14.1 Linguagens decidíveis ou Turing reconhecíveis

Tamanho: px
Começar a partir da página:

Download "14.1 Linguagens decidíveis ou Turing reconhecíveis"

Transcrição

1 Linguagens decidíveis ou Turing reconhecíveis Problemas decidíveis para Linguagens Regulares Teorema Seja A linguagem A DFA é decidível A DFA = {A : A é um DFA e aceita } Dem Basta mostrar como construir um decisor para A DFA Input: A com A DFA e palavra Computabilidade i) Simula A com input ii) Se A aceitar, para e aceita Se A não aceitar, para e rejeita De facto a escrita de é bastante simples Tem que verificar se as descrições que recebe de A e são bem formadas, caso contrário rejeita Para simular A tem somente que manter o estado em que a simulação de A se encontra e à medida que lê os símbolos de proceder como descreve a função de transição de A Quando a leitura de termina, se o estado resultante constar da lista de estados finais, aceita, e rejeita no caso contrário Teorema Seja A linguagem A NFA é decidível Draft-v0 Dem O decisor de A NFA pode ser descrito como A NFA = {A : A é um NFA e aceita } Input: A com A NFA e palavra i) Transforma A num DFA A ii) Simula A com input iii) Se A aceitar, para e aceita Se A não aceitar, para e rejeita

2 Teorema Seja A linguagem A REX é decidível Teorema Seja A linguagem E DFA é decidível A REX = {α : α é uma expressão regular e (α)} E DFA = {A : A é DFA e (A) = } Dem Podemos construir a T que decide E DFA que percorre, com uma descida em largura, todos os estados de A, da seguinte forma Teorema Seja Input: A com A DFA i) arca o estado inicial de A ii) Repete até ao processo não marcar mais estados: iii) arca qualquer estado que ainda não tenha sido marcado e que tenha uma transição vinda de um estado já marcado iv) Se nenhum estado final tiver sido marcado, aceita Caso contrário, rejeita A linguagem EQ DFA é decidível EQ DFA = {A B : A e BDFA e (A) =(B)} Dem Como a classe das linguagens regulares é fechada para o complemento e intersecção, também é fechada para a diferença simétrica Ora, duas linguagens são iguais se e só se a sua diferença simétrica é vazia Assim, podemos substituir a condição (A) =(B) por (A) (B) (B) (A) = Draft-v0 Podemos, então definir a T que decide EQ DFA da seguinte forma Input: A B com A e B DFA i) Calcula o DFA C que representa (A) (B) (B) (A) ii) Devolve a resposta do decisor de E DFA aplicado a C Problemas decidíveis para CFL Teorema Seja A CFG = {G : G é CFG e (G)} 8

3 A linguagem A CFG é decidível Dem Um decisor para A CFG pode ser definido como a seguinte T S S Teorema Seja A linguagem E CFG é decidível Input: G com G CFG e palavra i) Converte G numa gramática equivalente G mas na forma normal de Chowmsky ii) Listam-se todas as derivações de G com passos, sendo o tamanho de iii) Se alguma destas derivações gera, aceita Caso contrário, rejeita E CFG = {G : G é CFG e (G) = } Dem Podemos construir uma T R que decide E CFG da forma seguinte R Input: G com G CFG i) arca todos os símbolos terminais ii) Repete até ao processo não marcar mais símbolos: iii) arca qualquer símbolo não terminal A com regra A U U U se todos os símbolos U U U já estiverem marcados iv) Se o símbolo inicial estiver marcado, rejeita Caso contrário, aceita Um problema Turing reconhecível para T Teorema 8 Seja Draft-v0 A linguagem A T é Turing reconhecível A T = {< >: éte ()} Dem Basta ver que a seguinte T U reconhece A T U Input: com T e palavra i) Executa com input ii) Se aceitar, aceita Caso contrário, rejeita A T U da demonstração do teorema anterior, não é particularmente complicada de entender No entanto é uma T muito interessante A máquina U recebe uma descrição de uma outra máquina de 9

4 Turing,, assim como de um seu input,, e simula o funcionamento da máquina com o input À máquina U chamamos normalmente áquina de Turing Universal e esta desempenhará um papel de importância em alguns resultados futuros Problema Considera o DFA representado pelo diagrama seguinte: 000 A DFA? 0 A DFA? A DFA? 000 A REX? E DFA? EQ DFA? 0 Problema Seja ALL DFA = {A : A é DFA e (A) =Σ } ostrar que ALL DFA é decidível Problema Seja Aε CFG = {G : G é CFG e ε (G)} ostrar que Aε CFG é decidível 0 Problema Seja E T = { : é uma T e () = } ostar que E T é Turing reconhecível Problema 8 Seja S = : um DFA tal que () R () ostrar que S é decidível Problema 9 Seja PREFIX FREE REX = {R : expressão regular e (R) livre de prefixos} ostrar que PREFIX FREE REX é decidível Problema 80 Seja C uma linguagem ostrar que C é Turing reconhecível se e só se existe uma linguagem decidível D tal que C = { : D} Indecidibildade O argumento diagonal de Cantor Quando tratamos de conjuntos finitos, a comparação de cardinalidades não é um problema complicado, mas o caso muda de figura quando tratamos de conjuntos infinitos Para termos um significado claro de cardinalidade definimo-la como a seguir Dois conjuntos A e B dizem-se equipotentes (ou equicardinais) se existir uma bijecção : A B Claro que se tivermos uma função injectiva : A B podemos garantir que A B A um conjunto que seja equipotente com o conjunto dos números naturais N dizemos que é numerável Estamos, pois, em condições de enunciar os seguintes resultados sobre cardinalidade de alguns conjuntos infinitos 0 Draft-v0 Teorema 9 O conjunto Z é numerável Dem Para tal provar basta considerar a seguinte função : Z N 0 0 se >0 se <0 A função é trivialmente uma bijecção, pelo que N = Z 0

