Técnicas de Desenho de Algoritmos

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Técnicas de Desenho de Algoritmos"

Transcrição

1 Técnicas de Desenho de Algoritmos Mudança de ênfase: da implementação de algoritmos para o desenho de algoritmos A ver: 5 tipos de algoritmos abordagem ao problema exemplos complexidade em tempo e espaço Referências: Mark Allen Weiss. Data Structures & Algorithm Analysis in Java. Addison- Wesley, Robert Sedgewick. Algorithms in C++. Addison-Wesley, Steven S. Skiena. The Algorithm Design Manual. Springer 1998.

2 Algoritmos Gananciosos Exemplos Anteriores: Dijkstra, Prim, Kruskal Cada fase do algoritmo: decisão baseada no ganho imediato consequências futuras não consideradas Algoritmo atinge óptimos locais se é óptimo global, é solução se não, pode servir para obter aproximação Exemplo de problema que resolve bem: fazer trocos, minimizando número de notas e moedas estratégia: dar repetidamente a maior unidade possível Exemplo de problema que não resolve bem: caminho mais rápido usando estratégia da melhor aresta adjacente

3 Problema de escalonamento Dados: tarefas e tempos Objectivo: minimizar tempo médio de terminação Tempo médio: 25 Tarefa Tempo j1 j2 j3 j4 j 1 15 j 2 8 j 3 3 Tempo médio: j 4 10 j3 j2 j4 j

4 2ª solução é óptima Escalonamento Porquê: tarefas mais curtas primeiro Tarefas: j i1, j i2,..., j in Terminações: ti1, ti1+ti2,... Custo total da solução: n n n (n k +1) t = ik (n+1) t ik k t ik k = 1 k =1 k = 1 Se existe x>y tal que t ix < t iy : troca de j ix e j iy diminui custo

5 Escalonamento multiprocessador Exemplo com 3 processadores Tarefa Tempo j1 j2 j3 j4 j5 j6 j7 j8 j Total de tempos: 165 Tempo médio: j1 j2 j3 j4 j5 j6 j j8 j9

6 Solução óptima não é única Para cada i, o i < n/p as tarefas j ip+1 a j (i+1)p são alocadas a processadores diferentes j1 j5 j9 j2 j4 j7 j3 j6 j

7 Minimizar tempo de completação Tempo a minimizar é o da última tarefa a terminar j2 j5 j8 j6 j9 j1 j3 j4 j Este problema é variante do empacotamento, logo NP-completo!

8 Divisão e conquista Divisão: resolver recursivamente problemas mais pequenos (até caso base) Conquista: solução do problema original é formada com as soluções dos subproblemas Há divisão quando o algoritmo tem pelo menos 2 chamadas recursivas no corpo Subproblemas devem ser disjuntos Algoritmos já vistos: Travessia de árvores em tempo linear: processar árvore esquerda, visitar nó, processar árvore direita Ordenações: mergesort: ordenar 2 subsequências e juntá-las quicksort: ordenar elementos menores e maiores que pivot, concatenar

9 Quicksort function quicksort(array) var list less, greater if length(array) 1 return array select and remove a pivot value pivot from array for each x in array if x pivot then append x to less else append x to greater return concatenate(quicksort(less), pivot, quicksort(greater))

10 Programação Dinâmica Divisão e conquista: problema é partido em subproblemas que se resolvem separadamente; solução obtida por combinação das soluções Programação dinâmica: resolvem-se os problemas de pequena dimensão e guardam-se as soluções; solução de um problema é obtida combinando as de problemas de menor dimensão Divisão e conquista é top-down Programação dinâmica é bottom-up Abordagem é usual na Investigação Operacional Programação é aqui usada com o sentido de formular restrições ao problema que tornam um método aplicável Quando é aplicável a programação dinâmica: estratégia óptima para resolver um problema continua a ser óptima quando este é subproblema de um problema de maior dimensão

11 Aplicação directa - Fibonacci Problemas expressos recursivamente que podem ser reescritos em formulação iterativa Exemplo: números de Fibonacci /** Números de Fibonacci * versão recursiva */ n >= 0 int fib( const unsigned int n ) { if( n <= 1 ) return 1; else return fib( n-1 ) + fib( n-2 ); } /** Números de Fibonacci * versão iterativa */ int fibonacci(int n ) { int last=1, nexttolast=1, answer=1; if( n <= 1 ) return 1; for( int i = 2; i<=n; i++ ) { answer = last + nexttolast; nexttolast = last; last = answer; } return answer; }

12 Fibonacci Expressão recursiva: algoritmo exponencial Expressão iterativa: algoritmo linear Problema na formulação recursiva: repetição de chamadas iguais F6 F5 F4 F4 F3 F3 F2 F3 F2 F2 F1 F2 F1 F1 F0 F2 F1 F1 F0 F1 F0 F1 F0 F1 F0

13 Exemplo: Equação de recorrência C(n) = 2 n n 1 C(i) + n Para resolver numericamente, i =0 expressão recursiva é directa double eval( int n ) { double sum = 0.0; if( n == 0 ) return 1.0; for( int i = 0; i < n; i++ ) Sum += eval( i ); return 2.0 * sum / n + n; } Algoritmo recursivo é exponencial! Problema: repetição de chamadas

14 Chamadas Repetidas C5 C4 C3 C2 C1 C0 C3 C2 C1 C0 C2 C1 C0 C1 C0 C0 C2 C1 C0 C1 C0 C0 C1 C0 C0 C0 C1 C0 C0 C0 C0 C0

15 Solução iterativa 1 double eval(int n ) { double [ ] c = new double [n+1]; c[0] = 1.0; for( int i = 1; i <= n; i++ ) { double sum = 0.0; for( int j = 0; j < i; j++ ) sum += c[j]; Algoritmo iterativo O(n 2 ) } } c[i] = 2.0 * sum / i + i; return c[n]; Evita chamadas recursivas guardando tabela de C(n)

16 Solução iterativa 2 double eval(int n ) { double sum = 0.0; double [ ] a = new double [n+1]; a[0] = 1.0; for( int i = 1; i <= n; i++ ) a[i] = a[i-1] * a[i-1] / i + i; Algoritmo iterativo O(n) } double answer = 2.0 * a[n] / n + n; return answer; Tabela de A(n) guarda valor dos somatórios; para cada entrada basta acrescentar 1 termo

