Sobre a Dedução da Equação da Onda e da Solução segundo a Fórmula de Kirchhoff

Tamanho: px
Começar a partir da página:

Download "Sobre a Dedução da Equação da Onda e da Solução segundo a Fórmula de Kirchhoff"

Transcrição

1 ais do CNMC v ISSN 984-8X Sobe a Dedução da Equação da Oda e da Solução segudo a Fómula de Kichhoff Robeto Toscao Couto Uivesidade Fedeal Flumiese Dep Matemática plicada 4-4, Campus do Valoguiho, Ceto, Niteói, RJ toscao@imuffb Resumo: Tata-se de ovas deduções da equação da oda bem como da fómula de Kichhoff paa a sua solução em meios sem foteias Os métodos apesetados são susceptíveis de seem úteis ão apeas o desevolvimeto da teoia odulatóia ) Itodução Este tabalho cotibui de duas maeias o estudo do feômeo odulatóio, apesetado deduções oigiais da equação da oda e da solução segudo a fómula de Kichhoff Paa epo o método de obteção da equação da oda, cosideamos um poblema bidimesioal: a membaa vibate cotibuição eside o fato de a dedução ão se basea em um sistema de coodeadas paticula Isso cotasta com as deduções ecotadas a liteatua (eg, efeêcias [] e [3]), que pivilegiam as coodeadas catesiaas Vatages do método apesetado são a sua simplicidade e o isight popocioado Quato à fómula de Kichhoff, sabemos que ela foece a solução da equação da oda em meios sem foteias (todo o ) Uma demostação costutiva da mesma, etetato, é dificilmete ecotada a liteatua No, a pática otieia cosiste em eucia a fómula e 3 etão veifica que ela de fato foece a solução (eg, efeêcias [8, Eq (5,)], [, Sec 9, Eq (3)] e [, p 86, lema 53]) Já a fómula válida o é sempe obtida pelo método idealiado po Hadamad, descedo-se uma dimesão a pati do caso tidimesioal (eg, efeêcias [4], [8, Eq (3,)], [, Sec 9, Eq (9)] e [, p 89]) Pois bem, este tabalho, esolvedo a equação da oda em duas e tês dimesões, deduimos a fómula de Kichhoff Seção cotém a dedução da equação da membaa Seção 3 apeseta a dedução da fómula de Kichhoff Seção 4 acesce cometáios fiais, eceado a eposição ) membaa vibate Cosidee uma membaa de foma abitáia, que, quado estática, apeseta-se totalmete cotida o plao (hoiotal) e esticada igualmete em todos os seus potos e em todas as dieções Essa hipótese de esticameto uifome e isotópico pode se etedida como segue: s B Figua mosta essa membaa com um pequeo cote B etilíeo e de compimeto s, ão F ecessaiamete ifiitesimal Mostamos as foças oiudas do esticameto que agem os potos ao logo de uma das mages do cote, as quais, po Figua causa daquelas foças, tedem a se sepaa mais e mais uifomidade do esticameto implica que F / s T = costate em qualque local da membaa ode se efetue um cote paalelo Já a sua isotopia sigifica que, um mesmo local, a tesão po uidade de compimeto T é costate em cotes de todas as dieções (Na ausêcia de uifomidade e isotopia, é ecessáio cosidea um cote ifiitesimal e o veto ds ao logo do mesmo; esse caso, T depede do poto da membaa e da dieção de ds ) Obseve que Tds é a foça com que a magem do cote é puada tasvesalmete 445

2 Outas hipóteses são admitidas: () a foma da membaa pode se descita po uma fução (,, t ) que foece, o istate t, a defleão, em elação ao plao, do poto da membaa de abscissa e odeada ; () ela uca se iclia apeciavelmete (hipótese de pequeas icliações): o módulo do âgulo de icliação θ de qualque eta tagete em qualque dos potos da membaa é suficietemete pequeo paa que seja válida a apoimação cosθ (e seθ taθ, potato); (3) as vibações são veticais Essas são hipóteses de estição ciemática (uma limitação o movimeto da membaa) dmite-se também que a membaa: () seja homogêea, com desidade supeficial ρ = dm / ds costate; () só possa sofe a atuação de foças eteas que sejam veticais, sedo f ( t,, ) = f( t,, ) e a gadea que foece essas foças po uidade de áea da memba- a [po eemplo, f = ( dm g) / ds = ρ g se só a gavidade atua] Essas são hipóteses de estição diâmica Pelimiamete, paa maio claea dos agumetos adotados a dedução a segui, lembemo-os da defiição da deivada da fução (,,) t = (,) t a dieção do veto uitáio u do plao bem como a sua epessão que evolve o, válida se fo difeeciável (o que se admite): ( + hu) (, t) ( t, ) lim = u t (, ) u h h Em paticula, se u fo um dos vesoes catesiaos, a deivada diecioal seá ada mais do que a deivada pacial: / e = /, / e = / Esse fato ajuda o etedimeto de outo aspecto da deivada diecioal Sabemos que [ / ](,, t) é o coeficiete agula (a tagete do âgulo de icliação) da eta tagete à cuva de iteseção do gáfico ( ) da fução t (,, ) com o plao que é paalelo ao plao coodeado e passa pelo poto (, ) do plao (v Figua a, a qual τ é a eta tagete) alogamete, [ / u ](, t) é o coeficiete agula da eta tagete à cuva de iteseção do mesmo gáfico com o plao vetical paalelo a u e passado pelo poto do plao (v Figua b) (, t ) = taθ τ θ (, t ) = taφ u τ φ (, t) e gáfico de (,, t) (, t) u Figua a Figua b Uma deivada diecioal paticula é a chamada deivada omal Ela é a deivada ao logo do veto uitáio omal eteio, gealmete deotada a liteatua po / em ve de / Quado a fução (, t) = (,, t) desceve uma membaa, é comum calcula / em potos da cuva C de pojeção o plao da boda Λ da membaa (feqüetemete ( ) Tal gáfico pode caacteia a foma de uma membaa o espaço 446

