UNIVERSIDADE CATÓLICA DE BRASÍLIA

Tamanho: px
Começar a partir da página:

Download "UNIVERSIDADE CATÓLICA DE BRASÍLIA"

Transcrição

1 UNIVERSIDADE CATÓLICA DE BRASÍLIA PRÓ-REITORIA DE GRADUAÇÃO TRABALHO DE CONCLUSÃO DE CURSO PRÓ-REITORIA DE GRADUAÇÃO Curso de Física TRABALHO DE CONCLUSÃO DE CURSO Curso de Física POR DENTRO DO CICLO OTTO Autor: Franklin Ayslan Carvalho Ribeiro POR DENTRO DO CICLO OTTO Orientador: Prof. Dr. Paulo Henrique Alves Guimarães Autor: Franklin Ayslan Carvalho Ribeiro Orientador: Prof. Dr. Paulo Henrique Alves Guimarães BRASÍLIA 2009

2 FRANKLIN AYSLAN CARVALHO RIBEIRO POR DENTRO DO CICLO OTTO Trabalho de Conclusão de Curso submetido à Universidade Católica de Brasília para obtenção do Grau de Licenciado em Física. Orientador: Prof. Dr. Paulo Henrique Alves Guimarães Brasília Novembro de 2009

3 POR DENTRO DO CICLO OTTO RESUMO O texto a seguir apresenta uma revisão teórica sobre as leis da termodinâmica e conceitos da engenharia mecânica relacionados ao funcionamento de motores de combustão interna (MCI), que utiliza como fluido operante a mistura de ar e combustível (ciclo Otto). Será realizada também uma etapa experimental, que compreende a montagem de um motor de combustão interna real de forma didática e o desenvolvimento de um suporte, para que este motor seja mostrado em várias posições, ou seja, o suporte é constituído de dois eixos centrais com rotação de 360. Com o objetivo de transformar o motor em material didático, foram realizados cortes em seu bloco principal esse bloco foi pintado em cores diferentes para obter uma melhor visualização das peças que compõem o motor. O modelo escolhido para realizar este experimento foi o motor CHT, fabricado pela Ford e Volkswagen. Palavras chave: Motor de combustão interna, Termodinâmica, Ciclo Otto. 1. INTRODUÇÃO Neste trabalho de conclusão de curso será estudado o rendimento, a potência, a capacidade volumétrica, a taxa de compressão e o consumo especifico de combustível para motores de combustão interna, através deste estudo poderá ser realizada uma analise das vantagens e desvantagens na utilização dos motores tipo BOXER, CHT e V8. Visando facilitar a didática para explicar o funcionamento das maquinas térmicas e as leis da termodinâmica, foi desenvolvido material didático que auxilie o desenvolvimento deste conteúdo. O material didático consiste na montagem de um motor real de combustão interna onde poderão ser observados todos os estágios de funcionamento de uma maquina térmica. O experimento desenvolvido neste trabalho tem como objetivo demonstrar o funcionamento e identificar os quatro tempos do ciclo Otto em um motor real. Será realizado como parte experimental à apresentação de motor real de combustão interna de quatro tempos (ciclo Otto), modelo CHT fabricado em conjunto pela Volkswagen do Brasil e pela Ford do Brasil parceria denominada Autolatina, com cortes em seu bloco, pintado em cores diferentes para uma melhor visualização, também será instalado, o distribuidor, a bomba de água e óleo, o sistema de injeção de combustível, para que possa ser entendido o funcionamento do motor. Este motor possui disposição dos cilindros em linha no total de quatro cilindros, o combustível utilizado neste modelo é o álcool possuindo diferença para o modelo a gasolina apenas na forma e tamanho da câmara de combustão. O motor será pintado na cor azul, os cortes em vermelho, as bombas de combustível, de água e óleo pintados na cor laranja, carburador e polias na cor grafite e cabeçote na cor 2

4 cromado, as demais peças também serão pintadas em cores diferentes e chamativas para facilitar a visualização. Para sustentação e apresentação do experimento foi, desenvolvido um suporte em metal, com o eixo de suporte do motor com rotação de 360. O trabalho realiza uma revisão teórica dos conceitos da termodinâmica e conceitos ligados a engenharia mecânica, com o objetivo de facilitar o entendimento do funcionamento do motor de combustão interna e de cada parte que constitui o motor. A revisão teórica discutirá as três leis da termodinâmica, rendimento de Carnot, o ciclo Otto e a determinação de rendimento através da visão da Física. Também apresenta conceitos como rendimento mecânico, potência, rendimento volumétrico, cilindrada, taxa de compressão e consumo especifico de combustível que são discutidos a partir da visão da engenharia mecânica. 2. REVISÃO TEORICA 2.1 Leis da termodinâmica As leis da termodinâmica são divididas em quatro princípios fundamentais. Estas leis determinam o equilíbrio térmico entre corpos, a quantidade de calor recebido por um sistema a partir da variação de energia interna e de trabalho e o funcionamento das máquinas térmicas. Analisando dois corpos, com temperaturas diferentes, que são colocados em contato após certo tempo estes terão a mesma temperatura. Se os mesmos forem colocados em contato com um terceiro corpo, os três irão possuir, após certo tempo, uma temperatura comum ou a mesma temperatura. Esta observação experimental resume a lei zero ou lei do equilíbrio térmico propondo que se dois corpos estiverem em equilíbrio térmico com um terceiro, estarão em equilíbrio térmico um com o outro. A elevação de temperatura de um sistema pode ocorrer adicionando calor ou realizando trabalho sobre o sistema. A realização de trabalho sobre um sistema pode ser feita de várias maneiras. Uma delas é o experimento de Joule, que converte energia potencial de pesos, que caem, em trabalho sobre a água. Outra maneira seria deixar cair um vaso com água de uma altura (h) e efetuar, colisão inelástica com o solo, ou aproveitar o trabalho mecânico da queda de corpos para gerar energia elétrica e depois aquecer a água. O importante nas experiências deste tipo é observar que as quantidades de trabalho que causam variação de temperatura são idênticas (TIPLER, 2000). Logo pelo principio da conservação de energia podemos concluir que o trabalho efetuado sobre o sistema contribui para a elevação da energia interna do sistema. 3

5 Assim, a primeira lei da termodinâmica pode ser expressa por uma equação onde a variação de energia interna do sistema é igual a soma entre a variação da quantidade de calor e o trabalho efetuado pelo sistema. Na forma diferencial pode ser escrita desta maneira, conforme equação (1). du = ᵭQ ᵭW (1) Sendo du a energia interna, ᵭQ a variação de energia interna e đw o trabalho efetuado pelo sistema. Por convenção o trabalho terá sinal positivo (+W) quando efetuado pelo sistema e negativo (-W) quando realizado sobre o sistema. A conversão total de trabalho mecânico em energia térmica é possível de ocorrer, porém é impossível remover energia térmica do sistema e converter totalmente em trabalho mecânico, sem que seja necessário alterar o sistema ou sua vizinhança. A primeira lei da termodinâmica nos leva a concluir que a energia se conserva. Há uma forma de ver a energia mais útil e menos útil. Esta forma de utilizar energia é o que trata a segunda lei da termodinâmica. A segunda lei da termodinâmica foi enunciada de forma diferente por Kelvin, Clausius e Kelvin Planck. Cada enunciado será apresentado abaixo (TIPLER, 2000). É impossível remover energia térmica de um sistema a uma certa temperatura e converter a energia em trabalho mecânico sem modificar de alguma maneira, o sistema ou as vizinhanças do sistema.(enunciado Kelvin) Não há nenhum processo cujo único efeito seja o da transferência de energia de um corpo frio para outro quente. (enunciado Clausius) É impossível que uma máquina térmica operando em ciclo, tenha como único efeito a extração de calor de um reservatório e a execução de quantidade equivalente de trabalho. (enunciado Kelvin Planck) 2.2 Processos quase estáticos Processos termodinâmicos são determinados quando ocorrem alterações nas variáveis de estado (pressão, temperatura e volume), que se relacionam pela equação (2). PV = nrt (2) Na equação (2) P é a pressão, V representa o volume, n o número de moles e R é a constante universal dos gases e T a temperatura expressa em Kelvin (K). Para que o processo seja considerado quase estático, é necessário considerá-lo ocorrendo de forma muito lenta de maneira a permitir que o sistema entre em equilíbrio a cada instante. Num processo isobárico a pressão é mantida constante. W = PdV = P V 4

6 No processo isotérmico a temperatura é mantida constante. Para determinar o trabalho isotérmico temos que considerar a análise do processo em que a variação de energia interna seja nula ( U = 0), já que a temperaturas inicial e final são iguais. O trabalho isobárico é igual à quantidade de calor (HALLIDAY; RESNICK, 2009). P = nrt V dv Q = nrt V Q = nrt ln V f V i (3) No processo adiabático não ocorre troca térmica, entre o sistema e o exterior, ou seja, não ocorre variação de calor ( Q = 0), logo utilizando a primeira lei da termodinâmica temos que o trabalho adiabático e dado pela equação (4). ᵭW = du ᵭW = C v dt dw = C v dt dw = C v (T 2 T 1 ) dw = C v (T 1 T 2 ) dw = C v ( P 1V 1 nr P 2V 2 nr ) W = P 1V 1 P 2 V 2 γ 1 (4) Onde o fator gama (γ) é definido como a razão entre a capacidade calorífica a pressão constante e a capacidade calorífica a volume constante. 2.3 Máquinas térmicas γ = C p C v (5) São dispositivos que operam entre ciclos que tem como objetivo converter a maior quantidade possível de calor em trabalho. O ciclo da máquina térmica consiste na absorção de uma determinada quantidade de calor da fonte quente (Q q ), realização de trabalho (W) e ceder calor para uma fonte fria (Q f ) no momento que retorna ao estado inicial. Por convenção a quantidade de calor absorvida (Q q ) recebe o sinal positivo e a quantidade de calor cedido (Q f ) recebe o sinal negativo (TIPLER, 2000). A representação simplificada da máquina térmica pode ser feita conforme a figura 1. 5