17 Algoritmos de retrocesso Algoritmos em que se geram escolhas que vão sendo testadas e eventualmente refeitas Problemas para os quais não existem algoritmos eficientes: retrocesso é melhor que pesquisa exaustiva solução é gerada e avaliada parcialmente quando uma solução parcial não satisfaz objectivos, retrocesso apenas desfaz última escolha evita-se a pesquisa em ramos que garantidamente não levam a solução - poda da árvore de pesquisa Exemplo: arranjo da mobília numa casa grande número de possibilidades cada peça de mobília é colocada, solução é arranjo satisfatório chegando a ponto onde qualquer arranjo é inconveniente, desfaz-se o último passo e tentase alternativa muitos arranjos nunca são testados

18 Problema da portagem Dados: n pontos p1, p2,..., pn situados no eixo dos xx xi é a coordenada x de pi x1= 0 determinam n (n-1)/2 distâncias d1, d2,..., dm da forma xi - xj Distâncias podem ser geradas em tempo O(n 2 ) Problema inverso: coordenadas dos pontos a partir das distâncias: mais difícil Não há algoritmo garantido como polinomial para o problema D - conjunto das distâncias D = m = n (n-1) / 2 Algoritmo que se segue: O(n 2 log n) - é conjectura

19 Exemplo D= {1, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 8, 10} D = 15 -> n = 6 x1 = 0, x6 = 10 x1 = 0 x6 = 10 D= {1, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 8} maior distância: 8 então x2 = 2 ou x5 = 8 (escolha é indiferente) x1 = 0 x5 = 8 x6 = 10 D= {1, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7}

20 Exemplo 7 - maior valor em D -> x4 = 7 ou x2 = 3 x4 = 7 distâncias x6-7 = 3 e x5-7 = 1 estão em D x2 = 3 distâncias 3-x1 = 3 e x5-3 = 5 estão em D x1 = 0 x4 = 7 x5 = 8 x6 = 10 D= {2, 2, 3, 3, 4, 5, 5, 5, 6} 6 - maior valor em D -> x3 = 6 ou x2 = 4 x3 = 6 distância x4 - x3 = 1 impossível, já não existe 1 em D x2 = 4 distâncias x2-x1 = 4 e x5 - x2 = 4 impossível, só 1 vez 4 em D É preciso retroceder!

21 Exemplo x4 = 7 não conduziu a solução tenta-se agora x2 = 3 x1 = 0 x2 = 3 x5 = 8 x6 = 10 D= {1, 2, 2, 3, 3, 4, 5, 5, 6} 6 - maior valor em D -> x4 = 6 ou x3 = 4 x3 = 4 impossível, só 1 vez 4 em D x1 = 0 x2 = 3 x4 = 6 x5 = 8 x6 = 10 D= {1, 2, 3, 5, 5}

22 Exemplo x1 = 0 x2 = 3 x3 = 5 x4 = 6 x5 = 8 x6 = 10 D = { } x 1 =0, x 5 =10 x 5 =8 Árvore de decisão x ** 4 =7 x 2 =3 * * x 3 =6 x 2 =4 x 3 =4 x 4 =6 x 3 =5

23 Na ausência de retrocesso Anális e D pode ser mantido como árvore de pequisa equilibrada O(n 2 ) operações em D remoção: D tem O(n 2 ) elementos, não há reinserções, total é O(n 2 ) pesquisa: 1 tentativa de colocação faz no máximo 2n, total é O(n 2 ) Tempo total é O(n 2 log n) Com retrocesso: perde-se eficiência não existe limite polinomial para o retrocesso requerido não estão identificados exemplos patológicos com pontos de coordenadas inteiras e distribuídas uniformemente, conjectura é que retrocesso não ocorre mais que O(1)

24 Jogos Como jogar automaticamente um jogo estratégico? Exemplo: jogo do galo pode construir-se algoritmo que nunca perde e aproveita oportunidades para ganhar posições críticas armazenadas em tabela escolha de jogada baseada na posição corrente usando uma tabela... todo a análise do jogo feita pelo programador Em geral, em jogos não triviais não é possível dispor de decisões para todos os caminhos a partir de uma posição é preciso recomputar a cada jogada é impraticável explorar todas as hipóteses

25 Minimax Estratégia minimax função de avaliação da qualidade de uma posição 1 se posição de vitória 0 se é empate -1 se é para perder se se pode fazer avaliação por inspecção do tabuleiro: posição terminal posição não terminal: valor é determinado assumindo recursivamente jogadas óptimas de ambos os lados Um jogador tenta minimizar e o outro maximizar o valor da posição Para posição P: Se é a minha vez de jogar avalio recursivamente as posições sucessoras Ps, escolhendo o valor maior; ao avaliar Ps as suas sucessoras são avaliadas e o menor valor é escolhido (caso mais favorável para o oponente)

26 Pesquisa com limite de profundidade Em jogos complexos: inviável pesquisar todos os nós terminais para avaliar a posição parar a determinada profundidade nós onde pára a recursão tratados como nós terminais função de estimativa para avaliar nós terminais Ex: xadrez - avaliar peças e suas posições Para aumentar o factor de previsão - métodos que avaliam menos nós e não perdem informação sobre posições já avaliadas X O X X O X... X X O X O X... tabela de transposição

27 Árvore do jogo Estrutura da pesquisa de posições (nós) e valores das avaliações 44 Max 44 Min Max C Min Max A

28 44 Cortes α β Estrutura da pesquisa de posições (nós) e valores das avaliações Max 40 Min 40 D Max Min B Max

29 Corte α 44 Max Min 40 D? Valor em D não pode aumentar resultado na raiz: o seu nó pai é min e tem valor garantidamente inferior ao conseguido na raiz até ao momento

30 Corte β 44 Min Max 68 D? Valor em C não pode aumentar resultado na raiz: nó pai é max e tem valor garantidamente superior ao conseguido na raiz até ao momento

Programação Dinâmica. Aplicação directa - Fibonacci

Programação Dinâmica. Aplicação directa - Fibonacci Programação Dinâmica Divisão e conquista: problema é partido em subproblemas que se resolvem separadamente; solução obtida por combinação das soluções Programação dinâmica: resolvem-se os problemas de

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência Artificial Aula 7 Programação Genética M.e Guylerme Velasco Programação Genética De que modo computadores podem resolver problemas, sem que tenham que ser explicitamente programados para isso?

