APOSTILA DE MODELOS LINEARES EM SÉRIES TEMPORAIS

Tamanho: px
Começar a partir da página:

Download "APOSTILA DE MODELOS LINEARES EM SÉRIES TEMPORAIS"

Transcrição

1 UNIVERSIDADE FEDERAL DE MINAS GERAIS - UFMG INSIUO DE CIÊNCIAS EXAAS ICEx DEPARAMENO DE ESAÍSICA ES APOSILA DE MODELOS LINEARES EM SÉRIES EMPORAIS Glaura da Conceição Franco (ES/UFMG) Belo Horizone, agoso de 206

2 Coneúdo. Inrodução... 3 PARE : MODELOS DE REGRESSÃO NORMAIS PARA SÉRIES EMPORAIS 2. Modelo de regressão com funções do empo Modelando endência aravés de funções polinomiais Esimação de parâmeros e adequação do modelo Previsão Exemplos emperaura global Preço do grão e farelo de soja Deecando a auocorrelação ipos de auocorrelação Auocovariância e auocorrelação Méodos para deecção da auocorrelação Gráfico de resíduos versus empo ese de Durbin-Wason Função de auocorrelação amosral (FAC) Exemplos emperaura global Preço do grão e farelo de soja Modelando auocorrelação nos resíduos Modelo de regressão com erros auorregressivos Previsão Inervalo de confiança para as previsões Exemplos emperaura global Preço do grão e farelo de soja Séries sazonais Modelo de regressão para séries sazonais com erros auorregressivos... 2

3 5.2. Previsão Exemplo Série CEP Análise de Inervenção Modelo de regressão para séries com inervenção e erros auorregressivos Previsão Exemplo Série Acidenes... PARE 2: MODELOS DE REGRESSÃO PARA SÉRIES EMPORAIS DE CONAGEM 7. Modelos lineares generalizados Família Exponencial a um parâmero 7.2. Componenes do modelo 7.3. Esimação 7.4. Adequação de modelos 7.5. Análise de resíduos 7.6. Exemplo Série Polio 8. Modelos ARMA ipos de modelos Idenificação de modelos Exemplos Esimação de parâmeros Análise de resíduos Exemplo- Série soja Modelos GLARMA 9.. Definição 9.2. Esimação 9.3. Previsão 9.4. Exemplo Série Polio Referências ANEXO: Séries uilizadas nos exemplos

4 . Inrodução O ermo previsão no empo é muio uilizado quando possuímos um conjuno de dados ordenados no empo, ou seja, uma série emporal, e desejamos prever valores fuuros para esa série. Definição: Uma série emporal é um conjuno de observações geradas sequencialmene no empo. Caracerísica principal: As variáveis são dependenes. Denoaremos a série emporal por y,...,, y2 yn onde n é o amano da série. rabalaremos com séries emporais a empo discreo, onde os dados são coleados diariamene, semanalmene, mensalmene ou anualmene. Os objeivos principais da análise de séries emporais são a modelagem e a previsão de valores fuuros para a série. Para prever evenos que ocorrerão no fuuro, o pesquisador deve se basear em informações concernenes a evenos que enam ocorrido no passado. Assim, a análise pode ser feia da seguine forma. Primeiro, o pesquisador analisa os dados para poder idenificar um comporameno que possa ser usado para descrevê-lo. Ese comporameno é enão exrapolado, ou esendido no fuuro, para calcular uma previsão. Esa esraégia básica é empregada na maioria das écnicas de previsão e se baseia na suposição de que o comporameno que foi idenificado coninuará no fuuro. Se o padrão que foi idenificado para os dados não persise no fuuro, iso indica que a écnica de previsão usada provavelmene produzirá previsões incorreas. Um analisa não deveria ficar surpreso em ais siuações, mas deveria enar anecipar quando al mudança no padrão ocorreria, para que mudanças apropriadas no sisema de previsão pudessem ser feias anes das previsões se ornarem incorreas. A seguir apresenamos alguns exemplos. 4

5 Farelo Grao desvio emperaura Exemplo.: Série de emperaura global (empmedia), de 900 a 997. Os dados foram calculados como um desvio da emperaura global média anual do período Exise uma endência aparenemene crescene na série e iso em sido usado para susenar a ipóese de aquecimeno global Figura.: Série empmedia Exemplo.2: Os dados na Figura.2 referem-se às séries de preços do grão e do farelo de soja, respecivamene, no esado de São Paulo, no período de jan/990 a se/999, em um oal de 7 observações. Podemos perceber um comporameno muio parecido para as duas séries ime ime Figura.2: Séries de Farelo e Grão de soja 5

6 No de Acidenes CEP Exemplo.3: Série do consumo de energia elérica das Cenrais Eléricas do Paraná (CEP), de jan/80 a dez/92. A série apresena sazonalidade e endência crescene Figura.3: Série CEP Exemplo.4: A Figura.4 mosra a série mensal de número oal de moorisas moros ou seriamene feridos em acidenes de rânsio na Grã Breana, enre Jan/969 a Dez/984. O uso compulsório do cino de segurança foi inroduzido em 3 de Jan/ Figura.4: Série de acidenes de rânsio na Grã Breana 6

7 Polio Exemplo.5: Número de casos de poliomielie (Polio) reporados pelo Cenro de Conrole de Doenças dos Esados Unidos, de janeiro de 970 a dezembro de 983. Esa é uma série de conagens com valores baixos, porano a suposição de disribuição Normal não seria adequada nese caso Figura.5: Série Polio Vamos uilizar eses exemplos ao longo do curso, para explicar a forma de se ober modelos lineares em séries emporais e como consruir previsões para valores fuuros da série. Desde que evenos fuuros envolvem incereza, as previsões geralmene não são perfeias. O objeivo da análise de previsão é reduzir o erro de previsão: produzir previsões que raramene são incorreas e que conenam pequenos erros. Referências. O maerial desa aposila foi baseado nos livros e arigos que se enconram na seção de 7

8 PARE : MODELOS DE REGRESSÃO NORMAIS PARA SÉRIES EMPORAIS As séries emporais apresenadas nos Exemplos.2 a.4 são composas de observações conínuas (Exemplos. a.3) ou discreas com valores relaivamene alos ( Exemplo.4), que a princípio podem ser modeladas supondo normalidade dos dados. Uma das possibilidades para a modelagem desas séries é a uilização de modelos lineares, como o modelo de regressão, se ouver uma relação linear enre a série e alguma(s) oura(s) série(s) explicaiva(s), ou enão com funções do empo. As suposições básicas dese modelo são normalidade, variância consane e independência. Enreano, uma das principais caracerísicas de uma série emporal é a exisência de correlação enre observações sucessivas. Desa forma, o ajuse de modelos de regressão deve ser usado com cauela nese caso. Se a suposição de independência não for saisfeia, devemos incluir componenes no modelo para corrigir ese problema. Na Pare desa aposila vamos descrever os modelos de regressão no empo, as possíveis formas de se deecar correlação nos dados e, caso esa exisa, como podemos corrigir o problema. 8

9 2. Modelo de regressão com funções do empo Os modelos de auorregressão relacionam a variável dependene y (o aribuo sobre o qual se busca deerminar um padrão de informação no empo) com funções do empo. Eses modelos são mais úeis quando os parâmeros descrevendo a série emporal a ser previsa permanecem consanes no empo. Por exemplo, se a série emporal exibe uma endência linear, enão a inclinação da lina de endência permanece consane. A Seção 2. mosra como modelar a endência usando funções polinomiais do empo e a Seção 2.2 apresena o méodo de esimação dos parâmeros do modelo. Na Seção 2.3 vemos como consruir previsões para valores fuuros da série y e a Seção 2.4 apresena dois exemplos com séries reais. 2.. Modelando endência aravés de funções polinomiais Algumas vezes podemos descrever uma série emporal y usando um modelo de endência. al modelo é definido como segue: 2 onde N0, ~, independenes. y,,..., n (2.) Ese modelo diz que a série emporal y pode ser represenada por um nível médio (denoado ) e pelo ermo de erro. Ese ermo de erro represena fluuações aleaórias que causam o desvio dos valores y do nível médio. As endências mais simples são as obidas aravés de um comporameno linear da série observada (ver Figura 2.). O Modelo sem endência, que é definido como = 0, implica que não á crescimeno ou decrescimeno a longo prazo na série emporal ao longo do empo, veja Figura 2.(a). O 9

10 Modelo de endência linear, que é modelado como = 0 +, implica que á um crescimeno (a inclinação é maior que zero) ou decrescimeno (menor que zero) em lina rea ao longo do empo, veja Figuras 2.(b) e (c). Bo (a) endência consane (b) Crescimeno em lina rea (c) Decrescimeno em lina rea Figura 2.: Diferenes ipos de endência para modelos lineares No Caso (a): 0 ; No Caso (b): No Caso (c): 0, onde > 0; 0, onde < 0. Modelos mais complexos ambém podem ser obidos na práica, como Modelos lineares de endência quadráica, que são modelados como = , ou Modelos lineares de endência polinomial de ordem k, que são modelados como 2 k k,,..., n. (2.2) Podemos er ambém um modelo com variáveis explicaivas, x,..., x r, além do ermo de endência. Nese caso, o modelo é definido como: y 2 onde N0, 2 k k kx,... kr xr,,,..., n (2.3) ~, independenes. 0

11 2.2. Esimação de parâmeros e adequação do modelo Esimaivas ponuais dos parâmeros do modelo (2.3) podem ser obidas usando o méodo de mínimos quadrados ordinários. O modelo esimado é escrio como, k y k k x,... kr xr,, (2.4) e o resíduo dese modelo é calculado como: e y y,,... n. (2.5) Suposições do modelo: Normalidade: A suposição de normalidade pode ser verificada aravés da consrução de isogramas, Normal Probabiliy Plo e eses de normalidade para os resíduos. Variância consane: Violação da suposição de variância consane é sugerida por um afunilameno no gráfico de resíduos, e, versus valores ajusados, ŷ. Independência: A verificação da suposição de independência será discuida no Capíulo 3. Quando as suposições de normalidade ou variância consane não são saisfeias, devemos fazer uma ransformação nos dados para enar resolver o problema. Porém, a ransformação não resolve o problema de fala de independência. Nese caso, veremos no Capíulo 4 como fazer a modelagem quando os erros não são independenes.