7 Figura 1: máquina térmica simplificada Fonte: Física para cientistas e engenheiros, volume 1, Paul A. Tipler. As máquinas térmicas operam com um fluido operante que determina o tipo de máquina térmica, este fluido pode ser, por exemplo, o vapor de água (máquina a vapor), ar e combustível (motor de combustão interna ciclo Otto) e ar (motor de combustão interna ciclo diesel). O reservatório quente ou fonte quente possui uma temperatura (T q ), que é maior que a temperatura (T f ) do reservatório frio ou fonte fria. Como este sistema é ideal o reservatório quente e frio possuem uma capacidade calorífica muito grande, com o objetivo de absorver e ceder energia térmica sem sofrer modificação considerável de energia (NUSSENZVEIG, 2002). Tendo o estado inicial, final e do fluido operante coincidente, podemos considerar que a energia interna inicial e final são iguais, obtendo ( U = 0), com isso pela primeira lei da termodinâmica a variação da quantidade de calor é igual ao trabalho realizado, conforme a equação (6), equação (7). dq dw (6) W Q q Q f (7) O rendimento térmico ( ) de uma máquina térmica pode ser determinado pela razão entre o trabalho realizado e calor absorvido da fonte quente. W ε (8) Q q Como o trabalho (W) pode ser calculado utilizando a equação (7), substituindo a equação (7) na equação (8), obtemos que o rendimento térmico pode ser determinado em função da quantidade de calor da fonte quente e fria, pela equação (9). Qq Qf Qf ε 1 (9) Q Q q q 6

8 2.4 Ciclo de Carnot Ciclo teórico que descreve o funcionamento de uma máquina reversível, que possui a maior eficiência operando entre dois reservatórios. Esta máquina pode ser resumida como uma máquina térmica ideal que opera com o maior rendimento possível. De acordo com o teorema de Carnot nenhuma máquina térmica operando entre dois reservatórios térmicos pode ser mais eficiente do que uma máquina reversível que opere entre os mesmos dois reservatórios. Conforme este teorema pode-se concluir que todas as máquinas de Carnot, operando entre os mesmos dois reservatórios, possuem o mesmo rendimento. Este rendimento é conhecido como rendimento de Carnot ( c ), que não depende do fluido operante, mas depende da temperatura dos dois reservatórios (HALLIDAY; RESNICK, 2009). Para entender o significado de máquina reversível, é necessário antes diferenciar processo reversível do processo irreversível. Processo reversível é aquele onde não ocorre trabalho de forças dissipativas, a condução térmica só ocorre isotermicamente e o processo deve ser quase estático. Qualquer processo que viole estas três condições será considerado irreversível. O ciclo de Carnot possui quatro etapas reversíveis, que podem ser expressas por um diagrama P x V (TIPLIER, 2000), conforme figura 2. Figura 2: Ciclo de Carnot Fonte: Física para cientistas e engenheiros, volume 1, Paul A. Tipler. Na etapa 1 2 absorção isotérmica quase estática de calor de um reservatório quente. Do ponto 2 até 3 expansão adiabática quase estática com diminuição da temperatura até a temperatura da fonte fria. No ponto 3 até 4 rejeição isotérmica quase estática de calor para a fonte fria. 7

9 inicial. Na etapa 4 1, ocorre compressão adiabática quase estática até atingir o estado Para determinar o rendimento de Carnot será analisado um ciclo com as quatro etapas, onde o gás ideal é o fluido operante. O rendimento térmico de uma máquina térmica é dado pela equação (9), como este não depende do tipo de máquina, com o resultado desta equação obtem-se uma validade geral. Na máquina de Carnot será necessário determinar as quantidades de calor nas etapas que ocorrem absorção e rejeição de calor. Na primeira e segunda etapa, ocorre respectivamente absorção isotérmica e rejeição isotérmica. Nestes processos a variação de energia interna é nula ( U = 0), obtendo que a quantidade de calor absorvido (Q q ) ou rejeitado (Q f ) é igual ao trabalho (W). Q q = W = PdV = Q f = W = PdV = 2 nrt q V dv = nrt qln V 2 1 V 1 4 nrt f V dv = nrt f ln V 3 3 V 4 Calculando a razão entre Q f e Q q, obtemos o resultado. (10) (11) Q T q f ln V 4 V = 3 Q q T q ln V (12) 2 V 1 A equação para o processo adiabático é dada pelas equações (13) e (14), que é utilizada para relacionar a expansão na segunda e terceira etapas e a compressão na primeira e quarta etapas. Obtemos. T q V 2 γ 1 = T f V 3 γ 1 T q V 1 γ 1 = T f V 4 γ 1 Dividindo membro a membro das equações (13) e (14), encontramos. γ 1 V 2 V 1 = V 3 V 4 γ 1 (13) (14) (15) Portanto, como as razões entre os volumes são iguais, podemos concluir que a razão entre os logaritmos dos volumes também são iguais, assim obtemos. Q f Q q = T f T q (16) O rendimento de Carnot, então deve ser expresso da seguinte maneira. ε c = 1 T f T q (17) Este rendimento representa o maior possível entre as duas temperaturas. 8

10 2.5 Ciclo Otto Este ciclo é um modelo teórico, que melhor representa o funcionamento de um motor de combustão interna. O ciclo é composto por seis etapas representadas no diagrama P x V (STONE, 1999), conforme figura (3). Figura 3: Ciclo Otto teórico Fonte: Introduction to internal combustion engines, Richard Stone. Na etapa 0 1 ocorre admissão da mistura ar e combustível, ocorrendo compressão adiabática até o ponto 2. Do ponto 2 até o ponto 3, ocorre o rápido aquecimento da mistura a volume constante (processo isocórico). No ponto 3 até o ponto 4, ocorre uma expansão da mistura muito rápido, daí por isso não há tempo para troca de calor, ou seja, é um processo adiabático. Na penúltima etapa, que compreende os pontos 4 e 1, ocorre uma fuga da mistura por processo isocórico. Na ultima etapa, que é representada no gráfico como, 1 0 ocorre expansão e expulsão dos resíduos. O rendimento térmico de qualquer máquina térmica é expresso pela equação (6), mas por ser um procedimento complicado, em um motor real determinar a quantidade de calor de fonte quente (Q q ) e da fonte fria (Q f ). O rendimento térmico do ciclo Otto será expresso em função dos volumes máximos e mínimos cuja razão é conhecida como taxa de compressão (K). O calor cedido e recebido ocorre em processos isocóricos, logo as quantidades de calor cedidas e recebidas podem ser determinadas pelas equações (18) e (19). Q q = C v T 1 T 4 (18) 9

11 (21). Q f = C v T 3 T 2 (19) Nas transformações adiabáticas as relações são definidas pelas equações (20) e T 3 V γ 1 γ 1 3 = T 4 V 4 γ 1 V T 3 = T 4 4 V 3 γ 1 T 3 = T 4 K γ 1 (20) De maneira análoga, obtemos a relação para as temperaturas T 1 e T 2. T 2 = T 1 K γ 1 (21) Substituindo as equações (20) e (21) na equação 7, obtemos o rendimento em função da razão entre os volumes. ε = 1 1 (22) Kγ Conceitos da engenharia mecânica Com o objetivo de obter um melhor entendimento sobre o funcionamento do motor de combustão interna e métodos utilizados pela engenharia para determinar o rendimento mecânico, rendimento volumétrico, potência, taxa de compressão, consumo especifico de combustível e cilindrada. Nesta parte iremos realizar uma breve definição dos temas acima citados. As variáveis abordadas nesta parte correspondem à Física pura. 2.6a Potência e rendimento mecânico A potência desenvolvida por um motor é denominada de forma geral como, a potência gerada no eixo do motor (bhp) (STONE, 1999). A equação (23) determina matematicamente esta relação. Onde F é a força de atrito e r o raio do eixo. W = 2πrF (23) A potência total gerada pelo movimento dos pistões é designada como potência indicada (ihp). Uma parte da potência indicada, oriunda da combustão do fluido operante, não é aproveitada como potência no eixo. Esta perda de potência é devida ao atrito existente entre o contato das peças móveis do motor, denominada pela engenharia como potência de atrito (fhp) (STONE, 1999). ihp = bhp + fhp (24) A razão entre a potência do eixo e a potência indicada é conhecida pela engenharia como o rendimento mecânico de um motor. ε M = bhp ihp (25) 10

12 Para determinar a potência do eixo e a potência indicada é necessário definir o conceito de pressão média efetiva e pressão média indicada. Pressão média efetiva (p m ) é definida como a pressão constante que seria necessária no interior do cilindro, durante o curso, de expansão, para desenvolver uma potência igual à potência do eixo (STONE, 1999). Pressão média indicada (p i ) é entendida como a pressão constante que seria necessária no interior do cilindro, durante o curso de expansão, para desenvolver uma potência igual à potência indicada (STONE, 1999). A expressão matemática que representa a pressão média efetiva e pressão media indicada estão escritas, respectivamente, nas equações (26) e (27). bhp = ihp = p m LANn x p i LANn x (26) (27) Onde A é a área da cabeça do pistão, L significa o curso do pistão, N representa o número de rotações por minuto (rpm), n é o número de rotações por cilindro, entre dois cursos de expansão (para motores de quatro tempos x = 2) (STONE, 1999). O fator expresso nas equações 26 e 27 representam a conversão da potência necessária para elevar a altura de um pé, em um segundo, uma carga de 550 libras, onde 550 x 60 = para transformar em minuto, desta forma os valores de bhp e ihp será dado em libras por polegada ao quadrado. 2.6b Rendimento volumétrico Definida de forma geral como a medida efetiva do processo de admissão e exaustão dos gases aspirados e expulsos pelo motor no decorrer do ciclo. Este rendimento é arbitrariamente definido, para motores que possuem como fluido operante a mistura de ar e combustível, como a razão entre a massa de ar aspirada por cilindro por ciclo (M ar ) e a massa de ar que ocuparia o cilindro a pressão e temperatura ambiente (M normal ) (STONE, 1999). ε v = M ar M normal (28) Considerando que o ar obedece à lei dos gases a equação (28) pode ser reescrita em função do volume de ar aspirado com densidade ambiental pelo cilindro por ciclo (V ar ) e do volume do cilindro (V c ). ε v = V ar V c (29) 2.6c Cilindrada e taxa de compressão 11

13 Cilindrada é definida como o volume total deslocado pelo pistão entre o ponto médio inferior (PMI) e o ponto médio superior (PMS), multiplicado pelo número de cilindros do motor (SANTOS, 2009). Estes pontos representam as duas posições do eixo de manivelas (virabrequim), para as quais o êmbolo (pistão) está em completo repouso e inverte o sentido do movimento. A figura 6 representa estas posições. Figura 6: curso do pistão entre os pontos PMI e PMS. Fonte: Apostila aula 1 Introdução aos motores de combustão interna, Antonio Moreira dos Santos. A equação que determina o cálculo da cilindrada é expressa pela equação (30). C = πd2 4 N cilindro (30) Onde D é o diâmetro do cilindro e N cilindro representa o número de cilindros do motor. Taxa de compressão de um motor pode ser definida como o número de vezes em um intervalo de tempo que é comprimida pela câmara de compressão, antes do processo de combustão, a quantidade de ar ou mistura de ar e combustível aspirado para dentro do cilindro pelo pistão (STONE, 1999). Representada matematicamente pela equação (31). TC = C + c c (31) Onde C é a cilindrada do motor definida pela equação (30) e c representa o volume da câmara de combustão. Na análise termodinâmica do motor de combustão interna, a taxa de compressão é diretamente responsável pelo rendimento térmico do motor. Desta maneira, quanto maior a taxa de compressão obtém um melhor aproveitamento energético do processo de queima do fluido operante (TAYLOR, 1961). Câmara de compressão é o espaço livre do cilindro quando o pistão encontra no ponto médio superior (PMS). 12

