias Acontecimento: Qualquer colecção de resultados de uma experiência. Acontecimento elementar: Um resultado que não pode ser simplificado ou

Leia mais

TE802 Processos Estocásticos em Engenharia. Informação sobre a disciplina Notes. Processos Estocásticos em Engenharia Conteúdo Notes.

TE802 Processos Estocásticos em Engenharia. Informação sobre a disciplina Notes. Processos Estocásticos em Engenharia Conteúdo Notes. TE802 Processos Estocásticos em Engenharia Conceitos Básicos de Teoria de Probabilidade 7 de março de 2016 Informação sobre a disciplina Terças e Quintas feiras das 09:30 às 11:20 horas Professor: Evelio

Leia mais

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Conceitos Básicos de Probabilidade

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Conceitos Básicos de Probabilidade Estatística: Aplicação ao Sensoriamento Remoto SER 202 - ANO 2016 Conceitos ásicos de Probabilidade Camilo Daleles Rennó camilo@dpi.inpe.br http://www.dpi.inpe.br/~camilo/estatistica/ Frequência Absoluta

Leia mais

TEORIA DAS PROBABILIDADES. Figura 1: Gráfico de pontos. Figura 3: Polígono de frequências.

TEORIA DAS PROBABILIDADES. Figura 1: Gráfico de pontos. Figura 3: Polígono de frequências. TEORIA DAS PROBABILIDADES Figura 1: Gráfico de pontos. Figura 3: Polígono de frequências. Figura 4: Função de distribuição de probabilidades sobre o histograma. A teoria das probabilidades estuda os modelos

Leia mais

Objetivos. Frequência Relativa X Probabilidade. Probabilidade. 1. Definições: Experimento Espaço Amostral Evento Probabilidade

Objetivos. Frequência Relativa X Probabilidade. Probabilidade. 1. Definições: Experimento Espaço Amostral Evento Probabilidade Magnos Martinello Universidade Federal do Espírito Santo - UFES Departamento de Informática DI Laboratório de Pesquisas em Redes Multimidia LPRM Objetivos 1. Definições: Experimento Espaço Amostral Evento

Leia mais

Tópicos. Conjuntos Fatorial Combinações Permutações Probabilidade Binômio de Newton triângulo de Pascal

Tópicos. Conjuntos Fatorial Combinações Permutações Probabilidade Binômio de Newton triângulo de Pascal Probabilidade Tópicos Conjuntos Fatorial Combinações Permutações Probabilidade Binômio de Newton triângulo de Pascal Conjuntos Conjunto: Na matemática, um conjunto é uma coleção de elementos com características

Leia mais

Introdução à Probabilidade - parte III

Introdução à Probabilidade - parte III Introdução à Probabilidade - parte III Erica Castilho Rodrigues 02 de Outubro de 2012 Eventos Independentes 3 Eventos Independentes Independência Em alguns casos podemos ter que P(A B) = P(A). O conhecimento

Leia mais

Probabilidade. O segundo aspecto é a incerteza inerente às decisões que podem ser tomadas sobre determinado problema.

Probabilidade. O segundo aspecto é a incerteza inerente às decisões que podem ser tomadas sobre determinado problema. Probabilidade No capítulo anterior, procuramos conhecer a variabilidade de algum processo com base em observações das variáveis pertinentes. Nestes três próximos capítulos, continuaremos a estudar os processos

Leia mais

Probabilidades 1. Motivação; 2. Conceitos importantes; 3. Definições de probabilidades; 4. Probabilidade Condicional; 5. Independência de eventos; 6.

