8 A do total de lançamentos, ou seja, x = 5625 Resposta: C

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "8 A do total de lançamentos, ou seja, x = 5625 Resposta: C"

Transcrição

1 Página 7 Preparar o Exame 0 07 Matemática A. x7x 7 Observa que sair primeiro o sabor laranja e depois o sabor morango são casos diferentes x Resposta: D. Repara que se os dois primeiros rebuçados foram de café então, na ª extração, existem de café em no total. Resposta: A. asos possíveis: asos favoráveis: 7 A A Resposta: A. P(sair divisor de dez) =. Então, em 000 lançamentos espera-se que saia divisor de 0 em do total de lançamentos, ou seja, x 000 = Resposta:. Pela lei dos grandes números, P(sair número maior do que ) , De entre as opções apresentadas, a que mais se aproxima deste valor é. Resposta:. asos possíveis: De entre os oito vértices do paralelepípedo pretende-se escolher dois. Proposta de Resolução dos Exercícios do Subcapítulo álculo de probabilidades. Lei de Laplace Página

2 asos favoráveis: Preparar o Exame 0 07 Matemática A Para cada um dos vértices existem com o qual forma uma aresta. No entanto, a aresta [AB] é igual à aresta [BA], por exemplo, pelo que estamos a contar duas vezes cada aresta; assim, temos de dividir por Resposta: A 7. asos possíveis: 7 ada cientista tem 7 possibilidades de escolha de hotel asos favoráveis: 7 Um dos cientistas pode escolher qualquer um dos 7 hotéis. om essa escolha feita, o outro cientista, para que fiquem no mesmo hotel, só pode escolher o hotel anteriormente escolhido Resposta: A. asos possíveis: A omo já saíram 7 cartões, vamos escolher, ordenadamente, cartões de entre os restantes. asos favoráveis: Para obter a sequência de letras MATEMATIA, tem de sair IA nas extrações que faltam. Ainda existem I, e A, pelo que existem x x maneiras de o fazer. A Resposta: B. asos possíveis: asos favoráveis: Para se formar um triângulo podemos escolher quaisquer três vértices dos nove disponíveis, exceto dos que são colineares. Resposta: 0. asos possíveis: asos favoráveis: x = 0 Os planos que queremos contar são aqueles que contém as diagonais e as arestas das bases do prisma. Temos arestas e diagonais, pelo que existem planos nestas condições. ada um destes planos contém vértices do prisma, pelo que existe = maneiras de escolher vértices que o definem. Página 0 Resposta: Proposta de Resolução dos Exercícios do Subcapítulo álculo de probabilidades. Lei de Laplace Página

3 Preparar o Exame 0 07 Matemática A. a) 7%. b). c). a). b). c) 7.. 0, : = 0,. Seja x a probabilidade de sair face com o número. Pelas condições do enunciado temos x que x 0, x x 0,. Assim, 0, P(sair face com número primo) = 0, 0, 0,. 0, + 0, + 0, + 0, = 0,7. Para cada uma das células existem 0 possibilidades para a sequência de algarismos. Então a instituição bancária pode fazer 000 cartões diferentes, ou seja, 000 A.. a) 000. b) omo o cartão só tem números ímpares, existem = casos possíveis para a chave. Proposta de Resolução dos Exercícios do Subcapítulo álculo de probabilidades. Lei de Laplace Página

4 (falhar à primeira e acertar à segunda) Preparar o Exame 0 07 Matemática A. Primeiro a professora tem de probabilidade de não escolher a turma B. Depois desta escolha, existem rapazes em 0 alunos da turma A Para que o aluno escolhido seja rapaz, ou é da turma A, com probabilidade de 0, ou é da turma B, com probabilidade 0 0. Existem 0 x chaves diferentes do euromilhões (dos 0 números escolhemos e das estrelas escolhemos ), das quais apenas uma é a vencedora em cada semana. No boletim considerado temos apostas. 0,00000% 0. asos possíveis: existem formas de escolher três livros de autores de língua portuguesa. asos favoráveis: de entre os cinco livros de Saramago escolhemos dois (existem maneiras de o fazer) e escolhemos um de entre os três de Mia outo ( casos). Assim, existem x casos favoráveis.. asos possíveis: existem! maneiras de arrumar os livros na prateleira. asos favoráveis: vamos considerar os livros dos autores como um bloco. Estes têm 0! formas de permutarem entre si. Este bloco juntamente com os restantes cinco livros têm! formas de trocarem de posição. Logo os casos favoráveis são 0!! 0!!! 00 Proposta de Resolução dos Exercícios do Subcapítulo álculo de probabilidades. Lei de Laplace Página

5 Preparar o Exame 0 07 Matemática A. asos possíveis: existem! maneiras de arrumar os livros na prateleira. asos favoráveis: repara que como não podem ficar livros de Mia outo seguidos, estes três livros não podem ocupar duas das posições, exatamente as posições imediatamente a seguir aos primeiros livros de Mia outo. Então, dos lugares disponíveis para estes livros, temos de escolher ordenadamente três deles para estes livros: A. Os restantes livros podem permutar entre si; existem! formas de o fazer. Assim, os casos favoráveis são A x! A!! 7. A 7. Repara que, para ser um múltiplo de, o último algarismo é obrigatoriamente o, havendo para cada uma das outras posições possibilidades. 7. asos possíveis:. asos favoráveis: consideremos dois casos distintos: O número começa por ou Existem x casos. O número começa por O º algarismo tem de ser menor que Existem x casos. Então x + x casos favoráveis. 0. 0,77 0 Proposta de Resolução dos Exercícios do Subcapítulo álculo de probabilidades. Lei de Laplace Página

