Processos Estocásticos

Tamanho: px
Começar a partir da página:

Download "Processos Estocásticos"

Transcrição

1 Processos Estocásticos Quinta Lista de Exercícios 2 de fevereiro de 20 Suponha que um organismo unicelular pode estar somente em dois estágios distintos A ou B Um indivíduo no estágio A passa para o estágio B com uma taxa exponencial α Um indivíduo no estágio B se divide em dois novos indivíduos de tipo A com uma taxa exponencial β Defina uma CTMC apropriada para a população desses organismos e determine os parâmetros para esse modelo (tempo gasto em cada estado e probabilidades de transição) Seja N A (t) o número de organismos no estágio A no instante t e, de forma análoga, seja N B (t) o número de organismos no estágio B Assim, podemos tomar os pares ordenados N A (t), N B (t) para representar os estados da CTMC Isto é, o PE { N A (t), N B (t), t 0} é uma CTMC com parâmetros v n,m = αn + βm αn P n,m ; n,m+ = αn + βm βn P n,m ; n+2,m = αn + βm 2 Considere duas máquinas que são reparadas por um único técnico A máquina i funciona por um tempo exponencial com taxa i antes de quebrar (com i =, 2) Os tempos de reparo (para quaisquer das duas máquinas) são exponenciais com taxa É possível analisar esse sistema como um PNM? Se sim, quais são os parâmetros? Se não, seria possível analisá-lo? Este não é um PNM porque somente a informação de quantas máquinas estão funcionando em um dado instante não é suficiente para se analisar o sistema Para tal é necessário saber também quais máquinas estão funcionando em cada instante Assim, podemos construir uma CTMC com os seguintes estados: 0: ambas as máquinas estão funcionando : máquina funcionando, 2 com defeito 2: máquina 2 funcionando, com defeito 3: ambas máquinas com defeito, máquina sendo consertada : ambas máquinas com defeito, máquina 2 sendo consertada Essa CTMC pode ser representada pelo seguinte diagrama:

2 A CTMC acima possui os parâmetros tempo gasto em cada estado e probabilidades de transição v 0 = + 2 v = + v 2 = 2 + v 3 = v = P 0 = P 02 = + 2 P 3 = P 2 = P 0 = + P = + P 20 = 2 + P 23 = Considere um PNM com taxas de chegadas i = (i + ) e taxas de saída i = i, i 0 a Determine o tempo esperado para se sair do estado 0 e chegar no estado b Determine o tempo esperado para se sair do estado 2 e chegar no estado 5 Começando com E[T 0 ] = = 0, usamos a identidade E[T i] = + i E[T i ] para computar E[T i ] para i i i =, 2, 3, Assim E[T ] = + E[T 0 ] = = 2 E[T 2 ] = E[T ] = E[T 3 ] = E[T 2 ] = ( ) ( ) = ( 3 ( ) 2 = ( ) 2 ) 3 e, generalizando, vemos que e portanto, E[T i ] = (i + ) E[T ] = 5 ( ) i ( ) a Como T i é o tempo que o processo leva para transitar do estado i para o estado i +, o tempo esperado é E[T 0 ] + E[T ] + E[T 2 ] + E[T 3 ] b Mesma explicação do item anterior: E[T 2 ] + E[T 3 ] + E[T ] Assume-se que cada indivíduo de uma população procria com uma taxa exponencial e morre com uma taxa exponencial Além disso, há uma taxa exponencial θ de crescimento da população devido à imigração No entanto, a imigração não é permitida se o tamanho da população é maior ou igual a N Modele essa situação como um PNM Tomando cada estado X(t) como o tamanho da população no instante t, temos um PNM com n = n + θ, n = n, n = n n < N n N 2

3 5 Uma pequena barbearia, operada por um único barbeiro, pode acomodar no máximo dois clientes ao mesmo tempo Clientes em potencial chegam com uma taxa de Poisson de 3 por hora e os tempos de serviço são VAs exponenciais independentes com média de / hora a Qual é o número médio de clientes na barbearia? b Qual é a proporção de clientes em potencial que entram na loja? Tomando o número de clientes na barbearia como o estado, temos um PNM com Graficamente temos 0 = = 3, = 2 = e calculando as equações de fluxo para os estados 0 e 2, vem 0 π 0 = π π = 3 π 0 2 π 2 = π π 2 = 3 π = ( ) 2 3 π 0 Como π 0 + π + π 2 =, podemos resolver o sistema de equações para π 0 π π 0 + a O número médio de clientes na barbearia é π + 2π 2 = ( ) 2 3 π 0 = π 0 = 6 37 [ ( 3 ) 2 ] π 0 = b A proporção de clientes em potencial que entram na loja é ( π 2 ) = π 2 = = Um centro de atendimento é composto por dois servidores, cada um trabalhando com uma taxa exponencial de dois serviços por hora Clientes chegam com uma taxa de Poisson de três por hora Assuma que a capacidade do centro é de no máximo três clientes a Que fração dos clientes em potencial entram no sistema? b Qual seria o valor do item anterior se houvesse somente um servidor no sistema com uma taxa duas vezes mais rápida, isto é, =? Tomando o número de clientes no centro como o estado, temos um PNM com 0 = = 2 = 3, = 2, 2 = 3 = 3