3 Λ = C, ie, a boda da membaa ecota-se fia o plao ) Nesse caso, os vetoes uitáios omais eteioes são vetoes do plao omais a C, como os idicados a Figua 3, os potos e deivada [ / ](, t) pode se itepetada como o coeficiete agula de uma eta tagete à membaa, como vimos acima, ou como a taa de vaiação de (, t), o poto = do domíio espacial dessa fução, a dieção de ( ) Γ Σ ds Tds φ Tdsseφ C Figua 3 ( ) ( ) O seφ ta φ = ( t, ) K ds = (,,) Figua 4 Bem, podemos agoa, em poucos passos, dedui a equação que desceve o movimeto da membaa Paa isso, cosidee uma poção fiita qualque da membaa, Σ, cuja magem é a cuva Γ (como a Figua 4) Deotemos as pojeções de Σ e de sua magem Γ o plao po e K, espectivamete Seja = (,, ) o veto uitáio omal eteio essa foteia K de Cofome já se mecioou, sobe um segmeto ds de Γ, atua uma tesão magial de módulo Tds que é diecioada paa o eteio de Σ e pepedicula à magem Γ Isso, em cojução com a hipótese de pequeas icliações, pemite coclui que o compoete vetical dessa tesão é igual a Tds[ / ] (v Figua 4) Logo, aplicado em Σ a a lei de Newto a vetical, isto é, igualado o somatóio das foças veticais sobe Σ à massa M dessa poção de membaa multiplicada pela aceleação do seu ceto de massa, cm, obtemos d cm fds+ Tdsseφ = M (φ como a figua acima) () dt Σ Γ Mas, pela hipótese de pequeas icliações, temos que f ds f d () Σ e, cofome eplicado o paágafo ateio (e idicado a figua), que (#) Tdsseφ Tds = T ds = T d = T d, (3) Γ K K ode, a passagem (#), usamos o teoema de Gauss o plao Po outo lado, temos que ( ) ( ) M Σ Σ cm = = ρ ρ = ρ d d d d M M dm ds d d (4) dt dt dt dt t Logo, substituido (), (3) e (4) em (), obtemos ( f T ρ ) d + t =, 447

4 equação que, po se a poção Σ abitáia (e também a sua pojeção ), só pode se satisfeita se o itegado aula-se ideticamete, o que os leva à equação da membaa: t (, ) = f( t, ) c T/ ρ c t T 3) fómula de Kichhoff Mostaemos que a solução da equação da oda v v( t, ) v = ( t > ), (5) c t sob as codições iiciais v (,) = (6) e v (,) = p( ), (7) t em todo o plao ou todo o espaço (isto é,, com = ou 3) é dada pela fómula de Kichhoff : v d p( ) ( t, ) = c se =, (8) ct < ct em que a egião de itegação é a fomada pelos potos tais que < ct, ou seja, o disco de aio ct e ceto em, sedo d o elemeto de áea desse disco, ou v ( t, ) = ds p ( ) se = 3, (9) 4 ct = ct em que a egião de itegação é a fomada pelos potos tais que = ct, ou seja, a supefície esféica de aio ct e ceto em, sedo ds o elemeto de áea dessa supefície Covém fae uma obsevação É fácil veifica que a solução de w ( t, ) = sob as codições iiciais w (,) = p( ) e [ t]( w/,) = (com e t > ) é dada po w( t, ) = [ v/ t]( t, ), ode v ( t, ) é a solução do poblema defiido po (5), (6) e (7) ssim, a fómula de Kichhoff é suficiete paa obte-se a solução da equação da oda em meios sem foteia mesmo sob codições iiciais que são ambas ão-homogêeas, bastado ecoe-se ao picípio da supeposição (cf [8, Eq (4,)] e [, p 86, lema 5]) Paa demosta a fómula de Kichhoff, dada po (8) ou (9) cofome o poblema seja bi ou tidimesioal, devemos esolve o poblema de valo iicial fomado pelas equações (5), (6) e (7), o que faemos po meio da tasfomada de Fouie ( t, ) ( ) de i F v = v( t, ) v( t, ) () { } / plicado-a a Eq (5) e esolvedo a EDO esultate, obtemos d d ( v v v, t) c = + ( c) v(, t) = v (, t) = C cosct + Csect () dt dt Paa detemia as costates de itegação C e C, tomamos a tasfomada de Fouie das codições iiciais em (6) e (7), obtedo dv v (,) = e (,) = F { p( ) } p( ) dt 448

5 Eigido que () satisfaça essas equações, detemiamos v ( t, ) completamete: v (,) = C = sect dv p( ) v ( t, ) = p ( ) (,) = cc = p( ) C c = dt c solução desejada é a tasfomada de Fouie ivesa desse esultado, que pode se calculada usado o teoema da covolução: sect c c c / v ( t, ) = F p ( ) = p ( ) Gt (, ) = ( ) d p ( ) G (, t), (3) ode ct ct se ct / se ct / d i i i i e e Gt (, ) F = ( ) d e = ( ) e com / + ( ) = i [ I ( ) I ( ) ] i (), (4) ± ct e e I± ( ) i i d (5) Neste poto, devemos possegui cosideado sepaadamete os casos bi e tidimesioal Caso tidimesioal ( = 3): Paa efetua a itegal em (5), tipla o espaço de, escevemos 3 o elemeto de volume desse espaço em coodeadas esféicas, d = 3 seθ ddθdϕ (em ve das coodeadas catesiaas, d= d d d ), com o cuidado de coicidi a dieção do eio com a do veto, como mosta a Figua 5 Desse jeito, o âgulo ete e passa a se a vaiável de itegação θ e, potato, = cosθ, o que simplifica cosideavelmete as itegações em θ e ϕ : 3 i ± ict ± ict i cosθ 3 e e e e I± ( ) d = seθddθdϕ ± ict i cosθ ± ict i cosθ = d e dθ e i seθ = d e e i i ± ict i i 4 ± ict d e e e d e i ise = [ ] = se substituição desse esultado em (4) foece 3/ ( ) 4 ict ict Gt (, ) = dse e ( e ) i isect 3/ 3/ 4 ( ) 4 ( ) / = d se se ct = δ( ct) = δ( ct), (6) ode usamos a seguite epesetação itegal da fução delta (v Eecício 54 de []): θ ϕ θ = Figua 5 449

6 d se se =δ( ) (7) Substituido, po sua ve, (6) em (3), obtemos, fialmete, 3/ 3 / v ( t, ) = ( ) d p ( ) δ( ct) c 3 3/ / = ( ) ds p( ) = ds p( ) c ct ct 4 = ct = ct Caso bidimesioal ( = ): Nesse caso, covém epessa o elemeto de áea d = d d da itegal dupla em (5) em coodeadas polaes, isto é, d = ddϕ, bem como escolhe o eio a dieção oposta à do veto, como mosta a Figua 6 ssim, otado que = cosϕ, podemos esceve i ± ict e e ct cosϕ I ( ) d e ± i i ± = = e ddϕ Não é evidete como possegui o cálculo dessa itegal Cotasta, agoa, a ausêcia de seϕ, que toou óbvia a itegação a vaiável ϕ o caso tidimesioal qui, uma pista é ecohece que i cos e ϕ dϕ = J ( ) (v a equação (3c) de []), o que pemite esceve ± ict i cosϕ ϕ ± ict J ( ) I± ( ) = d e d e = d e J ( ) Cotiua a pati desse poto é aida meos evidete pesetamos o seguite camiho, baseado a seguite epesetação itegal da fução de Bessel em questão (v o Eecício 9 de []): seu J ( ) = du u Substituido-a a equação ateio e ivetedo a odem das duas itegações, obtemos ± ict seu du ± ict I± ( ) = d e du = 4 d e seu u u goa substituímos esse esultado em (4) paa esceve que δ( u ct) ( ) Gt (, ) = 4 d( e e )se u= dse use ct, i du ict ict du u sect u i ode já se ecota idicado que o temo ete colchetes, de acodo com (7), é uma epesetação itegal da fução delta acima dele Mas δ( u ct) = δ( u ct / ) ; logo,, Figua 6 ϕ 45