6 Preparar o Exame 0 07 Matemática A Pela lei de Laplace, a probabilidade de um acontecimento é o quociente entre o número de casos favoráveis ao acontecimento e o número de casos possíveis, desde que os acontecimentos elementares sejam equiprováveis. omo o dado é equilibrado, então a lei de Laplace pode ser aplicada a este problema. omo o dado é lançado três vezes e em cada lançamento existem seis hipóteses, o número de casos x x =. Para que o produto dos três números saídos seja temos de considerar dois casos: sair a combinação de números, e (não necessariamente por esta ordem) ou a combinação de números, e (não necessariamente por esta ordem). Para a combinação de números, e temos três hipóteses que são:, e ou, e ou, e. Para a combinação de números, e, temos! = hipóteses (número de permutações de três elementos distintos). Assim, o número de casos favoráveis é +! e a probabilidade pedida é!. 0. Se a soma dos dois primeiros elementos de uma linha do triângulo de Pascal é, estamos perante a linha ( + = ): 0 0 asos possíveis: asos favoráveis: De entre os números,, e podemos escolher quaisquer dois ( formas de o fazer) e podemos ainda escolher os dois 0 ( forma de o fazer). Assim, os casos favoráveis são + 7. Pela lei de Laplace, a probabilidade de um acontecimento é o quociente entre o número de casos favoráveis ao acontecimento e o número de casos possíveis, desde que os acontecimentos elementares sejam equiprováveis. omo qualquer um dos nove pontos tem igual probabilidade de ser escolhido, a lei de Laplace pode ser aplicada a este problema. O número de casos possíveis é (número de maneiras de escolher três pontos de entre os nove). Para determinarmos o número de casos favoráveis temos de contar o número de triângulos distintos que se podem formar com quatro pontos colineares e com cinco pontos não colineares. Uma das hipóteses de Proposta de Resolução dos Exercícios do Subcapítulo álculo de probabilidades. Lei de Laplace Página

7 Preparar o Exame 0 07 Matemática A formar um triângulo é escolher três pontos dos cinco não colineares; o número de maneiras de o fazer é. Outra hipótese é escolher dois pontos do conjunto de pontos não colineares e um do conjunto de pontos colineares, o número de maneiras de o fazer é x. Por fim, a última hipótese, é escolher dois pontos do conjunto de pontos colineares e um do conjunto de pontos não colineares, o número de maneiras de o fazer é x. Assim, o número de casos favoráveis é + x + x. Logo, a probabilidade pedida é.. Existem formas de distribuir os condutores pelos dois veículos. Para cada uma delas, dos 0 amigos escolhemos para um dos veículos, sendo que os outros ficam automaticamente escolhidos para o outro veículo; existem 0 maneiras de o fazer. x 0 = 0. teste, além do Gonçalo. Repara que, nos casos favoráveis, basta-nos escolher o outro condutor que também terá de fazer o. onsidera um saco com sete bolas, três pretas e quatro brancas. Retiram-se, simultaneamente e ao acaso, duas bolas do saco. Qual é a probabilidade das bolas serem todas da mesma cor?. Pela lei de Laplace a probabilidade de um acontecimento é o quociente entre o número de casos favoráveis ao acontecimento e o número de casos possíveis, desde que os acontecimentos elementares sejam equiprováveis. omo os bilhetes são distribuídos ao acaso, cada membro da família tem igual probabilidade de se sentar em qualquer um dos lugares, pelo que a lei de Laplace pode ser aplicada a este problema. Primeira resposta: O número de casos possíveis é! (número de maneiras de doze pessoas permutarem). Para o número de casos favoráveis vamos começar por agrupar os quatro elementos adultos da família num bloco. Este bloco permuta com os restantes oito elementos da família de! maneiras distintas (permutar o bloco e os restantes oito elementos da família é igual a permutar nove pessoas, o bloco conta como uma pessoa). Para cada uma destas maneiras os quatro elementos que formam o bloco permutam entre si de! maneiras distintas. Assim, o!! número de casos favoráveis é dado por!! e a probabilidade pedida pode ser dada por! Repara na figura seguinte:. Proposta de Resolução dos Exercícios do Subcapítulo álculo de probabilidades. Lei de Laplace Página 7

8 Preparar o Exame 0 07 Matemática A!! Segunda resposta: Para esta resposta vamos apenas considerar a escolha dos lugares para os familiares adultos. Assim, o número de casos possíveis é (número de maneiras de escolher quatro lugares de entre os doze disponíveis). O número de casos favoráveis é (ficando os quatro elementos adultos da família juntos, eles podem ocupar os lugares do.º ao.º lugares, ou do.º ao.º lugares, ou do.º ao.º lugares, ou do.º ao 7.º lugares, ou do.º ao.º lugares, ou do.º ao.º lugares, ou do 7.º ao 0.º lugares, ou do.º ao.º lugares, ou do.º ao.º lugares. Repara que = + ). Assim, probabilidade pedida pode ser dada por. Repara na figura seguinte: maneiras dist int as Observa que:!!!!!.!!!!! ( )!!! Proposta de Resolução dos Exercícios do Subcapítulo álculo de probabilidades. Lei de Laplace Página

MATEMÁTICA A - 12o Ano Probabilidades - Distribuições de probabilidades

MATEMÁTICA A - 12o Ano Probabilidades - Distribuições de probabilidades MATEMÁTICA A - o Ano Probabilidades - Distribuições de probabilidades Exercícios de exames e testes intermédios. A tabela de distribuição de probabilidades de uma variável aleatória X é a seguinte. x i

Leia mais

Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 2011/12 Distribuição de probabilidades 12.º Ano

Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 2011/12 Distribuição de probabilidades 12.º Ano Escola Secundária/, da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 0/ Distribuição de probabilidades.º Ano Nome: N.º: Turma:. Numa turma do.º ano, a distribuição dos alunos por idade e sexo

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Exercícios de exames e testes intermédios 1. Considere um dado cúbico, com as faces numeradas de 1 a 6, e um saco que contém cinco bolas, indistinguíveis

Leia mais

Teste de Avaliação de MATEMÁTICA 12º ano

Teste de Avaliação de MATEMÁTICA 12º ano Teste de Avaliação de MATEMÁTIA 2º ano º Período de 202/3 duração 90 min. Prof. Josué Baptista Turma: 2 e 3 2º teste A 06 de Dezembro lassificação: Nº Nome GRUPO I O Professor: As sete questões deste grupo

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais mata Exercícios de exames e provas oficiais. Um dos termos do desenvolvimento de x x, com x 0, não depende da variável x. 0 Qual é esse termo? 040 804 04 5 matemática A º ano, exame, ª fase, 04. A soma