Leia mais

Árvores. ! utilizada em muitas aplicações. ! modela uma hierarquia entre elementos. ! O conceito de árvores está diretamente ligado à recursão

Árvores. ! utilizada em muitas aplicações. ! modela uma hierarquia entre elementos. ! O conceito de árvores está diretamente ligado à recursão Árvores 1 Árvores! utilizada em muitas aplicações! modela uma hierarquia entre elementos! árvore genealógica! diagrama hierárquico de uma organização! modelagem de algoritmos! O conceito de árvores está

Leia mais

Exemplos. Jogo dos oito :-) Mundo dos blocos (ex: torre de Hanoi) Poblema das rainhas. Criptoaritmética. Missionários e Canibais.

Exemplos. Jogo dos oito :-) Mundo dos blocos (ex: torre de Hanoi) Poblema das rainhas. Criptoaritmética. Missionários e Canibais. istemas Inteligentes, 10-11 1 Exemplos Jogo dos oito :-) Mundo dos blocos (ex: torre de Hanoi) Poblema das rainhas Criptoaritmética Missionários e Canibais Resta-um e muitos outros... istemas Inteligentes,

Leia mais

Teoria de Jogos. Algoritmo Minimax e Alfa-Beta AED - 2002

Teoria de Jogos. Algoritmo Minimax e Alfa-Beta AED - 2002 Teoria de Jogos Algoritmo Minimax e Alfa-Beta AED - 2002 Conceptualização do Problema Jogar pode ser visto como uma generalização do problema de procura em espaço de estados, em que existem agentes hostis

Leia mais

Algoritmos e Estruturas de Dados I. Recursividade. Pedro O.S. Vaz de Melo

Algoritmos e Estruturas de Dados I. Recursividade. Pedro O.S. Vaz de Melo Algoritmos e Estruturas de Dados I Recursividade Pedro O.S. Vaz de Melo Problema Implemente uma função que classifique os elementos de um vetor em ordem crescente usando o algoritmo quicksort: 1. Seja

Leia mais

Subsequência comum mais longa Em inglês, Longest Common Subsequence (LCS)

Subsequência comum mais longa Em inglês, Longest Common Subsequence (LCS) Programação Dinâmica Subsequência comum mais longa Em inglês, Longest Common Subsequence (LCS) Fernando Lobo Algoritmos e Estrutura de Dados II 1 / 23 Longest Common Subsequence (LCS) Dadas duas sequências,

Leia mais

Módulo de Princípios Básicos de Contagem. Segundo ano

Módulo de Princípios Básicos de Contagem. Segundo ano Módulo de Princípios Básicos de Contagem Combinação Segundo ano Combinação 1 Exercícios Introdutórios Exercício 1. Numa sala há 6 pessoas e cada uma cumprimenta todas as outras pessoas com um único aperto

Leia mais

Objetivo do jogo 40 pontos todos os quadrados de um templo todos os quadrados amarelos todos os quadrados verdes Material do jogo 72 cartas

Objetivo do jogo 40 pontos todos os quadrados de um templo todos os quadrados amarelos todos os quadrados verdes Material do jogo 72 cartas Objetivo do jogo Cada jogador representa o papel de um sumo sacerdote na luta pelo poder em Tebas no antigo Egito. Ganha o jogador que primeiro: Conseguir 40 pontos, ou Ocupar todos os quadrados de um

Leia mais

Prova de Fundamentos de Bancos de Dados 1 a Prova

Prova de Fundamentos de Bancos de Dados 1 a Prova Prova de Fundamentos de Bancos de Dados 1 a Prova Prof. Carlos A. Heuser Abril de 2009 Prova sem consulta duas horas de duração 1. (Peso 2 Deseja-se projetar um banco de dados para o sítio de uma prefeitura.

Leia mais

Introdução à Inteligência Artificial 2007/08

Introdução à Inteligência Artificial 2007/08 Introdução à Inteligência rtificial 2007/08 Procura em contextos competitivos jogos Contexto Um agente vs multiagente mbiente cooperativo vs competitivo Teoria dos jogos (ramo da Economia) Sistema multiagente

Leia mais

Fundamentos de Programação. Diagrama de blocos

Fundamentos de Programação. Diagrama de blocos Fundamentos de Programação Diagrama de blocos Prof. M.Sc.: João Paulo Q. dos Santos E-mail: joao.queiroz@ifrn.edu.br Página: http://docente.ifrn.edu.br/joaoqueiroz/ O processo de desenvolvimento (programação),

Leia mais

Método de ordenação - objetivos:

Método de ordenação - objetivos: Método de ordenação - objetivos: Corresponde ao processo de rearranjar um conjunto de objetos em uma ordem ascendente ou descendente. Facilitar a recuperação posterior de itens do conjunto ordenado. São

Leia mais

Recorrendo à nossa imaginação podemos tentar escrever números racionais de modo semelhante: 1 2 = 1 + 3 + 32 +

Recorrendo à nossa imaginação podemos tentar escrever números racionais de modo semelhante: 1 2 = 1 + 3 + 32 + 1 Introdução Comecemos esta discussão fixando um número primo p. Dado um número natural m podemos escrevê-lo, de forma única, na base p. Por exemplo, se m = 15 e p = 3 temos m = 0 + 2 3 + 3 2. Podemos

Leia mais

O Cálculo λ sem Tipos

O Cálculo λ sem Tipos Capítulo 2 O Cálculo λ sem Tipos 21 Síntaxe e Redução Por volta de 1930 o cálculo lambda sem tipos foi introduzido como uma fundação para a lógica e a matemática Embora este objectivo não tenha sido cumprido

Leia mais

Probabilidade. Evento (E) é o acontecimento que deve ser analisado.

Probabilidade. Evento (E) é o acontecimento que deve ser analisado. Probabilidade Definição: Probabilidade é uma razão(divisão) entre a quantidade de eventos e a quantidade de amostras. Amostra ou espaço amostral é o conjunto formado por todos os elementos que estão incluídos

Leia mais

Gerenciamento dos Riscos do Projeto (PMBoK 5ª ed.)