5 Teorema 0 O conjunto Q é numerável Dem Como N Q temos que N Q ostremos que há uma função injectiva : Q + N Podemos inscrever todos os elementos de Q + numa tabela dispostos como se ilustra a seguir Podemos percorrer todos os racionais positivos como ilustra a linha a tracejado Isso constitui uma sucessão de valores racionais ( ) N que cobre todos os naturais positivos Tomemos então () = { : = } A função é trivialmente injectiva, pelo que Q + = N Agora basta mostrar que Q N usando a bijecção : Q N Teorema O conjunto R não é numerável 0 0 (() + ) se 0; (() + ) + se <0 Draft-v0 Dem ostremos que o intervalo [0 [ R não é numerável, o que é suficiente para garantir que R também não o é Para isso suponhamos, por absurdo, que [0 [ era numerável Então existiria uma função bijectiva : [0 [ N Como a função é bijectiva faz sentido falar em e podemos imaginar a tabela das imagens recíprocas dos sucessivos elementos de N Para simplificar vamos supor os valores de expressos em binário () Podemos mostrar que esta função não pode ser bijectiva encontrando um elemento de [0 [ que não seja imagem recíproca por de nenhum natural Para tal definamos como o numero cujos bits são da seguinte forma: o -ésimo bit é o complementar do -ésimo bit da imagem recíproca

6 por de Se ocorresse na tabela, digamos na posição, qual seria o valor do seu -ésimo bit? Deveria ser o complementar do que se encontra na tabela, ou seja, complementar de si próprio, o que é, evidentemente, absurdo Portanto não pode ser uma bijecção e R [0 [ > N Logo R não é numerável Estamos agora em condições de mostrar que nem as máquinas de Turing representam todas as linguagens existentes Teorema Há linguagens não Turing reconhecíveis Dem Vamos primeiro mostrar que o conjunto de todas as T é numerável Para isso notemos que, seja qual for o alfabeto Σ, Σ é numerável O facto é evidente, basta observar a seguinte função injectiva :Σ N Suponhamos que Σ = então façamos corresponder a cada caracter σ de Σ um diferente valor (σ) em { +} Façamos (ε) =0e(), com Σ +, igual ao valor de transformando cada símbolo pela função e interpretando o resultado como um número expresso em base + A função é trivialmente injectiva, pelo que Σ N Para a desigualdade contrária basta tomar σ Σ e a função : N Σ, com () =σ Portanto Σ é numerável Uma T pode ser representada por uma palavra que descreva completamente os seus elementos constituintes Como o conjunto de estados de uma T é finito, e os alfabetos nela intervenientes também o são (por definição de alfabeto), a descrição da sua função de transição assim como dos demais elementos constituem uma palavra (de tamanho finito) para algum alfabeto Σ Portanto as palavras de tal alfabeto representam todas as possíveis representações de T, e portanto o conjunto de todas as T é numerável Seja Σ um alfabeto, vimos que Σ é numerável Uma linguagem com o alfabeto Σ é um qualquer conjunto de palavras de Σ Suponhamos, por absurdo, que o conjunto das linguagens de alfabeto Σ é numerável Então haveria uma bijecção entre N e o conjunto das linguagens com tal alfabeto Enumeremos todas as palavras de tal alfabeto (o conjunto é numerável) como 0 Podemos então imaginar uma tabela que lista todas as linguagens, com a ordem dada pela bijecção, com a informação de que palavras pertencem a cada uma Construamos, usando o argumento diagonal de Cantor, uma linguagem que não pode ocorrer na tabela, e que portanto mostra que não é bijecção Seja L = { : N / ()} Se L estivesse na tabela, ou seja se L fosse imagem de algum natural, o que se poderia dizer acerca da palavra? (0) sim sim não não () sim não sim sim () sim sim não sim () não sim sim? Draft-v0 O absurdo resulta da suposição da existência da bijecção, pelo que o conjunto das linguagens de alfabeto Σ não é numerável Portanto existe pelo menos uma palavra que não é reconhecida por qualquer máquina de Turing Uma primeira linguagem indecidível Teorema A linguagem A T é indecidível Dem Suponhamos, por absurdo, que A T é decidível Seja H a T que decide A T H Input: com T e palavra i) Se aceita, aceita ii) Caso contrário, rejeita

7 Construamos uma outra T D que usa H, mas de forma um pouco diferente Uma descrição de uma T pode ser visto como uma palavra como outra qualquer Portanto faz sentido dar como input a uma máquina de Turing a descrição de uma outra máquina D Input:, com T i) Se H com input aceita, então rejeita ii) Se H com input rejeita, então aceita Resumindo, aceita D() rejeita se não aceita se aceita as o que acontece se executarmos D com input D? aceita se D(D) não aceita, D(D) rejeita se D(D) aceita ATD é, portanto, um objecto paradoxal, que não pode existir O absurdo resultou de se ter suposto a existência de H, ou seja que A T era decidível A demonstração da inexistência de D pode mais uma vez ser visto como uma instância do argumento diagonal Podemos imaginar uma tabela com o comportamento de todas as T quando lhes é dado como input a descrição de uma outra T A T D é definida como, quando com input, tendo o comportamento complementar à T () O absurdo resulta quando queremos averiguar qual o comportamento de D quando tem o input D, pois nesse caso o comportamento de D(D) está definido como o complementar de D(D) Draft-v0

Draft-v0.1. Máquinas de Turing Máquinas de Turing

Draft-v0.1. Máquinas de Turing Máquinas de Turing 13 Máquinas de Turing A necessidade de formalizar os processos algorítmicos levou, nas décadas 20 e 30 do século XX, a diversos estudos, entre os quais os de Post, Church e Turing, com vista a estudo formal