14 Figura 7: Taxa de compressão do fluido operante. (Modificada) Fonte: Apostila aula 1 Introdução aos motores de combustão interna, Antonio Moreira dos Santos. 2.6d Consumo específico de combustível Determinada como a razão entre a taxa de fluxo massivo de combustível Ṁ e a produção de força Ẇ, compreendida como o consumo de combustível em relação ao trabalho realizado. Conforme expresso pela equação (32) (TAYLOR, 1961). SFC = M dm W = dt dm dt = dw dw dt = dm dw dt (32) 2.7 Motores de combustão interna O primeiro motor de combustão interna foi desenvolvido em 1876, por Augusts Nikolaus Otto, a partir de estudos realizados pelo engenheiro francês Alphonse Beau de Rochas em Ao longo do tempo os motores de combustão interna sofreram melhorias em diversas partes como no tamanho, peso, materiais, economia no consumo de combustível, combustíveis utilizados na mistura, eficiência, potência, quantidade de cilindros e posição dos cilindros. Basicamente um motor de combustão interna (MCI) é composto por peças fixas (bloco do motor, cabeçote e carter) e peças móveis (pistão, biela, árvore de manivelas ou virabrequim, árvore de comando de válvulas e válvulas de admissão e escape) (SANTOS, 2009). O bloco do motor é o motor propriamente dito, onde são usinados os cilindros, para motores com câmaras de combustão fixas ou os furos para a colocação das câmaras de combustão. Câmaras de combustão ou camisas são cilindros onde ocorre a combustão do fluido operante (combustível e ar no ciclo Otto ou apenas ar no ciclo Diesel), e também é onde o pistão realiza o seu movimento (SANTOS, 2009). 13

15 Figura 7: Bloco do motor. Fonte: Apostila aula 1 Introdução aos motores de combustão interna, Antonio Moreira dos Santos. Cabeçote pode ser definido como tampa superior do bloco do motor, contra a qual o pistão comprime o fluido operante. Nesta peça estão os furos para a instalação das velas de ignição e furos para os bicos injetores de combustível no caso de motores injetados ou furos para entrada do fluido operante no caso de motores carburados, posicionado em sua parte inferior estão as válvulas de admissão e escape. Figura 8: Cabeçote. Fonte: Apostila aula 1 Introdução aos motores de combustão interna, Antonio Moreira dos Santos. O carter é a tampa inferior do bloco do motor, cobrindo o virabrequim, bomba de óleo lubrificante e bielas, com função de reservatório de óleo lubrificante. Os componentes móveis de um motor de combustão interna podem ser definidos da seguinte maneira (SANTOS, 2009): Pistão é a parte móvel da câmara de combustão que recebe a força da expansão do fluido operante, transferindo para a biela, através do pino do pistão, o movimento. A biela é o braço de ligação entre o pistão e o virabrequim, sendo importante salientar que o conjunto biela e virabrequim transformam o movimento retilíneo do pistão em movimento rotativo do virabrequim. 14

16 Figura 9: Conjunto pistão, biela e agregados. Fonte: Apostila aula 1 Introdução aos motores de combustão interna, Antonio Moreira dos Santos. A árvore de manivelas, eixo de manivelas ou virabrequim é definido como eixo motor, que na maioria das vezes, está posicionada na parte inferior do bloco do motor, recebendo as bielas. Árvore de comando de válvulas ou eixo comando de válvulas possui a função de abrir as válvulas de admissão e escape, respectivamente, nos tempos de admissão e escapamento. O acionamento deste eixo é realizado pelo virabrequim, através de engrenagem, corrente ou correia dentada. Possuindo também ressaltos que elevam o conjunto tucho, haste e balancim (SANTOS, 2009). Existem dois tipos de válvulas que podem ser diferenciadas pelo tamanho, forma e função. A válvula de admissão tem a função de permitir a entrada do fluido operante na câmara de combustão. A válvula de escape possui a função de escape dos gases oriundos da queima do fluido operante após a expansão do pistão. O conjunto de acionamento das válvulas é compreendido por tucho e uma haste, que o interliga ao balancim, apoiando se diretamente sobre a válvula. No momento em que o eixo comando de válvulas gira, o ressalto deste aciona o tucho, que é um pequeno cilindro aberto na parte superior, que por sua vez move a haste, fazendo com que o balancim transmita o movimento à válvula. Para cada ressalto do eixo comando de válvulas, que relaciona com cada válvula, existe um conjunto de acionamento. 15

17 Figura 10: Conjunto tucho, haste, balancins, eixo comando de válvulas, virabrequim e pistão. Fonte: Apostila aula 1 Introdução aos motores de combustão interna, Antonio Moreira dos Santos. O ciclo Otto ideal foi definido anteriormente conforme figura (3), o ciclo Otto real pode ser observado na figura (11). Figura 11: Ciclo Otto real. Fonte: Introduction to internal combustion engines, Richard Stone. 3. EXPERIMENTO Consiste na apresentação de um motor real, com cortes em sua estrutura principal. O motor escolhido para este experimento foi o CHT, desenvolvido e fabricado em conjunto pela FORD do Brasil e VW do Brasil. O modelo CHT escolhido possui cilindrada definida pelo fabricante como 1.6 que utiliza como combustível o álcool. O motor apresentado será composto pelo sistema de injeção de combustível e do sistema de escape dos gases, como também de peças acessórias necessárias para o entendimento de seu funcionamento. 16

18 Figura 11: Motor CHT, com todas as peças para o seu funcionamento. Fonte: < O experimento é constituído de um suporte construído em metal, para a sustentação e movimentação deste motor. O suporte foi desenvolvido de forma que o motor gire 360 sobre o seu eixo, conforme figura 12 que representa a primeira idéia para a elaboração do suporte. Figura 12: Esquema básico do suporte do motor. 3.1 Material Os materiais utilizados para a montagem do experimento, assim como as ferramentas utilizadas para a desmontagem, montagem, corte do motor e construção do suporte são listadas abaixo. 17

19 Motor CHT 1.6 Coletor de escape Coletor de admissão com carburador Tubos de ferro Rodas do tipo giratório na dimensão 3x1 Tinta do tipo spray nas cores preto fosco, vermelho, grafite, laranja e cromado. Eixo traseiro do veiculo Palio Furadeira Esmerilhadeira angular Ferramentas para montagem e desmontagem do motor. Resina epóxi Escovas de aço circular Lixa, com numeração 250 e 350 e 450 Disco de corte Água, Óleo diesel, solvente para tinta, gasolina. Pincel de 380 mm Balde, Bacia Trena Paquímetro Morsa de 100 mm Fita crepe 3.2 Método e procedimentos O experimento foi dividido em três etapas, com o objetivo de facilitar e organizar o desenvolvimento da atividade. A primeira etapa consiste na desmontagem, limpeza, definição dos locais que serão realizados os cortes no bloco, realização dos cortes e pintura. O primeiro corte foi realizado no lado direito do bloco, na posição dos pistões 1 e 2 próximo ao volante, com 14,7 x 9,3 cm. O segundo corte realizado no ponto de fixação do distribuidor de corrente elétrica no tamanho de 5,7 x 1,8 cm, o terceiro corte foi feito no lado esquerdo do bloco, próximo a bomba de combustível, sobre o eixo de comando de válvulas com o tamanho de 6,9 x 1,5 cm. 18

20 Figura 13: Cortes no bloco, para acesso as camisas 1 e 2. Figura 14: Cortes no distribuidor de eletricidade e no eixo comando. A ferramenta utilizada para realizar os corte foi a esmerilhadeira angular, com disco de corte. Como a precisão da ferramenta não é a ideal ocorreram estrapolações dos cortes, que foram corrigidos com resina epóxi e utilizando lixa para dar uniformidade aos cortes. Após realizar os cortes e correções, o procedimento de pintura das peças foi iniciado, utilizando (spray) em diversas cores. O bloco foi pintado na cor azul angra, as secções de cortes foram pintadas na cor vermelha para ressaltar a visualização. As camisas deste motor são móveis, por este motivo, foi necessário realizar cortes nas camisas para ser possível a visualização do movimento dos pistões 1 e 2.Na camisa 1 o corte possui 7 cm de comprimento por 4,2 cm de largura, para a camisa 2 o corte realizado tem 4,6 cm de comprimento por 4,1 cm de largura. Os pistões e camisas 3 e 4, não foram instalados para diminuir o peso do sistema, mas foram mantidos nos suporte para que possa ser realizada uma melhor visualização destes componentes. As camisas que foram instaladas no motor foram pintadas na cor grafite. 19

21 Figura 15: Camisas e pistões Na segunda etapa foi realizada a montagem do motor, para o início da etapa todos os parafusos de fixação das peças do motor foram pintados na cor preto fosco, as primeiras peças a serem montadas foram as camisas e os pistões, foi instalado o eixo de virabrequim no bloco. Os anéis dos pistões foram colocados de forma que sua abertura fique a mostra. A instalação correta destes anéis seria cada corte oposto ao outro, com uma diferença de 180 entre cada abertura. Figura 16: Eixo virabrequim O cabeçote pintado na cor cromado, foi instalado em sua posição correta acima do bloco, fixando as camisas 1 e 2. No lado esquerdo do cabeçote foram instaladas as velas de ignição. Neste momento da montagem foi realizada a colocação do motor no ponto, este procedimento consiste em sincronizar a abertura e fechamento das válvulas de admissão e escape. 20