Leia mais

TESTE DE PROBABILIDADES E COMBINATÓRIA 12.º ANO

TESTE DE PROBABILIDADES E COMBINATÓRIA 12.º ANO TESTE DE PROBABILIDADES E COMBINATÓRIA 2.º ANO NOME: N.º: TURMA: ANO LETIVO: / AVALIAÇÃO: PROFESSOR: ENC. EDUCAÇÃO: DURAÇÃO DO TESTE: 90 MINUTOS O teste é constituído por dois grupos. O Grupo I é constituído

Leia mais

Análise Combinatória. Cálculo de Probabilidades. (aplicações na Geometria)

Análise Combinatória. Cálculo de Probabilidades. (aplicações na Geometria) FIHA DE TRABALHO N.º 6 TURMA:.ºA 06/07 novembro de 06 Análise ombinatória. álculo de Probabilidades. (aplicações na Geometria). Escolhem-se aleatoriamente dois vértices distintos de um cubo. Qual é a probabilidade

Leia mais

Bem Explicado Centro de Explicações Lda. Matemática 9º Ano Probabilidades

Bem Explicado Centro de Explicações Lda. Matemática 9º Ano Probabilidades Bem Explicado Centro de Explicações Lda. Matemática 9º Ano Probabilidades Nome: Data: / / 1. Das seguintes experiências diz, justificando, quais são as aleatórias: 1.1. Deitar um berlinde num copo de água

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Propostas de resolução

MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Propostas de resolução MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Propostas de resolução Exercícios de exames e testes intermédios 1. Como P (B) = 1 P ( B ) = P (B) P (A B) vem que P (B) = 1 0,7

Leia mais

Teste de Avaliação Escrita

Teste de Avaliação Escrita Teste de Avaliação Escrita Duração: 9 minutos 8 de outubro de Escola E.B., Eng. Nuno Mergulhão Portimão Ano Letivo /4 Matemática 9.º B Nome: N.º Classificação: Fraco (% 9%) Insuficiente (% 49%) Suficiente

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos

MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Exercícios de exames e testes intermédios 1. Seja Ω, conjunto finito, o espaço de resultados associado a uma certa experiência

Leia mais

(b) Em quantos destes anagramas as letras CI aparecem juntas e nesta ordem? (c) Em quantos anagramas a letra A aparece antes (a esquerda) da letra E?

(b) Em quantos destes anagramas as letras CI aparecem juntas e nesta ordem? (c) Em quantos anagramas a letra A aparece antes (a esquerda) da letra E? Exercício 1. (a) Quantos são os anagramas da palavra CINEMA. (b) Em quantos destes anagramas as letras CI aparecem juntas e nesta ordem? (c) Em quantos anagramas a letra A aparece antes (a esquerda) da

Leia mais

Escola Secundária da Sobreda. Análise Combinatória e Probabilidades. Actividade 4

Escola Secundária da Sobreda. Análise Combinatória e Probabilidades. Actividade 4 Escola Secundária da Sobreda Análise Combinatória e Probabilidades Actividade 4 Os vinte alunos de uma turma de uma escola secundária resolveram formar uma comissão de três de entre eles para organizar

Leia mais

COLÉGIO NOSSA SENHORA DA ASSUNÇÃO

COLÉGIO NOSSA SENHORA DA ASSUNÇÃO COLÉGIO NOSSA SENHORA DA ASSUNÇÃO FAMALICÃO ANADIA FICHA DE TRABALHO N.º2 DE MATEMÁTICA Data: Outubro de 2009 Turmas: 12ºA e 12ºB TÉCNICAS DE CONTAGEM: Arranjos com repetição ; Arranjos sem repetição;

Leia mais

Matemática 4 Módulo 9

Matemática 4 Módulo 9 Matemática 4 Módulo 9 ANÁLISE COMBINATÓRIA I COMENTÁRIOS ATIVIDADES PARA SALA (n + )! (n + )(n )!. I. Dada a função ƒ (n). Simplificando, temos: n! + (n )! (n + ).n.(n )! (n + ).(n )! (n )![(n + ).n (n

Leia mais

Matemática E Extensivo V. 3

Matemática E Extensivo V. 3 Matemática E Extensivo V. Exercícios 01) 10 anagramas. POEMA 5 letras 5! 10. 0) 60 anagramas. Vogais: e, i, o omeçando com e : e _ 10 omeçando com i : i _ 10 omeçando com o : o _ 10 Logo 10 60. 4! 4 (permutação

Leia mais

Ficha de Avaliação. Matemática A. Duração do Teste: 90 minutos. 12.º Ano de Escolaridade. Teste de Matemática A 12.º Ano Página 1

Ficha de Avaliação. Matemática A. Duração do Teste: 90 minutos. 12.º Ano de Escolaridade. Teste de Matemática A 12.º Ano Página 1 Ficha de Avaliação Matemática A Duração do Teste: 90 minutos 12.º Ano de Escolaridade Teste de Matemática A 12.º Ano Página 1 1. Colocaram-se numa urna 12 bolas, indistinguíveis pelo tato, numeradas de

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO. Matemática

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO. Matemática ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO (NO PERÍODO DE FÉRIAS ESCOLARES) ANO 2014/20 PROFESSOR (a) DISCIPLINA Matemática ALUNO (a) SÉRIE 2º ano 1. OBJETIVO

Leia mais

Chama-se evento todo subconjunto de um espaço amostral. PROBABILIDADE. Introdução

Chama-se evento todo subconjunto de um espaço amostral. PROBABILIDADE. Introdução Introdução PROBABILIDADE Há certos fenômenos (ou experimentos) que, embora sejam repetidos muitas vezes e sob condições idênticas, não apresentam os mesmos resultados. Por exemplo, no lançamento de uma

Leia mais

Experiências Aleatórias. Espaço de Resultados. Acontecimentos

Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiência Aleatória É uma experiência em que: não se sabe exactamente o resultado que se virá a observar; conhece-se o universo dos resultados

Leia mais

12.º Ano de Escolaridade

12.º Ano de Escolaridade gabinete de avaliação educacional T E S T E I N T E R M É D I O D E M A T E M Á T I C A 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) (Dec.-Lei n.º 286/89, de 29 de Agosto, para alunos

Leia mais

2 Um edifício possui 8 portas. De quantas formas uma pessoa poderá entrar no edifício e sair por uma porta diferente da que usou para entrar?