4 Assim, as equações de fluxo se reduzem a π = 3 2 π 0 e portanto π 0 = π 2 = 3 π = 9 8 π 0 π 3 = 3 π 2 = π 0 [ ] = a A fração de clientes em potencial que entram no sistema é ( π 3 ) = π 3 = = 6 3 8% b Com um único servidor trabalhando duas vezes mais rápido temos um PNM com Agora, as equações de fluxo se reduzem a 0 = = 2 = 3, = 2 = 3 = π = 3 π 0 π 2 = 3 ( ) 2 3 π = π 0 π 3 = 3 ( ) 3 3 π 2 = π 0 e portanto π 0 = [ ( 3 ) 2 + E finalmente, a nova fração de clientes que entram no sistema é ( ) 3 ] 3 = 6 75 π 3 = = % 7 Considere um ponto de taxi onde taxis e clientes chegam de acordo com processos de Poisson com respectivas taxas de um e dois por minuto Um taxi fica sempre em espera, independente do número de taxis já parados no ponto Entretanto, um cliente que chega e não encontra um taxi disponível vai embora, isto é, não existe uma fila de espera de clientes a Calcule o número médio de taxis esperando b A proporção de clientes que chegam e conseguem um taxi Sejam os estados denotados pelo número de taxis esperando Assim, temos um PNM com n = e n = 2 Note que essa CTMC corresponde a um modelo de fila M/M/, cujas métricas já são conhecidas a A média de taxis esperando é o tamanho médio da fila = b A proporção de clientes que chegam e conseguem um taxi é a proporção de clientes que chegam e encontram ao menos um taxi esperando A taxa de chegada desses clientes é 2( π 0 ) A proporção dessas chegadas

5 é portanto 2( π 0 ) 2 ( = π 0 = ) = = 2 8 Para uma fila M/M/, calcule a o número esperado de chegadas durante um período de serviço; e b a probabilidade de que nenhum cliente chegue durante um período de serviço a Seja S uma VA indicando o tempo de serviço Como a taxa de serviço é exponencial, sabemos que E[S] = / O número esperado de chegadas buscado corresponde então a E[S] = E[S] = / (O segundo passo das equações é justificado pelo fato de ser uma constante com relação ao tempo de serviço, pois chegadas e saídas são eventos independentes) b Novamente tomamos S como uma VA indicando o tempo de serviço Buscamos a probabilidade condicional de haver 0 chegadas dado que o período de serviço é S Mas essa probabilidade é exatamente igual à probabilidade o servidor terminar antes de uma nova chegada (caso contrário o sistema muda de estado e o tempo S é resetado tente entender o motivo) Assim, a probabilidade pedida é + 9 As máquinas de uma fábrica quebram com uma taxa exponencial de 6 por hora A fábrica emprega apenas um técnico que conserta as máquinas com uma taxa exponencial de 8 por hora O custo causado pela produção perdida quando há máquinas com defeito é de $0 por hora por máquina Qual é o custo médio causado por máquinas defeituosas? Este problema pode ser modelado por uma fila M/M/ com = 6 e = 8 O custo médio é dado por $0 por hora por máquina número médio de máquinas quebradas Mas o número médio de máquinas quebradas é exatamente L, o tamanho da fila, cujo valor já foi calculado: Portanto, o custo médio é de $30 por hora L = = 6 2 = 3 0 Considere um sistema M/M/ onde clientes chegam com taxa e são servidos com taxa No entanto, assuma que em qualquer momento que o servidor estiver ocupado existe uma probabilidade dele quebrar, levando o sistema a parar A probabilidade de quebra é descrita por uma taxa exponencial α Quando o sistema para, todos os clientes que estavam no sistema partem e não são mais permitidas chegadas até que o defeito for consertado O tempo de reparo é exponencialmente distribuído com taxa β a Defina os estados apropriadamente b Descreva as equações de balanço de fluxo a O estados são n (n 0) e b O estado n indica que há n clientes no sistema e o estado b que uma quebra ocorreu A CTMC que modela o sistema descrito é dada pelo diagrama abaixo 5

6 b β α α α α 0 2 n n + b As equações de fluxo são απ 0 = π + βπ b ( + + α)π n = π n + π n+ βπ b = α( π 0 ) 6

Avaliação e Desempenho Aula 18

Avaliação e Desempenho Aula 18 Avaliação e Desempenho Aula 18 Aula passada Fila com buffer finito Fila com buffer infinito Medidas de interesse: vazão, número médio de clientes na fila, taxa de perda. Aula de hoje Parâmetros de uma

Leia mais

Processos Estocásticos aplicados à Sistemas Computacionais

Processos Estocásticos aplicados à Sistemas Computacionais Processos Estocásticos aplicados à Sistemas Computacionais Magnos Martinello Universidade Federal do Espírito Santo - UFES Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia

Leia mais

Gabarito - Lista de Exercícios 1

Gabarito - Lista de Exercícios 1 Gabarito - Lista de Exercícios Teoria das Filas Modelo M/M/. Clientes chegam a uma barbearia, de um único barbeiro, com tempo médio entre chegadas de 0 minutos. O barbeiro gasta em média 5 minutos com

Leia mais

Processos Estocásticos e Cadeias de Markov Discretas

Processos Estocásticos e Cadeias de Markov Discretas Processos Estocásticos e Cadeias de Markov Discretas Processo Estocástico(I) Definição: Um processo estocástico é uma família de variáveis aleatórias {X(t) t T}, definidas em um espaço de probabilidades,