Leia mais

Teoria da Computação 19 de Abril de 2017 Teste 1A Duração: 1h30

Teoria da Computação 19 de Abril de 2017 Teste 1A Duração: 1h30 19 de Abril de 2017 Teste 1A Duração: 1h30 Construa uma máquina de Turing que calcule a função que a cada natural n N 0 faz corresponder n 2. Deverá usar notação unária para os naturais. Apresente apenas

Leia mais

Decidibilidade. Mário S. Alvim Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02)

Decidibilidade. Mário S. Alvim Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02) Decidibilidade Mário S Alvim (msalvim@dccufmgbr) Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02) Mário S Alvim (msalvim@dccufmgbr) Decidibilidade DCC-UFMG (2018/02) 1 / 45 Decidibilidade:

Leia mais

LINGUAGENS FORMAIS E AUTÔMATOS

LINGUAGENS FORMAIS E AUTÔMATOS LINGUAGENS FORMAIS E AUTÔMATOS O objetivo deste curso é formalizar a idéia de linguagem e definir os tipos de sintaxe e semântica. Para cada sintaxe, analisamos autômatos, ue são abstrações de algoritmos.

Leia mais

Problemas Computáveis

Problemas Computáveis Indecidibilidade Problemas Computáveis Máquinas de Turing ou Problemas Computáveis ou Linguagens Recursivamente Enumeráveis LER (*) podem ser divididas em 2 classes: as MT que sempre param (Algoritmos),

Leia mais

Linguagem Universal. assim como a entrada ser processada por a. (b) A segunda fita de representa a fita de

Linguagem Universal. assim como a entrada ser processada por a. (b) A segunda fita de representa a fita de Linguagem Universal 1. Uma máquina de Turing representa um PC? Ou representa um possível problema que um PC pode resolver? 2. Uma máquina de Turing pode ser utilizada para simular uma de Turing máquina.

Leia mais

Capítulo 8: O problema da parada. Decidibilidade e computabilidade. José Lucas Rangel Introdução.

Capítulo 8: O problema da parada. Decidibilidade e computabilidade. José Lucas Rangel Introdução. Capítulo 8: O problema da parada. Decidibilidade e computabilidade. José Lucas Rangel 8.1 - Introdução. Como observado no capítulo anterior, podemos substituir a definição informal de procedimento pela

Leia mais

Capítulo 9: Linguagens sensíveis ao contexto e autômatos linearmente limitados.

Capítulo 9: Linguagens sensíveis ao contexto e autômatos linearmente limitados. Capítulo 9: Linguagens sensíveis ao contexto e autômatos linearmente limitados. José Lucas Rangel 9.1 - Introdução. Como já vimos anteriormente, a classe das linguagens sensíveis ao contexto (lsc) é uma

Leia mais

Universidade Federal de Uberlândia Mestrado em Ciência da Computação

Universidade Federal de Uberlândia Mestrado em Ciência da Computação Universidade Federal de Uberlândia Mestrado em Ciência da Computação Solução da 1 a Prova de Teoria da Computação - 05/05/2010 Questão 1 (Valor = 7 pontos) Um número real é dito algébrico se é raiz de

Leia mais

Teoria da Computação 12 de Abril de 2018 Teste 1A Duração: 1h30

Teoria da Computação 12 de Abril de 2018 Teste 1A Duração: 1h30 12 de Abril de 2018 Teste 1A Duração: 1h30 que reconheça a linguagem constituída pelas palavras da forma x $ y com x, y {0, 1} tais que x = 3 y, onde os valores são tomados em representação binária. Por

Leia mais

Computabilidade e Complexidade (ENG10014)

Computabilidade e Complexidade (ENG10014) Sistemas de Informação Computabilidade e Complexidade (ENG10014) Profa. Juliana Pinheiro Campos E-mail: jupcampos@gmail.com Decidibilidade O estudo da decidibilidade objetiva determinar a solucionabilidade

Leia mais

Faculdade de Computação

Faculdade de Computação UNIVERSIDADE FEDERAL DE UBERLÂNDIA Faculdade de Computação Disciplina : Teoria da Computação Professora : Sandra de Amo Solução da Lista de Exercícios n o 8 - Indecidibilidade Exercicio 1-5.5 do Livro

Leia mais

Aula 10: Decidibilidade

Aula 10: Decidibilidade Teoria da Computação Aula 10: Decidibilidade DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 10.1. Um problema de decisão P é um conjunto de questões para as quais as respostas são sim ou não. Exemplo

Leia mais

Aula 10: Decidibilidade

Aula 10: Decidibilidade Teoria da Computação Segundo Semestre, 2014 Aula 10: Decidibilidade DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 10.1. Um problema de decisão P é um conjunto de questões para as quais as respostas

Leia mais

Modelos de Computação Folha de trabalho n. 10

Modelos de Computação Folha de trabalho n. 10 Modelos de Computação Folha de trabalho n. 10 Nota: Os exercícios obrigatórios marcados de A a D constituem os problemas que devem ser resolvidos individualmente. A resolução em papel deverá ser depositada

Leia mais

Máquinas Universais. Departamento de Ciência de Computadores da FCUP MC Aula 23 1

Máquinas Universais. Departamento de Ciência de Computadores da FCUP MC Aula 23 1 Máquinas Universais Um modelo de computação diz-se universal se todo o problema efectivamente computável o for nesse modelo. Um modelo universal é suficientemente poderoso para se aceitar a si próprio:

Leia mais

Redutibilidade. Mário S. Alvim Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02)

Redutibilidade. Mário S. Alvim Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02) Redutibilidade Mário S. Alvim (msalvim@dcc.ufmg.br) Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02) Mário S. Alvim (msalvim@dcc.ufmg.br) Redutibilidade DCC-UFMG (2018/02) 1 / 46 Redutibilidade:

Leia mais

ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO. Aula 18. Cap O Problema da Parada

ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO. Aula 18. Cap O Problema da Parada ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO Aula 18 Cap 4.2 - O Problema da Parada Profa. Ariane Machado Lima ariane.machado@usp.br 1 Nas últimas aulas Tese de Church-Turing Problemas computacionais descritos