22 Figura 17: Cabeçote antes da pintura. Para a realização deste procedimento as polias do eixo virabrequim e do eixo comando de válvulas foram instaladas e ligadas pela corrente que faz o seu acionamento simultâneo, estas polias foram pintadas na cor grafite, mostradas nas figuras 18. Figura 18: polia do eixo comando e polia do eixo virabrequim. Após a regulagem do motor, realizou a instalação da tampa do comando de válvula pintada na cor preto fosco e detalhes do nome Ford presente na tampa pintado na cor cromado, os coletores de escape e admissão foram pintados na cor grafite por ser uma única peça de difícil isolamento para ser pintado em cores diferentes cada um, o sistema de injeção de combustível, composta pela bomba de combustível pintada na cor laranja e carburador pintado na cor grafite, o distribuidor de corrente elétrica e cabos foram pintados na cor preto fosco. O filtro de óleo, bomba d água também foram pintados na cor laranja. A configuração final do motor pode ser vista na figura 19 e no anexo 1. O manual para a desmontagem e montagem do modelo CHT, que foi utilizado neste trabalho, também pode ser acessado através do link indicado na referência bibliográfica 7. Animações referentes ao funcionamento de cada modelo citado na introdução deste trabalho podem ser visualizadas através dos links apresentados nas referências bibliográficas. 21

23 Figura 19: Configuração final do motor. Terceira etapa reservada para o desenvolvimento do sistema de acionamento de motor e construção e pintura do suporte. Nesta etapa o suporte foi pintado na cor verde. Os suportes foram construídos em metal com um tubo de ferro com diâmetro externo de 4 cm, altura sem rodas de 1m. Na extremidade superior traseira do suporte foi soldado o eixo giratório com a base fixadora do motor conforme a figura 20. Figura 20: Foto do cubo eixo traseiro soldado no suporte. Na extremidade inferior foi instalada a base em forma de cruz, nas extremidades de cada base foi instalada uma roda, que possui a dimensão de 3x1, para o deslocamento do sistema suporte e motor, como mostra a figura 21, as barras de sustentação e locomoção possui diâmetro externo de 4 cm e comprimento de cada perna de 25,5 cm. 22

24 Figura 21: Estrutura de locomoção dos suportes Para a movimentação da base fixadora frontal foi soldado na parte superior do tubo metálico, um eixo fixo com diâmetro externo de 3,5 cm e comprimento de 7,6 cm, onde é encaixada a base fixadora como mostra a figura 22. Esta base possui uma altura de 16,5 cm e um eixo com diâmetro de 3,5 cm e comprimento de 9 cm. A haste superior possui forma de L deslocado um do outro para a fixação da bomba de água. A haste inferior em forma de U possui respectivamente as dimensões comprimento da base do U de 26,5 cm e 26 cm e as laterais do U de 12 cm e 10,5 cm. Figura 22: Inicio do suporte frontal e base fixadora. Estas medidas são importantes para uma correta distribuição da massa do sistema, evitando a falta de equilíbrio do conjunto. O eixo giratório, utilizado neste suporte, é uma peça do sistema de roda do veiculo Palio, denominada cubo traseiro, que pode ser visualizada na figura 20 e 23. Para que o motor seja parado em seu movimento de rotação sobre o seu eixo, foi soldado um disco de ferro com diâmetro de 13 cm, com seis furos, no eixo da base fixadora traseira a uma distância de 7 cm dos furos já existentes no eixo giratório traseiro utilizada. Uma válvula que 23

25 teve a sua ponta feita como a de um lápis foi utilizada para o travamento deste conjunto como mostra a figura 24. Figura 23: Foto cubo traseiro Figura 24: Chapa de fixação do suporte traseiro. A configuração final do suporte pode ser visualizada na figura 25, esta montagem foi necessária para evitar que o sistema perca o equilíbrio, já que o motor após a montagem permaneceu ainda com um peso muito elevado. A visualização de outras figuras do suporte pode ser feita no anexo 2. Figura 25: Suporte giratório para o motor. 24

26 Para o funcionamento do motor, fazer girar o virabrequim e os pistões não foi necessário desenvolver um sistema de acionamento, já que, os cortes no bloco e nas camisas não proporcionam uma pressão grande, gerada pela compressão do fluído operante (ar e combustível). Desta maneira o motor pode ser girado de forma simples e fácil apenas ao movimentar o volante ou a polia frontal do virabrequim. 4. CONCLUSÃO Com a elaboração deste trabalho de conclusão de curso, mostramos uma visão diferente dos rendimentos, potência, cilindrada, taxa de compressão e consumo especifico de combustível de um motor de combustão interna (MCI). O desenvolvimento da parte experimental melhora a interação do estudante e do leitor, com as leis da termodinâmica e dos conceitos discutidos da engenharia mecânica relacionados ao funcionamento do motor de combustão interna. A interação é favorecida através da visualização dos ciclos de um motor real. Com a construção deste motor conseguimos mostrar todas as etapas e peças, necessárias para o funcionamento do motor, proporcionando ao estudante realizar comparação entre o que ocorre realmente no motor com o que lhe é apresentado pela teoria, na forma de gráficos ou textuais. A revisão teórica e o experimento auxiliam o leitor a realizar as comparações entre os fatores, que são determinantes para a elaboração e desenvolvimento de um motor, a partir dos conhecimentos da Física e da Engenharia Mecânica. 25

27 5. AGRADECIMENTOS A minha mãe Telma Carvalho e meu pai Geraldo Ribeiro pela paciência, patrocínio e confiança em minha capacidade, minha irmã Rosa Talita pelas criticas, incentivos e leitura do trabalho, minha tia Nadja Indaiá por ceder sua casa para a confecção do trabalho, minha esposa Fabíola Rufino e minha filha Isabela por compreender os momentos de ausência e pela motivação. A todos citados e não citados pelo apoio para a realização deste trabalho e batalha para continuar e concluir o curso de Física. Aos amigos Alexandre, Marina, Sidney, Narla, Fabrício, Thiago, Othon, Daniel, Carlos e Patrícia por ajudarem na confecção do trabalho, na leitura e critica do trabalho, na tradução de livros, no tratamento das figuras, no corte do motor, na pintura e montagem do motor, no desenvolvimento do suporte. A todos os amigos que me esqueci de citar, eu agradeço e o meu muito obrigado. Ao professor Paulo Henrique pelo total apoio, correções, ensinamentos antes e durante o desenvolvimento do trabalho e por ter incentivado e acreditado na minha capacidade de realização este projeto. 26

28 6. REFERENCIAS BIBLIOGRAFIAS 1. TIPLER, Paul A.. Física para cientistas e engenheiros. Vol. 1, 4 ed. Rio de Janeiro. LTC editora HALLIDAY, David;RESNICK, Jearl Walker. Fundamentos da Física. Vol 2, 8 ed. Rio de Janeiro. LTC editor NUSSENZVEIG, Moysés H. Curso de Física Básica 2. Vol. 2, 4 Ed. São Paulo. Edgard Blücher ltda STONE, Richard. Introduction to internal combustion engines.3 ed. Warrendale,Pa. Editora Society of automotive engineers, Inc SANTOS, Antonio Moreira. Introdução aos motores de combustão interna. Disponível em: < Acessado em: 12 jan TAYLOR, Charles F.; TAYLOR, Edward S. The internal combustion engine. 2 ed. Pennsylvania. Editora international textbook company FORD. Manual de manutenção do CHT. Disponível em: < Acessado em: 22 jun Animação motor V8. Disponível em: < Acessado em: 14 nov Animação motor V8. Disponível em: Acessado em: 14 nov Animação do motor quatro cilindros em linha. Disponível em: <:// Acessado em: 14 nov Animação Boxer. Disponível em: < >. Acessado em: 14 nov SERWAY, Raymond A.; JEWETT, John W. Jr. Princípios da Física. Vol. 2. São Paulo. Cengage Learning editor CHAVES, Alaor Silvério. Física - Curso básico para estudantes de ciências físicas e Engenharias. Vol. 4, 1 ed. Rio de Janeiro. Reichmann e Afonso editor PENIDO FILHO, Paulo. Os motores a combustão interna. Editora LEMI, Belo Horizonte MWM Internnatinal. Apostila de Treinamento. Disponível em:< Acessado em: 12 jan NEBRA, Silvia Azucena. Máquinas térmicas. Disponível em: < Acessado em: 12 jan PEREIRA, José Cláudio. Motor Gerador. Disponível em: < Acessado em: 14 jan

29 18. Historia das leis da Termodinâmica. Disponível em: < Acessado em: 14 jan Mecânica fácil. Disponível em: Disponível em: < >. Acessado em: 22 jan BOSH. Linha de injeção eletrônica e ignição eletrônica. Disponível em: < Acessado em: 22 jan DEUTZ. Disponível em: < Acessado em: 22 jan VOLKSWAGEN. Manual de manutenção do Fusca. Disponível em: < Acessado em: 22 jun Motores de combustão interna. Disponível em: < Acessado em: 23 jun Motor de combustão interna II. Disponível em: < MOTORES-DE-COMBUSTc3O-INTERNA>. Acessado em: 23 jun Fundamentos de motores de combustão interna. Disponível em: < >. Acessado em: 24 jun SENAI. Senai motores. Disponível em:< >. Acessado em 24 jun DANA. Dicas técnicas Dana. Disponível em: < >. Acessado em: 24 jun

30 ANEXO(S) 29

31 ANEXO 1: Figuras adicionais da configuração final do motor. Figura 1: Cabeçote pintado na cor cromado. Figura 2: Bomba de Óleo pintada na cor laranja. 30

32 Figura 3: Visão frontal do motor (bomba de água e polias). Figura 4: Visão lateral (cortes no distribuidor e eixo comando e bomba de combustível). 31

33 Figura 5: Visão lateral do corte no bloco e cortes nas camisas. Figura 6: Bomba de água, carburador e distribuidor. 32

34 Figura 7: Visão do virabrequim e volante. Figura 8: Visão superior do motor completo. 33

35 Figura 9: Visão superior motor com o filtro de ar. Figura 10: Visão superior do motor, com suporte girado. 34

36 ANEXO 2: Figuras adicionais da configuração final do suporte. Figura 11: Barra de travamento dos dois suportes. Figura 12: Barra de travamento em detalhe. 35

37 Figura 13: Suporte frontal (detalhe do eixo de sustentação do motor). Figura 14: Ganchos para a sustentação dos pistões e camisas 3 e 4. 36

Descrever o princípio de funcionamento dos motores Ciclo Otto Identificar os componentes básicos do motor.

Descrever o princípio de funcionamento dos motores Ciclo Otto Identificar os componentes básicos do motor. Objetivos Descrever o princípio de funcionamento dos motores Ciclo Otto Identificar os componentes básicos do motor. Descrição Neste módulo são abordados os princípios de funcionamento do motor Ciclo Otto,

Leia mais

PRINCÍPIOS DE FUNCIONAMENTO DOS MOTORES DE COMBUSTÃO INTERNA

PRINCÍPIOS DE FUNCIONAMENTO DOS MOTORES DE COMBUSTÃO INTERNA UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO IT Departamento de Engenharia ÁREA DE MÁQUINAS E ENERGIA NA AGRICULTURA IT 154- MOTORES E TRATORES PRINCÍPIOS DE FUNCIONAMENTO DOS MOTORES DE COMBUSTÃO INTERNA

Leia mais

Ciclo de motor de combustão interna, que se completa em duas revoluções(rotação) da árvore de manivelas.