Probabilidades 1. Motivação; 2. Conceitos importantes; 3. Definições de probabilidades; 4. Probabilidade Condicional; 5. Independência de eventos; 6. Probabilidades 1. Motivação; 2. Conceitos importantes; 3. Definições de probabilidades; 4. Probabilidade Condicional; 5. ndependência de eventos; 6. Regra da probabilidade total. Probabilidades Probabilidades

Leia mais

Modelos de Probabilidade e Inferência Estatística

Modelos de Probabilidade e Inferência Estatística Modelos de Probabilidade e Inferência Estatística Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula 2 03/14 1 / 31 Prof. Tarciana Liberal (UFPB) Aula 2 03/14

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aula passada Motivação Exemplos de aplicação de probabilidade e estatística Informações do curso Aula de hoje Espaço amostral Álgebra de Eventos Eventos Mutuamente

Leia mais

Resumo. Parte 2 Introdução à Teoria da Probabilidade. Ramiro Brito Willmersdorf Introdução.

Resumo. Parte 2 Introdução à Teoria da Probabilidade. Ramiro Brito Willmersdorf Introdução. Parte 2 Introdução à Teoria da Probabilidade Ramiro Brito Willmersdorf ramiro@willmersdorf.net Departamento de Engenharia Mecânica Universidade Federal de Pernambuco 2011.2 Resumo 1 Introdução 2 Espaço

Leia mais

PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES 0 1 INTRODUÇÃO A teoria das probabilidades é utilizada para determinar as chances de um experimento aleatório acontecer. 1.1

Leia mais

8 - PROBABILIDADE. 8.1 - Introdução

8 - PROBABILIDADE. 8.1 - Introdução INE 7002 - Probabilidade 1 8 - PROBABILIDADE 8.1 - Introdução No capítulo anterior foi utilizado um raciocínio predominantemente indutivo: os dados eram coletados, e através da sua organização em distribuições

Leia mais

Fração como Probabilidade - União e Interseção de Eventos. Sexto Ano do Ensino Fundamental

Fração como Probabilidade - União e Interseção de Eventos. Sexto Ano do Ensino Fundamental Material Teórico - Módulo de FRAÇÃO COMO PORCENTAGEM E COMO PROBABILIDADE Fração como Probabilidade - União e Interseção de Eventos Sexto Ano do Ensino Fundamental Prof. Francisco Bruno Holanda Prof. Antonio

Leia mais

Processos Estocásticos. Introdução. Probabilidade. Introdução. Espaço Amostral. Luiz Affonso Guedes. Fenômenos Determinísticos

Processos Estocásticos. Introdução. Probabilidade. Introdução. Espaço Amostral. Luiz Affonso Guedes. Fenômenos Determinísticos Processos Estocásticos Luiz ffonso Guedes Sumário Probabilidade Variáveis leatórias Funções de Uma Variável leatória Funções de Várias Variáveis leatórias Momentos e Estatística Condicional Teorema do

Leia mais

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos

Leia mais

PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos

PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS Aula 7 11 e 12 abril 2007 1 Distribuições Discretas 1. Distribuição Bernoulli 2. Distribuição Binomial 3. Distribuição Geométrica 4. Distribuição Pascal

Leia mais

Probabilidade Básica. Capítulo 1 EXPERIMENTOS ALEATÓRIOS ESPAÇOS AMOSTRAIS

Probabilidade Básica. Capítulo 1 EXPERIMENTOS ALEATÓRIOS ESPAÇOS AMOSTRAIS Capítulo 1 Probabilidade Básica EXPERIMENTOS ALEATÓRIOS Todos estão familiarizados com a importância dos experimentos na ciência e na engenharia. A experimentação é útil porque podemos presumir que, se

Leia mais

Universidade Federal de Goiás Instituto de Matemática e Estatística

Universidade Federal de Goiás Instituto de Matemática e Estatística Universidade Federal de Goiás Instituto de Matemática e Estatística Prova 1 de Probabilidade I Prof.: Fabiano F. T. dos Santos Goiânia, 15 de setembro de 2014 Aluno: Nota: Descreva seu raciocínio e desenvolva

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aulas passadas Motivação Espaço Amostral, Eventos, Álgebra de eventos Aula de hoje Probabilidade Análise Combinatória Independência Probabilidade Experimentos