2 Um edifício possui 8 portas. De quantas formas uma pessoa poderá entrar no edifício e sair por uma porta diferente da que usou para entrar? UNIVERSIDDE FEDERL DE MTO GROSSO ampus Universitário do raguaia Instituto de iências Exatas e da Terra urso: Matemática Disciplina: Probabilidade e Estatística Professor: Renato Ferreira da ruz 1 a Lista

Leia mais

ANÁLISE COMBINATÓRIA E PRINCÍPIO FUNDAMENTAL DA CONTAGEM

ANÁLISE COMBINATÓRIA E PRINCÍPIO FUNDAMENTAL DA CONTAGEM 1. (Fac. Albert Einstein - Medicin 2016) Suponha que nos Jogos Olímpicos de 2016 apenas um representante do Brasil faça parte do grupo de atletas que disputarão a final da prova de natação dos 100 metros

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Cálculo combinatório: Problemas de Contagem Propostas de resolução

MATEMÁTICA A - 12o Ano Probabilidades - Cálculo combinatório: Problemas de Contagem Propostas de resolução MATEMÁTICA A - 12o Ano Probabilidades - Cálculo combinatório: Problemas de Contagem Propostas de resolução Exercícios de exames e testes intermédios 1. Considerando uma única fica horizontal, existem 4

Leia mais

(Testes intermédios e exames 2007/2008)

(Testes intermédios e exames 2007/2008) (Testes intermédios e exames 2007/2008) 14. Uma caixa 1 tem uma bola verde e três bolas amarelas. Uma caixa 2 tem apenas uma bola verde. onsidere a experiência que consiste em tirar, simultaneamente e

Leia mais

T o e r o ia a da P oba ba i b lida d de

T o e r o ia a da P oba ba i b lida d de Teoria da Probabilidade Prof. Joni Fusinato Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso cotidiano. Usa o princípio básico do aprendizado humano que

Leia mais

DEPARTAMENTO DE MATEMÁTICA

DEPARTAMENTO DE MATEMÁTICA FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhanguene, Av. de Moçambique, km 1, Tel: +258 21401078, Fax: +258 21401082, Maputo Cursos de Licenciatura em Ensino de Matemática

Leia mais

Continuando com. O título desta aula já indica que continuaremos. Nossa aula. Permutações com repetição

Continuando com. O título desta aula já indica que continuaremos. Nossa aula. Permutações com repetição A UA UL LA Continuando com permutações Introdução Nossa aula O título desta aula já indica que continuaremos o assunto da Aula 49, em que vimos vários exemplos de permutações denominadas permutações simples

Leia mais

Nome do aluno: Nº. Classificação: E.Educação:

Nome do aluno: Nº. Classificação: E.Educação: 9º Ano ESCOLA SECUNDÁRIA/3 DE SANTA MARIA DA FEIRA Ano Letivo 2012/13 TURMA: A TESTE DE MATEMÁTICA Professora Lourdes Fonseca Nome do aluno: Nº Classificação: E.Educação: 1. Observa a roleta da sorte representada

Leia mais

Solução: a) Observamos que temos as seguintes linhas entre as cidades: A B C

Solução: a) Observamos que temos as seguintes linhas entre as cidades: A B C Exercício 1 Há 3 linhas de ônibus entre as cidades A e B e 2 linhas de ônibus entre B e C. De quantas maneiras uma pessoa pode viajar: (a) indo de A até C, passando por B? (b) indo e voltando entre A e

Leia mais

Matemática 2C16//26 Princípio da multiplicação ou princípio fundamental da contagem. Permutação simples e fatorial de um número.

Matemática 2C16//26 Princípio da multiplicação ou princípio fundamental da contagem. Permutação simples e fatorial de um número. Matemática 2C16//26 Princípio da multiplicação ou princípio fundamental da contagem 1. Existem 2 vias de locomoção de uma cidade A para uma cidade B e 3 vias de locomoção da cidade B a uma cidade C. De

Leia mais

Matemática 9.º Ano. Resoluções

Matemática 9.º Ano. Resoluções Resoluções A_Prova Tema Organização e tratamento de dados Estatística Praticar páginas 8 a... Q Q = 0 = 7 R.: A amplitude interquartil da distribuição é 7... 0,7 0 = 0 R.: O João percorreu até 0 km, no

Leia mais

Proposta de resolução da Prova de Matemática A (código 635) 21 de Junho de 2010

Proposta de resolução da Prova de Matemática A (código 635) 21 de Junho de 2010 Proposta de resolução da Prova de Matemática A (código 635) 1. Como A e B são acontecimentos incompatíveis, 0 e Ou seja, de acordo com os dados do enunciado, 70% 30% 40% Versão 1: B Versão : C. Como se

Leia mais

12.º Ano de Escolaridade

12.º Ano de Escolaridade gabinete de avaliação educacional T E S T E I N T E R M É D I O D E M A T E M Á T I C A 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) (Dec.-Lei n.º 286/89, de 29 de Agosto, para alunos

Leia mais

Módulo de Princípios Básicos de Contagem. Segundo ano

Módulo de Princípios Básicos de Contagem. Segundo ano Módulo de Princípios Básicos de Contagem Permutação simples Segundo ano Permutação Simples 1 Exercícios Introdutórios Exercício 1. De quantas formas se pode dispor quatro pessoas em fila indiana? Exercício

Leia mais

2016/2017 outubro de 2016

2016/2017 outubro de 2016 FICHA DE TRABALHO N.º 5 TURMA:12.ºA 2016/2017 outubro de 2016 Análise Combinatória; Triângulo de Pascal; Binómio de Newton; Aplicações ao Cálculo das Probabilidades 1. A Sara é colecionadora e tem 200

Leia mais

Contagem e Probabilidade Exercícios Adicionais. Paulo Cezar Pinto Carvalho

Contagem e Probabilidade Exercícios Adicionais. Paulo Cezar Pinto Carvalho Contagem e Probabilidade Exercícios Adicionais Paulo Cezar Pinto Carvalho Exercícios Adicionais Contagem e Probabilidade Para os alunos dos Grupos 1 e 2 1. Um grupo de 4 alunos (Alice, Bernardo, Carolina