Leia mais

printing problem: dado um programa e um valor arbitrários, o problema de determinar se sim ou não se vai obter como output do programa esse valor;

printing problem: dado um programa e um valor arbitrários, o problema de determinar se sim ou não se vai obter como output do programa esse valor; 1 Introdução 1 No texto que se segue vão ser apresentados resultados sobre não decidibilidade de alguns predicados (sobre os naturais). Para certos predicados vai ser apresentada uma prova de que não é

Leia mais

Teoria da Computação 27 de Maio de 2015 Teste 2A Duração: 1h30

Teoria da Computação 27 de Maio de 2015 Teste 2A Duração: 1h30 Instituto Superior Técnico Lic. Engenharia Informática e de Computadores (Alameda) Teoria da Computação 27 de Maio de 2015 Teste 2A Duração: 1h30 Grupo I (3+1+3 valores) Considere as linguagens P A = {M

Leia mais

Linguagens recursivamente enumeráveis

Linguagens recursivamente enumeráveis Linguagens recursivamente enumeráveis Uma palavra x Σ é aceite por uma máquina de Turing M ( x L(M)) se M iniciando com a palavra x na fita e no estado inicial, pára num estado final. Caso contrário, M

Leia mais

S. C. Coutinho. Máquina de Turing Universal p. 1/22

S. C. Coutinho. Máquina de Turing Universal p. 1/22 Máquina de Turing Universal S. C. Coutinho Máquina de Turing Universal p. 1/22 Objetivo Descrever uma máquina de Turing U, capaz de simular qualquer outra máquina de Turing M. Para isto a máquina deve

Leia mais

COMPUTABILIDADE 2. Indecidibilidade

COMPUTABILIDADE 2. Indecidibilidade Licenciatura em Ciências da Computação COMPUTABILIDADE 2. Indecidibilidade José Carlos Costa Dep. Matemática e Aplicações Universidade do Minho 15 de Novembro de 2011 José Carlos Costa DMA-UMinho 15 de

Leia mais

Matemática I. 1 Propriedades dos números reais

Matemática I. 1 Propriedades dos números reais Matemática I 1 Propriedades dos números reais O conjunto R dos números reais satisfaz algumas propriedades fundamentais: dados quaisquer x, y R, estão definidos a soma x + y e produto xy e tem-se 1 x +

Leia mais

Vamos estudar neste capítulo algumas características da classe das linguagens regulares sobre um alfabeto. Entre elas salientámos:

Vamos estudar neste capítulo algumas características da classe das linguagens regulares sobre um alfabeto. Entre elas salientámos: 5 Propriedades de LR Vamos estudar neste capítulo algumas características da classe das linguagens regulares sobre um alfabeto. Entre elas salientámos: São fechadas para determinas operações sobre linguagens:

Leia mais

Primeira Lista de Exercícios 2005/1... Exercício 1 Desenhe Diagrama de Estados para Máquinas que Decidem as Linguagens:

Primeira Lista de Exercícios 2005/1... Exercício 1 Desenhe Diagrama de Estados para Máquinas que Decidem as Linguagens: UFLA Universidade Federal de Lavras Departamento de Ciência da Computação COM167 Teoria da Computação Prof. Rudini Sampaio Monitor: Rodrigo Pereira dos Santos Primeira Lista de Exercícios 2005/1 Exercício

Leia mais

Teoria da Computação 31 de Maio de 2017 Teste 2A Duração: 1h30

Teoria da Computação 31 de Maio de 2017 Teste 2A Duração: 1h30 31 de Maio de 2017 Teste 2A Duração: 1h30 Seja Σ um alfabeto. Considere as seguintes linguagens: L 1 = {M M : M é máquina classificadora}, L 2 = {M M : L ac (M) = Σ }. a) Use o teorema de Rice para demonstrar

Leia mais

Melhores momentos AULA PASSADA. Complexidade Computacional p. 136

Melhores momentos AULA PASSADA. Complexidade Computacional p. 136 Melhores momentos AULA PASSADA Complexidade Computacional p. 136 Configurações controle q 7 cabeça 1 0 1 1 0 1 1 1 fita de leitura e escrita Configuração 1 0 1q 7 1 0 1 1 1 Complexidade Computacional p.

Leia mais

Segunda Lista de Exercícios 2004/2...

Segunda Lista de Exercícios 2004/2... + + UFLA Universidade Federal de Lavras Departamento de Ciência da Computação COM162 Linguagens Formais e Autômatos Prof. Rudini Sampaio Monitor: Rodrigo Pereira dos Santos Segunda Lista de Exercícios

Leia mais

Marcos Castilho. DInf/UFPR. 16 de maio de 2019

Marcos Castilho. DInf/UFPR. 16 de maio de 2019 16 de maio de 2019 Motivação Quais são os limites da computação? O que é um Problema de decisão? Um problema de decisão é um conjunto de perguntas, cada uma das quais tem um SIM ou um NÃO como resposta.

Leia mais

Um alfabeto é um conjunto de símbolos indivisíveis de qualquer natureza. Um alfabeto é geralmente denotado pela letra grega Σ.