Leia mais

IND 1115 Inferência Estatística Aula 6

IND 1115 Inferência Estatística Aula 6 Conteúdo IND 5 Inferência Estatística Aula 6 Setembro de 004 A distribuição Lognormal A distribuição Beta e sua relação com a Uniforme(0,) Mônica Barros mbarros.com mbarros.com A distribuição Lognormal

Leia mais

Noções de Processos Estocásticos e Cadeias de Markov

Noções de Processos Estocásticos e Cadeias de Markov Noções de Processos Estocásticos e Cadeias de Markov Processo Estocástico Definição: Processo Estocástico é uma coleção de variáveis aleatórias indexadas por um parâmetro t R (entendido como tempo). X={

Leia mais

observado, ainda que o tempo médio de serviço é igual a meio minuto. Determine:

observado, ainda que o tempo médio de serviço é igual a meio minuto. Determine: 0. Um único servidor em um centro de serviço está ocupado quatro de cada cinco minutos, em média. Foi observado, ainda que o tempo médio de serviço é igual a meio minuto. Determine: (i) O tempo médio de

Leia mais

4ª LISTA DE EXERCÍCIOS - LOB1012. Variáveis Aleatórias Contínuas, Aproximações e TLC

4ª LISTA DE EXERCÍCIOS - LOB1012. Variáveis Aleatórias Contínuas, Aproximações e TLC 4ª LISTA DE EXERCÍCIOS - LOB1012 Variáveis Aleatórias Contínuas, Aproximações e TLC Assunto: Função Densidade de Probabilidade Prof. Mariana Pereira de Melo 1. Suponha que f(x) = x/8 para 3

Leia mais

Conceitos Básicos, Básicos,Básicos de Probabilidade

Conceitos Básicos, Básicos,Básicos de Probabilidade Conceitos Básicos, Básicos,Básicos de Probabilidade Espaço Amostral Base da Teoria de Probabilidades Experimentos são realizados resultados NÃO conhecidos previamente Experimento aleatório Exemplos: Determinar

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Primeira Lista de Exercícios de junho de 0 Quantos códigos de quatro letras podem ser construídos usando-se as letras a, b, c, d, e, f se: a nenhuma letra puder ser repetida? b qualquer

Leia mais

Teoria de Filas Aula 10

Teoria de Filas Aula 10 Aula Passada Comentários sobre a prova Teoria de Filas Aula 10 Introdução a processos estocásticos Introdução a Cadeias de Markov Aula de Hoje Cadeias de Markov de tempo discreto (DTMC) 1 Recordando...

Leia mais

Fernando Nogueira Simulação 1

Fernando Nogueira Simulação 1 Simulação a Eventos Discretos Fernando Nogueira Simulação Introdução Simulação não é uma técnica de otimização: estima-se medidas de performance de um sistema modelado. Modelos Contínuos X Modelos Discretos

Leia mais

UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO REDES DE COMUNICAÇÕES

UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO REDES DE COMUNICAÇÕES 1 a. Lista Redes de Comunicações I pg. 1/5 UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO REDES DE COMUNICAÇÕES 1 Prof. Flávio Alencar 1 a. LISTA (Assuntos: Filas, probabilidade e estatística aplicada a redes

Leia mais

Distribuições de Probabilidade Contínuas 1/19

Distribuições de Probabilidade Contínuas 1/19 all Distribuições de Probabilidade Contínuas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte

Leia mais

APLICAÇÃO PRÁTICA SOBRE DIMENSIONAMENTO DE

APLICAÇÃO PRÁTICA SOBRE DIMENSIONAMENTO DE LICENCIATURA EM ENGENHARIA CIVIL -º Ciclo Disciplina de TRANSPORTES Ano Lectivo de 006/007 º Semestre APLICAÇÃO PRÁTICA SOBRE DIMENSIONAMENTO DE COMPONENTES DE SISTEMAS DE TRANSPORTES Considere uma empresa

Leia mais

Modelos discretos e contínuos

Modelos discretos e contínuos Modelos discretos e contínuos Joaquim Neto joaquim.neto@ufjf.edu.br Departamento de Estatística - ICE Universidade Federal de Juiz de Fora (UFJF) Versão 3.0 Joaquim Neto (UFJF) ICE - UFJF Versão 3.0 1

Leia mais

1 Dimensionamento de Frota

1 Dimensionamento de Frota 1 Dimensionamento de Frota DESENVOLVA UM MODELO DE SIMULAÇÃO COM N CAMINHÕES QUE CIRCULAM ENTRE UMA FÁBRICA E PORTO. TANTO NA FÁBRICA COMO NO PORTO ESSES CAMINHÕES PASSAM POR UM PROCESSO DE PESAGEM NA

Leia mais

PRO 2271 ESTATÍSTICA I. 3. Distribuições de Probabilidades

PRO 2271 ESTATÍSTICA I. 3. Distribuições de Probabilidades PRO71 ESTATÍSTICA 3.1 PRO 71 ESTATÍSTICA I 3. Distribuições de Probabilidades Variáveis Aleatórias Variáveis Aleatórias são valores numéricos que são atribuídos aos resultados de um eperimento aleatório.