Gerenciamento dos Riscos do Projeto (PMBoK 5ª ed.) Gerenciamento dos Riscos do Projeto (PMBoK 5ª ed.) Esta é uma área essencial para aumentar as taxas de sucesso dos projetos, pois todos eles possuem riscos e precisam ser gerenciados, ou seja, saber o

Leia mais

Seu pé direito nas melhores Faculdades

Seu pé direito nas melhores Faculdades 10 Insper 01/11/009 Seu pé direito nas melhores Faculdades análise quantitativa 40. No campeonato brasileiro de futebol, cada equipe realiza 38 jogos, recebendo, em cada partida, 3 pontos em caso de vitória,

Leia mais

Emparelhamentos Bilineares Sobre Curvas

Emparelhamentos Bilineares Sobre Curvas Emparelhamentos Bilineares Sobre Curvas Eĺıpticas Leandro Aparecido Sangalli sangalli@dca.fee.unicamp.br Universidade Estadual de Campinas - UNICAMP FEEC - Faculdade de Engenharia Elétrica e de Computação

Leia mais

REGULAMENTO ESPECÍFICO XADREZ 2013-2017

REGULAMENTO ESPECÍFICO XADREZ 2013-2017 REGULAMENTO ESPECÍFICO XADREZ 2013-2017 ÍNDICE 1. INTRODUÇÃO P.2 2. ESCALÕES ETÁRIOS P.3 3. CONSTITUIÇÃO DAS EQUIPAS P.3 4. REGULAMENTO TÉCNICO-PEDAGÓGICO P.3 4.1. FASE LOCAL P.4 4.2. FASE REGIONAL P.5

Leia mais

Métricas de Software

Métricas de Software Métricas de Software Plácido Antônio de Souza Neto 1 1 Gerência Educacional de Tecnologia da Informação Centro Federal de Educação Tecnologia do Rio Grande do Norte 2006.1 - Planejamento e Gerência de

Leia mais

Fundamentos de Teste de Software

Fundamentos de Teste de Software Núcleo de Excelência em Testes de Sistemas Fundamentos de Teste de Software Módulo 1- Visão Geral de Testes de Software Aula 2 Estrutura para o Teste de Software SUMÁRIO 1. Introdução... 3 2. Vertentes

Leia mais

MODULAÇÃO DE UM SINAL ANALÓGICO

MODULAÇÃO DE UM SINAL ANALÓGICO Relatório de Microprocessadores 2007/2008 Engenharia Física Tecnológica MODULAÇÃO DE UM SINAL ANALÓGICO USANDO UM PWM E UM CIRCUITO RC E AQUISIÇÃO ATRAVÉS DE UM ADC Laboratório IV Trabalho realizado por:

Leia mais

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc.

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc. PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR Prof. Angelo Augusto Frozza, M.Sc. ROTEIRO Esta aula tem por base o Capítulo 2 do livro de Taha (2008): Introdução O modelo de PL de duas variáveis Propriedades

Leia mais

10. CPU (Central Processor Unit)... 10 2 10.1 Conjunto das instruções... 10 2 10.2 Estrutura interna... 10 4 10.3 Formato das instruções...

10. CPU (Central Processor Unit)... 10 2 10.1 Conjunto das instruções... 10 2 10.2 Estrutura interna... 10 4 10.3 Formato das instruções... 10. CPU (Central Processor Unit)... 10 2 10.1 Conjunto das instruções... 10 2 10.2 Estrutura interna... 10 4 10.3 Formato das instruções... 10 4 10. CPU (CENTRAL PROCESSOR UNIT) Como vimos no capítulo

Leia mais

IA: Busca Competitiva. Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br

IA: Busca Competitiva. Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br IA: Busca Competitiva Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br Sumário Introdução Árvores de Jogos Minimax Antecipação Limitada Poda Alfa-beta Introdução Jogos têm sido continuamente uma importante

Leia mais

UM JOGO BINOMIAL 1. INTRODUÇÃO

UM JOGO BINOMIAL 1. INTRODUÇÃO 1. INTRODUÇÃO UM JOGO BINOMIAL São muitos os casos de aplicação, no cotidiano de cada um de nós, dos conceitos de probabilidade. Afinal, o mundo é probabilístico, não determinístico; a natureza acontece

Leia mais

Regressão, Interpolação e Extrapolação Numéricas

Regressão, Interpolação e Extrapolação Numéricas , e Extrapolação Numéricas Departamento de Física Universidade Federal da Paraíba 29 de Maio de 2009, e Extrapolação Numéricas O problema Introdução Quem é quem Um problema muito comum na física é o de

Leia mais

ENGENHARIA DE SOFTWARE

ENGENHARIA DE SOFTWARE INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Curso Técnico em Informática : ENGENHARIA DE SOFTWARE Prof.: Clayton Maciel Costa clayton.maciel@ifrn.edu.br Um conjunto estruturado

Leia mais

Exemplo de aprendizagem máquina

Exemplo de aprendizagem máquina (Primeiro exemplo) Jogo de damas c/ aprendizagem Tom Mitchell, Machine Learning, McGraw-Hill, 1997 chapter 1 17-Jul-13 http://w3.ualg.pt/~jvo/ml 12 1 Exemplo de aprendizagem máquina 1. Descrição do problema

Leia mais

Matemática Discreta - 08

Matemática Discreta - 08 Universidade Federal do Vale do São Francisco urso de Engenharia da omputação Matemática Discreta - 08 Prof. Jorge avalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Algoritmos Paralelos - ordenação

Algoritmos Paralelos - ordenação Algoritmos Paralelos - ordenação Fernando Silva DCC-FCUP (Alguns dos slides são baseados nos do livro Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers, 2nd

Leia mais

Scheduling and Task Allocation ADVANCED COMPUTER ARCHITECTURE AND PARALLEL PROCESSING Hesham El-Rewini 2005 Capítulo 10 Autor...: Antonio Edson Ceccon Professor..: Prof. Heitor Silvério Lopes Apresentação

Leia mais

BCC202 - Estrutura de Dados I

BCC202 - Estrutura de Dados I BCC202 - Estrutura de Dados I Aula 14: Ordenação: QuickSort Reinaldo Fortes Universidade Federal de Ouro Preto, UFOP Departamento de Computação, DECOM Website: www.decom.ufop.br/reifortes Email: reifortes@iceb.ufop.br

Leia mais

Microprocessadores. Memórias

Microprocessadores. Memórias s António M. Gonçalves Pinheiro Departamento de Física Covilhã - Portugal pinheiro@ubi.pt Arquitectura de Microcomputador Modelo de Von Neumann Barramento de Endereços µprocessador Entrada/Saída Barramento