7 Gt (, ) se ct / < ie ct < du δ( u ct / ) se / ie ( ct / ) = = u ct > ct > U( ct ) = U( ct ) =, ( ct / ) c t ode U() deota a fução degau uitáio, igual a paa egativo e a paa positivo Fialmete, a substituição do esultado acima em (3) podu a fómula desejada: p ( ) ( ct ) p ( ) (, t) = ( ) d U v = d c ct c ct < ct 4) Cometáios fiais O método de dedução da equação da oda foi apesetado em duas dimesões e aplicado, em paticula, ao poblema da membaa vibate; mas ele pode se facilmete adaptado a outos poblemas odulatóios evolvedo qualque úmeo de dimesões espaciais técica cocebida paa leva a cabo a itegação elacioada à dedução bidimesioal da fómula de Kichhoff é susceptível de se utiliada o cálculo de outas gadeas que evolvem uma itegação simila (eg, fuções de Gee) Quato às opeações com a fução delta como uma fução que ão é!, diga-se que ela simplifica cosideavelmete os cálculos, pois, como se sabe, a fução delta pode se vista como um método abeviado de se obteem esultados que depedem de iticados pocessos de limite De fato, ecodemos que Diac ão via o seu uso qualque falta de igo, ates afimado se sempe possível substituí-la po uma fomulação equivalete, poém mais complicada (cf [5]) Isso, de fato, cofimou-se com a justificativa matemática da fução delta que a teoia das distibuições popiciou, estado as suas picipais popiedades igoosamete estabelecidas a liteatua, à ossa disposição, potas paa seem usadas (cf [7] e [9]) Refeêcias G B fe e H J Webe, "Física Matemática", Campus, 6 a ed, Rio de Jaeio, 7 E Butov, "Física Matemática", LTC, Rio de Jaeio, 988 (Seç 88) 3 R V Chuchill e J W Bow, "Fouie Seies ad Bouda Value Poblems", 3 a ed, McGaw-Hill, 978 (Cap, Seç 5, item b) 4 R Couat e D Hilbet, "Methods of Mathematical Phsics", vol, Wile-Itesciece, 96 (p 687) 5 P M Diac, "The Piciples of Quatum Mechaics", 4 a ed, Ofod U P, Claedo, 958 (p 59) 6 F Joh, "Patial Diffeetial Equatios", a ed, Spige-Velag, Nova Ioque, 975 (p 6) 7 M J Lighthill, "Fouie alsis ad Geealised Fuctios", Cambidge U P, Lodo, I G Petovs, "Lectues o Patial Diffeetial Equatios", Itesciece, L Schwat, "Théoie des distibutios", Hema, Pais, 95 W Stauss, "Patial Diffeetial Equatios, Itoductio", Wile, 99 E C Zachmaoglou e D W Thoe, "Itoductio to Patial Diffeetial Equatios with pplicatios", Dove, Nova Ioque,

2*5$',(17('2327(1&,$/( (1(5*,$12&$032(/(75267È7,&2

2*5$',(17('2327(1&,$/( (1(5*,$12&$032(/(75267È7,&2 3 *5',7'37&,/ 5*,&3/7567È7,& ÃÃÃ*5',7Ã'Ã37&,/ A expessão geéica paa o cálculo da difeeça de potecial como uma itegal de liha é: dl ) 5) Se o camiho escolhido fo um L, tal que se possa cosidea costate esse

Leia mais

AULA 23 FATORES DE FORMA DE RADIAÇÃO TÉRMICA

AULA 23 FATORES DE FORMA DE RADIAÇÃO TÉRMICA Notas de aula de PME 336 Pocessos de Tasfeêcia de Calo e Massa 98 AULA 3 ATORES DE ORMA DE RADIAÇÃO TÉRMICA Cosidee o caso de duas supefícies egas quaisque que tocam calo po adiação témica ete si. Supoha

Leia mais

3.1 Campo da Gravidade Normal Terra Normal

3.1 Campo da Gravidade Normal Terra Normal . Campo da avidade Nomal.. Tea Nomal tedeemos po Tea omal um elipsóide de evolução qual se atibui a mesma massa M e a mesma velocidade agula da Tea eal e tal que o esfeopotecial U seja uma fução costate

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO PME 3100 MECÂNIC I Teceia Pova 6 de uho de 015 Duação da Pova: 110 miutos (ão é pemitido uso de calculadoas) 1ª Questão (4,0 potos) fiua mosta um disco de ceto, massa m e aio, que pate do epouso e ola

Leia mais

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 ESPAÇOS VETORIAIS

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 ESPAÇOS VETORIAIS Luiz Facisco da Cuz Depatameto de Matática Uesp/Bauu CAPÍTULO ESPAÇOS VETORIAIS 1 Históico Sabe-se que, até pelo meos o fial do século XIX, ão havia ehuma teoia ou cojuto de egas b defiidas a que se pudesse

Leia mais

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 ESPAÇOS VETORIAIS

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 ESPAÇOS VETORIAIS Luiz Facisco da Cuz Depatameto de Matemática Uesp/Bauu CAPÍTULO ESPAÇOS VETORIAIS 1 Históico Sabe-se que, até pelo meos o fial do século XIX, ão havia ehuma teoia ou cojuto de egas bem defiidas a que se

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra 5. Campo Gavítico ómalo elação ete o potecial gavítico e o potecial omal é dada po: W ( x, y, z = U( x, y,z + ( x, y,z O campo gavítico aómalo ou petubado é etão defiido pela difeeça do campo gavítico

Leia mais

Números Complexos (Parte II) 1 Plano de Argand-Gauss. 2 Módulo de um número complexo. Prof. Gustavo Adolfo Soares

Números Complexos (Parte II) 1 Plano de Argand-Gauss. 2 Módulo de um número complexo. Prof. Gustavo Adolfo Soares Númeos Complexos (Pate II) 1 Plao de Agad-Gauss Das defiições de que um úmeo complexo é um pa odeado de úmeos eais x e y e que C = R R, temos que: A cada úmeo complexo coespode um úico poto do plao catesiao,

Leia mais

Estudo de um modelo do núcleo do deuterão

Estudo de um modelo do núcleo do deuterão Estudo de um modelo do úcleo do deuteão Goçalo Oliveia º 5789 Pedo Ricate º 578 Física Quâtica da Matéia Istituto Sueio Técico Maio, 8 Resumo Cosidea-se um modelo simles aa o úcleo do deuteão, ode a iteacção

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2 CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do

Leia mais

q(x) = x 4 6x x² - 18x + 10 * z+ z + w + w = 6 ** z z + zw + z w + z w + w w = 15

q(x) = x 4 6x x² - 18x + 10 * z+ z + w + w = 6 ** z z + zw + z w + z w + w w = 15 MATEMÁTICA Sejam a i, a + si e a + ( s) + ( + s) i ( > ) temos de uma seqüêcia. Detemie, em fução de, os valoes de e s que toam esta seqüêcia uma pogessão aitmética, sabedo que e s são úmeos eais e i -.