Leia mais

ANÁLISE COMBINATÓRIA

ANÁLISE COMBINATÓRIA ANÁLISE COMBINATÓRIA 1) (PUC) A soma das raízes da equação (x + 1)! = x 2 + x é (a) 0 (b) 1 (c) 2 (d) 3 (e) 4 2) (UFRGS) Um painel é formado por dois conjuntos de sete lâmpadas cada um, dispostos como

Leia mais

Aula 6 Revisão de análise combinatória

Aula 6 Revisão de análise combinatória Aula 6 Revisão de análise combinatória Conforme você verá na próxima aula, a definição clássica de probabilidade exige que saibamos contar o número de elementos de um conjunto. Em algumas situações, é

Leia mais

TESTE DE MATEMÁTICA Ano Lectivo º I - 20/10/2010

TESTE DE MATEMÁTICA Ano Lectivo º I - 20/10/2010 TESTE DE MATEMÁTICA Ano Lectivo - - 9º I - // Nome: Nº Versão A Duração da Prova: 9 minutos O teste inclui cinco itens de escolha múltipla. Seleccione a única resposta correcta de entre as quatro alternativas

Leia mais

Estatística Básica Capítulo 2 Ayrton Barboni. Anotamos n(x) o número de elementos do conjunto X. Vejamos algumas situações:

Estatística Básica Capítulo 2 Ayrton Barboni. Anotamos n(x) o número de elementos do conjunto X. Vejamos algumas situações: 2. TÉCNICAS DE CONTAGEM Capítulo 2 Para resolver problemas de probabilidades, que serão estudados adiante, é necessário, em alguns casos, contar os elementos de um conjunto finito. 2.1. REGRAS DE CONTAGEM

Leia mais

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios. PROBABILIDADE Prof. Aurimenes A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios.

Leia mais

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA PROBABILIDADE São duas as questões pertinentes na resolução de um problema envolvendo probabilidades. Primeiro, é preciso quantificar o conjunto de todos os resultados possíveis, que será chamado de espaço

Leia mais

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios. PROBABILIDADE A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios. Os experimentos

Leia mais

Resposta da questão 2: [B] O número de maneiras que esse aluno pode escrever essa palavra é igual ao arranjo de 4, 3 a 3.

Resposta da questão 2: [B] O número de maneiras que esse aluno pode escrever essa palavra é igual ao arranjo de 4, 3 a 3. Resposta da questão 1: [A],5h = 9.000 s Se d é número de algarismos da senha ímpar, podemos escrever que o número n de senhas será dado por: d1 n= 10 5 ou n= 9000 1,8 = 5000 Portanto, d1 10 5 = 5000 d

Leia mais

RESPOSTA Princípio Fundamental da contagem

RESPOSTA Princípio Fundamental da contagem RESPOSTA Princípio Fundamental da contagem Monitores: Juliana e Alexandre Exercício 1 Para resolver esse exercício, devemos levar em consideração os algarismos {0, 2, 3, 5, 6, 7, 8 e 9}. Para que esse

Leia mais

CAPÍTULO 2 ANÁLISE COMBINATÓRIA

CAPÍTULO 2 ANÁLISE COMBINATÓRIA CAPÍTULO 2 ANÁLISE COMBINATÓRIA A análise combinatória é um ramo da matemática, que tem por fim estudar as propriedades dos agrupamentos que podemos formar, segundo certas leis, com os elementos de um

Leia mais

c) 17 b) 4 17 e) 17 21

c) 17 b) 4 17 e) 17 21 Probabilidade I Exercícios. Dois jogadores A e B vão lançar um par de dados. Eles combinam que se a soma dos números dos dados for 5, A ganha e se a soma for 8, B é quem ganha. Os dados são lançados. Sabe-se

Leia mais

Técnicas de Contagem I II III IV V VI

Técnicas de Contagem I II III IV V VI Técnicas de Contagem Exemplo Para a Copa do Mundo 24 países são divididos em seis grupos, com 4 países cada um. Supondo que a escolha do grupo de cada país é feita ao acaso, calcular a probabilidade de

Leia mais

Matemática E Extensivo v. 3

Matemática E Extensivo v. 3 Matemática xtensivo v. xercícios 0) Octógno tem 0 e decágono tem. Número de vértices de um octógono: 8 vértices. D = nn ( ) D = 88 ( ) 8. 0 = = = 0 Número de vértices de um decágono: 0 vértices. D = nn

Leia mais

COLÉGIO EQUIPE DE JUIZ DE FORA MATEMÁTICA - 3º ANO EM. 1. O número de anagramas da palavra verão que começam e terminam por consoante é:

COLÉGIO EQUIPE DE JUIZ DE FORA MATEMÁTICA - 3º ANO EM. 1. O número de anagramas da palavra verão que começam e terminam por consoante é: 1. O número de anagramas da palavra verão que começam e terminam por consoante é: a) 120 b) 60 c) 12 d) 24 e) 6 2. Com as letras da palavra prova, podem ser escritos x anagramas que começam por vogal e

Leia mais

MATE M ÁTIC A A 1 2.º ANO

MATE M ÁTIC A A 1 2.º ANO ! "# $% % & º AN O " %" """ "" ' NOME: N.º: TURMA: DATA: / / 1. Um fiscal do Ministério das Finanças vai inspeccionar a contabilidade das sete empresas, das quais três são clubes de futebol profissional.