Leia mais

Gestão da Qualidade. Aula 5. Prof. Pablo

Gestão da Qualidade. Aula 5. Prof. Pablo Gestão da Qualidade Aula 5 Prof. Pablo Proposito da Aula 1. Gestão da Qualidade Total; 2. Planejamento; Gestão da Qualidade Total Gestão da Qualidade Total Como vimos na última aula a Gestão da Qualidade

Leia mais

Capítulo 5: Repetições

Capítulo 5: Repetições Capítulo 5: Repetições INF1004 e INF1005 Programação 1 Pontifícia Universidade Católica Departamento de Informática Construção de Laços Repetição: Diversos problemas de difícil solução podem ser resolvidos

Leia mais

Probabilidade. Luiz Carlos Terra

Probabilidade. Luiz Carlos Terra Luiz Carlos Terra Nesta aula, você conhecerá os conceitos básicos de probabilidade que é a base de toda inferência estatística, ou seja, a estimativa de parâmetros populacionais com base em dados amostrais.

Leia mais

Programação Linear - Parte 4

Programação Linear - Parte 4 Mestrado em Modelagem e Otimização - CAC/UFG Programação Linear - Parte 4 Profs. Thiago Alves de Queiroz Muris Lage Júnior 1/2014 Thiago Queiroz (DM) Parte 4 1/2014 1 / 18 Solução Inicial O método simplex

Leia mais

Optimização e Algoritmos (2004/2005)

Optimização e Algoritmos (2004/2005) Optimização e Algoritmos (2004/2005) Instituto Superior Técnico Engenharia Electrotécnica e de Computadores Série de Problemas 3 Regras de Armijo e Wolfe, Introdução às funções convexas Problema 1.[Regras

Leia mais

Prof. Daniela Barreiro Claro

Prof. Daniela Barreiro Claro O volume de dados está crescendo sem parar Gigabytes, Petabytes, etc. Dificuldade na descoberta do conhecimento Dados disponíveis x Análise dos Dados Dados disponíveis Analisar e compreender os dados 2

Leia mais

Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo:

Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo: Aula 5 5. Funções O conceito de função será o principal assunto tratado neste curso. Neste capítulo daremos algumas definições elementares, e consideraremos algumas das funções mais usadas na prática,

Leia mais

Curso C: Ponteiros e Arrays

Curso C: Ponteiros e Arrays Universidade de Brasília Departamento de Ciência da Computação Curso C: Ponteiros e Arrays Prof. Ricardo Pezzuol Jacobi rjacobi@cic.unb.br Ponteiros um ponteiro Ž uma vari vel que contžm o endere o um

Leia mais

SISTEMAS OPERACIONAIS. 3ª. Lista de Exercícios

SISTEMAS OPERACIONAIS. 3ª. Lista de Exercícios SISTEMAS OPERACIONAIS INF09344 - Sistemas Operacionais / INF02780 - Sistemas Operacionais / INF02828 - Sistemas de Programação II Prof a. Roberta Lima Gomes (soufes@gmail.com) 3ª. Lista de Exercícios Data

Leia mais

Algoritmos e Estruturas de Dados I. Variáveis Indexadas. Pedro O.S. Vaz de Melo

Algoritmos e Estruturas de Dados I. Variáveis Indexadas. Pedro O.S. Vaz de Melo Algoritmos e Estruturas de Dados I Variáveis Indexadas Pedro O.S. Vaz de Melo Por que índices são importantes? Como uma loja de sapatos artesanais deve guardar os seus produtos? 1 2 3 4 Tamanhos entre

Leia mais

Técnicas de Contagem I II III IV V VI

Técnicas de Contagem I II III IV V VI Técnicas de Contagem Exemplo Para a Copa do Mundo 24 países são divididos em seis grupos, com 4 países cada um. Supondo que a escolha do grupo de cada país é feita ao acaso, calcular a probabilidade de

Leia mais

QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES

QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE QUESTÃO 01 SUGESTÕES DE RESOLUÇÕES Descritor 11 Resolver problema envolvendo o cálculo de perímetro de figuras planas. Os itens referentes a

Leia mais

Graphing Basic no Excel 2007

Graphing Basic no Excel 2007 Graphing Basic no Excel 2007 Tabela de Conteúdos 1. Inserindo e formatando os dados no Excel 2. Criando o gráfico de dispersão inicial 3. Criando um gráfico de dispersão de dados de titulação 4. Adicionando

Leia mais

BCC402 Algoritmos e Programação Avançada. Prof. Marco Antonio M. Carvalho Prof. Túlio Ângelo M. Tóffolo 2011/1

BCC402 Algoritmos e Programação Avançada. Prof. Marco Antonio M. Carvalho Prof. Túlio Ângelo M. Tóffolo 2011/1 BCC402 Algoritmos e Programação Avançada Prof. Marco Antonio M. Carvalho Prof. Túlio Ângelo M. Tóffolo 2011/1 Introdução ao Curso 2 Carga horária semanal 2 aulas teóricas e 2 aulas práticas (ambas em laboratório)

Leia mais

1 O gráfico no plano cartesiano expressa a alta dos preços médios de televisores de tela plana e alta definição, do modelo LCD, full HD, 32

1 O gráfico no plano cartesiano expressa a alta dos preços médios de televisores de tela plana e alta definição, do modelo LCD, full HD, 32 1 O gráfico no plano cartesiano expressa a alta dos preços médios de televisores de tela plana e alta definição, do modelo LCD, full HD, 32 polegadas, antes da Copa do Mundo na África do Sul e sua queda

Leia mais

Conceito Básicos de Programação com Objetos Distribuídos. Programação com Objetos Distribuídos (C. Geyer) Conceitos de POD 1

Conceito Básicos de Programação com Objetos Distribuídos. Programação com Objetos Distribuídos (C. Geyer) Conceitos de POD 1 Conceito Básicos de Programação com Objetos Distribuídos Programação com Objetos Distribuídos (C. Geyer) Conceitos de POD 1 Autoria Autor C. Geyer Local Instituto de Informática UFRGS disciplina : Programação

Leia mais

Mobilidade: implicações económicas. Prof. João Confraria ( UCP )