Um alfabeto é um conjunto de símbolos indivisíveis de qualquer natureza. Um alfabeto é geralmente denotado pela letra grega Σ. Linguagens O conceito de linguagem engloba uma variedade de categorias distintas de linguagens: linguagens naturais, linguagens de programação, linguagens matemáticas, etc. Uma definição geral de linguagem

Leia mais

Instituto Superior Técnico Teoria da Computação - LEIC 2013/2014 Aula prática 1

Instituto Superior Técnico Teoria da Computação - LEIC 2013/2014 Aula prática 1 Instituto Superior Técnico Teoria da Computação - LEIC 2013/2014 Aula prática 1 Nota: Na sequência o símbolo representa o símbolo de registo vazio. 1 Máquinas de Turing 1. Considere a máquina de Turing

Leia mais

Linguagens Formais e Autômatos P. Blauth Menezes

Linguagens Formais e Autômatos P. Blauth Menezes Linguagens Formais e Autômatos P. Blauth Menezes blauth@inf.ufrgs.br Departamento de Informática Teórica Instituto de Informática / UFRGS Linguagens Formais e Autômatos - P. Blauth Menezes 1 Linguagens

Leia mais

Linguaguens recursivamente enumeráveis

Linguaguens recursivamente enumeráveis Linguaguens recursivamente enumeráveis Uma palavra x Σ é aceite por uma máquina de Turing M ( x L(M)) se M iniciando com a palavra x na fita e no estado inicial, pára num estado final. Caso contrário,

Leia mais

ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO

ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO 1. Linguagens Regulares Referência: SIPSER, M. Introdução à Teoria da Computação. 2ª edição, Ed. Thomson Prof. Marcelo S. Lauretto marcelolauretto@usp.br www.each.usp.br/lauretto

Leia mais

Linguagens Formais e Autômatos P. Blauth Menezes

Linguagens Formais e Autômatos P. Blauth Menezes Linguagens Formais e Autômatos P. Blauth Menezes blauth@inf.ufrgs.br Departamento de Informática Teórica Instituto de Informática / UFRGS Linguagens Formais e Autômatos - P. Blauth Menezes 1 Linguagens

Leia mais

Modelos de Computação Folha de trabalho n. 8

Modelos de Computação Folha de trabalho n. 8 Modelos de Computação Folha de trabalho n. 8 Nota: Os exercícios obrigatórios marcados de A a D constituem os problemas que devem ser resolvidos individualmente. A resolução em papel deverá ser depositada

Leia mais

) a sucessão definida por y n

) a sucessão definida por y n aula 05 Sucessões 5.1 Sucessões Uma sucessão de números reais é simplesmente uma função x N R. É conveniente visualizar uma sucessão como uma sequência infinita: (x(), x(), x(), ). Neste contexto é usual

Leia mais

Linguaguens recursivamente enumeráveis e recursivas

Linguaguens recursivamente enumeráveis e recursivas Linguaguens recursivamente enumeráveis e recursivas Uma linguagem diz-se recursivamente enumerável (r.e) ou semi-decidível se é aceite por uma máquina de Turing. SD: classe de linguagens recursivamente

Leia mais

Faculdade de Computação

Faculdade de Computação UNIVERSIDADE FEDERAL DE UBERLÂNDIA Faculdade de Computação Disciplina : Teoria da Computação - 1 0 Semestre 007 Professora : Sandra Aparecida de Amo Solução da Lista de Exercícios n o 1 Exercícios de Revisão

Leia mais

Máquinas de Turing - Computabilidade

Máquinas de Turing - Computabilidade BCC244-Teoria da Computação Prof. Lucília Figueiredo Lista de Exercícios 03 DECOM ICEB - UFOP Máquinas de Turing - Computabilidade 1. Seja L uma linguagem não livre de contexto. Mostre que: (a) Se X uma

Leia mais

Linguagens Formais e Autômatos

Linguagens Formais e Autômatos Linguagens Formais e Autômatos (notas da primeira aula 1 Definições básicas 1.1 Conjuntos Definição 1. Um conjunto é uma coleção de objetos, denominados elementos. Notação 1. Para indicar que um elemento

Leia mais

Dízimas e intervalos encaixados.

Dízimas e intervalos encaixados. Dízimas e intervalos encaixados. Recorde que uma dízima com n casas decimais é um número racional da forma a 0.a a 2...a n = a 0 + a 0 + a 2 0 2 + + a n n 0 n = a j 0 j em que a 0,a,...,a n são inteiros

Leia mais

ECO026 TEORIA DA COMPUTAÇÃO. Prof: Rafael Santos Site:

ECO026 TEORIA DA COMPUTAÇÃO. Prof: Rafael Santos   Site: ECO026 TEORIA DA COMPUTAÇÃO Prof: Rafael Santos Email: rafafic@gmail.com Site: http://sites.google.com/site/rafafic Máquinas de Turing Uma linguagem Turing-reconhecível (Linguagem recursivamente enumeravel),

Leia mais

Aulas 10 e 11 / 18 e 20 de abril

Aulas 10 e 11 / 18 e 20 de abril 1 Conjuntos Aulas 10 e 11 / 18 e 20 de abril Um conjunto é uma coleção de objetos. Estes objetos são chamados de elementos do conjunto. A única restrição é que em geral um mesmo elemento não pode contar

Leia mais

Gramáticas e Linguagens Independentes de Contexto

Gramáticas e Linguagens Independentes de Contexto Gramáticas e Linguagens Independentes de Contexto 6.1 Responde às uestões seguintes considerando a gramática independente de contexto G = (V, {a, b}, P, R), onde o conjunto de regras P é: R XRX S S at

Leia mais

Gramáticas e Linguagens independentes de contexto

Gramáticas e Linguagens independentes de contexto Capítulo 6 Gramáticas e Linguagens independentes de contexto 6.1 Gramáticas Nesta secção vamos introduzir gramáticas formais para caracterização das linguagens, estudando fundamentalmente as gramáticas

Leia mais

Linguagens Formais e Problemas de Decisão

Linguagens Formais e Problemas de Decisão Linguagens Formais e Problemas de Decisão Mário S. Alvim (msalvim@dcc.ufmg.br) Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02) Mário S. Alvim (msalvim@dcc.ufmg.br) Linguagens Formais e Problemas

Leia mais

Conjuntos Enumeráveis e Não-Enumeráveis

Conjuntos Enumeráveis e Não-Enumeráveis Conjuntos Enumeráveis e Não-Enumeráveis João Antonio Francisconi Lubanco Thomé Bacharelado em Matemática - UFPR jolubanco@gmail.com Prof. Dr. Fernando de Ávila Silva (Orientador) Departamento de Matemática