12 2.3. Previsão Vamos denoar por Y a previsão para o empo +, dado que observamos a série aé o empo. A parir de esimaivas ponuais para os parâmeros 0,,..., k, k+,..., k+r, podemos ober previsões para um valor fuuro da série. Assim, uma previsão ponual feia no empo para dada por k Y ( ) 0 ( )... k ( ) k x,( )... k r xr,( ) (2.6) onde xi, ( ) é o valor da variável x i no empo +. Além diso, inervalos de previsão aproximados de 00(-)% são obidos como segue: y Y np ( ) / 2 s (2.7) np onde / 2 é o percenil /2 da disribuição -Suden com -np graus de liberdade, np é o número de parâmeros do modelo e s é o desvio padrão dos resíduos. Para comparar modelos diferenes, podemos calcular a soma de quadrados dos erros de previsão: é onde H é o número de previsões realizadas. EQMP H Y Y H ( ) 2 (2.8) 2.4. Exemplos emperaura global Uilizando os dados do Exemplo., vamos ajusar um modelo de regressão à série do desvio da emperaura global média, para o período de Deixaremos os anos de para validação do modelo aravés da comparação das previsões, porano n=95. 2

13 O modelo ajusado foi o seguine: empmedia = -, , x Ano Saída do R: Esimae Sd. Error value Pr(> ) (Inercep) -.63e e <2e-6 *** Ano 5.923e e <2e-6 *** Residual sandard error: 0.28 on 93 degrees of freedom Muliple R-squared: 0.624, Adjused R-squared: AIC(M): O valor esimado de 0, ou seja o pono onde a rea ajusada inercepa o eixo dos y s foi igual a -,6333, e o valor de, a inclinação da rea foi de 0, Eses dois valores foram esaisicamene significaivos, pois o valor-p para ambos foi <2e-6 (menor que o nível de significância = 0.05). Como o sinal do coeficiene foi posiivo, iso indica que a emperaura global ende a aumenar com o empo. Porém, o valor de R 2 não foi muio alo (62.4%), indicando que a rea ajusada explica parcialmene a variação dos dados. Obs.: A variável Ano foi consruída com valores de 900 a 994, mas poderia ser consruída ambém com os valores de a 95 (a quanidade de observações presenes na série). Nese caso, o ajuse ficaria: Esimae Sd. Error value Pr(> ) (Inercep) <2e-6 *** Ano 5.923e e <2e-6 *** Podemos perceber que apenas a esimaiva do inercepo, 0, mudou. Como o ineresse não é no inercepo, e sim na relação emporal, dada pela esimaiva de, e esa não muda com a definição da variável empo, podemos usar as duas formas. 3

14 Frequency M$res Análise de Resíduos Um ouro problema ocorre com os resíduos, como podemos noar pelos gráficos da Figura 2.2. O gráfico de resíduos no empo não apresena um comporameno aleaório em orno do valor zero, indicando clara fala de independência enre os resíduos. Já o isograma mosra uma leve assimeria, mas o ese de normalidade de Sapiro-Wilks não rejeia a ipóese de normalidade (valor-p=0,8484). O problema da fala de independência pode er sido causada pela auocorrelação exisene enre observações sucessivas da série. Na próxima seção, vamos verificar como corrigir eses problemas Index Hisogram of M$res M$res Figura 2.2: Gráficos de resíduos para o modelo M (emperaura global) Apesar deses problemas, vamos enar deerminar previsões para os anos de , para os quais possuímos os valores reais. 4

15 Previsões para os anos de 995 a 997: Previsão para 995: Para calcular a previsão para o ano de 995 uilizamos o modelo M onde o ano será igual a 995. Logo o desvio da emperaura previso será de empmedia 995 = -, , x 995 = 0,83. (2.9) Inervalo de previsão de 95%: 0,83 ±,9858 x 0,28 = [ -0,07 ; 0,4378 ] (2.0) 952 onde =,9858 é o percenil 0,975 da disribuição -Suden com 95-2 graus de liberdade e s=0,28 é o erro padrão dos resíduos. Previsão para 996: empmedia 996 = -, , x 996 = Inervalo de previsão de 95%: 0, 890 ±,9858 x 0,28 = [ -0,0654 ; 0,4434 ] Previsão para 997: empmedia 997 = -, , x 997 = Inervalo de previsão de 95%: 0,949 ±,9858 x 0,28 = [ -0,0595 ; 0,4493 ] As previsões rês passos à frene, inervalos de previsão e valores reais para 995 a 997 são dados na abela 2.. 5

16 desvio emperaura abela 2.: Previsão para os anos de 995 a 997 do desvio da emperaura global Ano Real Previso Erro (Real-Previso) 995 0,39 0,83 0, 2069 [-0,07 ; 0,4378] 996 0,22 0,890 0, 030 [-0,0654 ; 0,4434] 997 0,43 0,949 0, 235 [-0,0595 ; 0,4493] EQMP = [ (0,2069) 2 + (0,03) 2 + (0,235) 2 ] / 3 = 0,0330. A Figura 2.3 mosra o ajuse, assim como as previsões para 995 a 997, com o inervalo de previsão. Podemos ver que odas as previsões subesimaram o verdadeiro valor do desvio médio de emperaura, mas os valores reais esão denro do inervalo de previsão. o : Previsão -- : Inervalo Previsao empo Figura 2.3: Ajuse, previsão e inervalos de previsão para o modelo M (emperaura global). Os ponos em azul são os valores previsos e as linas em vermelo são os inervalos de previsão. 6

17 farelo Preço do grão e farelo de soja Com os dados do Exemplo.2, vamos ajusar um modelo para a série do preço do farelo de soja (Farelo), usando como variável explicaiva a série de preço do grão de soja (Grao). Os dados vão de Jan/990 a Ago/999, mas deixaremos os úlimos 2 meses (Se/998 a Ago/999) para validação do modelo aravés da comparação das previsões. Assim, nossa série erá amano n=04. A Figura 2.4 mosra o gráfico de dispersão das duas variáveis. Podemos perceber uma relação linear posiiva enre as duas séries, ou seja, parece que quano maior o valor do preço do grão de soja, maior o valor do preço do farelo de soja, como esperado. Além diso, o coeficiene de correlação enre as duas foi de 0,8794. Como as séries apresenadas na Figura.2 mosram que não exise endência crescene nem decrescene nesas séries, não é necessário incluir componenes de endência no ajuse Grao Figura 2.4: Gráfico de dispersão para as séries do preço de grão e farelo de soja. Desa forma, podemos ajusar o modelo de regressão, cujo resulado é dado por: Modelo M: Esimae Sd. Error value Pr(> ) (Inercep) Grao <2e-6 *** Residual sandard error: 2.5 on 02 degrees of freedom Muliple R-squared: , Adjused R-squared:

18 AIC(M): Nese caso, somene foi significaivo, indicando que exise uma relação linear posiiva enre os preços do grão e farelo de soja. Ou seja, se o preço do quilo do grão de soja aumena em um real, o preço médio do quilo do farelo de soja aumena em 7,3237 reais. O valor de R 2 foi de 75,88%, o que pode esar sendo afeado pela auocorrelação presene nas duas séries. Se realizamos o ajuse reirando o inercepo, obemos o seguine resulado: Modelo M2: Esimae Sd. Error value Pr(> ) Grao <2e-6 *** Residual sandard error: 2.46 on 03 degrees of freedom Muliple R-squared: 0.989, Adjused R-squared: AIC(M2): O valor de coninua posiivo e significaivo, e não muio diferene do resulado anerior. Porém, o valor de R 2 aumena significaivamene, passando para 98,9%. Iso poderia nos levar a crer que ese ajuse é muio superior ao anerior, mas se observarmos o valor do AIC, vemos que a diminuição não foi ão grande. Além diso, como vamos observar na análise de resíduos, as suposições do modelo ainda não esão saisfeias, e udo iso pode afear o valor de R 2. Análise de Resíduos A Figura 2.5 mosra os gráficos de resíduos no empo e isograma para o modelo sem o inercepo (M2). Podemos ver que o gráfico de resíduos apresena um comporameno cíclico em orno do valor zero, indicando clara fala de independência enre os resíduos. Já o isograma mosra uma assimeria à direia, mas o ese de Sapiro-Wilks não rejeia ipóese de normalidade (valor-p=0,82). 8

19 Frequency M2$res Index Hisogram of M2$res M2$res Figura 2.5: Gráficos de resíduos para o modelo M2 (Farelo e Grão de soja) Apesar do problema da fala de independência dos resíduos, vamos enar deerminar previsões uilizando o modelo sem inercepo, para os meses de Se/998 a Ago/999, para os quais possuímos os valores reais. Para calcular as previsões para o preço do farelo, precisamos dos valores reais da série do preço do grão de soja no período de Se/998 a Ago/999, que são apresenados na abela 2.2. abela 2.2: Preço do Grão de Soja para o período Fev/998 a Ago/999 Mês Se/98 Ou/98 Nov/98 Dez/98 Jan/99 Fev/99 Mar/99 Abr/99 Mai/99 Jun/99 Jul/99 Ago/99 Grão,44,55,43,00 9,60 8,65 8,32 8,5 8,68 8,72 8,49 9,09 9

20 Previsões para Se/998 a Ago/999: Previsão para Se/998: A previsão do preço do farelo de soja para o mês de seembro de 998 é calculada como: Farelo Se/98 = 6,5999 x,44 = 89,90 Inervalo de previsão de 95%: 89,90 ±, x 2,46 = [47.34 ; ] 04 onde =, é o percenil 0,975 da disribuição -Suden com 04- graus de liberdade e s=2,46 é o erro padrão dos resíduos. Procedendo desa forma, obemos as previsões para os 2 meses de ineresse. A abela 2.3 mosra as previsões doze passos à frene, inervalos de previsão e valores reais para Se/998 a Ago/999. Podemos verificar que odas as previsões, exceo Fev/99, superesimam o verdadeiro valor do preço do farelo de soja, mas os valores reais esão denro do inervalo de previsão. abela 2.3: Previsões seis passos à frene para o preço do farelo de soja, Se/998 a Ago/999 Mês Real Previso Inervalo Previsão Real-Previso Se/998 5,3 89,90 [47,34 ; 232,45] -38,60 Ou/998 54,8 9,73 [49,8 ; 234,28] - 36,93 Nov/998 58,3 89,74 [47,9 ; 232,29] -3,44 Dez/999 57,5 82,60 [40,05 ; 225,5] -25,0 Jan/999 52,0 59,36 [6,8 ; 20,9] -7,36 Fev/999 58, 43,60 [ 0,04;86,4 ] 4,5 Mar/999 29,4 38, [95,56 ; 80,66] -8,7 Abr/999 30,2 4,26 [98,7 ; 83,8] -, 06 Mai/999 26,3 44,09 [0,54 ; 86,64] -7,79 Jun/999 3,2 44,75 [02,20 ; 87,30] -3,55 Jul/999 33,8 40,93 [98,38 ; 83,48] -7,3 Ago/999 44,8 50,89 [08,34 ; 93,44] -6,09 20

21 Farelo EQMP = 460,26. A Figura 2.6 mosra o ajuse e as previsões para os doze úlimos meses, com o inervalo de previsão. Vemos que o modelo ajusado segue relaivamene bem o comporameno da série empo Figura 2.6: Ajuse, previsão e inervalos de previsão para o modelo M2 (Farelo). A lina prea represena a série do Farelo, a lina azul mosra o modelo ajusado, os ponos em azul são os valores previsos e as linas em vermelo são os inervalos de previsão. 2

22 3. Deecando a auocorrelação A validade dos méodos de regressão ilusrados no Capíulo 2 requer, denre ouras, que a suposição de independência seja saisfeia. Porém, quando dados de séries emporais esão sendo analisados, esa suposição é frequenemene violada. É muio comum que os ermos de erro, ordenados no empo, sejam auocorrelacionados. Nese capíulo, definimos auocorrelação posiiva e negaiva, e discuimos a deecção de auocorrelação usando gráficos de resíduos, o ese de Durbin-Wason e os gráficos da função de auocorrelação amosral (FAC). 3.. ipos de auocorrelação Auocorrelação Posiiva : Quando um ermo de erro posiivo no período de empo ende a produzir, ou ser seguido por, ouro ermo de erro posiivo no período de empo +k (um período de empo poserior) e se um ermo de erro negaivo no período de empo ende a produzir, ou ser seguido por, ouro ermo de erro negaivo no período de empo +k. Auocorrelação Negaiva : Quando um ermo de erro posiivo no período de empo ende a produzir, ou ser seguido por, um ermo de erro negaivo no período de empo +k e se um ermo de erro negaivo no período de empo ende a produzir, ou ser seguido por, um ermo de erro posiivo no período de empo +k. A ipóese de independência diz que os ermos de erro ordenados no empo não devem produzir comporameno de auocorrelações posiivas ou negaivas. Iso significa que os ermos de erro devem ocorrer de forma aleaória ao longo do empo. al comporameno implicaria que eses ermos de erro são esaisicamene independenes, o que por sua vez implicaria que os valores de y ordenados no empo são esaisicamene independenes. Se os resíduos apresenam um comporameno aleaório em orno de zero, com variância consane ao longo do empo, dizemos que eles são um ruído branco. 22