Ciclo de motor de combustão interna, que se completa em duas revoluções(rotação) da árvore de manivelas. 1 3.0 Descrição do Funcionamento dos Motores O conjunto de processo sofrido pelo fluido ativo que se repete periodicamente é chamado de ciclo. Este ciclo pode acontecer em 2 ou 4 tempos. Figura 3: Nomenclatura

Leia mais

Motores de Combustão Interna MCI

Motores de Combustão Interna MCI Motores de Combustão Interna MCI Aula 3 - Estudo da Combustão Componentes Básicos dos MCI Combustão Combustão ou queima é uma reação química exotérmica entre um substância (combustível) e um gás (comburente),

Leia mais

Motores alternativos de combustão interna. Parte 1

Motores alternativos de combustão interna. Parte 1 Motores alternativos de combustão interna Parte 1 Introdução Sistemas de potência utilizando gás: Turbinas a gás Motores alternativos (ICE, ICO) Ciclos a gás modelam estes sist. Embora não trabalhem realmente

Leia mais

Componente curricular: Mecanização Agrícola. Curso: Técnico em Agroecologia Professor: Janice Regina Gmach Bortoli

Componente curricular: Mecanização Agrícola. Curso: Técnico em Agroecologia Professor: Janice Regina Gmach Bortoli Componente curricular: Mecanização Agrícola Curso: Técnico em Agroecologia Professor: Janice Regina Gmach Bortoli Mecanização agrícola. 1. Motores agrícola. Agricultura moderna: uso dos tratores agrícolas.

Leia mais

p A = p B = = ρgh = h = Por outro lado, dado que a massa total de fluido despejada foi m, temos M 1 m = ρ(v 1 + V 2 ) = ρ 4 H + πd2 4 h = H = 4

p A = p B = = ρgh = h = Por outro lado, dado que a massa total de fluido despejada foi m, temos M 1 m = ρ(v 1 + V 2 ) = ρ 4 H + πd2 4 h = H = 4 Q1 (,5) Um pistão é constituído por um disco ao qual se ajusta um tubo oco cilíndrico de diâmetro d. O pistão está adaptado a um recipiente cilíndrico de diâmetro D. massa do pistão com o tubo é M e ele

Leia mais

a) Qual a pressão do gás no estado B? b) Qual o volume do gás no estado C

a) Qual a pressão do gás no estado B? b) Qual o volume do gás no estado C Colégio Santa Catarina Unidade XIII: Termodinâmica 89 Exercícios de Fixação: a) PV = nr T b)pvn = RT O gráfico mostra uma isoterma de uma massa c) PV = nrt d) PV = nrt de gás que é levada do e) PV = nrt

Leia mais

Parâmetros de performance dos motores:

Parâmetros de performance dos motores: Parâmetros de performance dos motores: Os parâmetros práticos de interesse de performance dos motores de combustão interna são: Potência, P Torque,T Consumo específico de combustível. Os dois primeiros

Leia mais

SISTEMAS TÉRMICOS DE POTÊNCIA

SISTEMAS TÉRMICOS DE POTÊNCIA SISTEMAS TÉRMICOS DE POTÊNCIA PROF. RAMÓN SILVA Engenharia de Energia Dourados MS - 2013 MÁQUINAS TÉRMICAS MOTORES A PISTÃO Também conhecido como motor alternativo, por causa do tipo de movimento do pistão.

Leia mais

Projeto de retífica motor MPLM 301 Javali CBT

Projeto de retífica motor MPLM 301 Javali CBT Projeto de retífica motor MPLM 301 Javali CBT Análise de falas e comparativo com motores Bloco de cilindros: O bloco de cilindros do Javali é do tipo construtivo Bloco Cilíndrico, onde o cilindro é usinado

Leia mais

Se um sistema troca energia com a vizinhança por trabalho e por calor, então a variação da sua energia interna é dada por:

Se um sistema troca energia com a vizinhança por trabalho e por calor, então a variação da sua energia interna é dada por: Primeira Lei da Termodinâmica A energia interna U de um sistema é a soma das energias cinéticas e das energias potenciais de todas as partículas que formam esse sistema e, como tal, é uma propriedade do

Leia mais

Veneno no Carburador

Veneno no Carburador Veneno no Carburador Hoje em dia com a toda a tecnologia e eletrônica embarcada nos carros, reduziu-se drasticamente a gama de opções de preparação. Entretanto, para aqueles que ainda possuem um carro

Leia mais

Lista de Exercícios - Unidade 10 Entropia e a segunda lei da termodinâmica

Lista de Exercícios - Unidade 10 Entropia e a segunda lei da termodinâmica Lista de Exercícios - Unidade 10 Entropia e a segunda lei da termodinâmica Segunda Lei da Termodinâmica 1. (UECE 2009) Imagine um sistema termicamente isolado, composto por cilindros conectados por uma

Leia mais

Ciclos de operação. Motores alternativos: Razão de compressão. Máquinas Térmicas I Prof. Eduardo Loureiro

Ciclos de operação. Motores alternativos: Razão de compressão. Máquinas Térmicas I Prof. Eduardo Loureiro Ciclos de operação Motores alternativos: O pistão move-se pra frente e pra trás no interior de um cilindro transmitindo força para girar um eixo (o virabrequim) por meio de um sistema de biela e manivela.

Leia mais

Material de Apoio INJEÇÃO ELETRÔNICA DE COMBUSTÍVEL BOSCH. Programa Especial - Injeção Eletrônica LE-Jetronic

Material de Apoio INJEÇÃO ELETRÔNICA DE COMBUSTÍVEL BOSCH. Programa Especial - Injeção Eletrônica LE-Jetronic INJEÇÃO ELETRÔNICA DE COMBUSTÍVEL BOSCH A necessidade de se reduzir o consumo de combustível dos automóveis, bem como de se manter a emissão de poluentes pelos gases de escape dentro de limites, colocou

Leia mais

MECÂNICA APLICADA. FONTES DE POTÊNCIA RENOVÁVEIS E MOTORES CICLO OTTO E DIESEL (2 e 4 TEMPOS) PROF Msc. Rui Casarin

MECÂNICA APLICADA. FONTES DE POTÊNCIA RENOVÁVEIS E MOTORES CICLO OTTO E DIESEL (2 e 4 TEMPOS) PROF Msc. Rui Casarin MECÂNICA APLICADA FONTES DE POTÊNCIA RENOVÁVEIS E MOTORES CICLO OTTO E DIESEL (2 e 4 TEMPOS) PROF Msc. Rui Casarin CONCEITOS BÁSICOS DE MECANIZAÇÃO Máquinas Implementos Ferramentas Operações Agrícolas

Leia mais

CAPITULO 2. Potência e pressões médias de um motor de combustão. Eng. Julio Cesar Lodetti

CAPITULO 2. Potência e pressões médias de um motor de combustão. Eng. Julio Cesar Lodetti CAPITULO 2 Potência e pressões médias de um motor de combustão Eng. Julio Cesar Lodetti Definição de Potência e rendimento A potência, é por definição função do torque fornecido sobre o virabrequim, e

Leia mais

GERADORES MECÂNICOS DE ENERGIA ELÉTRICA

GERADORES MECÂNICOS DE ENERGIA ELÉTRICA GERADORES MECÂNICOS DE ENERGIA ELÉTRICA Todo dispositivo cuja finalidade é produzir energia elétrica à custa de energia mecânica constitui uma máquina geradora de energia elétrica. O funcionamento do

Leia mais

PV-2200 MANUAL DE INSTRUÇÃO

PV-2200 MANUAL DE INSTRUÇÃO Pág.:1 MÁQUINA: MODELO: NÚMERO DE SÉRIE: ANO DE FABRICAÇÃO: O presente manual contém instruções para instalação e operação. Todas as instruções nele contidas devem ser rigorosamente seguidas do que dependem

Leia mais

2- TRABALHO NUMA TRANSFORMAÇÃO GASOSA 4-1ª LEI DA TERMODINÂMICA

2- TRABALHO NUMA TRANSFORMAÇÃO GASOSA 4-1ª LEI DA TERMODINÂMICA AULA 07 ERMODINÂMICA GASES 1- INRODUÇÃO As variáveis de estado de um gás são: volume, pressão e temperatura. Um gás sofre uma transformação quando pelo menos uma das variáveis de estado é alterada. Numa

Leia mais

TANQUES DE ARMAZENAMENTO E AQUECIMENTO DE ASFALTO E COMBUSTÍVEL

TANQUES DE ARMAZENAMENTO E AQUECIMENTO DE ASFALTO E COMBUSTÍVEL TANQUES DE ARMAZENAMENTO E AQUECIMENTO DE ASFALTO E COMBUSTÍVEL TANQUES DE ARMAZENAMENTO E AQUECIMENTO DE ASFALTO E COMBUSTÍVEL A ampla linha de tanques de armazenamento e aquecimento de asfalto da Terex

Leia mais

Acumuladores hidráulicos

Acumuladores hidráulicos Tipos de acumuladores Compressão isotérmica e adiabática Aplicações de acumuladores no circuito Volume útil Pré-carga em acumuladores Instalação Segurança Manutenção Acumuladores Hidráulicos de sistemas

Leia mais

4. Introdução à termodinâmica

4. Introdução à termodinâmica 4. Introdução à termodinâmica 4.1. Energia interna O estabelecimento do princípio da conservação da energia tornou-se possível quando se conseguiu demonstrar que junto com a energia mecânica, os corpos

Leia mais

Simulado ENEM. a) 75 C b) 65 C c) 55 C d) 45 C e) 35 C

Simulado ENEM. a) 75 C b) 65 C c) 55 C d) 45 C e) 35 C 1. Um trocador de calor consiste em uma serpentina, pela qual circulam 18 litros de água por minuto. A água entra na serpentina à temperatura ambiente (20 C) e sai mais quente. Com isso, resfria-se o líquido

Leia mais

Miguel C. Branchtein, Delegacia Regional do Trabalho no Rio Grande do Sul

Miguel C. Branchtein, Delegacia Regional do Trabalho no Rio Grande do Sul DETERMINAÇÃO DE CONDIÇÃO DE ACIONAMENTO DE FREIO DE EMERGÊNCIA TIPO "VIGA FLUTUANTE" DE ELEVADOR DE OBRAS EM CASO DE QUEDA DA CABINE SEM RUPTURA DO CABO Miguel C. Branchtein, Delegacia Regional do Trabalho