Leia mais

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno Unidade I ESTATÍSTICA APLICADA Prof. Mauricio Fanno Estatística indutiva Estatística descritiva Dados no passado ou no presente e em pequena quantidade, portanto, reais e coletáveis. Campo de trabalho:

Leia mais

Parte 3 Probabilidade

Parte 3 Probabilidade Parte 3 Probabilidade A probabilidade tem origem no século XVII, motivada, inicialmente, pelos jogos de azar. De maneira bastante informal, refere-se à probabilidade como uma medida de chance de algum

Leia mais

BANCO DE QUESTÕES TURMA PM-PE PROBABILIDADE

BANCO DE QUESTÕES TURMA PM-PE PROBABILIDADE 01. (UNICAMP 016) Uma moeda balanceada é lançada quatro vezes, obtendo-se cara exatamente três vezes. A probabilidade de que as caras tenham saído consecutivamente é igual a A) 1. B). 8 C) 1. D). 0. (UNESP

Leia mais

Aula 16 - Erivaldo. Probabilidade

Aula 16 - Erivaldo. Probabilidade Aula 16 - Erivaldo Probabilidade Probabilidade Experimento aleatório Experimento em que não pode-se afirmar com certeza o resultado final, mas sabe-se todos os seus possíveis resultados. Exemplos: 1) Lançar

Leia mais

2. Lança-se ao acaso uma moeda 4 vezes e conta-se o número de faces obtidas. Escreva o espaço amostral da experiência.

2. Lança-se ao acaso uma moeda 4 vezes e conta-se o número de faces obtidas. Escreva o espaço amostral da experiência. Escola Superior de Tecnologia de Viseu Fundamentos de Estatística 2010/2011 Ficha nº 2 1. Lançam-se ao acaso 2 moedas. a) Escreva o espaço de resultados da experiência. b) Descreva os acontecimentos elementares.

Leia mais

Estatística Aplicada. Árvore de Decisão. Prof. Carlos Alberto Stechhahn PARTE II. Administração. p(a/b) = n(a B)/ n(b)

Estatística Aplicada. Árvore de Decisão. Prof. Carlos Alberto Stechhahn PARTE II. Administração. p(a/b) = n(a B)/ n(b) Estatística Aplicada Administração p(a/b) = n(a B)/ n(b) PARTE II Árvore de Decisão Prof. Carlos Alberto Stechhahn 2014 1. Probabilidade Condicional - Aplicações Considere que desejamos calcular a probabilidade

Leia mais

PROBABILIDADE E ESTATÍSTICA. Aula 2 Professor Regina Meyer Branski

PROBABILIDADE E ESTATÍSTICA. Aula 2 Professor Regina Meyer Branski PROBABILIDADE E ESTATÍSTICA Aula 2 Professor Regina Meyer Branski Probabilidade 1. Conceitos básicos de probabilidade 2. Probabilidade condicional 3. Eventos Dependentes e Independentes 4. Regra da Multiplicação

Leia mais

Aula 9 Teorema da probabilidade total e teorema de Bayes

Aula 9 Teorema da probabilidade total e teorema de Bayes Aula 9 Teorema da probabilidade total e teorema de Bayes Nesta aula você estudará dois importantes teoremas de probabilidade e verá suas aplicações em diversas situações envolvendo a tomada de decisão.

Leia mais

Lista 3 - Introdução à Probabilidade e Estatística

Lista 3 - Introdução à Probabilidade e Estatística Lista - Introdução à Probabilidade e Estatística Probabilidade em Espaços Equiprováveis 1 Num evento científico temos 1 físicos e 11 matemáticos. Três deles serão escolhidos aleatoriamente para participar

Leia mais

PROBABILIDADE 1. INTRODUÇÃO

PROBABILIDADE 1. INTRODUÇÃO proporção de caras Revisões PROBABILIDADE 1. INTRODUÇÃO As experiências aleatórias apresentam as seguintes características:.o resultado individual é imprevisível.são conhecidos todos os possíveis resultados.a

Leia mais