23 3.2 Auocovariância e Auocorrelação Auocovariância: É a covariância enre y e y -k separados por k inervalos de empo. A auocovariância, k, é calculada como: k Cov y, y Ey y, k 0,, 2,... k k Se emos uma série real, o esimador amosral aproximadamene não-endencioso (para grandes amosras) da auocovariância é dado por: n. k y y yk y n k Como a auocovariância é uma função par, emos que para odo ineiro k, k k. Porano, é necessário deerminar k apenas para k 0. Auocorrelação: A auocorrelação é a auocovariância padronizada. Serve para medirmos o comprimeno e a memória de um processo, ou seja, a exensão para a qual o valor omado no empo depende daquele omado no empo -k, y, yk y Var y Cov k k. 0 Var k Claramene, e. Um esimador amosral da auocorrelação de defasagem k é dado 0 k k por: k k 0, k 0,,2,... 23

24 3.3. Méodos para deecção da auocorrelação Gráfico de resíduos versus empo Desde que os resíduos são esimaivas ponuais dos ermos de erro, um gráfico de resíduos versus empo pode ser usado para deecar violações da suposição de independência. Se um gráfico de resíduos conra o empo em um comporameno aleaório, os ermos de erro êm pouca ou nenuma auocorrelação. Iso sugere que os ermos de erro são independenes, ou seja, eles são um ruído branco. Se um gráfico de resíduos versus empo em um comporameno cíclico, os ermos de erro são posiivamene correlacionados, e a ipóese de independência não é válida. Se um gráfico de resíduos conra o empo em um comporameno alernado, os ermos de erro são negaivamene correlacionados, e a ipóese de independência ambém não é válida ese de Durbin-Wason O ipo de auocorrelação (posiiva ou negaiva) com a qual rabalaremos é camada de auocorrelação de primeira ordem. Apresenamos a seguir o ese de Durbin-Wason, que é um ese formal para deecar auocorrelação de primeira ordem. A esaísica de Durbin-Wason é dada por d n 2 e e n e 2 2 (3.) onde e,...,, e2 en são resíduos ordenados no empo. Considere o ese H 0 : Os ermos de erro não são auocorrelacionados H : Os ermos de erro são posiivamene ou negaivamene auocorrelacionados. 24

25 Durbin e Wason (95) mosraram que exisem ponos (denoados por d L, e d U, ) ais que, se é a probabilidade de um erro ipo I (ou seja, a probabilidade de rejeiarmos H 0 quando esa ipóese é verdadeira), enão:. Se d L, / 2 d ou 4 d d L, / 2 2. Se d U, / 2 d e 4 d d U, / 2 d 3. Se L, / 2 U, / 2, nós rejeiamos H 0 ;, nós não rejeiamos H 0 ; d d e d L, / 2 4 d du, / 2, o ese é inconclusivo. Aqui, valores pequenos de d levam à conclusão de uma auocorrelação posiiva, porque se d é pequeno, as diferenças e e são pequenas. Por ouro lado, valores grandes de d (logo valores pequenos de ( 4 d ) levam à conclusão de uma auocorrelação negaiva, porque se d é grande, as diferenças e e são grandes. Para que o ese de Durbin-Wason possa ser facilmene aplicado, abelas conendo os ponos d L, e U, d devem ser consruídas. Esas abelas calculam os ponos d L, e d U, apropriados para vários valores de, np (onde np é o número de covariáveis do modelo) e n ( o número de observações). Noe que, por exemplo, np para o modelo linear simples. Uma abela com a disribuição de d para alguns valores de n e np é apresenada em Guajarai (2009). Geralmene, d = 2 indica que não exise auocorrelação. Se a esaísica de Durbin Wason é subsancialmene menor que 2, exise evidência de correlação serial posiiva. Como uma regra aproximada, se d é menor que, exise moivo para alarme. Pequenos valores de d indicam ermos de erro posiivamene correlacionados. Se d > 2, os ermos de erro são, em media, negaivamene correlacionados. relevanes: Anes de concluirmos esa apresenação do ese de Durbin-Wason, vários comenários são 25

26 a validade do ese de Durbin-Wason depende da suposição de que a população de odos os possíveis resíduos em qualquer empo ena uma disribuição normal; auocorrelações posiivas são enconradas mais comumene na práica que auocorrelações negaivas; a maioria dos sofwares de regressão calculam a esaísica d de Durbin-Wason e a auocorrelação de primeira ordem não é o único ipo de auocorrelação exisene. Dados de séries emporais podem exibir esruuras de auocorrelação dos erros mais complicadas. Em ais casos, a auocorrelação é deecada usando o que é camado de função de auocorrelação amosral Função de Auocorrelação Amosral (FAC) Vimos na Seção 3.2 que a auocorrelação amosral é calculada como: k k, k 0,,2, O gráfico da FAC é simplesmene um gráfico de k versus k. Se os resíduos são ruídos brancos, ou seja, se eles saisfazem a suposição de independência, enão a FAC não deve apresenar picos significaivos em nenum lag k diferene de zero. A FAC pode ser consruída no R usando o comando: acf(y, lag.max = NULL) onde y é a série e lag.max é o número de lags que se quer uilizar no cálculo da FAC. Se não for especificado um número, como no caso acima, o R usa o defaul de 0*log0(n/m) onde n é o número de observações e m é o número de séries. 26

27 ACF Exemplos emperaura global No Exemplo 2.4. vimos, aravés dos gráficos de resíduos, que um possível problema de auocorrelação poderia esar compromeendo o modelo linear ajusado à série. Como o gráfico de resíduos na Figura 2.2 mosrou um comporameno cíclico, os ermos de erro devem ser posiivamene correlacionados. Para confirmar a exisência de auocorrelação de primeira ordem, vamos fazer o ese de Durbin-Wason. O valor desa esaísica foi d = 0,9036. Nese caso, n 95 e np. Logo para um nível de significância de 5% emos, d L, =,64 e U, d =,69. Como d, 64, concluímos que realmene exise uma auocorrelação posiiva de primeira ordem. Vamos ambém fazer o gráfico da função de auocorrelação amosral (FAC) dos resíduos do modelo M. O gráfico apresenado na Figura 3. mosra que exisem vários picos significaivos na FAC, porano os resíduos não são independenes. Series M$res Lag Figura 3.: FAC para os resíduos do modelo M (emperaura global) 27

28 ACF Preço do grão e farelo de soja O gráfico de resíduos do modelo M2, na Figura 2.5, mosrou um possível problema de fala de independência dos resíduos do modelo. Como o gráfico apresenou um comporameno cíclico, os ermos de erro devem ser posiivamene correlacionados. Para confirmar a exisência de auocorrelação de primeira ordem, vamos fazer o ese de Durbin-Wason. O valor desa esaísica foi d = 0,3633. Nese caso, n 0 e np. Logo para um nível de significância de 5% emos, d L,,65 e d U,, 69. Como d, 65, concluímos que realmene exise uma auocorrelação posiiva de primeira ordem nesa série. O gráfico apresenado na Figura 3.2 mosra a função de auocorrelação amosral (FAC) dos resíduos do modelo M2. Podemos ver que exisem vários picos significaivos na FAC, porano os resíduos não são independenes. Series M2$res Lag Figura 3.2: FAC para os resíduos do modelo M2 (Farelo) 28

29 4. Modelando a auocorrelação nos resíduos Já vimos que os ermos de erro para modelos de regressão em séries emporais são frequenemene correlacionados. Em ais casos, devemos remediar o problema modelando a auocorrelação. Se ignoramos os ermos de erro auocorrelacionados, pagamos uma penalidade em ermos de inervalos de previsão maiores. Levando em cona a auocorrelação, podemos ober inervalos de previsão mais precisos. Ese capíulo apresena uma forma de rabalar com erros correlacionados, uilizando os modelos de regressão com erros auorregressivos. 4.. Modelo de regressão com erros auorregressivos O nome auorregressivo se deve ao fao de que a série no insane é função da série nos insanes aneriores a. Podemos ajusar modelos auorregressivos para qualquer série emporal, mas nese caso usaremos ese modelo para a série de resíduos,. Se exise uma relação da série no empo presene somene com o empo imediaamene anerior, emos um modelo auorregressivo de ordem, AR(): u onde u é um ruído branco Gaussiano. Se exise uma correlação com os dois empos aneriores, emos um AR(2): u. 22 Generalizando, podemos er uma relação com aé p empos aneriores, ou seja, um AR(p), 29

30 30 Consideremos agora o modelo de regressão polinomial dado na Equação (2.3), que conena erros auorregressivos de ordem p. Nese caso, o modelo a ser esimado é n x x y r r k k k k,...,, (4.) onde é descrio por um processo AR(p), p p u Os parâmeros dese modelo podem ser esimados por mínimos quadrados ordinários ou aravés do méodo de máxima verossimilança. Após a esimação do modelo (4.) devemos verificar as suposições sobre os novos resíduos do modelo, ou seja, para a série u esimada. Eses resíduos devem er disribuição Normal, média zero, variância consane e devem ser independenes Previsão No caso do modelo com erros auorregressivos, a previsão Y é dada por: x x Y r r k k k k... ) (... ) ( ) ( ),( ),( 0 (4.2) onde é calculado aravés do valor esperado das observações fuuras condicionado aos valores passados e ao valor presene da variável, E E,,.

31 Por exemplo, para um AR(), u a previsão passos à frene, dado que esamos no empo, é: E u ( ). E A expressão acima consiui o modelo geral da previsão. Para sua implemenação compuacional, subsiuímos as esperanças condicionais pelos seus valores correspondenes saisfazendo às seguines resrições: i) Esperança condicional dos já realizados são os próprios resíduos, e, do modelo de regressão original, sem os erros auorregressivos, E E,, e y y para = 0,, 2,... ii) Esperança condicional dos ainda não realizados são as respecivas previsões para, E E,, para =, 2,... iii) Esperança condicional dos u 's, u Eu u, u, 0 E para =, 2,... 3

32 4.3. Inervalo de Confiança para as Previsões Suposição: onde 2,, ~ N 2 ; é a variância da disribuição de,,. Desa forma, um inervalo de previsão de 00(-)% para as observações fuuras é dado por: np Y ( ) s / 2 (4.3) np onde / 2 é o percenil /2 da disribuição -Suden com -np graus de liberdade, np é o número de parâmeros do modelo, s é o desvio padrão dos resíduos e é o desvio-padrão da disribuição de,,. Mosramos abaixo como calcular para os modelos AR() e AR(2), que são os mais comuns na práica. Modelos com ordem maior que 2 são mais complexos, mas e o cálculo é mais complicado. AR(): ( ) AR(2): onde, 2 2, j j 2 j2, j 3. 32

33 4.4. Exemplos emperaura global Como vimos nos Exemplos 2.4. e 3.4., o modelo linear ajusado ao desvio da emperaura global possui auocorrelação de ª ordem nos resíduos. Assim, vamos ajusar um novo modelo incluindo um componene AR() para os ermos de erro. O modelo proposo é enão dado por: y 0 900,...,995 2 u, onde u ~ N(0, ), independenes, u que pode ambém ser escrio como: y u 900,..., Desa forma, o modelo ajusado, denoado por M.AR, é: y 0 e = -, ,0058 x Ano + 0,5663 x e - Saída do R: Esimae Sd. Error z value Pr(> z ) ar e e e-0 *** inercep -.358e e e- *** Ano 5.784e e e- *** sigma^2 esimaed as 0.005: log likeliood = 79.0, aic = R2 = R2adj =