Leia mais

MAE GABARITO DA LISTA 2-04/10/2016

MAE GABARITO DA LISTA 2-04/10/2016 MAE5709 - GABARITO DA LISTA - 04/0/06 Exercício.7.5. Primeira Parte Seja P uma matriz de transição sobre um espaço de estados finito S. Mostre que uma distribuição π é invariante para P se e somente se

Leia mais

PROCESSOS ESTOCÁSTICOS

PROCESSOS ESTOCÁSTICOS PROCESSOS ESTOCÁSTICOS Definições, Principais Tipos, Aplicações em Confiabilidade de Sistemas CLARKE, A. B., DISNEY, R. L. Probabilidade e Processos Estocásticos, Rio de Janeiro: Livros Técnicos e Científicos

Leia mais

Análise de Dados e Simulação

Análise de Dados e Simulação Universidade de São Paulo Instituto de Matemática e Estatística http:www.ime.usp.br/ mbranco Processo de Poisson. Processo de Poisson Homogêneo Considere N(t) o número de ocorrências de um determinado

Leia mais

FAP151 - Fundamentos de Mecânica. 5ª Lista de exercícios. Abril de 2009

FAP151 - Fundamentos de Mecânica. 5ª Lista de exercícios. Abril de 2009 FAP - Fundamentos de Mecânica. ª Lista de exercícios. Abril de 9 Determinando a posição a partir da aceleração. Entregar as soluções dos exercícios e, apresentando todas as etapas necessárias para resolvê-los;

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO Realização: Fortaleza, Fevereiro/2010 1. LIMITES 1.1. Definição Geral Se os valores de f(x) puderem

Leia mais

Pesquisa Operacional II

Pesquisa Operacional II Pesquisa Operacional II Modelo de Filas Professor: Roberto César A Notação de Kendall Um modelo de fila pode ser descrito pela notação: A/B/c/K/m/Z em que: A = distribuição dos intervalos entre chegadas;

Leia mais

Eduardo Camponogara. DAS-9003: Introdução a Algoritmos

Eduardo Camponogara. DAS-9003: Introdução a Algoritmos Caminhos Mínimos entre Todos os Vértices 1/ 48 Caminhos Mínimos entre Todos os Vértices Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-9003: Introdução

Leia mais

Resolução da Prova de Matemática Financeira e Estatística do ISS Teresina, aplicada em 28/08/2016.

Resolução da Prova de Matemática Financeira e Estatística do ISS Teresina, aplicada em 28/08/2016. de Matemática Financeira e Estatística do ISS Teresina, aplicada em 8/08/016. 11 - (ISS Teresina 016 / FCC) Joana aplicou todo seu capital, durante 6 meses, em bancos ( e Y). No Banco, ela aplicou 37,5%

Leia mais

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável

Leia mais

Introdução Generalização

Introdução Generalização Cálculo 2 - Capítulo 2.9 - Derivação implícita 1 Capítulo 2.9 - Derivação implícita 2.9.1 - Introdução 2.9.3 - Generalização 2.9.2 - Derivação implícita Veremos agora uma importante aplicação da regra

Leia mais

S I M U L A Ç Ã O 84

S I M U L A Ç Ã O 84 S I M U L A Ç Ã O 84 - 1 - Elabore uma rotina que lhe permita gerar números pseudo-aleatórios (NPA) com distribuição X ( f X ( x ) representa a função de densidade de probabilidade de X e F X ( x ) representa

Leia mais

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3 01 Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b a) a = 3, b, b R b) a = 3 e b = 1 c) a = 3 e b 1 d) a 3 1 0 y = 3x + 1 m = 3 A equação que apresenta uma reta com o mesmo coeficiente angular

Leia mais

Escola de Engenharia de Lorena EEL/USP Curso de Engenharia de Produção. Teoria da Filas. Prof. Fabrício Maciel Gomes

Escola de Engenharia de Lorena EEL/USP Curso de Engenharia de Produção. Teoria da Filas. Prof. Fabrício Maciel Gomes Escola de Engenharia de Lorena EEL/USP Curso de Engenharia de Produção Teoria da Filas Prof. Fabrício Maciel Gomes Teoria das Filas Por quê das Filas? Procura por um serviço maior do que a capacidade do

Leia mais

AV1 - MA UMA SOLUÇÃO. d b =. 3q 2 = 2p 2,

AV1 - MA UMA SOLUÇÃO. d b =. 3q 2 = 2p 2, AV1 - MA 11-01 Questão 1. Prove que se a, b, c e d são números racionais tais que a + b 3 = c + d 3 então a = c e b = d. A igualdade a + b 3 = c + d 3 implica que (a c) = (d b) 3. Suponha que tenhamos

Leia mais

Modelagem Analítica. Profa. Jussara M. Almeida 1 o Semestre de 2011

Modelagem Analítica. Profa. Jussara M. Almeida 1 o Semestre de 2011 Modelagem Analítica Profa. Jussara M. Almeida 1 o Semestre de 2011 Modelagem Analítica Um modelo é uma abstração de um sistema que captura, dentre os inúmeros detalhes do sistema, aqueles que são essenciais

Leia mais

Simulação de Sistemas. Adaptado de material de Júlio Pereira Machado (AULA 17)

Simulação de Sistemas. Adaptado de material de Júlio Pereira Machado (AULA 17) Simulação de Sistemas Adaptado de material de Júlio Pereira Machado (AULA 17) Análise dos Dados de Saída Além das tarefas de modelagem e validação, devemos nos preocupar com a análise apropriada dos resultados

Leia mais

Ema Isabel Modesto Marques. Modelos de localização com filas de espera em rede. Orientador Prof. Doutor Francisco José Ferreira Silva.