Leia mais

Melhores momentos AULA PASSADA. Complexidade Computacional p. 205

Melhores momentos AULA PASSADA. Complexidade Computacional p. 205 Melhores momentos AULA PASSADA Complexidade Computacional p. 205 MT multifita por MT fita única Duas máquinas são equivalentes se elas reconhecem a mesma linguagem. Teorema. Dada uma máquina de Turing

Leia mais

x B A x X B B A τ x B 3 B 1 B 2

x B A x X B B A τ x B 3 B 1 B 2 1. Definição e exemplos. Bases. Dar uma topologia num conjunto X é especificar quais dos subconjuntos de X são abertos: Definição 1.1. Um espaço topológico é um par (X, τ) em que τ é uma colecção de subconjuntos

Leia mais

a n Sistemas de Estados Finitos AF Determinísticos

a n Sistemas de Estados Finitos AF Determinísticos a n Sistemas de Estados Finitos AF Determinísticos 1 Relembrando Uma representação finita de uma linguagem L qualquer pode ser: 1. Um conjunto finito de cadeias (se L for finita); 2. Uma expressão de um

Leia mais

Apostila 06. Objetivos: Estudar a Computabilidade Estudar a Decidibilidade Estudar a Redutibilidade

Apostila 06. Objetivos: Estudar a Computabilidade Estudar a Decidibilidade Estudar a Redutibilidade Cursos: Bacharelado em Ciência da Computação e Bacharelado em Sistemas de Informação Disciplinas: (1493A) Teoria da Computação e Linguagens Formais, (4623A) Teoria da Computação e Linguagens Formais e

Leia mais

Uma relação binária R(x, y) em que tanto x como y percorrem certo conjunto, X, diz-se relação de equivalência se tem as seguintes propriedades:

Uma relação binária R(x, y) em que tanto x como y percorrem certo conjunto, X, diz-se relação de equivalência se tem as seguintes propriedades: Capítulo 3 Relação de Equivalência e Ordem 3.1 Relações de equivalência e abstracções Uma relação binária R(x, y) em que tanto x como y percorrem certo conjunto, X, diz-se relação de equivalência se tem

Leia mais

Teoria da Medida e Integração (MAT505)

Teoria da Medida e Integração (MAT505) Transporte de medidas Teoria da Medida e Integração (MAT505) Transporte de medidas e medidas invariantes. Teorema de Recorrência de Poincaré V. Araújo Instituto de Matemática, Universidade Federal da Bahia

Leia mais

Terceira Lista de Exercícios 2004/2...

Terceira Lista de Exercícios 2004/2... UFLA Universidade Federal de Lavras Departamento de Ciência da Computação COM162 Linguagens Formais e Autômatos Prof. Rudini Sampaio Monitor: Rodrigo Pereira dos Santos Terceira Lista de Exercícios 2004/2

Leia mais

Matemática Discreta para Ciência da Computação

Matemática Discreta para Ciência da Computação Matemática Discreta para Ciência da Computação P. Blauth Menezes blauth@inf.ufrgs.br Departamento de Informática Teórica Instituto de Informática / UFRGS Matemática Discreta para Ciência da Computação

Leia mais

LFA. Provas formais; Indução; Sintaxe e Semântica Teoria dos Conjuntos

LFA. Provas formais; Indução; Sintaxe e Semântica Teoria dos Conjuntos LFA Provas formais; Indução; Sintaxe e Semântica Teoria dos Conjuntos Técnicas de Demonstração Um teorema é uma proposição do tipo: p q a qual, prova-se, é verdadeira sempre que: p q Técnicas de Demonstração

Leia mais

Propriedades de Fecho de Linguagens Regulares.

Propriedades de Fecho de Linguagens Regulares. Propriedades de Fecho de Linguagens Regulares. Gerando Linguagens Regulares Recorde a seguinte teorema: THM: Linguagens regulares são aquelas que podem ser geradas a partir de linguagens finitas pela aplicação

Leia mais

Lógica Computacional Aulas 8 e 9

Lógica Computacional Aulas 8 e 9 Lógica Computacional Aulas 8 e 9 DCC/FCUP 2017/18 Conteúdo 1 Lógica proposicional 1 11 Integridade e completude dum sistema dedutivo D 1 111 Integridade do sistema de dedução natural DN 1 112 3 12 Decidibilidade

Leia mais

Propriedades das Linguagens Livres do Contexto

Propriedades das Linguagens Livres do Contexto Capítulo 7 Propriedades das Linguagens Livres do Contexto As linguagens livres do contexto ocupam uma posição central na hierarquia das linguagens formais. Por um lado, as linguagens livres do contexto

Leia mais

1.1 Conjuntos parcialmente ordenados (c.p.o. s)

1.1 Conjuntos parcialmente ordenados (c.p.o. s) Capítulo 1 PRELIMINARES Neste primeiro capítulo podemos encontrar algumas definições e proposições que para além de nos familiarizar com a notação que iremos utilizar também têm como finalidade a referência

Leia mais

Limites da Computação Algorítmica: Problemas Indecidíveis

Limites da Computação Algorítmica: Problemas Indecidíveis Capítulo 10 Limites da Computação Algorítmica: Problemas Indecidíveis Tendo estudado o que as máquinas de Turing podem fazer, estudaremos, agora, o que elas não podem fazer. Embora a tese de Turing nos

Leia mais

Variedades Adicionais das Máquinas de Turing

Variedades Adicionais das Máquinas de Turing LFA - PARTE 5 Variedades Adicionais das Máquinas de Turing 1 Máquinas de Turing com uma Fita Infinita de um Sentido A fita da máquina é infinita apenas à direita O quadrado da fita mais à esquerda contém

Leia mais

Introdução à Teoria da Computação Exercícios

Introdução à Teoria da Computação Exercícios Introdução à Teoria da Computação Exercícios Livro: Michel Sipser, Introdução à Teoria da Computação 2ª Ed. Capítulo 07 Obs: Exercícios 7.7 e 7.20 estão apresentados em versões simplificadas. NP Dicas