34 rnorm(n - H) ACF M.AR$res Frequency Observamos que os rês coeficienes, 0, e foram esaisicamene significaivos, pois para odos eles o valor-p foi bem menor que 0,05. Verificamos ambém que o valor de R 2 aumenou de 62% para 75%, indicando que a rea ajusada explica melor a variação dos dados. Além diso, o valor do AIC diminuiu de -6,795 para -50,0. Analisando os gráficos de resíduos (Figura 4.) não observamos mais nenum padrão específico no gráfico de resíduos vs. empo, porano podemos dizer que as observações se enconram aleaoriamene disribuídas em orno de zero. O isograma ainda mosra uma leve assimeria, mas o ese de Sapiro-Wilks ambém não rejeiou a suposição de normalidade (0,6688). Os gráficos de FAC e FACP não mosram nenum pico significaivo e a esaísica de Durbin-Wason, d=,967 e 4-d=2,0383, são maiores que d U, =,69. Logo, não exise mais o problema de auocorrelação nos dados. Hisogram of M.AR$res ime M.AR$res Series M.AR$res M.AR$res Lag Figura 4.: Gráficos de resíduos para o modelo M.AR ajusado ao desvio da emperaura global Como o modelo M.AR parede adequado, podemos uilizar ese modelo para fazer previsões para os anos de

35 Previsões para 995 a 997: Previsão para 995: Para calcular a previsão para o ano de 995 uilizamos o modelo M.AR, onde o ano será igual a 995. Logo o desvio da emperaura previso para 995 será de empmedia 995 = -, , x ,56626 x e 994 = 0,2279 onde e 994 0, foi obido do modelo M. Inervalo de previsão de 95%: 0,2279 ±, x 0,05227 x = [0,09 ; 0,4366] 953 onde =,986 é o percenil 0,975 da disribuição -Suden com 95-3 graus de liberdade, s=0,05227 é o erro padrão dos resíduos e o desvio-padrão da disribuição de,, é igual a, já que emos um AR() e =. Previsão para 996: Para calcular a previsão para 996, uilizamos o modelo M.AR, com o ano igual a 996. empmedia 995 = -, , x ,56626 x e 995 = 0,234 Nese caso, não podemos ober o valor de e 995 direamene do modelo M, pois ese só foi ajusado para os anos de 900 a 994. Assim, caímos no caso (ii) da Seção (2.3). Ou seja, e 995 será dado pela previsão um passo à frene, feia em 994: e e994 = 0,56626 x 0, = 0,

36 Inervalo de previsão de 95%: 0,234 ±, x 0,05227 x 0, = [-0,0265 ; 0,4533]. Nese caso, a variância da disribuição de AR() e =2.,, é igual a 0, , já que emos um Previsão para 997: Para calcular a previsão para 997, uilizamos o modelo M.AR, com o ano igual a 997. empmedia 995 = -, , x ,56626 x e 996 = 0,2077 Nese caso, e 996 será dado pela previsão dois passos à frene, feia em 994: e e994 = (0,56626) 2 x 0, = 0, Inervalo de previsão de 95%: 0, , = [ ; ]. 0,2077 ±, x 0,05227 x 4 Nese caso, a variância da disribuição de,, é igual a 0, , que emos um AR() e =3. As previsões e os valores reais do desvio da emperaura para ese período são dados na abela 4.. Podemos verificar que o EQMP caiu de 0,0330 para 0,0252 em relação ao modelo sem os erros AR, do Exemplo A Figura 4.2 mosra o ajuse, assim como previsões para os rês úlimos anos, com o inervalo de previsão. Podemos ver que as previsões ainda subesimam o verdadeiro valor do desvio médio de, já 36

37 desvio emperaura emperaura, apesar dos valores reais esarem denro do inervalo de previsão. Além diso, o ajuse segue de forma bem mais próxima o comporameno da série, comparado com o ajuse do modelo M. abela 4.: Valores reais e previsos para o desvio da emperaura global, de 995 a 997 Ano Real Previso Erro (Real-Previso) 995 0,39 0,2279 0, 62 [0.09 ; 0, ] 996 0,22 0,234 0, 0066 [ ; ] 997 0,43 0,2077 0, 2223 [ ; ] EQMP = 0, empo Figura 4.2: Ajuse, previsão e inervalos de previsão para o modelo M.AR (emperaura global). A lina prea represena a série do desvio da emperaura média, a lina azul mosra o modelo ajusado, os ponos em azul são os valores previsos e as linas em vermelo são os inervalos de previsão 37

38 Preço do grão e farelo de soja Nos Exemplos e 3.4.2, vimos que o modelo linear ajusado ao preço do farelo de soja possui auocorrelação nos resíduos. Após alguns eses, vemos que é necessário ajusar um modelo AR(2) aos resíduos, pois ese modelo apresenou odos os coeficienes significaivos e menor AIC. Assim, vamos ajusar o modelo de regressão com erros AR(2), para o período de jan/990 a fev/999. Novamene, o inercepo não foi significaivo, porano o modelo ajusado, denoado por M2.AR2, foi: y Grao e e = 6, x Grao +,22359 x e - - 0,26080 x e Saída do R: Esimae Sd. Error z value Pr(> z ) ar < 2e-6 *** ar * Grao < 2e-6 *** sigma^2 esimaed as 0.3: log likeliood = , aic = R2 = R2adj = Observamos que os coeficienes de, e 2 foram esaisicamene significaivos, pois odos os valores-p foram menores que 0,05. Verificamos que o valor de 2 R adj diminuiu um pouco em relação ao modelo M2 (de 99% para 95%), mas coninua sendo um valor alo e, além diso, vimos que no modelo M2 o R 2 poderia esar sendo afeado pela não validade das suposições do modelo. Corroborando esa análise, vemos que o valor do AIC diminuiu de 935,87 para 793,94. Analisando os gráficos de resíduos (Figura 4.3) não observamos mais nenum padrão específico no gráfico de resíduos vs. empo, porano podemos dizer que as observações se enconram aleaoriamene disribuídas em orno de zero. O isograma ainda mosra uma leve assimeria à direia, mas o ese de Sapiro-Wilks ambém não rejeiou a suposição de normalidade (0,4742). Finalmene, o 38

39 rnorm(n - H) ACF M2.AR2$res Frequency gráfico da FAC não mosra picos significaivos (somene um pico na muio afasado da origem, o que pode ser considerado um ruído) e a esaísica de Durbin-Wason, d= 2,228 e 4-d=,7782 são maiores que d U, =,69. Logo, não exise mais o problema de auocorrelação nos dados. Hisogram of M2.AR2$res ime M2.AR2$res Series M2.AR2$res M2.AR2$res Lag Figura 4.3: Gráficos de resíduos para o modelo M2.AR2 ajusado á série do preço do farelo de soja Como o modelo M2.AR2 parece adequado, podemos uilizar ese modelo para fazer previsões para os meses de Se/998 a Ago/999. Previsões para Se/998 a Ago/999: A previsão do preço do farelo de soja para o mês de seembro de 998 é calculada como: Farelo Se/98 = 6,694 x Grao Se/98 +,224 x e Ago/98-0,260 x e Jul/98 = 68,7670 e e e Jul / 98 são obido do modelo M2. onde Ago/ 98 39

40 Inervalo de previsão de 95%: 68,767 ±,98373 x 0,50 x = [47,94 ; 89,60] 043 onde =,98373 é o percenil 0,975 da disribuição -Suden com 04-3 graus de liberdade, s=0,50 é o erro padrão dos resíduos e o desvio-padrão da disribuição de,, é igual a, já que emos um AR(2) e =. A abela 4.2 mosra as previsões doze passos à frene, inervalos de previsão e valores reais para Se/998 a Ago/999. Podemos verificar que a maioria das previsões superesima o verdadeiro valor do preço do farelo de soja, mas os valores reais esão denro do inervalo de previsão. Comparando as previsões do modelo M2 com o modelo M2.AR2, vemos que ese úlimo apresena um EQMP bem menor que o M2, que possuía valor de 460,26. abela 4.2: Previsões seis passos à frene para o preço do farelo de soja, Se/998 a Ago/999 Mês Real Previso Inervalo Previsão Real-Previso Se/998 5,3 68,77 [47,94 ; 89,60] -7,47 Ou/998 54,8 75,56 [44,25 ; 206,87] - 20,76 Nov/998 58,3 77,25 [39,65 ; 24,84] -8,95 Dez/999 57,5 72,9 [3,56 ; 24,27] -5,4 Jan/999 52,0 5,77 [08,3 ; 95,4] 0,23 Fev/999 58, 37,67 [ 92,64;82,70 ] 20,43 Mar/999 29,4 33,56 [87,66 ; 79,45] -4,6 Abr/999 30,2 37,83 [9,40 ; 84,26] -7, 63 Mai/999 26,3 4,55 [94,78 ; 88,3] -5,25 Jun/999 3,2 42,9 [95,94 ; 89,88] -,7 Jul/999 33,8 39,62 [95,52 ; 86,72] -5,82 Ago/999 44,8 50,07 [02,89 ; 95,26] -5,27 EQMP = 88,06. 40

41 Farelo A Figura 4.4 mosra o ajuse, assim como previsões para os seis úlimos meses, com o inervalo de previsão. Podemos ver que o modelo ajusado segue bem o comporameno da série, com previsões próximas dos valores reais empo Figura 4.4: Ajuse, previsão e inervalos de previsão para o modelo M2.AR2 (Farelo). A lina prea represena a série do preço do farelo de soja, a lina azul mosra o modelo ajusado, os ponos em azul são os valores previsos e as linas em vermelo são os inervalos de previsão. 4

42 CEP Séries sazonais Sazonalidade: endência do processo em repeir um cero ipo de comporameno denro de um período sazonal (geralmene 2 meses para séries mensais, 4 meses para séries rimesrais, ec.). Um exemplo de série sazonal é a série das Cenrais Eléricas do Paraná (CEP), visa no do Exemplo.3. A Figura 5. apresena novamene a série CEP, onde podemos visualizar a sazonalidade que ocorre de 2 em 2 meses Figura 5.. Série CEP, com sazonalidade mensal A série CEP, além da sazonalidade, apresena ambém uma endência crescene. Assim, para ajusar um modelo de regressão a esa série emos que incluir ano componenes de endência, quando componenes para modelar a sazonalidade. Nese capíulo vamos ver como ajusar modelos que incluem odos eses componenes, assim como covariáveis, caso enamos alguma variável exerna que possa ajudar a modelar e fazer previsões para séries sazonais. Além diso, vamos ambém incorporar o modelo auorregressivo nos erros do modelo de regressão, caso os resíduos não sejam um ruído branco. 42

43 5. Modelo de regressão para séries sazonais com erros auorregressivos Consideremos o seguine modelo para séries sazonais: ' y F x,,..., n, (5.) onde é um ruído branco Gaussiano, é a endência no período de empo, que pode ser modelada como dado na Equação (2.2), x é o veor de covariáveis e F é o componene de sazonalidade. Uma forma de modelar padrões sazonais é empregando variáveis dummy. Assumindo que exisem S períodos sazonais, o componene F pode ser escrio como: F D, 2D2,... ( S ) D( S ), (5.2) onde D, D2,,..., D( S ),, são variáveis indicadoras (ou dummy) consruídas da seguine forma: D, D 2, 0 0 para o período caso conrário para o período 2 caso conrário D... ( S ), 0 para o períodos - caso conrário Obs.: Devemos consruir sempre (S-) variáveis dummy para modelar a pare sazonal, para eviar o problema da mulicolinearidade. 43