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A. Tarefa nº 7 do plano de trabalho nº 1

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A. Tarefa nº 7 do plano de trabalho nº 1 ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA º ANO DE ESCOLARIDADE MATEMÁTICA A Taefa º 7 do plao de tabalho º. Comece po esolve o execício 3 da págia 0.. Muitas das geealizações feitas as divesas ciêcias,

Leia mais

TÓPICOS SOBRE EQUAÇÕES DE DERIVADAS PARCIAIS

TÓPICOS SOBRE EQUAÇÕES DE DERIVADAS PARCIAIS DEPARTAMENTO DE BARRAGENS DE BETÃO Núcleo de Modelação Matemática e Física Poc. 40/11/1776 TÓPICOS SOBRE EQUAÇÕES DE DERIVADAS PARCIAIS Lisboa Agosto de 011 I&D BARRAGENS DE BETÃO RELATÓRIO 310/011 NMMF

Leia mais

FORMULÁRIO ELABORAÇÃO ITENS/QUESTÕES

FORMULÁRIO ELABORAÇÃO ITENS/QUESTÕES CÓDIGOFO 7.5./0 REVISÃO 0 PÁGINA de CONCURSO DOCENTES EFETIVOS DO COLÉGIO PEDRO II DATA//0 CARGO/ARÉA MATEMÁTICÁ CONTEÚDO PROGRAMÁTICOSISTEMAS LINEARES/ VETORES NO R /GEOMETRIA ANALÍTICA EMR. NÍVEL DE

Leia mais

2 Formulação Matemática

2 Formulação Matemática Fomlação Matemática. Descição do poblema A fim de aalisa o escoameto atavés de m meio pooso, foi cosideado m meio pooso ideal, com ma geometia composta po caais covegetesdivegetes. Dessa foma, obtém-se

Leia mais

Forma Integral das Equações Básicas para Volume de Controle (cont.)

Forma Integral das Equações Básicas para Volume de Controle (cont.) EOLA DE ENGENHARIA DE SÃO CARLOS Núcleo de Egehaia Témica e Fluidos Foma Itegal das Equações Básicas paa Volume de Cotole (cot.) Teoema do Taspote de Reyolds: elação geal ete a taxa de vaiação de qq. popiedade

Leia mais

Transformada de z Sistemas Discretos

Transformada de z Sistemas Discretos Sistemas de Pocessameto Digital Egehaia de Sistemas e Ifomática Ficha 5 005/006 4.º Ao/.º Semeste Tasfomada de Sistemas Discetos Tasfomada de A tasfomada de Z foece uma vesão o domíio da fequêcia dum sial

Leia mais

PROPAGAÇÃO DE ONDAS ELECTROMAGNÉTICAS NUM GUIA CILÍNDRICO

PROPAGAÇÃO DE ONDAS ELECTROMAGNÉTICAS NUM GUIA CILÍNDRICO PROPAGAÇÃO D ONDAS LCTROMAGNÉTICAS NM GIA CILÍNDRICO po Calos Vaadas e Maia mília Maso IST, Maio de 5 t j e. Itodução Vamos estuda a popagação de odas electomagéticas um guia cilídico de aio a. Podeiamos

Leia mais

Revisão Vetores em R n

Revisão Vetores em R n Revisão Vetoes em R Deiição O espaço vetoial R é o cojuto R : {( x1,, x) xi R, i 1,, } o qual deiimos as opeações: a) Se u ( x 1,, x ) e v ( y 1,, y ) estão em R temos que u + v ( x1 + y1,, x + y) ; b)

Leia mais

1 - CORRELAÇÃO LINEAR SIMPLES rxy

1 - CORRELAÇÃO LINEAR SIMPLES rxy 1 - CORRELAÇÃO LINEAR IMPLE Em pesquisas, feqüetemete, pocua-se veifica se existe elação ete duas ou mais vaiáveis, isto é, sabe se as alteações sofidas po uma das vaiáveis são acompahadas po alteações

Leia mais

ANÁLISE ESTATÍSTICA DOS ERROS DE CENTRAGEM E PONTARIA

ANÁLISE ESTATÍSTICA DOS ERROS DE CENTRAGEM E PONTARIA 5 ANÁLISE ESTATÍSTICA DOS ERROS DE CENTRAGEM E PONTARIA Jai Medes Maques Uivesidade Tuiuti do Paaá R. Macelio Champagat, 55 CEP 87-5 e-mail: jaimm@utp.b RESUMO O objetivo deste tabalho cosiste o desevolvimeto

Leia mais

Universidade de São Paulo Instituto de Física. Física Moderna II. Profa. Márcia de Almeida Rizzutto 2 o Semestre de Física Moderna 2 Aula 20

Universidade de São Paulo Instituto de Física. Física Moderna II. Profa. Márcia de Almeida Rizzutto 2 o Semestre de Física Moderna 2 Aula 20 Uivesidade de São Paulo Istituto de Física Física Modea II Pofa. Mácia de Almeida Rizzutto o Semeste de 14 Física Modea 1 Todos os tipos de ligação molecula se devem ao fato de a eegia total da molécula

Leia mais

raio do disco: a; carga do disco: Q.

raio do disco: a; carga do disco: Q. Uma casca hemisféica de aio a está caegada unifomemente com uma caga Q. Calcule o veto campo elético num ponto P no cento da base do hemisféio. Dados do poblema aio do disco: a; caga do disco: Q. Esquema

Leia mais

Eletromagnetismo Aplicado

Eletromagnetismo Aplicado Eletomagnetismo plicado Unidade 1 Pof. Macos V. T. Heckle 1 Conteúdo Intodução Revisão sobe álgeba vetoial Sistemas de coodenadas clássicos Cálculo Vetoial Intodução Todos os fenômenos eletomagnéticos

Leia mais

UFSCar Cálculo 2. Quinta lista de exercícios. Prof. João C.V. Sampaio e Yolanda K. S. Furuya

UFSCar Cálculo 2. Quinta lista de exercícios. Prof. João C.V. Sampaio e Yolanda K. S. Furuya UFSCa Cálculo 2. Quinta lista de eecícios. Pof. João C.V. Sampaio e Yolanda K. S. Fuua Rega da cadeia, difeenciais e aplicações. Calcule (a 4 w (0,, π/6, se w = 4 4 + 2 u (b (c 2 +2 (, 3,, se u =. Resposta.