Leia mais

Teoria da Computação

Teoria da Computação Ciência da Computação Teoria da Computação (ENG10395) Profa. Juliana Pinheiro Campos E-mail: jupcampos@gmail.com Máquinas Universais Máquinas Universais podem ser entendidas de duas formas: Se é capaz

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Teoria de Conjuntos Um conjunto é uma colecção de objectos/elementos/membros. (Cantor

Leia mais

Teoria da Medida e Integração (MAT505)

Teoria da Medida e Integração (MAT505) Teoria da Medida e Integração (MAT505) Modos de convergência V. Araújo Mestrado em Matemática, UFBA, 2014 1 Modos de convergência Modos de convergência Neste ponto já conhecemos quatro modos de convergência

Leia mais

Contando o Infinito: os Números Cardinais

Contando o Infinito: os Números Cardinais Contando o Infinito: os Números Cardinais Sérgio Tadao Martins 4 de junho de 2005 No one will expel us from the paradise that Cantor has created for us David Hilbert 1 Introdução Quantos elementos há no

Leia mais

Lema do Bombeamento Linguagens Livres de Contexto

Lema do Bombeamento Linguagens Livres de Contexto Lema do Bombeamento Linguagens Livres de Contexto Agenda Lema do Bombeamento para CFL s Motivação Teorema Prova Exemplos de provas usando o lema 0 Bombeando FA s 1 x y z 1 0 1 0 Strings de comprimento

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO DEPARTAMENTO DE ESTATÍSTICA. Medida e Probabilidade

UNIVERSIDADE FEDERAL DE PERNAMBUCO DEPARTAMENTO DE ESTATÍSTICA. Medida e Probabilidade UNIVERSIDADE FEDERAL DE PERNAMBUCO DEPARTAMENTO DE ESTATÍSTICA Medida e Probabilidade Aluno: Daniel Cassimiro Carneiro da Cunha Professor: Andre Toom 1 Resumo Este trabalho contem um resumo dos principais

Leia mais

Procedimentos e Algorítmos Programas e Linguagens de Programação Tese de Church-Turing Formas de Representação de Linguagens

Procedimentos e Algorítmos Programas e Linguagens de Programação Tese de Church-Turing Formas de Representação de Linguagens Procedimentos e Algorítmos Programas e Linguagens de Programação Tese de Church-Turing Formas de Representação de Linguagens 1 Introdução Estudar computação do ponto de vista teórico é sinônimo de caracterizar

Leia mais

Teoria da Computação. Capítulo 1. Máquina de Turing. Prof. Wanderley de Souza Alencar, MSc.

Teoria da Computação. Capítulo 1. Máquina de Turing. Prof. Wanderley de Souza Alencar, MSc. Teoria da Computação Capítulo 1 Máquina de Turing Prof. Wanderley de Souza Alencar, MSc. Pauta 1. Introdução 2. Definição de Máquina de Turing 3. Variações de Máquina de Turing 4. A Tese de Church-Turing

Leia mais

Modelos Universais de Computação

Modelos Universais de Computação Modelos Universais de Computação 1 Equivalência entre Variantes de TM TM s definem naturalmente uma classe. Toda variante razoável de TM define a mesma classe de linguagens. (reforça a Tese Church-Turing)

Leia mais

Universidade Federal de Alfenas

Universidade Federal de Alfenas Universidade Federal de Alfenas Linguagens Formais e Autômatos Aula 14 Máquinas de Turing humberto@bcc.unifal-mg.edu.br Última aula Autômatos com Pilha Controle de estado a b a a b X Y Y X O que já vimos...

Leia mais

Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a

Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a Exemplo (U(n)) Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a multiplicação módulo n é uma operação binária

Leia mais

Capítulo 2: Procedimentos e algoritmos

Capítulo 2: Procedimentos e algoritmos Capítulo 2: Procedimentos e algoritmos Para estudar o processo de computação de um ponto de vista teórico, com a finalidade de caracterizar o que é ou não é computável, é necessário introduzir um modelo

Leia mais

PCC104 - Projeto e Análise de Algoritmos

PCC104 - Projeto e Análise de Algoritmos PCC104 - Projeto e Análise de Algoritmos Marco Antonio M. Carvalho Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto 5 de dezembro de 2017 Marco Antonio

Leia mais

Problemas Algoritmicos

Problemas Algoritmicos Problemas Algoritmicos 1 O que pode ser computado? Chegamos a um importante ponto do curso. Vamos agora estudar uma das questões mais fundamentais em Ciência da Computação: Qual seria o limite do poder

Leia mais

Linguagens Regulares, Operações Regulares

Linguagens Regulares, Operações Regulares Linguagens Regulares, Operações Regulares 1 Definição de Linguagem Regular Relembre a definição de linguagem regular: DEF: A linguagem aceita por um AF M é o conjunto de todos os strings que são aceitos

Leia mais

Fabio Augusto Camargo

Fabio Augusto Camargo Universidade Federal de São Carlos Centro de Ciências Exatas e de Tecnologia Departamento de Matemática Introdução à Topologia Autor: Fabio Augusto Camargo Orientador: Prof. Dr. Márcio de Jesus Soares

Leia mais

Teoria da Medida e Integração (MAT505)

Teoria da Medida e Integração (MAT505) Modos de convergência Teoria da Medida e Integração (MAT505) Modos de convergência. V. Araújo Instituto de Matemática, Universidade Federal da Bahia Mestrado em Matemática, UFBA, 2014 Modos de convergência

Leia mais

Computação efectiva. Que linguagens podem ser reconhecidas por algum tipo de autómato?