44 Desa forma, o modelo geral para séries polinomiais de ordem k, com p variáveis explicaivas, x,..., x p, e variação sazonal de período S é dado por: y k 0... k k x... k r xr k r D,... k r ( S ) D( S ),,,..., n 2 onde N0, ~, independenes. (5.3) O componene, i k r,..., k r ( S ), da pare sazonal, represena a diferença, i excluindo a endência, enre o nível da série emporal no período i em relação ao período S. Por exemplo, se i for negaivo, o valor da série no período i é esperado ser menor do que no período S. Os parâmeros do modelo podem ser esimados por mínimos quadrados ordinários. O modelo (5.3) pode ser esimado uilizando mínimos quadrados ordinários. A análise de resíduos deve verificar se odas as suposições do modelo esão sendo saisfeias, ou seja, se os resíduos são independenes, com disribuição normal de média zero e variância consane. Se a suposição de independência não for saisfeia, devemos ajusar o modelo com erros auorregressivos. Consideremos enão o modelo de regressão polinomial em séries emporais, que conena variação sazonal com período S e erros auorregressivos de ordem p. Nese caso, o modelo a ser esimado é o mesmo dado na Equação (5.3). Porém, o ermo de erro,, é descrio por um processo auoregressivo de ordem p, 2... p u. (5.4) Os parâmeros dese modelo ambém podem ser esimados por mínimos quadrados ordinários ou aravés do méodo de máxima verossimilança. Além diso, devemos verificar as suposições de independência, normalidade e variância consane sobre os novos resíduos do modelo, ou seja, para a série u esimada. 44

45 Previsão No caso do modelo de regressão polinomial, que conena variação sazonal com período S e erros auorregressivos de ordem p, a previsão Y é dada por: D D x x Y S S r k r k r r k k p k ) ( ) ( ), ( ) (, ),( ),( 0 onde é calculado aravés do valor esperado das observações fuuras condicionado aos valores passados e ao valor presene da variável, como viso na Seção 4.2, E. Um inervalo de previsão de 00(-)% para as observações fuuras é dado por: np s Y 2 / ) ( onde np 2 / é o percenil /2 da disribuição -Suden com -np graus de liberdade, np é o número de parâmeros do modelo, s é o desvio padrão dos resíduos e é o desvio-padrão da disribuição de,,. Caso não seja necessário incluir a pare auorregressiva no modelo, a previsão ponual feia no empo para y é dada simplesmene por, S S r k r k r r k k p k D D x x Y ), ( ) (, ),( ),( ) ( ) ( e os inervalos de previsão de 00(-)% são obidos como: s Y np 2 / ) (.

46 5.3. Exemplo Série CEP Vamos uilizar a série das Cenrais Eléricas do Paraná (CEP), de jan/80 a dez/92, reirando as úlimas 2 observações (jan/92 a dez/92) para fazer previsões. Logo, n=44. O modelo uilizado é dado por: y 0 2D,... 2D,,,...,44. Desa forma, as esimaivas para os parâmeros do modelo M_CEP são dadas por: Saída do R: Esimae Sd. Error value Pr(> ) (Inercep) < 2e-6 *** Ano < 2e-6 *** facor(sazon) e-09 *** facor(sazon) e-4 *** facor(sazon) < 2e-6 *** facor(sazon) < 2e-6 *** facor(sazon) < 2e-6 *** facor(sazon) < 2e-6 *** facor(sazon) < 2e-6 *** facor(sazon) < 2e-6 *** facor(sazon) < 2e-6 *** facor(sazon) e-07 *** facor(sazon) e-06 *** Residual sandard error: 0.7 on 3 degrees of freedom Muliple R-squared: , Adjused R-squared: F-saisic: 402. on 2 and 3 DF, p-value: < 2.2e-6 AIC(M): Os coeficienes 0 e são ambos significaivos e, como o sinal de foi posiivo, iso indica que o consumo de energia elérica no Paraná em uma endência de aumeno com o passar do empo. As variáveis dummy foram consruídas com janeiro sendo o mês de referência. Como odos os coeficienes sazonais foram significaivos e posiivos, iso significa que odos os meses apresenam um consumo de energia significaivamene maior do que o do mês de janeiro. O valor de R 2 foi 46

47 rnorm(n - H) ACF M_CEP$res Frequency suficienemene alo (97,2%), o que pode levar à conclusão de que a rea ajusada explica bem a variação dos dados. Porém, analisando os gráficos de resíduos da Figura 5.2 observamos que várias suposições do modelo não esão saisfeias. Hisogram of M_CEP$res Index M_CEP$res Series M_CEP$res M_CEP$res Lag Figura 5.2: Gráficos de resíduos para o modelo M_CEP ajusado á série CEP O gráfico de resíduos vs. empo, mosra uma diminuição nos empos iniciais e depois um aumeno, porano não podemos dizer que as observações se enconram aleaoriamene disribuídas em orno de zero. O isograma apresena uma leve assimeria à direia, mas o qqplo e o ese de Sapiro- Wilks (valor-p=0,855) não rejeiam a suposição de normalidade. O gráfico da FAC mosra vários 47

48 picos significaivos e a esaísica de Durbin-Wason (d= 0,579) é menor que d U, =,65, logo exise auocorrelação posiiva de ordem nos dados. Se quisermos fazer previsões 2 passos à frene uilizando ese modelo, eremos: Janeiro de 994: A previsão do consumo de energia da série CEP para o mês de jan/94 é: CEP Jan/94 = 227,6076 +,3603 x 45 = 424,85. Observamos que nenum coeficiene das variáveis dummy enra na previsão acima, já que para o mês de janeiro odas as dummy são iguais a zero. Inervalo de previsão de 95%: 424,85 ±,9782 x 0,743 = [404,7246 ; 444,9776] onde =,9782 é o percenil 0,975 da disribuição -Suden com 44-3 graus de liberdade e s=0,743 é o erro padrão dos resíduos. Fevereiro de 994: A previsão do consumo de energia da série CEP para o mês de fev/94 é dada por: CEP Fev/94 = 227,6076 +,3603 x ,8897 x = 452,0. Para a previsão de Fev/94 será necessário incluir somene o coeficiene da variável dummy de fevereiro, 25,8897, já que odas as ouras variáveis dummy serão iguais a zero para ese mês. Desa forma, obemos as previsões para os meses subsequenes, que são apresenadas na abela 5.. A Figura 5.3 mosra o ajuse, assim como previsões para os seis úlimos meses, com o inervalo de 48

49 CEP previsão. Podemos ver que o ajuse para os 4 úlimos meses não é muio boa, e ano as previsões como os inervalos se enconram bem abaixo dos valores reais. abela 5.: Previsões 2 passos à frene para o consumo de energia elérica da CEP, Jan/92 a Dez/92 Mês Real Previso Inervalo Previsão Real-Previso Jan/ ,85 [404,72 ; 444,98] 0,4 Fev/ ,0 [43,98 ; 472,23] 2,89 Mar/ ,27 [442,5 ; 482,40],73 Abr/ ,9 [455,06 ; 495,32] 9,8 Mai/ ,02 [464,90 ; 505,5] 20,98 Jun/ ,36 [463,23 ;503,48] 5,64 Jul/ ,27 [458,5 ; 498,40] 2,73 Ago/ ,52 [462,40 ; 502,65] 9,48 Se/ ,86 [462,73 ; 502,98] 3,4 Ou/ ,52 [459,40 ; 499,65] 35,48 Nov/ ,69 [440,56 ; 480,82] 22,3 Dez/ ,94 [438,8 ; 479,07] 22,06 EQMP = 366, empo 49

Séries temporais Modelos de suavização exponencial. Séries de temporais Modelos de suavização exponencial

Séries temporais Modelos de suavização exponencial. Séries de temporais Modelos de suavização exponencial Programa de Pós-graduação em Engenharia de Produção Análise de séries de empo: modelos de suavização exponencial Profa. Dra. Liane Werner Séries emporais A maioria dos méodos de previsão se baseiam na

Leia mais

Capítulo 4. Propriedades dos Estimadores de Mínimos Quadrados

Capítulo 4. Propriedades dos Estimadores de Mínimos Quadrados Capíulo 4 Propriedades dos Esimadores de Mínimos Quadrados Hipóeses do Modelo de Regressão Linear Simples RS1. y x e 1 RS. Ee ( ) 0 E( y ) 1 x RS3. RS4. var( e) var( y) cov( e, e ) cov( y, y ) 0 i j i

Leia mais

Cálculo do valor em risco dos ativos financeiros da Petrobrás e da Vale via modelos ARMA-GARCH

Cálculo do valor em risco dos ativos financeiros da Petrobrás e da Vale via modelos ARMA-GARCH Cálculo do valor em risco dos aivos financeiros da Perobrás e da Vale via modelos ARMA-GARCH Bruno Dias de Casro 1 Thiago R. dos Sanos 23 1 Inrodução Os aivos financeiros das companhias Perobrás e Vale

Leia mais

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc.

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc. ECONOMETRIA Prof. Paricia Maria Borolon, D. Sc. Séries Temporais Fone: GUJARATI; D. N. Economeria Básica: 4ª Edição. Rio de Janeiro. Elsevier- Campus, 2006 Processos Esocásicos É um conjuno de variáveis

Leia mais

4 O modelo econométrico

4 O modelo econométrico 4 O modelo economérico O objeivo desse capíulo é o de apresenar um modelo economérico para as variáveis financeiras que servem de enrada para o modelo esocásico de fluxo de caixa que será apresenado no

Leia mais

Análise de séries de tempo: modelos de decomposição

Análise de séries de tempo: modelos de decomposição Análise de séries de empo: modelos de decomposição Profa. Dra. Liane Werner Séries de emporais - Inrodução Uma série emporal é qualquer conjuno de observações ordenadas no empo. Dados adminisraivos, econômicos,

Leia mais

3 Retorno, Marcação a Mercado e Estimadores de Volatilidade

3 Retorno, Marcação a Mercado e Estimadores de Volatilidade eorno, Marcação a Mercado e Esimadores de Volailidade 3 3 eorno, Marcação a Mercado e Esimadores de Volailidade 3.. eorno de um Aivo Grande pare dos esudos envolve reorno ao invés de preços. Denre as principais

Leia mais

Econometria Semestre

Econometria Semestre Economeria Semesre 00.0 6 6 CAPÍTULO ECONOMETRIA DE SÉRIES TEMPORAIS CONCEITOS BÁSICOS.. ALGUMAS SÉRIES TEMPORAIS BRASILEIRAS Nesa seção apresenamos algumas séries econômicas, semelhanes às exibidas por

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 2º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Inrodução ao Cálculo Diferencial II TPC nº 9 Enregar em 4 2 29. Num loe de bolbos de úlipas a probabilidade de que

Leia mais

Características dos Processos ARMA

Características dos Processos ARMA Caracerísicas dos Processos ARMA Aula 0 Bueno, 0, Capíulos e 3 Enders, 009, Capíulo. a.6 Morein e Toloi, 006, Capíulo 5. Inrodução A expressão geral de uma série emporal, para o caso univariado, é dada

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

Seção 5: Equações Lineares de 1 a Ordem

Seção 5: Equações Lineares de 1 a Ordem Seção 5: Equações Lineares de 1 a Ordem Definição. Uma EDO de 1 a ordem é dia linear se for da forma y + fx y = gx. 1 A EDO linear de 1 a ordem é uma equação do 1 o grau em y e em y. Qualquer dependência

Leia mais

4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos.