Leia mais

Universidade Paulista Unip

Universidade Paulista Unip Elementos de Produção de Ar Comprimido Compressores Definição Universidade Paulista Unip Compressores são máquinas destinadas a elevar a pressão de um certo volume de ar, admitido nas condições atmosféricas,

Leia mais

Disciplina : Termodinâmica. Aula 5 ANÁLISE DA MASSA E ENERGIA APLICADAS A VOLUMES DE CONTROLE

Disciplina : Termodinâmica. Aula 5 ANÁLISE DA MASSA E ENERGIA APLICADAS A VOLUMES DE CONTROLE Curso: Engenharia Mecânica Disciplina : Aula 5 ANÁLISE DA MASSA E ENERGIA APLICADAS A VOLUMES DE CONTROLE Prof. Evandro Rodrigo Dário, Dr. Eng. Vazão mássica e vazão volumétrica A quantidade de massa que

Leia mais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais LEI DE OHM Conceitos fundamentais Ao adquirir energia cinética suficiente, um elétron se transforma em um elétron livre e se desloca até colidir com um átomo. Com a colisão, ele perde parte ou toda energia

Leia mais

ESTUDO DOS MOTORES DE COMBUSTÃO INTERNA

ESTUDO DOS MOTORES DE COMBUSTÃO INTERNA ESTUDO DOS MOTORES DE COMBUSTÃO INTERNA Luiz Atilio Padovan Prof. Eng. Agrônomo EVOLUÇÃO DA MECANIZAÇÃO 1 TREM DE FORÇA SISTEMA MECÂNICO Diferencial Motor Câmbio Embreagem FUNCIONAMENTO DO MOTOR Motor

Leia mais

Concurso Público para Cargos Técnico-Administrativos em Educação UNIFEI 13/06/2010

Concurso Público para Cargos Técnico-Administrativos em Educação UNIFEI 13/06/2010 Questão 21 Conhecimentos Específicos - Técnico em Mecânica A respeito das bombas centrífugas é correto afirmar: A. A vazão é praticamente constante, independentemente da pressão de recalque. B. Quanto

Leia mais

TERMODINÂMICA EXERCÍCIOS RESOLVIDOS E TABELAS DE VAPOR

TERMODINÂMICA EXERCÍCIOS RESOLVIDOS E TABELAS DE VAPOR TERMODINÂMICA EXERCÍCIOS RESOLVIDOS E TABELAS DE VAPOR Prof. Humberto A. Machado Departamento de Mecânica e Energia DME Faculdade de Tecnologia de Resende - FAT Universidade do Estado do Rio de Janeiro

Leia mais

Aperfeiçoamentos no Cabeçote

Aperfeiçoamentos no Cabeçote Aperfeiçoamentos no Cabeçote (transcrito da Enciclopédia Mão na Roda - Guia Prático do Automóvel ED. Globo, 1982 - pg. 537 a 540) Os trabalhos realizados no cabeçote pelas oficinas especializadas atendem

Leia mais

COMPANHIA DE ENGENHARIA DE TRÁFEGO Certificação de Competências

COMPANHIA DE ENGENHARIA DE TRÁFEGO Certificação de Competências COMPANHIA DE ENGENHARIA DE TRÁFEGO Certificação de Competências CARGO AGENTE DE MANUTENÇÃO DE VEÍCULOS Área de Concentração: Mecânica de Autos 1. Um dos primeiros motores conhecidos foi a máquina a vapor

Leia mais

Acesse: http://fuvestibular.com.br/

Acesse: http://fuvestibular.com.br/ Esse torno só dá furo! Na aula sobre furação, você aprendeu que os materiais são furados com o uso de furadeiras e brocas. Isso é produtivo e se aplica a peças planas. Quando é preciso furar peças cilíndricas,

Leia mais

Lubrificação III. Após a visita de um vendedor de lubrificante. Outros dispositivos de lubrificação

Lubrificação III. Após a visita de um vendedor de lubrificante. Outros dispositivos de lubrificação A U A UL LA Lubrificação III Introdução Após a visita de um vendedor de lubrificante ao setor de manutenção de uma indústria, o pessoal da empresa constatou que ainda não conhecia todos os dispositivos

Leia mais

DEPARTAMENTO ESTADUAL DE TRÂNSITO DE ALAGOAS - DETRAN/AL QUESTÕES SOBRE MECÂNICA

DEPARTAMENTO ESTADUAL DE TRÂNSITO DE ALAGOAS - DETRAN/AL QUESTÕES SOBRE MECÂNICA A quilometragem percorrida pelo veículo é indicada pelo: 1 velocímetro. 2 hodômetro. 3 manômetro. 4 conta-giros. O termômetro é utilizado para indicar a temperatura: 1 do motor. 2 do combustível. 3 no

Leia mais

MANUAL DE FUNCIONAMENTO FILTROS INDUSTRIAIS. G:Manuais/Manuais atualizados/ta

MANUAL DE FUNCIONAMENTO FILTROS INDUSTRIAIS. G:Manuais/Manuais atualizados/ta MANUAL DE FUNCIONAMENTO FILTROS INDUSTRIAIS TA G:Manuais/Manuais atualizados/ta Rev.01 ESQUEMA HIDRÁULICO 1 - INTRODUÇÃO 1.1. - FINALIDADE DESTE MANUAL Este manual proporciona informações teóricas e de

Leia mais

Bomba injetora: todo cuidado é pouco

Bomba injetora: todo cuidado é pouco Bomba injetora: todo cuidado é pouco Bomba injetora: todo cuidado é pouco Veja como identificar os problemas da bomba injetora e retirá-la corretamente em casos de manutenção Carolina Vilanova A bomba

Leia mais

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 14:30. Jason Alfredo Carlson Gallas, professor titular de física teórica,

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 14:30. Jason Alfredo Carlson Gallas, professor titular de física teórica, Exercícios Resolvidos de Física Básica Jason Alfredo Carlson Gallas professor titular de física teórica Doutor em Física pela Universidade Ludwig Maximilian de Munique Alemanha Universidade Federal da

Leia mais

Sistemas para Estacionamento e Vagas de Garagem DUPLIKAR. Projetamos e desenvolvemos inúmeras soluções para estacionamentos.

Sistemas para Estacionamento e Vagas de Garagem DUPLIKAR. Projetamos e desenvolvemos inúmeras soluções para estacionamentos. A Empresa A Duplikar é representante autorizado da marca Engecass, queremos apresentar uma solução caso tenha necessidades de aumentar suas vagas de garagem. A Engecass é uma indústria Brasileira, fabricante

Leia mais

CAPITULO 1 - INTRODUÇÃO UNIDADES DEFINIÇÕES

CAPITULO 1 - INTRODUÇÃO UNIDADES DEFINIÇÕES CAPITULO 1 - INTRODUÇÃO UNIDADES DEFINIÇÕES INTRODUÇÃO Os motores de combustão podem ser classificados como do tipo de COMBUSTÃO EXTERNA, no qual o fluido de trabalho está completamente separado da mistura

Leia mais

COMPRESSORES PARAFUSO

COMPRESSORES PARAFUSO COMPRESSORES PARAFUSO PARTE 1 Tradução e adaptação da Engenharia de Aplicação da Divisão de Contratos YORK REFRIGERAÇÃO. Introdução Os compressores parafuso são hoje largamente usados em refrigeração industrial

Leia mais

Energia Solar Térmica. Prof. Ramón Eduardo Pereira Silva Engenharia de Energia Universidade Federal da Grande Dourados Dourados MS 2014

Energia Solar Térmica. Prof. Ramón Eduardo Pereira Silva Engenharia de Energia Universidade Federal da Grande Dourados Dourados MS 2014 Energia Solar Térmica Prof. Ramón Eduardo Pereira Silva Engenharia de Energia Universidade Federal da Grande Dourados Dourados MS 2014 Componentes de Sistemas Solares Térmicos Energia Solar Térmica - 2014

Leia mais

A Importância dos Anéis nos Motores a Combustão Interna

A Importância dos Anéis nos Motores a Combustão Interna A Importância dos Anéis nos Motores a Combustão Interna Rendimento e Potência Motor máquina térmica Vedação da compressão Taxa Dissipação do calor 450º - 320º Maior taxa=potência =economia Consumo de Óleo

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÁS. DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof.

UNIVERSIDADE CATÓLICA DE GOIÁS. DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof. 01 UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof. EDSON VAZ NOTA DE AULA III (Capítulo 7 e 8) CAPÍTULO 7 ENERGIA CINÉTICA

Leia mais

Geração, Transmissão e Distribuição de Energia Elétrica

Geração, Transmissão e Distribuição de Energia Elétrica Geração, Transmissão e Distribuição de Energia Elétrica Existem diversas maneiras de se gerar energia elétrica. No mundo todo, as três formas mais comuns são por queda d água (hidroelétrica), pela queima

Leia mais

Aproveitamento de potência de tratores agrícolas *

Aproveitamento de potência de tratores agrícolas * Aproveitamento de potência de tratores agrícolas * 1. Introdução Uma das principais fontes de potência, responsáveis pela alta produção agrícola com significante economia de mão-de-obra, é o trator agrícola.