Leia mais

2.3 - Desenvolvimento do Potencial Gravitacional em Série de Harmônicos Esféricos

2.3 - Desenvolvimento do Potencial Gravitacional em Série de Harmônicos Esféricos . - Desevovieto do otecia avitacioa e Séie de Haôicos Esféicos O potecia gavitacioa de u copo que te distibuição de assa hoogêea e foa geoética sipes, e gea, aite ua epesetação ateática eata. Mas o potecia

Leia mais

',9(5*Ç1&,$'2)/8;2(/e75,&2 (7(25(0$'$',9(5*Ç1&,$

',9(5*Ç1&,$'2)/8;2(/e75,&2 (7(25(0$'$',9(5*Ç1&,$ Ã Ã $Ã /(,Ã '(Ã *$866Ã $/,&$'$Ã $Ã 8Ã (/((17 ',)(5(1&,$/Ã'(Ã9/8( 17 ',9(5*Ç1&,$')/8;(/e75,& (7(5($'$',9(5*Ç1&,$ Ao final deste capítulo você deveá se capa de: ½ Entende o que é a Divegência de um veto

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de eecícios 1 9 1. As cagas q 1 = q = µc na Fig. 1a estão fias e sepaadas po d = 1,5m. (a) Qual é a foça elética que age sobe q 1? (b) Colocando-se uma teceia caga

Leia mais

3 Modelagem do fluido interno

3 Modelagem do fluido interno 3 Modelage do fluido iteo Obseva-se que e uitas aplicações de cascas cilídicas há o cotato, total ou pacial, co u eio fluido. peseça do fluido ifluecia o copotaeto diâico da casca. pessão eecida pelo fluido

Leia mais

Seção 24: Laplaciano em Coordenadas Esféricas

Seção 24: Laplaciano em Coordenadas Esféricas Seção 4: Laplaciano em Coodenadas Esféicas Paa o leito inteessado, na pimeia seção deduimos a expessão do laplaciano em coodenadas esféicas. O leito ue estive disposto a aceita sem demonstação pode dietamente

Leia mais

1ªAula do cap. 10 Rotação

1ªAula do cap. 10 Rotação 1ªAula do cap. 10 Rotação Conteúdo: Copos ígidos em otação; Vaiáveis angulaes; Equações Cinemáticas paa aceleação angula constante; Relação ente Vaiáveis Lineaes e Angulaes; Enegia Cinética de Rotação

Leia mais

3.3 Potencial e campo elétrico para dadas configurações de carga.

3.3 Potencial e campo elétrico para dadas configurações de carga. . Potencial e campo elético paa dadas configuações de caga. Emboa a maio utilidade do potencial se evele em situações em ue a pópia configuação de caga é uma incógnita, nas situações com distibuições conhecidas

Leia mais

Texto complementar n 3.

Texto complementar n 3. Texto complemeta 3. A Pimeia Lei de Newto Talvez devêssemos começa a estuda a mecâica pelo movimeto de um objeto mecâico isolado, ou seja, o movimeto de um copo sobe o qual ão agem foças. Seia, etetato,

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Escola Básica e Secdáia D. Âgelo Agsto da Silva Teste de MATEMÁTICA A.º Ao Dação: 90 itos Maço/ 06 Noe N.º T: Classificação Pof. (Lís Abe).ª PARTE Paa cada a das segites qestões de escolha últipla, selecioe

Leia mais

4 Análise de refletores circularmente simétricos alimentados por diagramas com dependência azimutal n=0 4.1 Introdução

4 Análise de refletores circularmente simétricos alimentados por diagramas com dependência azimutal n=0 4.1 Introdução 59 4 Aálise de efletoes ciculamete siméticos alimetados po diagamas com depedêcia aimutal = 4.1 Itodução Diagamas omidiecioais veticalmete polaiados podem se geados po ateas efletoas ciculamete siméticas

Leia mais

DIMENSÕES Matemática A 12.o ano de escolaridade Caderno de preparação para o exame Índice PROVA 1 PROVA 2 PROVA 3 PROVA 4 PROVA 5 PROVA 6 RESOLUÇÕES

DIMENSÕES Matemática A 12.o ano de escolaridade Caderno de preparação para o exame Índice PROVA 1 PROVA 2 PROVA 3 PROVA 4 PROVA 5 PROVA 6 RESOLUÇÕES DIMENSÕES Matemática A. o ao de escolaidade Cadeo de pepaação paa o eame Ídice PROVA p. PROVA p. 7 PROVA p. PROVA p. PROVA p. 0 PROVA p. RESOLUÇÕES p. 8 Cao aluo, Este livo tem po base o pessuposto de

Leia mais

O perímetro da circunferência

O perímetro da circunferência Univesidade de Basília Depatamento de Matemática Cálculo 1 O peímeto da cicunfeência O peímeto de um polígono de n lados é a soma do compimento dos seus lados. Dado um polígono qualque, você pode sempe

Leia mais

Capítulo 4 Variáveis Aleatórias Discretas. Prof. Fabrício Maciel Gomes

Capítulo 4 Variáveis Aleatórias Discretas. Prof. Fabrício Maciel Gomes Capítulo 4 Vaiáveis Aleatóias Discetas Pof. Fabício Maciel Gomes Picipais Distibuições de Pobabilidade Discetas Equipovável Beoulli Biomial Poisso Geomética Pascal Hipegeomética Distibuição Equipovável

Leia mais

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica CÁLCULO DIFERENCIAL Coceito de derivada Iterpretação geométrica A oção fudametal do Cálculo Diferecial a derivada parece ter sido pela primeira vez explicitada o século XVII, pelo matemático fracês Pierre

Leia mais

é igual a f c f x f c f c h f c 2.1. Como g é derivável em tem um máximo relativo em x 1, então Resposta: A

é igual a f c f x f c f c h f c 2.1. Como g é derivável em tem um máximo relativo em x 1, então Resposta: A Pepaa o Eame 03 07 Matemática A Página 84. A taa de vaiação instantânea da função f em c é igual a f c e é dada po: c f f c f c h f c f lim lim c c ch h0 h Resposta: D... Como g é deivável em tem um máimo

Leia mais

CEDERJ - CENTRO DE EDUCAÇÃO SUPERIOR A DISTÂNCIA DO ESTADO DO RIO DE JANEIRO

CEDERJ - CENTRO DE EDUCAÇÃO SUPERIOR A DISTÂNCIA DO ESTADO DO RIO DE JANEIRO CEDERJ - CENTRO DE EDUCAÇÃO SUPERIOR A DISTÂNCIA DO ESTADO DO RIO DE JANEIRO MATERIAL DIDÁTICO IMPRESSO CURSO: Física DISCIPLINA: Ifomática paa o Esio de Física CONTEUDISTA: Calos Eduado Aguia AULA 4 TÍTULO:

Leia mais

a) A energia potencial em função da posição pode ser representada graficamente como

a) A energia potencial em função da posição pode ser representada graficamente como Solução da questão de Mecânica uântica Mestado a) A enegia potencial em função da posição pode se epesentada gaficamente como V(x) I II III L x paa x < (egião I) V (x) = paa < x < L (egião II) paa x >

Leia mais

Sistemas e Sinais 2009/2010

Sistemas e Sinais 2009/2010 istemas Lieaes e Ivaiates o Tempo (Tasf. Laplace e Aálise Tempoal) istemas e iais 9/ LITs aálise tempoal istemas: defiições e popiedades LITs causais Resposta atual e foçada Tasfomada de Laplace uilateal

Leia mais

É o trabalho blh realizado para deslocar um corpo, com velocidade idd constante, t de um ponto a outro num campo conservativo ( )

É o trabalho blh realizado para deslocar um corpo, com velocidade idd constante, t de um ponto a outro num campo conservativo ( ) 1. VAIAÇÃO DA ENEGIA POTENCIAL É o tabalho blh ealizado paa desloca um copo, com velocidade idd constante, t de um ponto a outo num campo consevativo ( ) du W = F. dl = 0 = FF. d l Obs. sobe o sinal (-):

Leia mais

Carga Elétrica e Campo Elétrico

Carga Elétrica e Campo Elétrico Aula 1_ Caga lética e Campo lético Física Geal e peimental III Pof. Cláudio Gaça Capítulo 1 Pincípios fundamentais da letostática 1. Consevação da caga elética. Quantização da caga elética 3. Lei de Coulomb

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

Exercício 1 Escreva as coordenadas cartesianas de cada um dos pontos indicados na figura abaixo. Exemplo: A=(1,1). y (cm)

Exercício 1 Escreva as coordenadas cartesianas de cada um dos pontos indicados na figura abaixo. Exemplo: A=(1,1). y (cm) INTRODUÇÃO À FÍSICA tuma MAN / pofa Mata F Baoso EXERCÍCIOS Eecício Esceva as coodenadas catesianas de cada um dos pontos indicados na figua abaio Eemplo: A=(,) (cm) F E B A - O (cm) - D C - - Eecício

Leia mais

Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v

Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v Lei de Ampèe Foi visto: caga elética com v pode senti foça magnética se existi B e se B não é // a v F q v B m campos magnéticos B são geados po cagas em movimento (coente ) Agoa: esultados qualitativos

Leia mais

Uma derivação simples da Lei de Gauss

Uma derivação simples da Lei de Gauss Uma deivação simples da Lei de Gauss C. E. I. Caneio de maço de 009 Resumo Apesentamos uma deivação da lei de Gauss (LG) no contexto da eletostática. Mesmo paa cagas em epouso, uma deivação igoosa da LG

Leia mais

Departamento de Física - ICE/UFJF Laboratório de Física II

Departamento de Física - ICE/UFJF Laboratório de Física II Depatameto de ísica - ICE/UJ Laboatóio de ísica II - Itodução Pática : Medida da Aceeação Gavitacioa A iteação avitacioa é uma das quato iteações fudametais que se ecotam a atueza e é a úica que afeta

Leia mais

SISTEMA DE COORDENADAS

SISTEMA DE COORDENADAS ELETROMAGNETISMO I 1 0 ANÁLISE VETORIAL Este capítulo ofeece uma ecapitulação aos conhecimentos de álgeba vetoial, já vistos em outos cusos. Estando po isto numeado com o eo, não fa pate de fato dos nossos

Leia mais

Aplicação do Torque Residual para Satélites Artificiais Estabilizados por Rotação em Órbita Elíptica

Aplicação do Torque Residual para Satélites Artificiais Estabilizados por Rotação em Órbita Elíptica Aplicação do oque Residual paa Satélites Atificiais Estabilizados po Rotação e Óbita Elíptica Maia Cecília Zaadi, Robeta Veloso Gacia GRUPO DE DIÂMICA ORIAL E PLAEOLOGIA FEG Faculdade de Egehaia de Guaatiguetá

Leia mais

carga da esfera: Q. figura 1 Consideramos uma superfície Gaussiana interna e outra superfície externa á esfera.

carga da esfera: Q. figura 1 Consideramos uma superfície Gaussiana interna e outra superfície externa á esfera. Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga distibuída unifomemente pelo seu volume. Dados do poblema caga da esfea:. Esuema do poblema Vamos assumi

Leia mais

carga da esfera: Q densidade volumétrica de carga: ρ = r.

carga da esfera: Q densidade volumétrica de carga: ρ = r. Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga distibuída com uma densidade volumética de caga dada po ρ =, onde α é uma constante ue tona a expessão

Leia mais

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E 7. Potencial Eléctico Tópicos do Capítulo 7.1. Difeença de Potencial e Potencial Eléctico 7.2. Difeenças de Potencial num Campo Eléctico Unifome 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas

Leia mais

APÊNDICE. Revisão de Trigonometria

APÊNDICE. Revisão de Trigonometria E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio

Leia mais

TRABALHO E POTENCIAL ELETROSTÁTICO

TRABALHO E POTENCIAL ELETROSTÁTICO LTOMAGNTISMO I 5 TABALHO POTNCIAL LTOSTÁTICO Nos capítulos ateioes ós ivestigamos o campo elético devido a divesas cofiguações de cagas (potuais, distibuição liea, supefície de cagas e distibuição volumética

Leia mais

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr.

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr. UC - Goiás Cuso: Engenhaia Civil Disciplina: ecânica Vetoial Copo Docente: Geisa ies lano de Aula Leitua obigatóia ecânica Vetoial paa Engenheios, 5ª edição evisada, edinand. Bee, E. Russell Johnston,

Leia mais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas Pontuais Ao estabelece o conceito de potencial eléctico, imaginamos coloca uma patícula de pova num campo eléctico poduzido po algumas cagas

Leia mais

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL UNIVERSIDADE DE SÃO PAUO Escola de Egehaia de oea EE O153 - FÍSICA III Pof. D. Duval Rogues Juio Depataeto de Egehaia de Mateiais (DEMAR) Escola de Egehaia de oea (EE) Uivesidade de São Paulo (USP) Polo

Leia mais

DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA

DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA ELETROMAGNETIMO I 18 DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA.1 - A LEI DE GAU APLICADA A UM ELEMENTO DIFERENCIAL DE VOLUME Vimos que a Lei de Gauss pemite estuda o compotamento do campo

Leia mais

Cap. 4 - O Campo Elétrico

Cap. 4 - O Campo Elétrico ap. 4 - O ampo Elético 4.1 onceito de ampo hama-se ampo a toda egião do espaço que apesenta uma deteminada popiedade física. Esta popiedade pode se de qualque natueza, dando oigem a difeentes campos, escalaes