4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos. 4 Meodologia Proposa para o Cálculo do Valor de Opções Reais por Simulação Mone Carlo com Aproximação por Números Fuzzy e Algorimos Genéicos. 4.1. Inrodução Nese capíulo descreve-se em duas pares a meodologia

Leia mais

Contabilometria. Séries Temporais

Contabilometria. Séries Temporais Conabilomeria Séries Temporais Fone: Corrar, L. J.; Theóphilo, C. R. Pesquisa Operacional para Decisão em Conabilidade e Adminisração, Ediora Alas, São Paulo, 2010 Cap. 4 Séries Temporais O que é? Um conjuno

Leia mais

4 O Papel das Reservas no Custo da Crise

4 O Papel das Reservas no Custo da Crise 4 O Papel das Reservas no Cuso da Crise Nese capíulo buscamos analisar empiricamene o papel das reservas em miigar o cuso da crise uma vez que esa ocorre. Acrediamos que o produo seja a variável ideal

Leia mais

Modelagem e Previsão do Índice de Saponificação do Óleo de Soja da Giovelli & Cia Indústria de Óleos Vegetais

Modelagem e Previsão do Índice de Saponificação do Óleo de Soja da Giovelli & Cia Indústria de Óleos Vegetais XI SIMPEP - Bauru, SP, Brasil, 8 a 1 de novembro de 24 Modelagem e Previsão do Índice de Saponificação do Óleo de Soja da Giovelli & Cia Indúsria de Óleos Vegeais Regiane Klidzio (URI) gep@urisan.che.br

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 163 22. PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 22.1. Inrodução Na Seção 9.2 foi falado sobre os Parâmeros de Core e

Leia mais

Introdução às Medidas em Física

Introdução às Medidas em Física Inrodução às Medidas em Física 43152 Elisabeh Maeus Yoshimura emaeus@if.usp.br Bloco F Conjuno Alessandro Vola sl 18 agradecimenos a Nemiala Added por vários slides Conceios Básicos Lei Zero da Termodinâmica

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

Capítulo 7. O Modelo de Regressão Linear Múltipla

Capítulo 7. O Modelo de Regressão Linear Múltipla Capíulo 7 O Modelo de Regressão Linear Múlipla Quando ornamos um modelo econômico com mais de uma variável explanaória em um modelo esaísico correspondene, nós dizemos que ele é um modelo de regressão

Leia mais

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON) TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 8 LIVRO DO NILSON). CONSIDERAÇÕES INICIAIS SÉRIES DE FOURIER: descrevem funções periódicas no domínio da freqüência (ampliude e fase). TRANSFORMADA DE FOURIER:

Leia mais

Estudo comparativo do fluxo de caminhões nos portos de Uruguaiana e Foz do Iguaçu

Estudo comparativo do fluxo de caminhões nos portos de Uruguaiana e Foz do Iguaçu XIII SIMPEP - Bauru, SP, Brasil, 6 a 8 de novembro de 26. Esudo comparaivo do fluxo de caminhões nos poros de Uruguaiana e Foz do Iguaçu Suzana Leião Russo (URI) jss@urisan.che.br Ivan Gomes Jardim (URI)

Leia mais

2.6 - Conceitos de Correlação para Sinais Periódicos

2.6 - Conceitos de Correlação para Sinais Periódicos .6 - Conceios de Correlação para Sinais Periódicos O objeivo é o de comparar dois sinais x () e x () na variável empo! Exemplo : Considere os dados mosrados abaixo y 0 x Deseja-se ober a relação enre x

Leia mais

ONDAS ELETROMAGNÉTICAS

ONDAS ELETROMAGNÉTICAS LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS A propagação de ondas eleromagnéicas ocorre quando um campo elérico variane no empo produ um campo magnéico ambém variane no empo, que por sua ve produ um campo

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa CIÉTIC RDIOTIV Inrodução Ese arigo em como objeivo analisar a velocidade dos diferenes processos radioaivos, no que chamamos de cinéica radioaiva. ão deixe de anes esudar o arigo anerior sobre radioaividade

Leia mais

5 Metodologia Probabilística de Estimativa de Reservas Considerando o Efeito-Preço

5 Metodologia Probabilística de Estimativa de Reservas Considerando o Efeito-Preço 5 Meodologia Probabilísica de Esimaiva de Reservas Considerando o Efeio-Preço O principal objeivo desa pesquisa é propor uma meodologia de esimaiva de reservas que siga uma abordagem probabilísica e que

Leia mais

Prof. Carlos H. C. Ribeiro ramal 5895 sala 106 IEC

Prof. Carlos H. C. Ribeiro  ramal 5895 sala 106 IEC MB770 Previsão usa ando modelos maemáicos Prof. Carlos H. C. Ribeiro carlos@comp.ia.br www.comp.ia.br/~carlos ramal 5895 sala 106 IEC Aula 14 Modelos de defasagem disribuída Modelos de auo-regressão Esacionariedade

Leia mais

Regressão Linear Simples

Regressão Linear Simples Origem hisórica do ermo Regressão: Regressão Linear Simples Francis Galon em 1886 verificou que, embora houvesse uma endência de pais alos erem filhos alos e pais baios erem filhos baios, a alura média

Leia mais

DEMOGRAFIA. Assim, no processo de planeamento é muito importante conhecer a POPULAÇÃO porque:

DEMOGRAFIA. Assim, no processo de planeamento é muito importante conhecer a POPULAÇÃO porque: DEMOGRAFIA Fone: Ferreira, J. Anunes Demografia, CESUR, Lisboa Inrodução A imporância da demografia no planeameno regional e urbano O processo de planeameno em como fim úlimo fomenar uma organização das

Leia mais

Tópicos Especiais em Energia Elétrica (Projeto de Inversores e Conversores CC-CC)

Tópicos Especiais em Energia Elétrica (Projeto de Inversores e Conversores CC-CC) Deparameno de Engenharia Elérica Tópicos Especiais em Energia Elérica () ula 2.2 Projeo do Induor Prof. João mérico Vilela Projeo de Induores Definição do úcleo a Fig.1 pode ser observado o modelo de um

Leia mais

Universidade do Estado do Rio de Janeiro Instituto de Matemática e Estatística Econometria

Universidade do Estado do Rio de Janeiro Instituto de Matemática e Estatística Econometria Universidade do Esado do Rio de Janeiro Insiuo de Maemáica e Esaísica Economeria Variável dummy Regressão linear por pares Tese de hipóeses simulâneas sobre coeficienes de regressão Tese de Chow professorjfmp@homail.com

Leia mais

4 Aplicação do Modelo

4 Aplicação do Modelo Aplicação do Modelo É possível enconrar na lieraura diversas aplicações que uilizam écnicas esaísicas e de compuação inensiva para realizar previsões de curo prazo na área de energia elérica. Enre elas

Leia mais

UTILIZAÇÃO DO MÉTODO DE HOLT-WINTERS PARA PREVISÃO DO LEITE ENTREGUE ÀS INDÚSTRIAS CATARINENSES

UTILIZAÇÃO DO MÉTODO DE HOLT-WINTERS PARA PREVISÃO DO LEITE ENTREGUE ÀS INDÚSTRIAS CATARINENSES UTILIZAÇÃO DO MÉTODO DE HOLT-WINTERS PARA PREVISÃO DO LEITE ENTREGUE ÀS INDÚSTRIAS CATARINENSES Rober Wayne Samohyl Professor do Programa de Pós-Graduação em Engenharia de Produção e Sisemas UFSC. Florianópolis-SC.

Leia mais

4 Modelagem e metodologia de pesquisa

4 Modelagem e metodologia de pesquisa 4 Modelagem e meodologia de pesquisa Nese capíulo será apresenada a meodologia adoada nese rabalho para a aplicação e desenvolvimeno de um modelo de programação maemáica linear misa, onde a função-objeivo,

Leia mais

Capítulo Cálculo com funções vetoriais

Capítulo Cálculo com funções vetoriais Cálculo - Capíulo 6 - Cálculo com funções veoriais - versão 0/009 Capíulo 6 - Cálculo com funções veoriais 6 - Limies 63 - Significado geomérico da derivada 6 - Derivadas 64 - Regras de derivação Uiliaremos

Leia mais

Estimação em Processos ARMA com Adição de Termos de Perturbação

Estimação em Processos ARMA com Adição de Termos de Perturbação UNIVER ERSIDADE DE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEP EPARTAMENTO DE ESTATÍSTICA Esimação em Processos ARMA com Adição de Termos de Perurbação Auor: Paricia Vieira de Llano Orienador:

Leia mais

1 Pesquisador - Embrapa Semiárido. 2 Analista Embrapa Semiárido.

1 Pesquisador - Embrapa Semiárido.   2 Analista Embrapa Semiárido. XII Escola de Modelos de Regressão, Foraleza-CE, 13-16 Março 2011 Análise de modelos de previsão de preços de Uva Iália: uma aplicação do modelo SARIMA João Ricardo F. de Lima 1, Luciano Alves de Jesus

Leia mais

A entropia de uma tabela de vida em previdência social *

A entropia de uma tabela de vida em previdência social * A enropia de uma abela de vida em previdência social Renao Marins Assunção Leícia Gonijo Diniz Vicorino Palavras-chave: Enropia; Curva de sobrevivência; Anuidades; Previdência Resumo A enropia de uma abela

Leia mais

6 Processos Estocásticos

6 Processos Estocásticos 6 Processos Esocásicos Um processo esocásico X { X ( ), T } é uma coleção de variáveis aleaórias. Ou seja, para cada no conjuno de índices T, X() é uma variável aleaória. Geralmene é inerpreado como empo

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar Progressão Ariméica e Progressão Geomérica. (Pucrj 0) Os números a x, a x e a x esão em PA. A soma dos números é igual a: a) 8 b) c) 7 d) e) 0. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e b

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar . (Pucrj 0) Os números a x, a x e a3 x 3 esão em PA. A soma dos 3 números é igual a: é igual a e o raio de cada semicírculo é igual à meade do semicírculo anerior, o comprimeno da espiral é igual a a)

Leia mais

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o

Leia mais

Critérios e Metodologia de Apuração de Superfície de Volatilidade

Critérios e Metodologia de Apuração de Superfície de Volatilidade Criérios e Meodologia de Apuração de Superfície de Volailidade Diariamene são calculadas superfícies de volailidade implícia de odos os vencimenos de conraos de opções em que há posição em abero e/ou séries

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031 Universidade Federal do io Grande do Sul Escola de Engenharia de Poro Alegre Deparameno de Engenharia Elérica ANÁLISE DE CICUITOS II - ENG43 Aula 5 - Condições Iniciais e Finais de Carga e Descarga em

Leia mais

Função de risco, h(t) 3. Função de risco ou taxa de falha. Como obter a função de risco. Condições para uma função ser função de risco

Função de risco, h(t) 3. Função de risco ou taxa de falha. Como obter a função de risco. Condições para uma função ser função de risco Função de risco, h() 3. Função de risco ou axa de falha Manuenção e Confiabilidade Prof. Flavio Fogliao Mais imporane das medidas de confiabilidade Traa-se da quanidade de risco associada a uma unidade