Leia mais

Fundamentos de Automação. Pneumática 01/06/2015. Pneumática. Pneumática. Pneumática. Considerações Iniciais CURSO DE AUTOMAÇÃO INDUSTRIAL

Fundamentos de Automação. Pneumática 01/06/2015. Pneumática. Pneumática. Pneumática. Considerações Iniciais CURSO DE AUTOMAÇÃO INDUSTRIAL Ministério da educação - MEC Secretaria de Educação Profissional e Técnica SETEC Instituto Federal de Educação Ciência e Tecnologia do Rio Grande do Sul Campus Rio Grande Considerações Iniciais "PNEUMÁTICA

Leia mais

Compressor Parafuso. Principais tipos: Parafuso simples. Parafuso duplo (mais empregado)

Compressor Parafuso. Principais tipos: Parafuso simples. Parafuso duplo (mais empregado) Principais tipos: Parafuso simples Parafuso duplo (mais empregado) Vantagens em relação aos alternativos: Menor tamanho Número inferior de partes móveis Desvantagens em relação aos alternativos: Menor

Leia mais

Instituto Federal de São Paulo Departamento de Mecânica. Roteiro de Laboratório: Pneumática

Instituto Federal de São Paulo Departamento de Mecânica. Roteiro de Laboratório: Pneumática Instituto Federal de São Paulo Departamento de Mecânica Roteiro de Laboratório: Pneumática Prof. Engº Felipe Amélio de Lucena Catanduva, 25 de julho de 2012. Sumário 1 Objetivo... 3 2 Estrutura para elaboração

Leia mais

BOLETIM de ENGENHARIA Nº 001/15

BOLETIM de ENGENHARIA Nº 001/15 BOLETIM de ENGENHARIA Nº 001/15 Este boletim de engenharia busca apresentar informações importantes para conhecimento de SISTEMAS de RECUPERAÇÃO de ENERGIA TÉRMICA - ENERGY RECOVERY aplicados a CENTRAIS

Leia mais

EMTV MANUAL DE OPERAÇÃO E MANUTENÇÃO DESDE 1956

EMTV MANUAL DE OPERAÇÃO E MANUTENÇÃO DESDE 1956 EMTV Elevador de manutenção telescópico vertical MANUAL DE OPERAÇÃO E MANUTENÇÃO ZELOSO DESDE 1956 PREFÁCIO APLICAÇÃO: Este manual contém informações para a operação e manutenção, bem como uma lista ilustrada

Leia mais

Circuitos Elétricos 1º parte. Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento

Circuitos Elétricos 1º parte. Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento Circuitos Elétricos 1º parte Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento Introdução Um circuito elétrico é constituido de interconexão de vários

Leia mais

PRINCÍPIOS DE FUNCIONAMENTO DOS MOTORES DE COMBUSTÃO INTERNA

PRINCÍPIOS DE FUNCIONAMENTO DOS MOTORES DE COMBUSTÃO INTERNA Instituto de Tecnologia - Departamento de Engenharia IT 154 Motores e Tratores PRINCÍPIOS DE FUNCIONAMENTO DOS MOTORES DE COMBUSTÃO INTERNA Carlos Alberto Alves Varella [1] [1] Professor. Universidade

Leia mais

CINEMÁTICA DE MÁQUINAS

CINEMÁTICA DE MÁQUINAS CINEMÁTICA DE MÁQUINAS CAPITULO I Rotação em torno de um eixo fixo 1. A barra dobrada ABCDE mostrada na figura 1, roda com velocidade angular constante de 9 rad/s em torno do eixo que liga as extremidades

Leia mais

$#+!# %", #0$ $ Alessandro Otto Pereira Izalis Simão Marcelo Siqueira Bueno Silvio Gemaque. Em 2007 o sistema transportou 10.424.

$#+!# %, #0$ $ Alessandro Otto Pereira Izalis Simão Marcelo Siqueira Bueno Silvio Gemaque. Em 2007 o sistema transportou 10.424. "#$ Alessandro Otto Pereira Izalis Simão Marcelo Siqueira Bueno Silvio Gemaque "%&'()% O litoral paulista possui sete ligações marítimas: Santos/Guarujá Guarujá/Bertioga São Sebastião/Ilhabela Iguape/Juréia

Leia mais

Estabilizada de. PdP. Autor: Luís Fernando Patsko Nível: Intermediário Criação: 22/02/2006 Última versão: 18/12/2006

Estabilizada de. PdP. Autor: Luís Fernando Patsko Nível: Intermediário Criação: 22/02/2006 Última versão: 18/12/2006 TUTORIAL Fonte Estabilizada de 5 Volts Autor: Luís Fernando Patsko Nível: Intermediário Criação: 22/02/2006 Última versão: 18/12/2006 PdP Pesquisa e Desenvolvimento de Produtos http://www.maxwellbohr.com.br

Leia mais

Sistema de Lubrificação dos Motores de Combustão Interna. Sistemas auxiliares dos motores

Sistema de Lubrificação dos Motores de Combustão Interna. Sistemas auxiliares dos motores Sistema de Lubrificação dos Motores de Combustão Interna Sistemas auxiliares dos motores SISTEMA DE LUBRIFICAÇÃO O sistema de lubrificação tem como função distribuir o óleo lubrificante entre partes móveis

Leia mais

Estudaremos aqui como essa transformação pode ser entendida a partir do teorema do trabalho-energia.

Estudaremos aqui como essa transformação pode ser entendida a partir do teorema do trabalho-energia. ENERGIA POTENCIAL Uma outra forma comum de energia é a energia potencial U. Para falarmos de energia potencial, vamos pensar em dois exemplos: Um praticante de bungee-jump saltando de uma plataforma. O

Leia mais

Faculdade de Administração e Negócios de Sergipe

Faculdade de Administração e Negócios de Sergipe Faculdade de Administração e Negócios de Sergipe Disciplina: Física Geral e Experimental III Curso: Engenharia de Produção Assunto: Gravitação Prof. Dr. Marcos A. P. Chagas 1. Introdução Na gravitação

Leia mais

Manual de Instruções e Lista de Peças. Máquina de Costura Industrial Galoneira BC 500-01 CB

Manual de Instruções e Lista de Peças. Máquina de Costura Industrial Galoneira BC 500-01 CB Manual de Instruções e Lista de Peças Máquina de Costura Industrial Galoneira BC 500-01 CB ÍNDICE DETALHES TÉCNICOS, INSTRUÇÕES DE SEGURANÇA... 01 MONTAGEM MOTOR E ROTAÇÃO DA MÁQUINA... 02 LUBRIFICAÇÃO...

Leia mais

Motores Térmicos. 9º Semestre 5º ano

Motores Térmicos. 9º Semestre 5º ano Motores Térmicos 9º Semestre 5º ano 19 Sistema de Refrigeração - Tópicos Introdução Meios refrigerantes Tipos de Sistemas de Refrigeração Sistema de refrigeração a ar Sistema de refrigeração a água Anticongelantes

Leia mais

A manutenção preventiva é de suma importância para prolongar a vida útil da máquina e suas partes. Abaixo, algumas dicas de manutenção preventiva:

A manutenção preventiva é de suma importância para prolongar a vida útil da máquina e suas partes. Abaixo, algumas dicas de manutenção preventiva: Manutenção Preventiva e Corretiva de Rosqueadeiras Manual de Manutenção: Preventivo / Corretivo Preventivo: Toda máquina exige cuidados e manutenção preventiva. Sugerimos aos nossos clientes que treinem

Leia mais

CALORIMETRIA, MUDANÇA DE FASE E TROCA DE CALOR Lista de Exercícios com Gabarito e Soluções Comentadas

CALORIMETRIA, MUDANÇA DE FASE E TROCA DE CALOR Lista de Exercícios com Gabarito e Soluções Comentadas COLÉGIO PEDRO II PRÓ-REITORIA DE PÓS-GRADUAÇÃO, PESQUISA, EXTENSÃO E CULTURA PROGRAMA DE RESIDÊNCIA DOCENTE RESIDENTE DOCENTE: Marcia Cristina de Souza Meneguite Lopes MATRÍCULA: P4112515 INSCRIÇÃO: PRD.FIS.0006/15

Leia mais

Vícios e Manias ao Volante

Vícios e Manias ao Volante Vícios e Manias ao Volante EMBREAGEM Muitos brasileiros deixam o pé apoiado sobre o pedal da embreagem quando dirigem. É um dos vícios mais comuns e difícil de ser superado. As alavancas desse sistema

Leia mais

ENEM 2014/2015 Física (Prova Amarela) Prof. Douglas Almeida

ENEM 2014/2015 Física (Prova Amarela) Prof. Douglas Almeida Questão 46 Nesta questão, o candidato precisa saber que um filtro de luz realiza a refração seletiva, deixando passar as cores que o compõe e absorvendo substancialmente as outras cores. Assim, para absorver

Leia mais

Seção 9 PISTÕES - ANÉIS - BIELAS

Seção 9 PISTÕES - ANÉIS - BIELAS Seção 9 PISTÕES - ANÉIS - BIELAS Índice da seção Página Bielas Montagem da biela no pistão... 4 Verificação Instalação... 7 Remoção Torque... 8 Pistões Montagem do pistão na biela... 4 Verificação do desgaste

Leia mais

Motores a combustão interna

Motores a combustão interna Motores a combustão interna 1 Sumário Página 1. Histórico... 3 2. Definição de motores... 3 3. Tipos de motores... 4 3.1 Motores a combustão externa... 4 3.2 Motores a combustão interna... 4 4. Motores

Leia mais

Manual de Instruções. C o n t r o l a d o r D i f e r e n c i a l T e m p o r i z a d o. Rev. C

Manual de Instruções. C o n t r o l a d o r D i f e r e n c i a l T e m p o r i z a d o. Rev. C Manual de Instruções C o n t r o l a d o r D i f e r e n c i a l T e m p o r i z a d o Rev. C 1. Descrição Índice 1.Descrição...pág 1 2.Dados Técnicos...pág 3 3.Instalação...pág 4 4.Ajuste e Operação...pág

Leia mais

TURMA DE ENGENHARIA - FÍSICA

TURMA DE ENGENHARIA - FÍSICA Prof Cazuza 1 (Uff 2012) O ciclo de Stirling é um ciclo termodinâmico reversível utilizado em algumas máquinas térmicas Considere o ciclo de Stirling para 1 mol de um gás ideal monoatônico ilustrado no

Leia mais

Capítulo 2. A 1ª Lei da Termodinâmica

Capítulo 2. A 1ª Lei da Termodinâmica Capítulo 2. A 1ª Lei da Termodinâmica Parte 1: trabalho, calor e energia; energia interna; trabalho de expansão; calor; entalpia Baseado no livro: Atkins Physical Chemistry Eighth Edition Peter Atkins

Leia mais

Física Parte 2. Fórmulas para obtenção das grandezas: 1.Superfície 2.Volume 3.Densidades 4.Vazão 5.Pressão 6.Teorema de Pascal 7.