Leia mais

DERIVADAS DE FUNÇÕES11

DERIVADAS DE FUNÇÕES11 DERIVADAS DE FUNÇÕES11 Gil da Costa Marques Fudametos de Matemática I 11.1 O cálculo diferecial 11. Difereças 11.3 Taxa de variação média 11.4 Taxa de variação istatâea e potual 11.5 Primeiros exemplos

Leia mais

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com Três Variáveis - Parte 2. Terceiro Ano do Ensino Médio

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com Três Variáveis - Parte 2. Terceiro Ano do Ensino Médio Mateial Teóico - Sistemas Lineaes e Geometia Anaĺıtica Sistemas com Tês Vaiáveis - Pate 2 Teceio Ano do Ensino Médio Auto: Pof. Fabício Siqueia Benevides Reviso: Pof. Antonio Caminha M. Neto 1 Sistemas

Leia mais

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues ula 5 Veto Posição, plicações do Poduto Escala Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos bodados Nesta ula Vetoes Posição. Veto Foça Oientado ao Longo de

Leia mais

Aula-10 Mais Ondas de Matéria II

Aula-10 Mais Ondas de Matéria II Aula-1 Mais Odas de Matéia II Micoscópio de Tuelameto (STM) Como tudo começou (1985)... Maipulação de átomos 35 átomos de Xeôio em supefície de Ni, D. Eigle et al, IBM Maipulado átomos Esquema do STM Imagem

Leia mais

2/27/2015. Física Geral III

2/27/2015. Física Geral III Física Geal III Aula Teóica 6 (Cap. 5 pate /): Aplicações da : 1) Campo Elético foa de uma chapa condutoa ) Campo Elético foa de uma chapa não-condutoa ) Simetia Cilíndica ) Simetia Esféica Pof. Macio.

Leia mais

Aula 6: Aplicações da Lei de Gauss

Aula 6: Aplicações da Lei de Gauss Univesidade Fedeal do Paaná eto de Ciências xatas Depatamento de Física Física III Pof. D. Ricado Luiz Viana Refeências bibliogáficas: H. 25-7, 25-9, 25-1, 25-11. 2-5 T. 19- Aula 6: Aplicações da Lei de

Leia mais

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL UNIVERSIDADE DE SÃO PAULO Escola de Egehaia de Loea EEL LOB101 - FÍSICA IV Pof. D. Duval Rodigues Juio Depatameto de Egehaia de Mateiais (DEMAR) Escola de Egehaia de Loea (EEL) Uivesidade de São Paulo

Leia mais

Funções analíticas complexas

Funções analíticas complexas Capítulo 5 Fuções aalíticas complexas 5 Itodução As fuções aalíticas são as fuções epesetáveis po séies de potêcias Até meados do séc XVII a oção de fução cofudia-se com a de fómula algébica com vaiáveis,

Leia mais

Teo. 5 - Trabalho da força eletrostática - potencial elétrico

Teo. 5 - Trabalho da força eletrostática - potencial elétrico Teo. 5 - Tabalho da foça eletostática - potencial elético 5.1 Intodução S.J.Toise Suponhamos que uma patícula qualque se desloque desde um ponto até em ponto sob a ação de uma foça. Paa medi a ação dessa

Leia mais

Faculdade de Ciências da Universidade de Lisboa Departamento de Matemática. Geodesia Física. João Catalão

Faculdade de Ciências da Universidade de Lisboa Departamento de Matemática. Geodesia Física. João Catalão Faculdade de Ciêcias da Uivesidade de Lisboa Depatameto de Matemática Geodesia Física João Catalão Lisboa, Fudametos do campo gavítico Ídice Capítulo - Fudametos do Campo gavítico. O campo gavítico...

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra Campo Gavítico da Tea 3. otencial Gavítico O campo gavítico é um campo vectoial (gandeza com 3 componentes) Seá mais fácil tabalha com uma gandeza escala, que assume apenas um valo em cada ponto Seá possível

Leia mais

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL UNIVERSIDADE DE SÃO PAULO Escola de Egehaia de Loea EEL PPE648 Tópicos Especiais de Física Pof. D. Duval Rodigues Juio Depatameto de Egehaia de Mateiais (DEMAR) Escola de Egehaia de Loea (EEL) Uivesidade

Leia mais

1. cosh(x) = ex +e x senh(x) = ex e x cos(t) = eit +e it sen(t) = eit e it

1. cosh(x) = ex +e x senh(x) = ex e x cos(t) = eit +e it sen(t) = eit e it UFRG INTITUTO DE MATEMÁTICA Depatamento de Matemática Pua e Aplicada MAT1168 - Tuma C - 14/1 Pimeia avaliação - Gupo 1 1 3 4 Total Nome: Catão: Regas a obseva: eja sucinto, completo e clao. Justifique

Leia mais

Capítulo 4 Crescimento de gotículas a partir. Difusão de Vapor e Condução de Calor

Capítulo 4 Crescimento de gotículas a partir. Difusão de Vapor e Condução de Calor Capítulo 4 Cescimento de gotículas a pati da Condensação: Difusão de Vapo e Condução de Calo Assumindo um estado estável de cescimento, temos que uma gotícula de aio cesce a uma taxa d/dt. T 0 T 1 +d O

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. PME Mecânica dos Sólidos II 3 a Lista de Exercícios

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. PME Mecânica dos Sólidos II 3 a Lista de Exercícios ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA MECÂNICA PME-50 - Mecânica dos Sólidos II a Lista de Eecícios 1) Pode-se mosta ue as elações deslocamentos-defomações, em coodenadas

Leia mais

Modelagem e Simulação Numérica da Radiação Sonora de um Cilindro Infinito Pulsante

Modelagem e Simulação Numérica da Radiação Sonora de um Cilindro Infinito Pulsante CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS Dietoia de Pesquisa e Pós-Gaduação Pogama de Pós-Gaduação em Modelagem Matemática e Computacioal Modelagem e Simulação Numéica da Radiação Sooa de

Leia mais

AVALIAÇÃO DAS APROXIMAÇÕES DE BETHE-PLACZEK NA FUNÇÃO DE ALARGAMENTO DOPPLER. Felipe Costa de Paiva

AVALIAÇÃO DAS APROXIMAÇÕES DE BETHE-PLACZEK NA FUNÇÃO DE ALARGAMENTO DOPPLER. Felipe Costa de Paiva AVALIAÇÃO DAS APROXIMAÇÕES DE BETHE-PLACZEK NA FUNÇÃO DE ALARGAMENTO DOPPLER Felipe Costa de Paiva Dissetação de Mestado apesetada ao Pogama de Pós-Gaduação em Egehaia Nuclea, COPPE, da Uivesidade Fedeal

Leia mais

Capítulo I Erros e Aritmética Computacional

Capítulo I Erros e Aritmética Computacional C. Balsa e A. Satos Capítulo I Eos e Aitmética Computacioal. Itodução aos Métodos Numéicos O objectivo da disciplia de Métodos Numéicos é o estudo, desevolvimeto e avaliação de algoitmos computacioais