Ema Isabel Modesto Marques. Modelos de localização com filas de espera em rede. Orientador Prof. Doutor Francisco José Ferreira Silva. Ema Isabel Modesto Marques Modelos de localização com filas de espera em rede Dissertação para a obtenção do grau de Mestre em Gestão (MBA) Orientador Prof. Doutor Francisco José Ferreira Silva Coorientador

Leia mais

FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ

FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ ESTATÍSTICA II Nota de aula 1 Prof. MSc. Herivelto T Marcondes dos Santos Fevereiro /2009 1 Modelos de probabilidade 1.1 Variável aleatória Definição: Sejam ε um

Leia mais

FILAS DE ESPERA EM SERVIÇOS Por Paulo Sergio Medeiros Carneiro Maio 1999.

FILAS DE ESPERA EM SERVIÇOS Por Paulo Sergio Medeiros Carneiro Maio 1999. FILAS DE ESPERA EM SERVIÇOS Por Paulo Sergio Medeiros Carneiro Maio 1999. 1. ESCOPO O objetivo deste trabalho é apresentar o conceito de filas de espera e como pode ser aplicado em Operações de Serviço.

Leia mais

Exercício 7: Resolução: 2º Semestre 2002/2003 Exercícios resolvidos

Exercício 7: Resolução: 2º Semestre 2002/2003 Exercícios resolvidos º Semestre 00/003 Exercícios resolvidos Exercício 7: Num banco de ensaios de automóveis cada diagnóstico consiste em duas fases distintas de teste: uma primeira parte mecânica e outra parte eléctrica.

Leia mais

FICHA DE TRABALHO N. O 9

FICHA DE TRABALHO N. O 9 FICHA DE TRABALHO N. O 9 ASSUNTO: Modelos de probabilidade: probabilidade condicional 1. Sejam A e B dois acontecimentos tais que: P (A) = 0,3 e P (B ) = 0,7 Determine P (A B ), sabendo que: 1.1 Os acontecimentos

Leia mais

XXXVII OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase 9 de agosto de 2014 Nível (6º e 7º anos do Ensino Fundamental)

XXXVII OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase 9 de agosto de 2014 Nível (6º e 7º anos do Ensino Fundamental) XXXVII OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase 9 de agosto de 2014 Nível (6º e 7º anos do Ensino Fundamental) Resoluções www.opm.mat.br PROBLEMA 1 a) O total de segundos destinados à visualização

Leia mais

ESTIMAÇÃO POR INTERVALO DE CONFIANÇA. Profª Sheila Oro 1

ESTIMAÇÃO POR INTERVALO DE CONFIANÇA. Profª Sheila Oro 1 ESTIMAÇÃO POR INTERVALO DE CONFIANÇA Profª Sheila Oro 1 DEFINIÇÃO Um itervalo de confiança (ou estimativa intervalar) é uma faixa (ou um intervalo) de valores usada para se estimar o verdadeiro valor de

Leia mais

Teoria de Jogos Evolucionária

Teoria de Jogos Evolucionária Teoria de Jogos Evolucionária Edmundo de Souza e Silva - Daniel Ratton Figueiredo Universidade Federal do Rio de Janeiro Programa de Engenharia de Sistemas e Computação - COPPE Departamento de Ciência

Leia mais

Variáveis aleatórias discretas

Variáveis aleatórias discretas Probabilidades e Estatística + Probabilidades e Estatística I Colectânea de Exercícios 2002/03 LEFT + LMAC Capítulo 3 Variáveis aleatórias discretas Exercício 3.1 Uma caixa contém 6 iogurtes dos quais

Leia mais

Aula 10 Produto interno, vetorial e misto -

Aula 10 Produto interno, vetorial e misto - MÓDULO 2 - AULA 10 Aula 10 Produto interno, vetorial e misto - Aplicações II Objetivos Estudar as posições relativas entre retas no espaço. Obter as expressões para calcular distância entre retas. Continuando

Leia mais

Avaliação de Desempenho de Sistemas Discretos

Avaliação de Desempenho de Sistemas Discretos Modelos Avaliação de Desempenho de Sistemas Discretos Parte II: Modelagem de Sistemas Modelo é uma abstração de um sistema real Apenas as características importantes para a avaliação devem ser consideradas

Leia mais

com 3 Incógnitas A interseção do plano paralelo ao plano yz, passando por P, com o eixo x determina a coordenada x.

com 3 Incógnitas A interseção do plano paralelo ao plano yz, passando por P, com o eixo x determina a coordenada x. Interpretação Geométrica de Sistemas Lineares com 3 Incógnitas Reginaldo J. Santos Departamento de Matemática Instituto de Ciências Eatas Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi

Leia mais

Complemento a Um e Complemento a Dois

Complemento a Um e Complemento a Dois Complemento a Um e Complemento a Dois Cristina Boeres (baseado no material de Fernanda Passos) Instituto de Computação (UFF) Fundamentos de Arquiteturas de Computadores Cristina Boeres (IC/UFF) Complemento

Leia mais

Análise de Dados e Simulação

Análise de Dados e Simulação Universidade de São Paulo Instituto de Matemática e Estatística http:www.ime.usp.br/ mbranco Simulação de Variáveis Aleatórias Contínuas. O método da Transformada Inversa Teorema Seja U U (0,1). Para qualquer

Leia mais

Soluções de Questões de Matemática do Colégio Militar do Rio de Janeiro CMRJ

Soluções de Questões de Matemática do Colégio Militar do Rio de Janeiro CMRJ Soluções de Questões de Matemática do Colégio Militar do Rio de Janeiro CMRJ. Questão Funções Sendo D e D, respectivamente, domínios das funções reais f e g, definidas por f ( x) = x e g ( x) de x no intervalo:,

Leia mais

Universidade Federal Fluminense INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA ESTATÍSTICA V

Universidade Federal Fluminense INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA ESTATÍSTICA V Universidade Federal Fluminense INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA ESTATÍSTICA V Lista 6: Distribuições Contínuas. Distribuição Normal. 1. A distribuição dos pesos de coelhos

Leia mais

Um plano fica definido por duas retas paralelas ou concorrentes.