Mobilidade: implicações económicas. Prof. João Confraria ( UCP ) Mobilidade Uma presença pervasiva no quotidiano das sociedades modernas 21 de Outubro de 2004 Hotel Le Meridien Mobilidade: implicações económicas Prof. João Confraria ( UCP ) Patrocínio Organização Mobilidade:

Leia mais

Modelo Entidade Relacionamento (MER) Professor : Esp. Hiarly Alves

Modelo Entidade Relacionamento (MER) Professor : Esp. Hiarly Alves Tópicos Apresentação Entidade, Atributo e Relacionamento Cardinalidade Representação simbólica Generalizações / Especializações Agregações Apresentação O Modelo Entidade-Relacionamento tem o objetivo de

Leia mais

LEITURA E ESCRITA FOTO NOME DESCRIÇÃO

LEITURA E ESCRITA FOTO NOME DESCRIÇÃO MATERIAL DE INTERVENÇÃO LEITURA E ESCRITA FOTO NOME DESCRIÇÃO 28,29 + IVA (23%) Loto Palavras e Animais Loto de 72 animais para trabalhar a associação de duas formas: imagem com imagem ou imagem com palavra.

Leia mais

EGEA ESAPL - IPVC. Resolução de Problemas de Programação Linear, com recurso ao Excel

EGEA ESAPL - IPVC. Resolução de Problemas de Programação Linear, com recurso ao Excel EGEA ESAPL - IPVC Resolução de Problemas de Programação Linear, com recurso ao Excel Os Suplementos do Excel Em primeiro lugar deverá certificar-se que tem o Excel preparado para resolver problemas de

Leia mais

AV2 - MA 12-2011 UMA SOLUÇÃO

AV2 - MA 12-2011 UMA SOLUÇÃO Questão 1. Considere os caminhos no plano iniciados no ponto (0, 0) com deslocamentos paralelos aos eixos coordenados, sempre de uma unidade e no sentido positivo dos eixos x e y (não se descarta a possibilidade

Leia mais

ALGORITMOS E COMPLEXIDADE PROBLEMAS E ALGORITMOS

ALGORITMOS E COMPLEXIDADE PROBLEMAS E ALGORITMOS ALGORITMOS E COMPLEXIDADE PROBLEMAS E ALGORITMOS Algoritmos e Complexidade 1 Plano Problemas e algoritmos. Estrutura de um algoritmo e dados manipulados. Métodos algorítmicos para resolução de problemas.

Leia mais

Olimpíada Brasileira de Raciocínio Lógico Nível III Fase II 2014

Olimpíada Brasileira de Raciocínio Lógico Nível III Fase II 2014 1 2 Questão 1 Um dado é feito com pontos colocados nas faces de um cubo, em correspondência com os números de 1 a 6, de tal maneira que somados os pontos que ficam em cada par de faces opostas é sempre

Leia mais

MANUAL DO USUÁRIO - Basquete Duplo Instruções de Montagem

MANUAL DO USUÁRIO - Basquete Duplo Instruções de Montagem MANUAL DO USUÁRIO - Basquete Duplo Instruções de Montagem Por favor, contate-nos antes de retornar o produto à loja: (19) 3573-8999. Garantia Limite de 90 dias Este produto tem garantia de até 90 dias

Leia mais

Aula 03. Processadores. Prof. Ricardo Palma

Aula 03. Processadores. Prof. Ricardo Palma Aula 03 Processadores Prof. Ricardo Palma Definição O processador é a parte mais fundamental para o funcionamento de um computador. Processadores são circuitos digitais que realizam operações como: cópia

Leia mais

FÍSICA EXPERIMENTAL 3001

FÍSICA EXPERIMENTAL 3001 FÍSICA EXPERIMENTAL 3001 EXPERIÊNCIA 1 CIRCUITO RLC EM CORRENTE ALTERNADA 1. OBJETIOS 1.1. Objetivo Geral Apresentar aos acadêmicos um circuito elétrico ressonante, o qual apresenta um máximo de corrente

Leia mais

Análise Qualitativa no Gerenciamento de Riscos de Projetos

Análise Qualitativa no Gerenciamento de Riscos de Projetos Análise Qualitativa no Gerenciamento de Riscos de Projetos Olá Gerente de Projeto. Nos artigos anteriores descrevemos um breve histórico sobre a história e contextualização dos riscos, tanto na vida real

Leia mais

Curso de Formação de Oficiais Conhecimentos Específicos ENGENHARIA DE COMPUTAÇÃO CADERNO DE QUESTÕES

Curso de Formação de Oficiais Conhecimentos Específicos ENGENHARIA DE COMPUTAÇÃO CADERNO DE QUESTÕES Curso de Formação de Oficiais Conhecimentos Específicos ENGENHARIA DE COMPUTAÇÃO CADERNO DE QUESTÕES 2014 1 a QUESTÃO Valor: 1,00 a) (0,30) Defina gramáticas livre de contexto. b) (0,30) Crie uma gramática

Leia mais

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de primeiro grau Introdução Equação é toda sentença matemática aberta que exprime

Leia mais

TESTES SOCIOMÉTRICOS

TESTES SOCIOMÉTRICOS TESTES SOCIOMÉTRICOS Docente: Mestre Mª João Marques da Silva Picão Oliveira TESTES SOCIOMÉTRICOS * O Teste Sociométrico ajuda-nos a avaliar o grau de integração duma criança/jovem no grupo; a descobrir

Leia mais

MANUAL DO AVALIADOR O que é uma Feira de Ciência? Por que avaliar os trabalhos? Como os avaliadores devem proceder?

MANUAL DO AVALIADOR O que é uma Feira de Ciência? Por que avaliar os trabalhos? Como os avaliadores devem proceder? MANUAL DO AVALIADOR O que é uma Feira de Ciência? É uma exposição que divulga os resultados de experimentos ou de levantamentos realizados, com rigor científico, por alunos, sob a orientação de um professor.