Leia mais

Exercícios de Aprofundamento Mat. Combinação e Probabilidade

Exercícios de Aprofundamento Mat. Combinação e Probabilidade 1. (Unifesp 2015) Um tabuleiro de xadrez possui 64 casas quadradas. Duas dessas casas formam uma dupla de casas contíguas se estão lado a lado, compartilhando exatamente um de seus lados. Veja dois exemplos

Leia mais

Termo-Estatística (2013) 2ª Aula. Prof. Alvaro Vannucci

Termo-Estatística (2013) 2ª Aula. Prof. Alvaro Vannucci Termo-Estatística (2013) 2ª Aula Prof. Alvaro Vannucci Na Mecânica Estatística, será muito útil a utilização dos conceitos básicos de Análise Combinatória e Probabilidade. Por ex., uma garota vai sair

Leia mais

Visionamento do filme:

Visionamento do filme: robabilidades - 9º ano Visionamento do filme: Dados e Homens 1 Em 1651 o onde de Méré (viciado no jogo) viajava com ascal ( homem que estudava religião e Matemática inventor da máquina de calcular) e colocou-lhe

Leia mais

Experiências aleatórias e probabilidade

Experiências aleatórias e probabilidade Experiências aleatórias e probabilidade L.J. Amoreira UBI Novembro 2010 Experiências aleatórias Experiências aleatórias são aquelas cujos resultados não são conhecidos de antemão. Espaço de resultados

Leia mais

Canguru Matemático sem fronteiras 2008

Canguru Matemático sem fronteiras 2008 Destinatários: alunos do 12º ano de Escolaridade Duração: 1h30min Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. Inicialmente tens 30 pontos. Por cada questão errada, és penalizado

Leia mais

EXAME NACIONAL DE MATEMÁTICA A ª FASE VERSÃO 1/2 PROPOSTA DE RESOLUÇÃO

EXAME NACIONAL DE MATEMÁTICA A ª FASE VERSÃO 1/2 PROPOSTA DE RESOLUÇÃO Preparar o Eame 06 Matemática A EXAME NACIONAL DE MATEMÁTICA A 05.ª FASE VERSÃO / PROPOSTA DE RESOLUÇÃO Site: http://recursos-para-matematica.webnode.pt/ Facebook: https://www.facebook.com/recursos.para.matematica

Leia mais

Centro Educacional ETIP

Centro Educacional ETIP Centro Educacional ETIP Trabalho Trimestral de Matemática 2 Trimestre/2014 Data: 08/08/2014 Professor: Nota: Valor : [0,0 2,0] Nome do (a) aluno (a): Nº Turma: 3 M CONTEÚDO Análise Combinatória, Princípio

Leia mais

Canguru Matemático sem Fronteiras 2010

Canguru Matemático sem Fronteiras 2010 Canguru Matemático sem Fronteiras 2010 Duração: 1h30min Destinatários: alunos do 12 Ano de Escolaridade Nome: Turma: Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. As questões

Leia mais

Matemática A. Teste Intermédio Matemática A. Versão 1. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos º Ano de Escolaridade

Matemática A. Teste Intermédio Matemática A. Versão 1. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos º Ano de Escolaridade Teste Intermédio Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 17.01.2008 12.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de respostas,

Leia mais

Análise Combinatória 1 3 o ano Blaidi/Walter ago/09. Nome: Nº: Turma:

Análise Combinatória 1 3 o ano Blaidi/Walter ago/09. Nome: Nº: Turma: Matemática Análise Combinatória 1 3 o ano Blaidi/Walter ago/09 Nome: Nº: Turma: 1. (U. F. Viçosa MG) Para controlar o estoque de um produto, uma empresa usa etiquetas formadas por uma parte literal e outra

Leia mais

CONTAGEM. (a) uma semana (b) um mês (c) dois meses (d) quatro meses (e) seis meses

CONTAGEM. (a) uma semana (b) um mês (c) dois meses (d) quatro meses (e) seis meses CONTAGEM Exercício 1(OBMEP 2011) Podemos montar paisagens colocando lado a lado, em qualquer ordem, os cinco quadros da figura. Trocando a ordem dos quadros uma vez por dia, por quanto tempo, aproximadamente,

Leia mais

XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Ensino Médio) GABARITO GABARITO NÍVEL ) D 6) C ) D 6) C ) B ) A 7) B ) B 7) B ) C ) D 8) C ) E 8) B ) B 4) D 9) E 4) D 9) C 4) D ) D 0) A ou

Leia mais

Ministério da Fazenda ESAF

Ministério da Fazenda ESAF Ministério da Faenda ESAF - 0 0. A proposição p (p q) é logicamente equivalente à proposição: a) p q b) ~p c) p d) ~q e) p q Inicialmente, construiremos a tabela-verdade da proposição p (p q) e, a seguir

Leia mais

Análise Combinatória 2

Análise Combinatória 2 1. Um estudante possui dez figurinhas, cada uma com o escudo de um único time de futebol, distribuídas de acordo com a tabela: Para presentear um colega, o estudante deseja formar um conjunto com cinco

Leia mais

(6$0& 9HVWLEXODU B. Questão 26. Questão 27. 5HVROXomR H FRPHQWiULR ² 3URID 0DULD $QW{QLD &RQFHLomR *RXYHLD

(6$0& 9HVWLEXODU B. Questão 26. Questão 27. 5HVROXomR H FRPHQWiULR ² 3URID 0DULD $QW{QLD &RQFHLomR *RXYHLD (6$0& 9HVWLEXODU B M A T E M Á T I C A 5HVROXomR H FRPHQWiULR ² 3URID 0DULD $QW{QLD &RQFHLomR *RXYHLD Questão 26 Para todo x real, seja Int(x) o maior número inteiro que não supera x. Dessa forma, o valor

Leia mais

ESCOLA BÁSICA DOS 2º E 3º CICLOS DE SANTO ANTÓNIO

ESCOLA BÁSICA DOS 2º E 3º CICLOS DE SANTO ANTÓNIO ESCOLA BÁSICA DOS 2º E 3º CICLOS DE SANTO ANTÓNIO Teste 1 Matemática 9.º C Nome: n.º Data: 14/10/2016 Classificação: Professor: Instruções gerais Não é permitido o uso de corretor. É permitido a utilização

Leia mais

GRUPO I. Na resposta a cada um dos itens deste grupo, seleccione a única opção correcta.