Computação efectiva. Que linguagens podem ser reconhecidas por algum tipo de autómato? Computação efectiva Que linguagens podem ser reconhecidas por algum tipo de autómato? O que é ser computável? Que linguagens são computáveis? Existem linguagens que não são computáveis? Isto é, existem

Leia mais

Expressões Regulares e Gramáticas Regulares

Expressões Regulares e Gramáticas Regulares Universidade Católica de Pelotas Escola de informática 053212 Linguagens Formais e Autômatos TEXTO 2 Expressões Regulares e Gramáticas Regulares Prof. Luiz A M Palazzo Março de 2007 Definição de Expressão

Leia mais

Teoria da medida e integral de Lebesgue

Teoria da medida e integral de Lebesgue nálise Matemática III Teoria da medida e integral de Lebesgue Manuel Guerra Conteúdo 1 Introdução 3 2 Noções básicas de teoria de conjuntos 5 2.1 Relações de pertença e de inclusão.............................

Leia mais

Semigrupos Factorizáveis: os casos inverso e ortodoxo

Semigrupos Factorizáveis: os casos inverso e ortodoxo UNIVERSIDADE DE LISBOA Faculdade de Ciências Departamento de Matemática Semigrupos Factorizáveis: os casos inverso e ortodoxo Núria Andreia Gomes Gonçalves Barbosa Moura Mestrado em Matemática 2009 UNIVERSIDADE

Leia mais

Capítulo 0: Conjuntos, funções, relações

Capítulo 0: Conjuntos, funções, relações Capítulo 0: Conjuntos, funções, relações Notação. Usaremos Nat para representar o conjunto dos números naturais; Int para representar o conjunto dos números inteiros. Para cada n Nat, [n] representa o

Leia mais

LLC's: Lema do Bombeamento e Propriedades de Fechamento

LLC's: Lema do Bombeamento e Propriedades de Fechamento Linguagens Formais e Autômatos LLC's: Lema do Bombeamento e Propriedades de Fechamento Andrei Rimsa Álvares Material extraído do livro e slides do Prof. Newton Vieira (hfp://dcc.ufmg.br/~nvieira) Sumário

Leia mais

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO Prof.ª Danielle Casillo Diferencia-se das máquinas de Turing e Post principalmente pelo fato de possuir a memória de entrada separada

Leia mais

Curvas e superfícies

Curvas e superfícies Análise Matemática III Curvas e superfícies Manuel Guerra Conteúdo 1 Curvas 2 2 Curvas definidas implicitamente 11 3 Superfícies 17 4 Superfícies definidas implicitamente 20 5 Anexo: A curva de Peano 21

Leia mais

Inversão de Matrizes

Inversão de Matrizes Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2015.2 21 de

Leia mais

Teoria da Computação. Máquinas Universais Máquina com Pilhas

Teoria da Computação. Máquinas Universais Máquina com Pilhas Máquinas Universais Máquina com Pilhas Cristiano Lehrer Introdução A Máquina com Pilhas diferencia-se das Máquinas de Turing e de Post principalmente pelo fato de possuir uma memória de entrada separada

Leia mais

Aula 7: Autômatos com Pilha

Aula 7: Autômatos com Pilha Teoria da Computação Segundo Semestre, 2014 Aula 7: Autômatos com Pilha DAINF-UTFPR Prof. Ricardo Dutra da Silva Vamos adicionar um memória do tipo pilha ao nossos autômatos para que seja possível aceitar

Leia mais

Linguagens Formais e Autômatos Decidibilidade

Linguagens Formais e Autômatos Decidibilidade Linguagens Formais e Autômatos Decidibilidade Andrei Rimsa Álvares Sumário Introdução A tese de Church-Turing Máquinas de Turing e problemas de decisão Máquina de Turing Universal O problema da parada

Leia mais

Propriedades de Linguagens Livres de Contexto. Propriedades de Linguagens Livres de Contexto. Propriedades de Linguagens Livres de Contexto

Propriedades de Linguagens Livres de Contexto. Propriedades de Linguagens Livres de Contexto. Propriedades de Linguagens Livres de Contexto UNIVESIDADE ESTADUAL DE MAINGÁ DEPATAMENTO DE INFOMÁTICA Prof. Yandre Maldonado - 1 Prof. Yandre Maldonado e Gomes da Costa Prof. Yandre Maldonado - 2 A classe de linguagens livres de contexto é fechada

Leia mais

Antes de abordarmos os temas centrais deste curso é conveniente recordar algumas noções básicas usadas sistematicamente no que se segue.

Antes de abordarmos os temas centrais deste curso é conveniente recordar algumas noções básicas usadas sistematicamente no que se segue. 1 Conjuntos, funções e relações: noções básicas Antes de abordarmos os temas centrais deste curso é conveniente recordar algumas noções básicas usadas sistematicamente no que se segue. 1.1 Conjuntos Intuitivamente,

Leia mais

Compiladores - Análise Ascendente

Compiladores - Análise Ascendente Compiladores - Análise Ascendente Fabio Mascarenhas - 2013.1 http://www.dcc.ufrj.br/~fabiom/comp Análise Descendente vs. Ascendente As técnicas de análise que vimos até agora (recursiva com retrocesso,

Leia mais

Compiladores - Análise Ascendente

Compiladores - Análise Ascendente Compiladores - Análise Ascendente Fabio Mascarenhas - 2013.2 http://www.dcc.ufrj.br/~fabiom/comp Análise Descendente vs. Ascendente As técnicas de análise que vimos até agora (recursiva com retrocesso,

Leia mais

Arquitetura de Computadores Sistema de Numeração. Apresentado por Prof. Fred Sauer Mat. Elaborado por Prof. Ricardo Quintão

Arquitetura de Computadores Sistema de Numeração. Apresentado por Prof. Fred Sauer Mat. Elaborado por Prof. Ricardo Quintão Arquitetura de Computadores Sistema de Numeração Apresentado por Prof. Fred Sauer Mat. Elaborado por Prof. Ricardo Quintão A base de representação numérica de um número está relacionada com a quantidade

Leia mais