Leia mais

VETORES GRANDEZAS VETORIAIS

VETORES GRANDEZAS VETORIAIS VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma

Leia mais

Análise de Tensões em Placas Circulares Utilizando Elementos Finitos Axissimétricos

Análise de Tensões em Placas Circulares Utilizando Elementos Finitos Axissimétricos UIVERSIDADE FEDERA DE ITAJUBÁ ISTITUTO DE EGEHARIA MECÂICA PROGRAMA DE PÓS-GRADUAÇÃO EM EGEHARIA MECÂICA DISSERTAÇÃO DE MESTRADO Aálise de Tesões em Placas Ciculaes Utiliado Elemetos Fiitos Aissiméticos

Leia mais

1. Definição e conceitos básicos de equações diferenciais

1. Definição e conceitos básicos de equações diferenciais Capítulo 7: Soluções Numéricas de Equações Difereciais Ordiárias. Itrodução Muitos feómeos as áreas das ciêcias, egearias, ecoomia, etc., são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

Esquemas simétricos de cifra

Esquemas simétricos de cifra Esquemas siméticos de cifa Notas paa a UC de Seguaça Ifomática Iveo de 12/13 Pedo Félix (pedofelix em cc.isel.ipl.pt) Istituto Supeio de Egehaia de Lisboa Sumáio Pimitivas de cifa em bloco Pimitivas iteadas

Leia mais

ELECTROMAGNETISMO. EXAME Época Especial 8 de Setembro de 2008 RESOLUÇÕES

ELECTROMAGNETISMO. EXAME Época Especial 8 de Setembro de 2008 RESOLUÇÕES ELETROMAGNETISMO EXAME Época Especial 8 de Setemo de 8 RESOLUÇÕES a Paa que a patícula esteja em equíio na posição ilustada, a foça eléctica tem de te o mesmo sentido que E A caga tem de se positiva T

Leia mais

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade:

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade: ESCOAMENTO POTENCIAL Escoamento de fluido não viso, Equação de Eule: DV ρ ρg gad P Dt Escoamento de fluido incompessível cte Equação da continuidade: divv Escoamento Iotacional ot V V Se o escoamento fo

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

TICA MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.

TICA MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr. CAPÍTULO 2 Está MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA TICA Fedinand P. Bee E. Russell Johnston, J. Notas de Aula: J. Walt Ole Teas Tech Univesit das Patículas Conteúdo Intodução Resultante de Duas

Leia mais

Aula-10 Indução e Indutância

Aula-10 Indução e Indutância Aula-1 Idução e Idutâcia Idução Apedeos que: Ua espia codutoa pecoida po ua coete i a peseça de u capo agético sofe ação de u toque: espia de coete + capo agético toque as... Se ua espia, co a coete desligada,

Leia mais

Módulo: Binômio de Newton e o Triângulo de Pascal. Somas de elementos em Linhas, Colunas e Diagonais do Triângulo de Pascal. 2 ano do E.M.

Módulo: Binômio de Newton e o Triângulo de Pascal. Somas de elementos em Linhas, Colunas e Diagonais do Triângulo de Pascal. 2 ano do E.M. Módulo: Bômo de Newto e o Tâgulo de Pascal Somas de elemetos em Lhas, Coluas e Dagoas do Tâgulo de Pascal ao do EM Módulo: Bômo de Newto e o Tâgulo de Pascal Somas de elemetos em Lhas, Coluas e Dagoas

Leia mais

Módulo: Binômio de Newton e o Triângulo de Pascal. Somas de elementos em Linhas, Colunas e Diagonais do Triângulo de Pascal. 2 ano do E.M.

Módulo: Binômio de Newton e o Triângulo de Pascal. Somas de elementos em Linhas, Colunas e Diagonais do Triângulo de Pascal. 2 ano do E.M. Módulo: Bômo de Newto e o Tâgulo de Pascal Somas de elemetos em Lhas, Coluas e Dagoas do Tâgulo de Pascal ao do EM Módulo: Bômo de Newto e o Tâgulo de Pascal Somas de elemetos em Lhas, Coluas e Dagoas

Leia mais

Sistemas e Sinais 2009/2010

Sistemas e Sinais 2009/2010 Aálise em espaço de estados Sistemas e Siais 009/010 Repesetação de Sistemas Sistemas descitos po equações difeeciais Sistemas descitos po sistemas de equações difeeciais Repesetação em espaço de estados

Leia mais

LOM Teoria da Elasticidade Aplicada

LOM Teoria da Elasticidade Aplicada Depatamento de Engenhaia de Mateiais (DEMAR) Escola de Engenhaia de Loena (EEL) Univesidade de São Paulo (USP) LOM30 - Teoia da Elasticidade Aplicada Pate 3 - Fundamentos da Teoia da Elasticidade (Coodenadas

Leia mais

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas.

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas. NOME: Nº Ensino Médio TURMA: Data: / DISCIPLINA: Física PROF. : Glênon Duta ASSUNTO: Gandezas Vetoiais e Gandezas Escalaes Em nossas aulas anteioes vimos que gandeza é tudo aquilo que pode se medido. As

Leia mais

PROCESSO SELETIVO TURMA DE 2013 FASE 1 PROVA DE FÍSICA E SEU ENSINO

PROCESSO SELETIVO TURMA DE 2013 FASE 1 PROVA DE FÍSICA E SEU ENSINO PROCESSO SELETIVO TURM DE 03 FSE PROV DE FÍSIC E SEU ENSINO Cao pofesso, caa pofessoa esta pova tem 3 (tês) questões, com valoes difeentes indicados nas pópias questões. pimeia questão é objetiva, e as

Leia mais

Demonstrações Geométricas, Algébricas e Solução de Equações Discretas utilizando as Sequências de Números Figurados

Demonstrações Geométricas, Algébricas e Solução de Equações Discretas utilizando as Sequências de Números Figurados Demostações Geométicas, Algébicas e Solução de Equações Discetas utilizado as Sequêcias de Númeos Figuados José Atoio Salvado Depatameto de Matemática - CCET - Uivesidade Fedeal de São Calos 3565-905,

Leia mais

T sin θ = F E T cos θ = P

T sin θ = F E T cos θ = P Capítulo Eletostática. Pelas condições de equilíbio T = P + F E, ou seja: T sin θ = F E T cos θ = P Se l é o compimento de cada linha, então a distância d ente as duas patículas é dada po d = l sin θ,

Leia mais

IF Eletricidade e Magnetismo I

IF Eletricidade e Magnetismo I IF 437 Eleticidade e Magnetismo I Enegia potencial elética Já tatamos de enegia em divesos aspectos: enegia cinética, gavitacional, enegia potencial elástica e enegia témica. segui vamos adiciona a enegia

Leia mais