Física Parte 2. Fórmulas para obtenção das grandezas: 1.Superfície 2.Volume 3.Densidades 4.Vazão 5.Pressão 6.Teorema de Pascal 7. Física Parte 2 Fórmulas para obtenção das grandezas: 1.Superfície 2.Volume 3.Densidades 4.Vazão 5.Pressão 6.Teorema de Pascal 7.Empuxo Introdução A memorização de unidades para as diversas grandezas existentes

Leia mais

Termodinâmica Química Lista 2: 1 a Lei da Termodinâmica. Resolução comentada de exercícios selecionados

Termodinâmica Química Lista 2: 1 a Lei da Termodinâmica. Resolução comentada de exercícios selecionados Termodinâmica Química Lista 2: 1 a Lei da Termodinâmica. Resolução comentada de exercícios selecionados Prof. Fabrício R. Sensato Semestre 4º Engenharia: Materiais Período: Matutino/diurno Regimes: Normal/DP

Leia mais

ELEMENTOS ORGÂNICOS DE MÁQUINAS II AT-102

ELEMENTOS ORGÂNICOS DE MÁQUINAS II AT-102 Universidade Federal do Paraná Curso de Engenharia Industrial Madeireira ELEMENTOS ORGÂNICOS DE MÁQUINAS II AT-102 Dr. Alan Sulato de Andrade alansulato@ufpr.br INTRODUÇÃO: Embreagens são elementos que

Leia mais

214 Efeito Termoelétrico

214 Efeito Termoelétrico 1 Roteiro elaborado com base na documentação que acompanha o conjunto por: Hermes Urébe Guimarães ópicos Relacionados Efeito eltier, tubo de calor, termoelétrico f.e.m., coeficiente eltier, capacidade

Leia mais

Fundamentos de Automação. Hidráulica 01/06/2015. Hidráulica. Hidráulica. Hidráulica. Considerações Iniciais CURSO DE AUTOMAÇÃO INDUSTRIAL

Fundamentos de Automação. Hidráulica 01/06/2015. Hidráulica. Hidráulica. Hidráulica. Considerações Iniciais CURSO DE AUTOMAÇÃO INDUSTRIAL Ministério da educação - MEC Secretaria de Educação Profissional e Técnica SETEC Instituto Federal de Educação Ciência e Tecnologia do Rio Grande do Sul Campus Rio Grande Fundamentos de Automação CURSO

Leia mais

UM A M ARC A DO GRUPO ESPIRODUTOS

UM A M ARC A DO GRUPO ESPIRODUTOS VENTILADORES AXIAL UM A M ARC A DO GRUPO ESPIRODUTOS DESCRIÇÃO E NOMENCLATURA DE VENTILADORES AXIAL Diâmetro Fabricação Aspiração Rotor Empresa Ex: EAFN 500 Diâmetro da seleção Tipo de Fabricação G = Gabinete

Leia mais

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx Soluções das Questões de Física do Processo Seletivo de dmissão à Escola Preparatória de Cadetes do Exército EsPCEx Questão Concurso 009 Uma partícula O descreve um movimento retilíneo uniforme e está

Leia mais

4ª aula Compressores (complemento) e Sistemas de Tratamento do Ar Comprimido

4ª aula Compressores (complemento) e Sistemas de Tratamento do Ar Comprimido 4ª aula Compressores (complemento) e Sistemas de Tratamento do Ar Comprimido 3ª Aula - complemento - Como especificar um compressor corretamente Ao se estabelecer o tamanho e nº de compressores, deve se

Leia mais

5. Resultados e Análises

5. Resultados e Análises 66 5. Resultados e Análises Neste capítulo é importante ressaltar que as medições foram feitas com uma velocidade constante de 1800 RPM, para uma freqüência de 60 Hz e uma voltagem de 220 V, entre as linhas

Leia mais

ELEMENTOS ORGÂNICOS DE MÁQUINAS II AT-102

ELEMENTOS ORGÂNICOS DE MÁQUINAS II AT-102 Universidade Federal do Paraná Curso de Engenharia Industrial Madeireira ELEMENTOS ORGÂNICOS DE MÁQUINAS II AT-102 Dr. Alan Sulato de Andrade alansulato@ufpr.br INTRODUÇÃO: Nem sempre as unidades geradoras

Leia mais

VENTILADORES INTRODUÇÃO: Como outras turbomáquinas, os ventiladores são equipamentos essenciais a determinados processos

VENTILADORES INTRODUÇÃO: Como outras turbomáquinas, os ventiladores são equipamentos essenciais a determinados processos Universidade Federal do Paraná Curso de Engenharia Industrial Madeireira MÁQUINAS HIDRÁULICAS AT-087 Dr. Alan Sulato de Andrade alansulato@ufpr.br INTRODUÇÃO: Como outras turbomáquinas, os ventiladores

Leia mais

Como funciona o motor de corrente contínua

Como funciona o motor de corrente contínua Como funciona o motor de corrente contínua Escrito por Newton C. Braga Este artigo é de grande utilidade para todos que utilizam pequenos motores, principalmente os projetistas mecatrônicos. Como o artigo

Leia mais

CÁLCULO DO RENDIMENTO DE UM GERADOR DE VAPOR

CÁLCULO DO RENDIMENTO DE UM GERADOR DE VAPOR Universidade Federal do Paraná Curso de Engenharia Industrial Madeireira MÁQUINAS TÉRMICAS AT-101 Dr. Alan Sulato de Andrade alansulato@ufpr.br CÁLCULO DO RENDIMENTO DE UM 1 INTRODUÇÃO: A principal forma

Leia mais

Armazenamento de energia

Armazenamento de energia Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica 3 º. trimestre, 2015 A energia solar é uma fonte de energia dependente do tempo. As necessidades de energia

Leia mais

SISTEMA CONJUGADO DE EXAUSTÃO E ADMISSÃO PARA OS MOTORES A COMBUSTÃO INTERNA DO CICLO DE DOIS TEMPOS O

SISTEMA CONJUGADO DE EXAUSTÃO E ADMISSÃO PARA OS MOTORES A COMBUSTÃO INTERNA DO CICLO DE DOIS TEMPOS O 1/7 1 2 SISTEMA CONJUGADO DE EXAUSTÃO E ADMISSÃO PARA OS MOTORES A COMBUSTÃO INTERNA DO CICLO DE DOIS TEMPOS O motor do ciclo de dois tempos remonta aos primórdios da utilização dos motores do tipo à combustão

Leia mais

Período de injeção. Período que decorre do início da pulverização no cilindro e o final do escoamento do bocal.

Período de injeção. Período que decorre do início da pulverização no cilindro e o final do escoamento do bocal. CAPÍTULO 9 - MOTORES DIESEL COMBUSTÃO EM MOTORES DIESEL Embora as reações químicas, durante a combustão, sejam indubitavelmente muito semelhantes nos motores de ignição por centelha e nos motores Diesel,

Leia mais

MANUAL DE INSTALAÇÃO E FUNCIONAMENTO

MANUAL DE INSTALAÇÃO E FUNCIONAMENTO MANUAL DE INSTALAÇÃO E FUNCIONAMENTO KIT DE IGNIÇÃO IGNIFLEX EDIÇÃO 05/2014 AVISOS IMPORTANTES LEIA O MANUAL COMPLETO ANTES DE INICIAR A INSTALAÇÃO! É OBRIGATÓRIA A UTILIZAÇÃO DE VELAS RESISTIVAS PARA

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 2011 1 a QUESTÃO Valor: 1,00 Um varal de roupas foi construído utilizando uma haste rígida DB de massa desprezível, com

Leia mais

Física Simples e Objetiva Mecânica Cinemática e Dinâmica Professor Paulo Byron. Apresentação

Física Simples e Objetiva Mecânica Cinemática e Dinâmica Professor Paulo Byron. Apresentação Apresentação Após lecionar em colégios estaduais e particulares no Estado de São Paulo, notei necessidades no ensino da Física. Como uma matéria experimental não pode despertar o interesse dos alunos?

Leia mais

Pulverizador Agrícola Manual - PR 20

Pulverizador Agrícola Manual - PR 20 R Pulverizador Agrícola Manual - PR 20 Indústria Mecânica Knapik Ltda. EPP CNPJ: 01.744.271/0001-14 Rua Prefeito Alfredo Metzler, 480 - CEP 89400-000 - Porto União - SC Site: www.knapik.com.br vendas@knapik.com.br

Leia mais

Energia Eólica. História

Energia Eólica. História Energia Eólica História Com o avanço da agricultura, o homem necessitava cada vez mais de ferramentas que o auxiliassem nas diversas etapas do trabalho. Isso levou ao desenvolvimento de uma forma primitiva

Leia mais

Capítulo 11 MOTORES ELÉTRICOS DE CORRENTE CONTÍNUA E UNIVERSAL. Introdução

Capítulo 11 MOTORES ELÉTRICOS DE CORRENTE CONTÍNUA E UNIVERSAL. Introdução Capítulo 11 MOTORES ELÉTRICOS DE CORRENTE CONTÍNUA E UNIVERSAL Esta aula apresenta o princípio de funcionamento dos motores elétricos de corrente contínua, o papel do comutador, as características e relações

Leia mais

Motor de combustão interna

Motor de combustão interna 38 4 Motor de combustão interna 4.1 Considerações gerais Os motores de combustão interna são máquinas térmicas alternativas, destinadas ao suprimento de energia mecânica ou força motriz de acionamento.

Leia mais

Um carro está andando ao longo de uma estrada reta e plana. Sua posição em função do tempo está representada neste gráfico:

Um carro está andando ao longo de uma estrada reta e plana. Sua posição em função do tempo está representada neste gráfico: PROVA DE FÍSICA QUESTÃO 0 Um carro está andando ao longo de uma estrada reta e plana. Sua posição em função do tempo está representada neste gráfico: Sejam v P, v Q e v R os módulos das velocidades do

Leia mais

DESCRITIVO TÉCNICO. 1 Alimentador

DESCRITIVO TÉCNICO. 1 Alimentador DESCRITIVO TÉCNICO Nome Equipamento: Máquina automática para corte de silício 45º e perna central até 400 mm largura Código: MQ-0039-NEP Código Finame: *** Classificação Fiscal: 8462.39.0101 1 Alimentador

Leia mais

Compressores. Na refrigeração industrial e no condicionamento de ar são utilizados praticamente todos os tipos e compressores:

Compressores. Na refrigeração industrial e no condicionamento de ar são utilizados praticamente todos os tipos e compressores: Compressores Na refrigeração industrial e no condicionamento de ar são utilizados praticamente todos os tipos e compressores: Alternativos Rotativos de parafusos Rotativos Scroll Rotativos de palhetas

Leia mais

Máquinas térmicas - o ciclo de Carnot

Máquinas térmicas - o ciclo de Carnot Máquinas térmicas - o ciclo de Carnot O topo de eficiência energética Todas as máquinas térmicas convencionais (a vapor, gasolina, diesel) funcionam à base do fornecimento de calor a um gás, que posteriormente

Leia mais

FUNCIONAMENTO DOS MOTORES DE CILINDROS MÚLTIPLOS

FUNCIONAMENTO DOS MOTORES DE CILINDROS MÚLTIPLOS 5/4/010 DEPARTAMENTO DE ENGENHARIA FUNCIONAMENTO DOS MOTORES DE CILINDROS MÚLTIPLOS IT 154- MOTORES E TRATORES Carlos Alberto Alves Varella 1 FUNCIONAMENTO DOS MOTORES DE CILINDROS MÚLTIPLOS Carlos Alberto

Leia mais