Leia mais

ANÁLISE DO PROCESSO PRODUTIVO DE UMA INDÚSTRIA TÊXTIL ATRAVÉS DE CARTAS DE CONTROLE

ANÁLISE DO PROCESSO PRODUTIVO DE UMA INDÚSTRIA TÊXTIL ATRAVÉS DE CARTAS DE CONTROLE 5, 6 e 7 de Agoso de 010 ISSN 1984-9354 ANÁLISE DO PROCESSO PRODUTIVO DE UMA INDÚSTRIA TÊXTIL ATRAVÉS DE CARTAS DE CONTROLE Maria Emilia Camargo (Universidade de Caxias do Sul) kamargo@erra.com.br Waler

Leia mais

Exercícios Sobre Oscilações, Bifurcações e Caos

Exercícios Sobre Oscilações, Bifurcações e Caos Exercícios Sobre Oscilações, Bifurcações e Caos Os ponos de equilíbrio de um modelo esão localizados onde o gráfico de + versus cora a rea definida pela equação +, cuja inclinação é (pois forma um ângulo

Leia mais

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA Inrodução Ese arigo raa de um dos assunos mais recorrenes nas provas do IME e do ITA nos úlimos anos, que é a Cinéica Química. Aqui raamos principalmene dos

Leia mais

APLICAÇÃO DO MÉTODO DE HOLT NA PREVISÃO DE DADOS DE ÁGUA DA CIDADE DE RONDONÓPOLIS-MT

APLICAÇÃO DO MÉTODO DE HOLT NA PREVISÃO DE DADOS DE ÁGUA DA CIDADE DE RONDONÓPOLIS-MT APLICAÇÃO DO MÉTODO DE HOLT NA PREVISÃO DE DADOS DE ÁGUA DA CIDADE DE RONDONÓPOLIS-MT Alerêdo Oliveira Curim 1 & Aldo da Cunha Rebouças Resumo - O conhecimeno prévio dos volumes de água de qualquer sisema

Leia mais

2.7 Derivadas e Taxas de Variação

2.7 Derivadas e Taxas de Variação LIMITES E DERIVADAS 131 2.7 Derivadas e Taas de Variação O problema de enconrar a rea angene a uma curva e o problema de enconrar a velocidade de um objeo envolvem deerminar o mesmo ipo de limie, como

Leia mais

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima.

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima. ATIVIDADE 1 1. Represene, no plano caresiano xy descrio abaixo, os dois ponos (x 0,y 0 ) = (1,2) e Q(x 1,y 1 ) = Q(3,5). 2. Trace a rea r 1 que passa pelos ponos e Q, no plano caresiano acima. 3. Deermine

Leia mais

RÁPIDA INTRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Coutinho Cardoso & Marta Feijó Barroso UNIDADE 3. Decaimento Radioativo

RÁPIDA INTRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Coutinho Cardoso & Marta Feijó Barroso UNIDADE 3. Decaimento Radioativo Decaimeno Radioaivo RÁPIDA ITRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Couinho Cardoso & Mara Feijó Barroso Objeivos: discuir o que é decaimeno radioaivo e escrever uma equação que a descreva UIDADE 3 Sumário

Leia mais

Fenômenos de adsorção em interfaces sólido/solução. Modelagens matemáticas de processos cinéticos

Fenômenos de adsorção em interfaces sólido/solução. Modelagens matemáticas de processos cinéticos Modelagens maemáicas de processos cinéicos Em cinéica química, vários parâmeros definem a dinâmica dos processos químicos. Os principais são as consanes cinéicas de velocidade e a ordem da reação. Quando

Leia mais

Confiabilidade e Taxa de Falhas

Confiabilidade e Taxa de Falhas Prof. Lorí Viali, Dr. hp://www.pucrs.br/fama/viali/ viali@pucrs.br Definição A confiabilidade é a probabilidade de que de um sisema, equipameno ou componene desempenhe a função para o qual foi projeado

Leia mais

Função Exponencial 2013

Função Exponencial 2013 Função Exponencial 1 1. (Uerj 1) Um imóvel perde 6% do valor de venda a cada dois anos. O valor V() desse imóvel em anos pode ser obido por meio da fórmula a seguir, na qual V corresponde ao seu valor

Leia mais

PREVISÃO DE PREÇOS NA BOVINOCULTURA DE CORTE

PREVISÃO DE PREÇOS NA BOVINOCULTURA DE CORTE PREVISÃO DE PREÇOS NA BOVINOCULURA DE CORE Denismar Alves Nogueira 1 helma Sáfadi 2 RESUMO: Ese rabalho é dedicado à análise da série hisórica de preços da arroba do boi gordo do esado de São Paulo no

Leia mais

A MÉDIA APARADA ASSIMÉTRICA COMO INDICADOR DE TENDÊNCIA DA INFLAÇÃO

A MÉDIA APARADA ASSIMÉTRICA COMO INDICADOR DE TENDÊNCIA DA INFLAÇÃO A MÉDIA APARADA ASSIMÉTRICA COMO INDICADOR DE TENDÊNCIA DA INFLAÇÃO * Carlos Robalo Marques** João Machado Moa **. INTRODUÇÃO Recenemene Marques e al. (999) inroduziram novos criérios para avaliar poenciais

Leia mais

Decomposição Clássica

Decomposição Clássica Méodos Esaísicos de Previsão MÉTODOS ESTATÍSTICOS DE PREVISÃO 0 08 06 04 02 00 98 96 94 92 90 0 5 0 5 20 Decomposição Clássica Bernardo Almada-Lobo Méodos Esaísicos de Previsão 2 Decomposição Clássica

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tarefa de revisão nº 17 1. Uma empresa lançou um produo no mercado. Esudos efecuados permiiram concluir que a evolução do preço se aproxima do seguine modelo maemáico: 7 se 0 1 p() =, p em euros e em anos.

Leia mais

LIGAÇÕES QUÍMICAS NOS COMPOSTOS DE COORDENAÇÃO: TEORIA DO CAMPO CRISTALINO (TCC)

LIGAÇÕES QUÍMICAS NOS COMPOSTOS DE COORDENAÇÃO: TEORIA DO CAMPO CRISTALINO (TCC) LIGAÇÕES QUÍMICAS NS CMPSTS DE CRDENAÇÃ: TERIA D CAMP CRISTALIN (TCC) A Teoria do Campo Crisalino (TCC) posula que a única ineração exisene enre o íon cenral e os liganes é de naureza elerosáica, pois

Leia mais

30/08/15' Incerteza- Padrão. Repetitividade. Estimativa da Repetitividade (para 95,45% de probabilidade) Estimativa da Repetitividade

30/08/15' Incerteza- Padrão. Repetitividade. Estimativa da Repetitividade (para 95,45% de probabilidade) Estimativa da Repetitividade Incereza- Padrão Repeiividade! A incereza padrão corresponde ao desvio-padrão (esimaiva do desvio-padrão da população) e deve ser associado a ela o número de graus de liberdade (reflee o grau de segurança

Leia mais

Biofísica II Turma de Biologia FFCLRP USP Prof. Antônio Roque Biologia de Populações 2 Modelos não-lineares. Modelos Não-Lineares

Biofísica II Turma de Biologia FFCLRP USP Prof. Antônio Roque Biologia de Populações 2 Modelos não-lineares. Modelos Não-Lineares Modelos Não-Lineares O modelo malhusiano prevê que o crescimeno populacional é exponencial. Enreano, essa predição não pode ser válida por um empo muio longo. As funções exponenciais crescem muio rapidamene

Leia mais

MODELOS USADOS EM QUÍMICA: CINÉTICA NO NÍVEL SUPERIOR. Palavras-chave: Modelos; Cinética Química; Compostos de Coordenação.

MODELOS USADOS EM QUÍMICA: CINÉTICA NO NÍVEL SUPERIOR. Palavras-chave: Modelos; Cinética Química; Compostos de Coordenação. MDELS USADS EM QUÍMICA: CINÉTICA N NÍVEL SUPERIR André Luiz Barboza Formiga Deparameno de Química Fundamenal, Insiuo de Química, Universidade de São Paulo. C.P. 6077, CEP 05513-970, São Paulo, SP, Brasil.

Leia mais

Duas opções de trajetos para André e Bianca. Percurso 1( Sangiovanni tendo sorteado cara e os dois se encontrando no ponto C): P(A) =

Duas opções de trajetos para André e Bianca. Percurso 1( Sangiovanni tendo sorteado cara e os dois se encontrando no ponto C): P(A) = RESOLUÇÃO 1 A AVALIAÇÃO UNIDADE II -016 COLÉGIO ANCHIETA-BA PROFA. MARIA ANTÔNIA C. GOUVEIA ELABORAÇÃO e PESQUISA: PROF. ADRIANO CARIBÉ e WALTER PORTO. QUESTÃO 01. Três saélies compleam suas respecivas

Leia mais

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Dinâmicos

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Dinâmicos Análise de Projecos ESAPL / IPVC Criérios de Valorização e Selecção de Invesimenos. Méodos Dinâmicos Criério do Valor Líquido Acualizado (VLA) O VLA de um invesimeno é a diferença enre os valores dos benefícios

Leia mais

MATEMÁTICA APLICADA AO PLANEJAMENTO DA PRODUÇÃO E LOGÍSTICA. Silvio A. de Araujo Socorro Rangel

MATEMÁTICA APLICADA AO PLANEJAMENTO DA PRODUÇÃO E LOGÍSTICA. Silvio A. de Araujo Socorro Rangel MAEMÁICA APLICADA AO PLANEJAMENO DA PRODUÇÃO E LOGÍSICA Silvio A. de Araujo Socorro Rangel saraujo@ibilce.unesp.br, socorro@ibilce.unesp.br Apoio Financeiro: PROGRAMA Inrodução 1. Modelagem maemáica: conceios

Leia mais

AMANDA OLIVEIRA, G. Depto. Engenharia de Computação e Automação - UFRN

AMANDA OLIVEIRA, G. Depto. Engenharia de Computação e Automação - UFRN ANÁLISE COMPARATIVA DE ALGUMAS TÉCNICAS PARA O ESTABELECIMENTO DE TRAJETÓRIAS EM AMBIENTES COM OBSTÁCULOS USANDO APRENDIZAGEM POR REFORÇO AMANDA OLIVEIRA, G. Depo. Engenharia de Compuação e Auomação -

Leia mais

F B d E) F A. Considere:

F B d E) F A. Considere: 5. Dois corpos, e B, de massas m e m, respecivamene, enconram-se num deerminado insane separados por uma disância d em uma região do espaço em que a ineração ocorre apenas enre eles. onsidere F o módulo

Leia mais

Capítulo 8. O Modelo de Regressão Múltipla: Testes de Hipóteses e a Utilização de Informações Não Amostrais

Capítulo 8. O Modelo de Regressão Múltipla: Testes de Hipóteses e a Utilização de Informações Não Amostrais Capíulo 8 O Modelo de Regressão Múlipla: Teses de Hipóeses e a Uilização de Informações Não Amosrais Um imporane pono que nós enconramos nesse capíulo é a uilização da disribuição F para esar simulaneamene

Leia mais

GRUPO XIII GRUPO DE ESTUDO DE INTERFERÊNCIAS, COMPATIBILIDADE ELETROMAGNÉTICA E QUALIDADE DE ENERGIA - GCQ

GRUPO XIII GRUPO DE ESTUDO DE INTERFERÊNCIAS, COMPATIBILIDADE ELETROMAGNÉTICA E QUALIDADE DE ENERGIA - GCQ SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GCQ - 11 16 a 21 Ouubro de 2005 Curiiba - Paraná GRUPO XIII GRUPO DE ESTUDO DE INTERFERÊNCIAS, COMPATIBILIDADE ELETROMAGNÉTICA E