GRUPO I. Na resposta a cada um dos itens deste grupo, seleccione a única opção correcta. GRUPO I Na resposta a cada um dos itens deste grupo, seleccione a única opção correcta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção seleccionada. Não apresente cálculos,

Leia mais

Lista de Análise Combinatória. Edson Prestes

Lista de Análise Combinatória. Edson Prestes Lista de Análise Combinatória Edson Prestes de Dezembro de 011 Capítulo 1 Questões 1.1 Questão 1 Marcam-se 5 pontos sobre uma reta R e 8 pontos sobre uma R paralela a R. Quantos triângulos podem ser formados

Leia mais

Combinatória. Samuel Barbosa. 28 de março de 2006

Combinatória. Samuel Barbosa. 28 de março de 2006 Combinatória Samuel Barbosa 28 de março de 2006 1 Princípios Básicos de Contagem Em contagem, tentamos abordar o problema de contar o número de elementos de um conjunto sem efetivamente contá-los de um

Leia mais

3. Probabilidade P(A) =

3. Probabilidade P(A) = 7 3. Probabilidade Probabilidade é uma medida numérica da plausibilidade de que um evento ocorrerá. Assim, as probabilidades podem ser usadas como medidas do grau de incerteza e podem ser expressas de

Leia mais

Lista 3 - Introdução à Probabilidade e Estatística

Lista 3 - Introdução à Probabilidade e Estatística Lista - Introdução à Probabilidade e Estatística Probabilidade em Espaços Equiprováveis 1 Num evento científico temos 1 físicos e 11 matemáticos. Três deles serão escolhidos aleatoriamente para participar

Leia mais

BANCO DE QUESTÕES TURMA PM-PE PROBABILIDADE

BANCO DE QUESTÕES TURMA PM-PE PROBABILIDADE 01. (UNICAMP 016) Uma moeda balanceada é lançada quatro vezes, obtendo-se cara exatamente três vezes. A probabilidade de que as caras tenham saído consecutivamente é igual a A) 1. B). 8 C) 1. D). 0. (UNESP

Leia mais

ESCOLA SECUNDÁRIA DE CASQUILHOS

ESCOLA SECUNDÁRIA DE CASQUILHOS ESCOLA SECUNDÁRIA DE CASQUILHOS 12º Ano Turma A - C.C.H. de Ciências e Tecnologias - 1ª Teste de Avaliação de Matemática A V1 Duração: 90 min 05 Nov. 09 Prof.: Na folha de respostas, indicar de forma legível

Leia mais

FOLHA DE ROSTO PARA A PROVA DE AFERIÇÃO DE CONHECIMENTOS (PAC) CONCURSO DE ADMISSÃO AO 45º CURSO DE FORMAÇÃO DE SARGENTOS

FOLHA DE ROSTO PARA A PROVA DE AFERIÇÃO DE CONHECIMENTOS (PAC) CONCURSO DE ADMISSÃO AO 45º CURSO DE FORMAÇÃO DE SARGENTOS FOLHA DE ROSTO PARA A PROVA DE AFERIÇÃO DE CONHECIMENTOS (PAC) CONCURSO DE ADMISSÃO AO 4º CURSO DE FORMAÇÃO DE SARGENTOS LEIA COM ATENÇÃO, ATÉ AO FIM, ESTAS INSTRUÇÕES 1. Para o preenchimento da folha

Leia mais

Soluções Simulado OBMEP 2017 Nível 1 6º e 7º anos do Ensino Fundamental. = 7 cm. Logo, ela parou na marca de = 13 cm.

Soluções Simulado OBMEP 2017 Nível 1 6º e 7º anos do Ensino Fundamental. = 7 cm. Logo, ela parou na marca de = 13 cm. Soluções Simulado OBMEP 2017 Nível 1 6º e 7º anos do Ensino Fundamental 1. ALTERNATIVA C Alvimar recebeu de troco 5,00 3,50 = 1,50 reais. Dividindo 1,50 por 0,25, obtemos o número de moedas de 25 centavos

Leia mais

Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 2º - Ensino Médio Professor: Elias

Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 2º - Ensino Médio Professor: Elias Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 2º - Ensino Médio Professor: Elias Matemática Atividades para Estudos Autônomos Data: 5 / 6 / 2017 Aluno(a): N o : Turma: 1) (Ufes)

Leia mais

Noções sobre Probabilidade

Noções sobre Probabilidade Noções sobre Probabilidade Introdução Vimos anteriormente como apresentar dados em tabelas e gráficos, e também como calcular medidas que descrevem características específicas destes dados. Mas além de

Leia mais

Rumo Curso Pré Vestibular Assistencial - RCPVA Disciplina: Matemática Professor: Vinícius Nicolau 12 de Setembro de 2014

Rumo Curso Pré Vestibular Assistencial - RCPVA Disciplina: Matemática Professor: Vinícius Nicolau 12 de Setembro de 2014 Sumário 1 Análise Combinatória 1 1.1 Princípio Multiplicativo.............................. 1 1.1.1 Exercícios................................. 4 1.2 Permutação Simples................................

Leia mais

MATEMÁTICA 8.º ANO TERCEIRO CICLO BRUNO SILVA CRISTINA SERRA ISABEL OLIVEIRA RAQUEL OLIVEIRA

MATEMÁTICA 8.º ANO TERCEIRO CICLO BRUNO SILVA CRISTINA SERRA ISABEL OLIVEIRA RAQUEL OLIVEIRA MTEMÁTI 8.º NO TEREIRO ILO RUNO SILV RISTIN SERR ISEL OLIVEIR RQUEL OLIVEIR ÍNDIE Números e operações. Álgebra Álgebra 1 Números racionais 04 Exercícios resolvidos 11 Exercícios propostos 14 2 Potências

Leia mais

Análise Combinatória Intermediário

Análise Combinatória Intermediário Análise Combinatória Intermediário 1. (AFA) As senhas de acesso a um determinado arquivo de um microcomputador de uma empresa deverão ser formadas apenas por 6 dígitos pares, não nulos. Sr. José, um dos

Leia mais

ESCOLA SECUNDÁRIA DE CASQUILHOS

ESCOLA SECUNDÁRIA DE CASQUILHOS ESCOLA SECUNDÁRIA DE CASQUILHOS 12º Ano Turma B - C.C.H. de Ciências e Tecnologias - 1ª Teste de Avaliação de Matemática A V1 Duração: 90 min 04 Nov. 09 Prof.: Na folha de respostas, indicar de forma legível

Leia mais

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE

Leia mais

MATEMÁTICA SARGENTO DA FAB

MATEMÁTICA SARGENTO DA FAB MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr

Leia mais

Lista 10 Análise Combinatória e Probabilidade

Lista 10 Análise Combinatória e Probabilidade Lista 10 Análise Combinatória e Probabilidade 1) Dada a palavra AMORECO, responda as seguintes questões: a) Quantos são seus anagramas? = 2520 b) Quantas são os anagramas que começam e terminam por consoante?.