Um plano fica definido por duas retas paralelas ou concorrentes. 1 3 - ESTUDO DOS PLANOS Um plano fica definido por duas retas paralelas ou concorrentes. 3.1. Traços do plano São as retas de interseção de um plano com os planos de projeção. απ' - traço vertical de (α)

Leia mais

Um conceito importante em Probabilidades e Estatística é o de

Um conceito importante em Probabilidades e Estatística é o de Variáveis Aleatórias Um conceito importante em Probabilidades e Estatística é o de Variável Aleatória. Variável Aleatória Seja (Ω, A) um espaço de acontecimentos. À função X : Ω IR chamamos variável aleatória.

Leia mais

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof.

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof. ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim 1 de 6 Pessoal, segue a resolução das questões de Estatística da prova realizada pela SEFAZ-PE, para o cargo de Auditor Fiscal do Tesouro

Leia mais

Gabarito - Lista de Exercícios 2

Gabarito - Lista de Exercícios 2 Gabarito - Lista de Exercícios Teoria das Filas Modelos Adicionais. U escritório te 3 datilógrafas e cada ua pode datilografar e édia, 6 cartas por hora. As cartas chega para sere datilografadas co taxa

Leia mais

Progressões aritméticas

Progressões aritméticas A UUL AL A Progressões aritméticas Quando escrevemos qualquer quantidade de números, um após o outro, temos o que chamamos de seqüência. As seqüências são, freqüentemente, resultado da observação de um

Leia mais

Resolução - Lista 3 Cálculo I

Resolução - Lista 3 Cálculo I Resolução - Lista 3 Cálculo I Exercício 1 página 61: Encontre as funções compostas,,, e determine o domínio de cada uma delas, para cada par de funções e dados: c) = e = + 2 Calculando : = = Encontrando

Leia mais

Interpolação polinomial: Diferenças divididas de Newton

Interpolação polinomial: Diferenças divididas de Newton Interpolação polinomial: Diferenças divididas de Newton Marina Andretta ICMC-USP 16 de maio de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500

Leia mais

Fernando de Pol Mayer

Fernando de Pol Mayer Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal.

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Estatística Probabilidade Profa. Ivonete Melo de Carvalho Conteúdo Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Objetivos Utilizar a probabilidade como estimador

Leia mais

Equipe de Matemática

Equipe de Matemática Lista - O.M. I ( límpiada de Matemática do Integral )-015 Série: 1º ano Questões: Equipe de Matemática 1. Em um ginásio de esportes, uma quadra retangular está situada no interior de uma pista de corridas

Leia mais

DINÂMICA DE UM TRUQUE

DINÂMICA DE UM TRUQUE ATRACTOR DINÂMICA DE UM TRUQUE Caro leitor: Pense num número natural abc com três dígitos, sendo a c. Depois, secretamente, inverta-o, obtendo cba, e calcule a diferença do maior pelo menor. Bastará agora

Leia mais

Tópicos Especiais em Redes: Introdução a Teoria dos Jogos com Aplicações a Redes de Computadores

Tópicos Especiais em Redes: Introdução a Teoria dos Jogos com Aplicações a Redes de Computadores Tópicos Especiais em Redes: Introdução a Teoria dos Jogos com Aplicações a Redes de Computadores Aula passada: Jogos repetidos infinitamente Aula de hoje: Introdução a Teoria dos Jogos Evolucionária Dinâmica

Leia mais

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA VARIABILIDADE NA MEDIDA DE DADOS CIENTÍFICOS Se numa pesquisa, desenvolvimento de um processo ou produto, o valor

Leia mais

Universidade Federal de Pelotas Disciplina de Microeconomia 1 Professor Rodrigo Nobre Fernandez Lista 3 - Soluções. x 2 5 = 40 x.

Universidade Federal de Pelotas Disciplina de Microeconomia 1 Professor Rodrigo Nobre Fernandez Lista 3 - Soluções. x 2 5 = 40 x. Universidade Federal de Pelotas Disciplina de Microeconomia 1 Professor Rodrigo Nobre Fernandez Lista 3 - Soluções 1) Dada as funções de demanda p(x) = 40 x e de oferta p(x) = x 5, pede-se: a) O ponto

Leia mais

PROF. LUIZ CARLOS MOREIRA SANTOS. Questão 01)

PROF. LUIZ CARLOS MOREIRA SANTOS. Questão 01) Questão 0) Um recipiente com capacidade para 5 litros está completamente cheio de leite puro. Uma pessoa retira 3 litros desse leite e completa o recipiente com 3 litros de água. Em seguida, retira 3 litros

Leia mais

Resolução do Simulado Camiseta Preta

Resolução do Simulado Camiseta Preta Resolução do Simulado amiseta Preta Questão 01 Vejamos a simulação da quantidade de partidas que um time deverá jogar em ambos os anos nesta competição. Primeiro Ano Primeira Fase 6 = 6 6 = 6 partidas