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

1 se n = 0 n (n 1)! se n 1

1 se n = 0 n (n 1)! se n 1 Recursão versus Iteração Problema: Cálculo de n! = n (n 1)... 1 int facti(int n) { int fac=n; while(n>0){ fac=fac*n; n--; } return fac; } [epd94, Cap. 5.13-15] Definição recursiva: n! = { 1 se n = 0 n

Leia mais

Prova de Fundamentos de Bancos de Dados 2003/2 Prova 1

Prova de Fundamentos de Bancos de Dados 2003/2 Prova 1 Prova de Fundamentos de Bancos de Dados 2003/2 Prova 1 Prof. Carlos A. Heuser 28 de novembro de 2003 Duração: 2 horas Prova com consulta 1. Uma empresa de montagem de computadores pessoais deseja construir

Leia mais

COBRANÇA BANCÁRIA CAIXA

COBRANÇA BANCÁRIA CAIXA COBRANÇA BANCÁRIA CAIXA ESPECIFICAÇÃO DE CÓDIGO DE BARRAS PARA BLOQUETOS DE COBRANÇA COBRANÇAS RÁPIDA E SEM REGISTRO GESER NOVEMBRO/2000 ÍNDICE PÁGINA 1 INTRODUÇÃO... 3 2 ESPECIFICAÇÕES...4 2.1 FORMATO......

Leia mais

Tipos de problemas de programação inteira (PI) Programação Inteira. Abordagem para solução de problemas de PI. Programação inteira

Tipos de problemas de programação inteira (PI) Programação Inteira. Abordagem para solução de problemas de PI. Programação inteira Tipos de problemas de programação inteira (PI) Programação Inteira Pesquisa Operacional I Flávio Fogliatto Puros - todas as variáveis de decisão são inteiras Mistos - algumas variáveis de decisão são inteiras

Leia mais

Contextualização Pesquisa Operacional - Unidade de Conteúdo II

Contextualização Pesquisa Operacional - Unidade de Conteúdo II Contextualização Pesquisa Operacional - Unidade de Conteúdo II O tópico contextualização visa vincular o conhecimento acerca do tema abordado, à sua origem e à sua aplicação. Você encontrará aqui as ideias

Leia mais

Jogos de Tabuleiro e Busca Competitiva

Jogos de Tabuleiro e Busca Competitiva Jogos de Tabuleiro e Busca Competitiva Fabrício Jailson Barth Curso de Ciência da Computação Centro Universitário SENAC Maio de 2008 Sumário Características e Exemplos Histórico Árvore de busca Avaliação

Leia mais

Arquitecturas de Software Enunciado de Projecto 2007 2008

Arquitecturas de Software Enunciado de Projecto 2007 2008 UNIVERSIDADE TÉCNICA DE LISBOA INSTITUTO SUPERIOR TÉCNICO Arquitecturas de Software Enunciado de Projecto 2007 2008 1 Introdução Na primeira metade da década de 90 começaram a ser desenvolvidas as primeiras

Leia mais

Análise de Algoritmos

Análise de Algoritmos Análise de Algoritmos Profa. Sheila Morais de Almeida DAINF-UTFPR-PG março - 2016 A invariante de laço pode ser definida como uma relação entre as variáveis de um algoritmo que é verdadeira em um determinado

Leia mais

I. Conjunto Elemento Pertinência

I. Conjunto Elemento Pertinência TEORI DOS CONJUNTOS I. Conjunto Elemento Pertinência Conjunto, elemento e pertinência são três noções aceitas sem definição, ou seja, são noções primitivas. idéia de conjunto é praticamente a mesma que

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada. antunes@ibilce.unesp.br, socorro@ibilce.unesp.

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada. antunes@ibilce.unesp.br, socorro@ibilce.unesp. Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br Grafos e Algoritmos Preparado a partir do texto: Rangel, Socorro.

Leia mais

Auxiliar em Administração de Redes Redes de Computadores I

Auxiliar em Administração de Redes Redes de Computadores I Prof. Diego Pereira Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte Campus Currais Novos Auxiliar em Administração de Redes Redes de Computadores

Leia mais

Planejamento - 2. Definição de atividades Sequenciamento das atividades. Mauricio Lyra, PMP

Planejamento - 2. Definição de atividades Sequenciamento das atividades. Mauricio Lyra, PMP Planejamento - 2 Definição de atividades Sequenciamento das atividades 1 6.1 Definir as atividades 1 Lista das atividades A lista das atividades é uma lista abrangente que inclui todas as atividades necessárias

Leia mais

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADES 1 1. VARIÁVEIS ALEATÓRIAS Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações

Leia mais

Banco de Dados I. Prof. Edson Thizon ethizon@bol.com.br

Banco de Dados I. Prof. Edson Thizon ethizon@bol.com.br Banco de Dados I Prof. Edson Thizon ethizon@bol.com.br Conceitos Dados Fatos conhecidos que podem ser registrados e que possuem significado implícito Banco de dados (BD) Conjunto de dados interrelacionados

Leia mais

Fundamentos de Bancos de Dados 3 a Prova Caderno de Questões

Fundamentos de Bancos de Dados 3 a Prova Caderno de Questões Fundamentos de Bancos de Dados 3 a Prova Caderno de Questões Prof. Carlos A. Heuser Dezembro de 2009 Duração: 2 horas Prova com consulta Questão 1 (Construção de modelo ER) Deseja-se projetar a base de

Leia mais

REGRAS DAS PROVAS RELÂMPAGO

REGRAS DAS PROVAS RELÂMPAGO REGRAS DAS PROVAS RELÂMPAGO BALÃO Cada equipe apresentará um componente para esta prova. Os participantes deverão soprar o balão até estourar. Será estabelecida a ordem de classificação pelo tempo de estouro

Leia mais

Modelo Lógico: Tabelas, Chaves Primárias e Estrangeiras

Modelo Lógico: Tabelas, Chaves Primárias e Estrangeiras Modelo Lógico: Tabelas, Chaves Primárias e Estrangeiras Apresentar a próxima etapa da modelagem de dados: o modelo lógico e os conceitos de tabelas, chaves primárias e estrangeiras e como o banco de dados

Leia mais

Lista de Exercícios 5: Soluções Teoria dos Conjuntos

Lista de Exercícios 5: Soluções Teoria dos Conjuntos UFMG/ICEx/DCC DCC Matemática Discreta Lista de Exercícios 5: Soluções Teoria dos Conjuntos Ciências Exatas & Engenharias 2 o Semestre de 206. Escreva uma negação para a seguinte afirmação: conjuntos A,

Leia mais

INF 1010 Estruturas de Dados Avançadas

INF 1010 Estruturas de Dados Avançadas 11.2 INF 1010 Estruturas de Dados Avançadas Listas de Prioridades e Heaps 1 Listas de Prioridades Em muitas aplicações, dados de uma coleção são acessados por ordem de prioridade A prioridade associada