Leia mais

COMBINAÇÕES. Rosa Canelas

COMBINAÇÕES. Rosa Canelas COMBINAÇÕES Rosa Canelas Numa caixa de lápis de cor há seis lápis: Azul, Branco, Castanho, Preto, Rosa e Verde. Use as iniciais dos nomes das cores para representar todos os subconjuntos de dois lápis

Leia mais

TEOREMA DOS COSSENOS: ( Estabelece uma relação entre as medidas dos lados e dos lados de um triângulo qualquer) a) b) c) 10 x x 4 7 x

TEOREMA DOS COSSENOS: ( Estabelece uma relação entre as medidas dos lados e dos lados de um triângulo qualquer) a) b) c) 10 x x 4 7 x MATEMÁTIA- DEPENDÊNIA DO 4º BIMESTRE ( Prof KOJI) ENSINO MÉDIO 2º ANO TEOREMA DOS OSSENOS: ( Estabelece uma relação entre as medidas dos lados e dos lados de um triângulo qualquer) Em todo triângulo, o

Leia mais

Como o número de convidados de Daniel é igual à soma do número de convidados de Bernardo e Carlos, temos que D B C. (Equação 1)

Como o número de convidados de Daniel é igual à soma do número de convidados de Bernardo e Carlos, temos que D B C. (Equação 1) UFJF MÓDULO III DO PISM TRIÊNIO 01-01 PROVA DE MATEMÁTICA Questão 1 Quatro formandos da UFJF, André, Bernardo, Carlos e Daniel, se juntaram para organizar um churrasco O número de convidados de Daniel

Leia mais

Matemática. Setor A. Índice-controle de Estudo. Prof.: Aula 37 (pág. 84) AD TM TC. Aula 38 (pág. 85) AD TM TC. Aula 39 (pág.

Matemática. Setor A. Índice-controle de Estudo. Prof.: Aula 37 (pág. 84) AD TM TC. Aula 38 (pág. 85) AD TM TC. Aula 39 (pág. Matemática Setor A Prof.: Índice-controle de Estudo Aula 7 (pág. 84) AD TM TC Aula 8 (pág. 85) AD TM TC Aula 9 (pág. 85) AD TM TC Aula 40 (pág. 87) AD TM TC Aula 41 (pág. 89) AD TM TC Aula 4 (pág. 89)

Leia mais

O conceito de probabilidade

O conceito de probabilidade A UA UL LA O conceito de probabilidade Introdução Nesta aula daremos início ao estudo da probabilidades. Quando usamos probabilidades? Ouvimos falar desse assunto em situações como: a probabilidade de

Leia mais

Probabilidades- Teoria Elementar

Probabilidades- Teoria Elementar Probabilidades- Teoria Elementar Experiência Aleatória Experiência aleatória é uma experiência em que: não se sabe exactamente o resultado que se virá a observar, mas conhece-se o universo dos resultados

Leia mais

12.º Ano de Escolaridade

12.º Ano de Escolaridade gabinete de avaliação educacional T E S T E I N T E R M É D I O D E M A T E M Á T I C A 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) (Dec.-Lei n.º 286/89, de 29 de Agosto, para alunos

Leia mais

Exercícios Obrigatórios

Exercícios Obrigatórios Exercícios Obrigatórios ) (UFRGS/20) Observe a figura abaixo. Na figura, um triângulo equilátero está inscrito em um círculo, e um hexágono regular está circunscrito ao mesmo círculo. Quando se lança um

Leia mais

Superintensivo 2014 Matemática Kmara. PA e PG.

Superintensivo 2014 Matemática Kmara. PA e PG. Superintensivo 2014 Matemática Kmara PA e PG. Questões de estibulares: USC/98 Possuo 6 camisas (uma é vermelha) e 5 calças (uma é preta). O número de grupos de 4 camisas e 3 calças que poderei formar,

Leia mais

Análise Combinatória

Análise Combinatória Análise Combinatória PFC Princípio Fundamental da Contagem O princípio fundamental da contagem está diretamente ligado às situações que envolvem as possibilidades de um determinado evento ocorrer, por

Leia mais

PROVA GPS. Matemática, 5.º Ano (Novo Programa) Duração da Prova: 90 minutos 27 de Abril de A preencher pelo Aluno

PROVA GPS. Matemática, 5.º Ano (Novo Programa) Duração da Prova: 90 minutos 27 de Abril de A preencher pelo Aluno Matemática, 5.º Ano (Novo Programa) Duração da Prova: 90 minutos 27 de Abril de 2010 A preencher pelo Aluno Nome Completo: Bilhete de Identidade/Cartão de Cidadão N.º: Assinatura do Estudante: Prova de

Leia mais

AMEI Escolar Matemática 9º Ano Probabilidades e Estatística

AMEI Escolar Matemática 9º Ano Probabilidades e Estatística AMEI Escolar Matemática 9º Ano Probabilidades e Estatística A linguagem das probabilidades As experiências podem ser consideradas: - aleatórias ou casuais: quando é impossível calcular o resultado à partida;

Leia mais

Escola E.B. 2, 3 de Quarteira nº2 Teste de avaliação - Matemática

Escola E.B. 2, 3 de Quarteira nº2 Teste de avaliação - Matemática http://web.educom.pt/spedromar/moodle/ Escola E.B. 2, 3 de Quarteira nº2 Teste de avaliação - Matemática 9º Ano Turma Versão 2 Data: Setembro - 2008 Nome:. Nº: Enc. de Educação: Classificação:... Professora:.

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática A B C D E A B C D E. Avaliação da Aprendizagem em Processo Prova do Aluno 2 a série do Ensino Médio

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática A B C D E A B C D E. Avaliação da Aprendizagem em Processo Prova do Aluno 2 a série do Ensino Médio AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 2 a série do Ensino Médio Turma EM GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO 3 o Bimestre de 2016 Data / / Escola Aluno A B C D E 1 2 3 4 5

Leia mais