Leia mais

PROBLEMA 1 O retorno mensal de certo investimento de risco pode ser modelado pela variável aleatória R com função de probabilidade dada abaixo :

PROBLEMA 1 O retorno mensal de certo investimento de risco pode ser modelado pela variável aleatória R com função de probabilidade dada abaixo : Módulo básico - Tópicos de Estatística e obabilidade ONS 006/007 - ofa. Mônica Barros LISTA DE EXERCÍCIOS # PROBLEMA O retorno mensal de certo investimento de risco pode ser modelado pela variável aleatória

Leia mais

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE Funções Geradoras de Variáveis Aleatórias 1 Funções Geradoras de Variáveis Aleatórias Nos programas de simulação existe um GNA e inúmeras outras funções matemáticas descritas como Funções Geradoras de

Leia mais

3 Operação das Térmicas e Sistemas Hidrotérmicos

3 Operação das Térmicas e Sistemas Hidrotérmicos 3 Operação das Térmicas e Sistemas Hidrotérmicos 3.1 Sistemas Hidrotérmicos 3.1.1 Custos de oportunidade À primeira vista, as usinas hidrelétricas seriam sempre acionadas primeiro no despacho econômico,

Leia mais

Metodologia de simulação

Metodologia de simulação Metodologia de simulação OBJETIVOS E DEFINIÇÃO DO SISTEMA FORMULAÇÃO DO MODELO ANÁLISE E REDEFINIÇÃO MODELO ABSTRATO RESULTADOS EXPERIMENTAIS (Capítulo 6) MODELO CONCEITUAL (Capítulo 3) REPRESENTAÇÃO DO

Leia mais

Intervalos de conança

Intervalos de conança Intervalos de conança Prof. Hemílio Fernandes Campos Coêlho Departamento de Estatística - Universidade Federal da Paraíba - UFPB Exemplo Suponha que se deseja estimar o diâmetro da pupila de coelhos adultos.

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Condicionais 11/13 1 / 19 Em estudo feito em sala perguntamos aos alunos qual

Leia mais

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que Capítulo 11 1. Equações da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que AP = t AB Fig. 1: Reta r passando por A e B. Como o ponto

Leia mais

Probabilidade 2 - ME310 - Lista 2

Probabilidade 2 - ME310 - Lista 2 Probabilidade - ME3 - Lista September 4, Lembrando:. Estatística de ordem, pg 38 Ross: f xj (x) = n! (n j)!(j )! F (x)j ( F (x)) n j f(x). Distribuição de probabilidade conjunta de funções de variáveis

Leia mais

Cadeias de Markov. 1. Introdução. Modelagem e Simulação - Cadeias de Markov

Cadeias de Markov. 1. Introdução. Modelagem e Simulação - Cadeias de Markov Cadeias de Markov. Introdução Nestas notas de aula serão tratados modelos de probabilidade para processos que evoluem no tempo de maneira probabilística. Tais processos são denominados Processos Estocásticos...

Leia mais

COLÉGIO INTEGRADO JAÓ

COLÉGIO INTEGRADO JAÓ COLÉGIO INTEGRADO JAÓ Professor Tales Mazzoccante ORIENTAÇÕES PARA PROVA BIMESTRAL MATEMÁTICA 7º ANO Data: 07 / 10 / 2016 Aluno(a): 7º Ano Turma: Algumas orientações: Neste terceiro bimestre, daremos ênfase

Leia mais

Aproximações Lineares e Diferenciais. Aproximações Lineares e Diferenciais. 1.Aproximações Lineares 2.Exemplos 3.Diferenciais 4.

Aproximações Lineares e Diferenciais. Aproximações Lineares e Diferenciais. 1.Aproximações Lineares 2.Exemplos 3.Diferenciais 4. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Aproximações Lineares

Leia mais

Respostas. Resposta 1: Considerando que o objetivo é calcular a proporção de hipertensos, recorremos à fórmula abaixo:

Respostas. Resposta 1: Considerando que o objetivo é calcular a proporção de hipertensos, recorremos à fórmula abaixo: Deseja-se saber a proporção de pacientes com hipertensão arterial entre os pacientes de um ambulatório de diabetes mellitus. Estudos anteriores de diabetes têm encontrado uma proporção de 18,5%. 1. Qual

Leia mais

RACIOCÍNIO LÓGICO

RACIOCÍNIO LÓGICO RACIOCÍNIO LÓGICO 01. Uma pessoa saiu de casa para o trabalho decorridos 5/18 de um dia e retornou à sua casa decorridos 13/16 do mesmo dia. Permaneceu fora de casa durante um período de: a) 14 horas e

Leia mais

Aula 2 A distribuição normal

Aula 2 A distribuição normal Aula 2 A distribuição normal Objetivos: Nesta aula você estudará a distribuição normal, que é uma das mais importantes distribuições contínuas. Você verá a definição geral desta distribuição, mas, nesse

Leia mais

Eng. de Produção. Introdução à Teoria das Filas. Prof. Ricardo Villarroel Dávalos Fpolis, Abril de 2010

Eng. de Produção. Introdução à Teoria das Filas. Prof. Ricardo Villarroel Dávalos Fpolis, Abril de 2010 Eng. de Produção Introdução à Teoria das Filas Prof. Ricardo Villarroel Dávalos ricardo.davalos@unisul.br Fpolis, Abril de 2010 Introdução Disciplinas das filas λ e IC c µ e TA População de clientes TF