Leia mais

ASPECTOS CONSTRUTIVOS DE ROBÔS

ASPECTOS CONSTRUTIVOS DE ROBÔS ASPECTOS CONSTRUTIVOS DE ROBÔS Tipos de robôs Classificação de robôs Definições importantes: O arranjo das hastes e juntas em um braço manipulador tem um importante efeito nos graus de liberdade da ferramenta

Leia mais

Resoluções A. Combinatória 1 3 os anos Blaidi/Walter Ago/09. Nome: Nº: Turma:

Resoluções A. Combinatória 1 3 os anos Blaidi/Walter Ago/09. Nome: Nº: Turma: Matemática Resoluções A. Combinatória 3 os anos Blaidi/Walter Ago/09 Nome: Nº: Turma: Prezadísssimos alunos e alunas, Neste bimestre, aprenderemos a resolver questões de análise combinatória com o auílio

Leia mais

Aula 10: Escalonamento da CPU

Aula 10: Escalonamento da CPU Aula 10: Escalonamento da CPU O escalonamento da CPU é a base dos sistemas operacionais multiprogramados. A partir da redistribuição da CPU entre processos, o sistema operacional pode tornar o computador

Leia mais

Árvores Parte 1. Aleardo Manacero Jr. DCCE/UNESP Grupo de Sistemas Paralelos e Distribuídos

Árvores Parte 1. Aleardo Manacero Jr. DCCE/UNESP Grupo de Sistemas Paralelos e Distribuídos Árvores Parte 1 Aleardo Manacero Jr. DCCE/UNESP Grupo de Sistemas Paralelos e Distribuídos Árvores uma introdução As listas apresentadas na aula anterior formam um conjunto de TADs extremamente importante

Leia mais

Comissão avalia o impacto do financiamento para as regiões e lança um debate sobre a próxima ronda da política de coesão

Comissão avalia o impacto do financiamento para as regiões e lança um debate sobre a próxima ronda da política de coesão IP/07/721 Bruxelas, 30 de Maio de 2007 Comissão avalia o impacto do financiamento para as regiões e lança um debate sobre a próxima ronda da política de coesão A política de coesão teve um efeito comprovado

Leia mais

Módulo 1 - Mês 1- Aula 3

Módulo 1 - Mês 1- Aula 3 PLANEJAMENTO BÁSICO Módulo 1 - Mês 1- Aula 3 PLANEJAMENTO BÁSICO Como construir renda estável em cada etapa 1. Etapas de Faturamento Para construir um rendimento estável, existe uma ordem a seguir. Na

Leia mais

Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005.1. Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005.

Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005.1. Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005. Agenda Análise e Técnicas de Algoritmos Jorge Figueiredo Conceitos básicos Classes de de Complexidade P NP Redução Problemas NPC NP-Completude Introdução Existem alguns problemas computacionais que são

Leia mais

BEM VINDOS ALUNOS DA GRADUAÇÃ ÇÃO. GESTÃO INTEGRADA PESSOAS E SISTEMAS DE INFORMAÇÃ ÇÃO O QUE O MUNDO TEM A VER COM MARKETING?

BEM VINDOS ALUNOS DA GRADUAÇÃ ÇÃO. GESTÃO INTEGRADA PESSOAS E SISTEMAS DE INFORMAÇÃ ÇÃO O QUE O MUNDO TEM A VER COM MARKETING? BEM VINDOS ALUNOS DA TURMA DE PÓS-GRADUA P GRADUAÇÃ ÇÃO. GESTÃO INTEGRADA PESSOAS E SISTEMAS DE INFORMAÇÃ ÇÃO PROF. PAULO NETO FIB - 2011 O QUE O MUNDO TEM A VER COM MARKETING? O QUE EU TENHO A VER COM

Leia mais

Engenharia de Software II

Engenharia de Software II Engenharia de Software II Aula 26 http://www.ic.uff.br/~bianca/engsoft2/ Aula 26-21/07/2006 1 Ementa Processos de desenvolvimento de software Estratégias e técnicas de teste de software Métricas para software

Leia mais

NavegadorContábil. Sim. Não. Sim. Não. Número 13-20 de agosto de 2010. Contabilização de operações de duplicata descontada e vendor

NavegadorContábil. Sim. Não. Sim. Não. Número 13-20 de agosto de 2010. Contabilização de operações de duplicata descontada e vendor NavegadorContábil Número 13-20 de agosto de 2010 Contabilização de operações de duplicata descontada e vendor Introdução Muitas empresas no Brasil, na administração de seu capital de giro, fazem uso de

Leia mais

Estruturas de Repetição

Estruturas de Repetição Estruturas de Repetição Lista de Exercícios - 04 Algoritmos e Linguagens de Programação Professor: Edwar Saliba Júnior Estruturas de Repetição O que são e para que servem? São comandos que são utilizados

Leia mais

ORIENTAÇÕES PARA ELABORAÇÃO DE RELATÓRIO DE CONCLUSÃO DE ESTÁGIO

ORIENTAÇÕES PARA ELABORAÇÃO DE RELATÓRIO DE CONCLUSÃO DE ESTÁGIO Prefeitura da Cidade do Rio de Janeiro Secretaria Municipal de Saúde e Defesa Civil Subsecretaria de Gestão Coordenadoria de Gestão de Pessoas Coordenação de Desenvolvimento Pessoal Gerência de Desenvolvimento

Leia mais

MÓDULO 2 Topologias de Redes

MÓDULO 2 Topologias de Redes MÓDULO 2 Topologias de Redes As redes de computadores de modo geral estão presentes em nosso dia adia, estamos tão acostumados a utilizá las que não nos damos conta da sofisticação e complexidade da estrutura,

Leia mais

Lógica e Raciocínio. Decisão sob Risco Utilidade. Universidade da Madeira. http://dme.uma.pt/edu/ler/

Lógica e Raciocínio. Decisão sob Risco Utilidade. Universidade da Madeira. http://dme.uma.pt/edu/ler/ Lógica e Raciocínio Universidade da Madeira http://dme.uma.pt/edu/ler/ Decisão sob Risco Utilidade 1 Valor Monetário Esperado Assumamos que sempre podemos medir o valor das consequencias em termos monetarios

Leia mais