Leia mais

Análise através de gráficos de controle da série resistência à compressão da areia base para fundição

Análise através de gráficos de controle da série resistência à compressão da areia base para fundição Análise aravés de gráficos de conrole da série resisência à compressão da areia base para fundição Suzana Leião Russo (URI) jss@urisan.che.br Monique Valenim da Silva (URI) movalenim@yahoo.com.br Carine

Leia mais

QUESTÃO 60 DA CODESP

QUESTÃO 60 DA CODESP UEÃO 60 D CODE - 0 êmpera é um ipo de raameno érmico uilizado para aumenar a dureza de peças de aço respeio da êmpera, é correo afirmar: ) a êmpera modifica de maneira uniforme a dureza da peça, independenemene

Leia mais

Lista de Exercícios nº 3 - Parte IV

Lista de Exercícios nº 3 - Parte IV DISCIPLINA: SE503 TEORIA MACROECONOMIA 01/09/011 Prof. João Basilio Pereima Neo E-mail: joaobasilio@ufpr.com.br Lisa de Exercícios nº 3 - Pare IV 1ª Quesão (...) ª Quesão Considere um modelo algébrico

Leia mais

6 Análise do processo de filtragem

6 Análise do processo de filtragem 6 Análise do processo de filragem Ese capíulo analisa o processo de filragem para os filros de Kalman e de parículas. Esa análise envolve ão somene o processo de filragem, não levando em consideração o

Leia mais

3 A Formação de Preços dos Futuros Agropecuários

3 A Formação de Preços dos Futuros Agropecuários 3 A ormação de Preços dos uuros Agropecuários Para avaliar a formação de preços nos mercados fuuros agropecuários é necessária uma base de comparação Para al base, esa disseração usa os preços que, em

Leia mais

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc.

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc. ECONOMETRIA Prof. Paricia Maria Borolon, D. Sc. Aocorrelação Fone: GUJARATI; D. N. Economeria Básica: 4ª Edição. Rio de Janeiro. Elsevier- Camps, 006 Core Transversal Série Temporal Em geral, com dados

Leia mais

Os Efeitos da Inflação Sobre o Orçamento do Governo: Uma Análise Empírica

Os Efeitos da Inflação Sobre o Orçamento do Governo: Uma Análise Empírica Os Efeios da Inflação Sobre o Orçameno do Governo: Uma Análise Empírica Crisiano O. Porugal Analisa de Orçameno da Secrearia de Orçameno Federal do Minisério do Planejameno Marcelo S. Porugal Professor

Leia mais

Noções de Espectro de Freqüência

Noções de Espectro de Freqüência MINISTÉRIO DA EDUCAÇÃO - Campus São José Curso de Telecomunicações Noções de Especro de Freqüência Marcos Moecke São José - SC, 6 SUMÁRIO 3. ESPECTROS DE FREQÜÊNCIAS 3. ANÁLISE DE SINAIS NO DOMÍNIO DA

Leia mais

Avaliando e Propondo Medidas de Núcleo da Inflação no Brasil Ivan Castelar Cristiano Santos

Avaliando e Propondo Medidas de Núcleo da Inflação no Brasil Ivan Castelar Cristiano Santos 10 Avaliando e Propondo Medidas de Núcleo da Inflação no Brasil Ivan Caselar Crisiano Sanos FORTALEZA MAIO 2016 UNIVERSIDADE FEDERAL DO CEARÁ CURSO DE PÓS-GRADUAÇÃO EM ECONOMIA - CAEN SÉRIE ESTUDOS ECONÔMICOS

Leia mais

Tipos de Processos Estocásticos

Tipos de Processos Estocásticos Mesrado em Finanças e Economia Empresarial EPGE - FGV Derivaivos Pare 7: Inrodução ao álculo Diferencial Esocásico Derivaivos - Alexandre Lowenkron Pág. 1 Tipos de Processos Esocásicos Qualquer variável

Leia mais

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA TE041 Circuios Eléricos I Prof. Ewaldo L. M. Mehl Capíulo 2: Conceios Fundamenais sobre Circuios Eléricos 2.1. CARGA ELÉTRICA E CORRENTE ELÉTRICA

Leia mais

Um modelo matemático discreto para a dispersão da leptospirose em uma população de ratos

Um modelo matemático discreto para a dispersão da leptospirose em uma população de ratos Um modelo maemáico discreo para a dispersão da lepospirose em uma população de raos Luiz Albero Díaz Rodrigues, Diomar Crisina Misro Depo. de Maemáica, CCE, UFM 975-9, ana Maria, R E-mail: luizdiaz@smail.ufsm.br

Leia mais

3 Processos Estocásticos

3 Processos Estocásticos 3 Processos Esocásicos Um processo esocásico pode ser definido como uma seqüência de variáveis aleaórias indexadas ao empo e ambém a evenos. É uma variável que se desenvolve no empo de maneira parcialmene

Leia mais

DENOMINADORES: QUAIS SÃO? COMO SE CALCULAM?

DENOMINADORES: QUAIS SÃO? COMO SE CALCULAM? DENOMINADORES: QUAIS SÃO? COMO SE CALCULAM? POPULAÇÃO SOB OBSERVAÇÃO A idade e o sexo da população inscria nas lisas dos médicos paricipanes é conhecida. A composição dessas lisas é acualizada no final

Leia mais

N(0) número de núcleos da espécie inicial no instante t=0. N(t) número de núcleos da espécie inicial no instante t. λ constante de decaimento

N(0) número de núcleos da espécie inicial no instante t=0. N(t) número de núcleos da espécie inicial no instante t. λ constante de decaimento 07-0-00 Lei do Decaimeno Radioacivo probabilidade de ransformação elemenar durane d d número médio de ransformações (dum elemeno) ocorridas em d N = Nd número médio de ocorrências na amosra com N elemenos

Leia mais

UNIVERSIDADE FEDERAL DE JUIZ DE FORA DEPARTAMENTO DE ESTATÍSTICA CURSO DE ESTATÍSTICA

UNIVERSIDADE FEDERAL DE JUIZ DE FORA DEPARTAMENTO DE ESTATÍSTICA CURSO DE ESTATÍSTICA UNIVERSIDADE FEDERAL DE JUIZ DE FORA DEPARAMENO DE ESAÍSICA CURSO DE ESAÍSICA Isabela Abreu Curim Uma Revisão de Modelos Lineares Dinâmicos Juiz de Fora 2014 Isabela Abreu Curim Uma Revisão de Modelos

Leia mais

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÃO Assinale V (verdadeiro) ou F (falso): () A solução da equação diferencial y y y apresena equilíbrios esacionários quando, dependendo

Leia mais

NOTA TÉCNICA. Nota Sobre Evolução da Produtividade no Brasil. Fernando de Holanda Barbosa Filho

NOTA TÉCNICA. Nota Sobre Evolução da Produtividade no Brasil. Fernando de Holanda Barbosa Filho NOTA TÉCNICA Noa Sobre Evolução da Produividade no Brasil Fernando de Holanda Barbosa Filho Fevereiro de 2014 1 Essa noa calcula a evolução da produividade no Brasil enre 2002 e 2013. Para ano uiliza duas

Leia mais

MODELAGEM E PREVISÃO DE VOLATILIDADE DETERMINÍSTICA E ESTOCÁSTICA PARA A SÉRIE DO IBOVESPA 1

MODELAGEM E PREVISÃO DE VOLATILIDADE DETERMINÍSTICA E ESTOCÁSTICA PARA A SÉRIE DO IBOVESPA 1 MODELAGEM E PREVISÃO DE VOLATILIDADE DETERMINÍSTICA E ESTOCÁSTICA PARA A SÉRIE DO IBOVESPA Igor A. C. de Morais Marcelo S. Porugal 3 RESUMO A variância de um aivo é uma das informações mais imporanes para

Leia mais

2 PREVISÃO DA DEMANDA

2 PREVISÃO DA DEMANDA PREVISÃO DA DEMANDA Abandonando um pouco a visão românica do ermo previsão, milhares de anos após as grandes civilizações da nossa hisória, a previsão do fuuro vola a omar a sua posição de imporância no

Leia mais

Capítulo 5: Introdução às Séries Temporais e aos Modelos ARIMA

Capítulo 5: Introdução às Séries Temporais e aos Modelos ARIMA 0 Capíulo 5: Inrodução às Séries emporais e aos odelos ARIA Nese capíulo faremos uma inrodução às séries emporais. O nosso objeivo aqui é puramene operacional e esaremos mais preocupados com as definições

Leia mais

Modelos para Previsão em Séries Temporais: uma Aplicação para a Taxa de Desemprego na Região Metropolitana de Porto Alegre

Modelos para Previsão em Séries Temporais: uma Aplicação para a Taxa de Desemprego na Região Metropolitana de Porto Alegre UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE ESTATÍSTICA Modelos para Previsão em Séries Temporais: uma Aplicação para a Taxa de Desemprego na Região Meropoliana de

Leia mais

GERAÇÃO DE PREÇOS DE ATIVOS FINANCEIROS E SUA UTILIZAÇÃO PELO MODELO DE BLACK AND SCHOLES

GERAÇÃO DE PREÇOS DE ATIVOS FINANCEIROS E SUA UTILIZAÇÃO PELO MODELO DE BLACK AND SCHOLES XXX ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO Mauridade e desafios da Engenharia de Produção: compeiividade das empresas, condições de rabalho, meio ambiene. São Carlos, SP, Brasil, 1 a15 de ouubro de

Leia mais

Insper Instituto de Ensino e Pesquisa. Decio Albert da Silva Santos PREVISÃO DE VOLATILIDADE:

Insper Instituto de Ensino e Pesquisa. Decio Albert da Silva Santos PREVISÃO DE VOLATILIDADE: Insper Insiuo de Ensino e Pesquisa Programa de Mesrado Profissional em Economia Decio Alber da Silva Sanos PREVISÃO DE VOLATILIDADE: A VOLATILIDADE IMPLÍCITA COMO VARIÁVEL EXPLICATIVA DA VARIÂNCIA CONDICIONAL

Leia mais

2 Processos Estocásticos de Reversão à Média para Aplicação em Opções Reais

2 Processos Estocásticos de Reversão à Média para Aplicação em Opções Reais Processos Esocásicos de Reversão à Média para Aplicação em Opções Reais Resumo Ese capíulo analisa alguns méodos usados na deerminação da validade de diferenes processos esocásicos para modelar uma variável

Leia mais

Expectativas, consumo e investimento CAPÍTULO 16. Olivier Blanchard Pearson Education Pearson Education Macroeconomia, 4/e Olivier Blanchard

Expectativas, consumo e investimento CAPÍTULO 16. Olivier Blanchard Pearson Education Pearson Education Macroeconomia, 4/e Olivier Blanchard Expecaivas, consumo e Olivier Blanchard Pearson Educaion CAPÍTULO 16 16.1 Consumo A eoria do consumo foi desenvolvida na década de 1950 por Milon Friedman, que a chamou de eoria do consumo da renda permanene,

Leia mais

Um modelo matemático para o ciclo de vida do mosquito Aedes aegypti e controle de epidemias

Um modelo matemático para o ciclo de vida do mosquito Aedes aegypti e controle de epidemias Universidade Federal de Ouro Preo Modelagem e Simulação de Sisemas Terresres DECOM- prof. Tiago Garcia de Senna Carneiro Um modelo maemáico para o ciclo de vida do mosquio Aedes aegypi e conrole de epidemias

Leia mais