Leia mais

Matemática - UNESP fase

Matemática - UNESP fase Matemática - UNESP -015-014- fase 1. (Unesp 015) Um dado viciado, que será lançado uma única vez, possui seis faces, numeradas de 1 a 6. A tabela a seguir fornece a probabilidade de ocorrência de cada

Leia mais

Notas sobre os anéis Z m

Notas sobre os anéis Z m Capítulo 1 Notas sobre os anéis Z m Estas notas complementam o texto principal, no que diz respeito ao estudo que aí se faz dos grupos e anéis Z m. Referem algumas propriedades mais específicas dos subanéis

Leia mais

COMO FUNCIONA A SIMULAÇÃO. Aula 1. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE

COMO FUNCIONA A SIMULAÇÃO. Aula 1. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE COMO FUNCIONA A SIMULAÇÃO Aula 1 1 Tópicos Introdução Um Exemplo Simples Como Tratar e Analisar Problemas Tratando a Variabilidade dos Sistemas Incorporando a Variabilidade aos Modelos Computacionais Terminologia

Leia mais

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 19: Concavidade. Teste da Segunda Derivada. Denir concavidade de uma função;

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 19: Concavidade. Teste da Segunda Derivada. Denir concavidade de uma função; CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 19: Concavidade. Teste da Segunda Derivada. Objetivos da Aula Denir concavidade de uma função; Denir ponto de inexão;

Leia mais

Lista 4 MUV. Física Aplicada a Agronomia

Lista 4 MUV. Física Aplicada a Agronomia Sigla: Disciplina: Curso: FISAP Física Aplicada a Agronomia Agronomia Lista 4 MUV 01) A posição de um objeto movendo-se ao longo do eixo x é dada por x = 3t - 4t² + t³, onde x está em metros e t em segundos.

Leia mais

Probabilidade e Modelos Probabilísticos

Probabilidade e Modelos Probabilísticos Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição

Leia mais

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine)

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 6-1 Objetivos: Neste capítulo, você aprenderá:

Leia mais

Estado estacionário condução + convecção

Estado estacionário condução + convecção Universidade de São Paulo Escola de Engenharia de orena Departamento de Engenharia de Materiais Estado estacionário condução + convecção Prof. uiz T. F. Eleno Escola de Engenharia de orena da Universidade

Leia mais

Avaliação de Desempenho de Sistemas

Avaliação de Desempenho de Sistemas Avaliação de Desempenho de Sistemas Modelo de Filas M/M/1 e M/M/m Prof. Othon Batista othonb@yahoo.com Modelo de Filas Nas aulas anteriores vimos a necessidade de se utilizar uma distribuição para representar

Leia mais

Representação e erros numéricos

Representação e erros numéricos Representação e erros numéricos Marina Andretta ICMC-USP 29 de fevereiro de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500 - cálculo numérico

Leia mais

Probabilidade Aula 02

Probabilidade Aula 02 0303200 Probabilidade Aula 02 Magno T. M. Silva Escola Politécnica da USP Março de 2017 Sumário 2.3 Técnicas de contagem 2.4 Probabilidade condicional 2.3 Princípio fundamental da contagem Suponhamos que

Leia mais

Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL.

Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL. Introdução à Inferência Estatística Departamento de Física é Matemática. USP-RP. Prof. Rafael A. Rosales 5 de setembro de 004 Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL. 1 Medidas Resumo DISTRIBUIÇÕES

Leia mais

Teste Chi-Quadrado de Independência. Prof. David Prata Novembro de 2016

Teste Chi-Quadrado de Independência. Prof. David Prata Novembro de 2016 Teste Chi-Quadrado de Independência Prof. David Prata Novembro de 2016 Duas Variáveis Categóricas Análise de variância envolve o exame da relação entre uma variável categórica explicativa e uma variável

Leia mais

Notas de Aula Disciplina Matemática Tópico 04 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 04 Licenciatura em Matemática Osasco -2010 1. Funções Sobrejetoras Dizemos que uma unção : é sobrejetora se, e somente se, o seu conjunto imagem or igual ao contradomínio, isto é, se Im() =. Em outras palavras, dado um elemento z qualquer no contradomínio,

Leia mais

Distribuições Importantes. Distribuições Discretas

Distribuições Importantes. Distribuições Discretas Distribuições Importantes Distribuições Discretas Distribuição de Bernoulli Definição Prova ou experiência de Bernoulli é uma experiência aleatória que apenas tem dois resultados possíveis: A que se designa

Leia mais

QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE

QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE 1) Uma moeda não tendenciosa é lançada quatro vezes. A probabilidade de que sejam obtidas duas caras e duas coroas é: (A) 3/8 (B) ½ (C) 5/8 (D) 2/3

Leia mais

Resumo. Parte 7 Processos Estocásticos. Ramiro Brito Willmersdorf

Resumo. Parte 7 Processos Estocásticos. Ramiro Brito Willmersdorf Parte 7 Processos Estocásticos Ramiro Brito Willmersdorf ramiro@willmersdorf.net Departamento de Engenharia Mecânica Universidade Federal de Pernambuco 2011.2 Resumo 1 Processos Estocásticos 2 Classicação

Leia mais

Física Experimental II (2014.1)

Física Experimental II (2014.1) Física Experimental II (2014.1) Calendário 19/02 Tratamento de dados experimentais 26/02 NÃO HAVERÁ AULA 05/30 Recesso de Carnaval 12/03 Experimento 01 Instrumentos de Medida 19/03 Experimento 02 Elementos

Leia mais