Precipitação. Capítulo. Importância da precipitação. Formação das chuvas

Tamanho: px
Começar a partir da página:

Download "Precipitação. Capítulo. Importância da precipitação. Formação das chuvas"

Transcrição

1 Capítulo 5 Precipitação A água da atmosfera que atinge a superfície na forma de chuva, granizo, neve, orvalho, neblina ou geada é denominada precipitação. Na realidade brasileira a chuva é a forma mais importante de precipitação, embora grandes prejuízos possam advir da ocorrência de precipitação na forma de granizo e em alguns locais possa eventualmente ocorrer neve. Importância da precipitação Conforme mencionado quando abordado o assunto balanço hídrico, a precipitação é a única forma de entrada de água em uma bacia hidrográfica. Assim sendo, ela fornece subsídios para a quantificação do abastecimento de água, irrigação, controle de inundações, erosão do solo, etc., e é fundamental para o adequado dimensionamento de obras hidráulicas, entre outros. A chuva é a causa mais importante dos processos hidrológicos de interesse da engenharia e é caracterizada por uma grande aleatoriedade espacial e temporal. Formação das chuvas A água existente na atmosfera está, em sua maior parte, na forma de vapor. A quantidade de vapor que o ar pode conter é limitada. Ar a 20º C pode conter uma quantidade máxima de vapor de, aproximadamente, 20 gramas por metro cúbico. Quantidades de vapor superiores a este limite acabam condensando. A quantidade máxima de vapor que pode ser contida no ar sem condensar é a concentração de saturação. Uma característica muito importante da concentração de saturação é que ela aumenta com o aumento da temperatura do ar. Assim, ar mais

2 quente pode conter mais vapor do que ar frio. A figura a seguir apresenta a variação da concentração de saturação de vapor no ar com a temperatura. Observa-se que o ar a 10º C pode conter duas vezes mais vapor do que o ar a 0º C. O ar atmosférico apresenta um forte gradiente de temperatura, com temperatura relativamente alta junto à superfície e temperatura baixa em grandes altitudes. O processo de formação das nuvens de chuva está associado ao movimento ascendente de uma massa de ar úmido. Neste processo a temperatura do ar vai diminuindo até que o vapor do ar começa a condensar. Isto ocorre porque a quantidade de água que o ar pode conter sem que ocorra condensação é maior para o ar quente do que para o ar frio. Quando este vapor se condensa, pequenas gotas começam a se formar, permanecendo suspensas no ar por fortes correntes ascendentes e pela turbulência. Porém, em certas condições, as gotas das nuvens crescem, atingindo tamanho e peso suficiente para vencer as correntes de ar que as sustentam. Nestas condições, a água das nuvens se precipita para a superfície da Terra, na forma de chuva. Figura 5. 1: Relação entre a temperatura e o conteúdo de vapor de água no ar na condição de saturação. A formação das nuvens de chuva está, em geral, associada ao movimento ascendente de massas de ar úmido. A causa da ascensão do ar úmido é considerada para diferenciar os principais tipos de chuva: frontais, convectivas ou orográficas. Chuvas frontais As chuvas frontais ocorrem quando se encontram duas grandes massas de ar, de diferente temperatura e umidade. Na frente de contato entre as duas massas o ar mais quente (mais leve e, normalmente, mais úmido) é empurrado para cima, onde atinge 39

3 W. C O L L I S C H O N N I P H - U F R G S temperaturas mais baixas, resultando na condensação do vapor. As massas de ar que formam as chuvas frontais têm centenas de quilômetros de extensão e movimentam se de forma relativamente lenta, conseqüentemente as chuvas frontais caracterizam-se pela longa duração e por atingirem grandes extensões. No Brasil as chuvas frontais são muito freqüentes na região Sul, atingindo também as regiões Sudeste, Centro Oeste e, por vezes, o Nordeste. Chuvas frontais têm uma intensidade relativamente baixa e uma duração relativamente longa. Am alguns casos as frentes podem ficar estacionárias, e a chuva pode atingir o mesmo local por vários dias seguidos. Figura 5. 2: Tipos de formação de chuvas. Chuvas orográficas As chuvas orográficas ocorrem em regiões em que um grande obstáculo do relevo, como uma cordilheira ou serra muito alta, impede a passagem de ventos quentes e úmidos, que sopram do mar, obrigando o ar a subir. Em maiores altitudes a umidade do ar se condensa, formando nuvens junto aos picos da serra, onde chove com muita freqüência. As chuvas orográficas ocorrem em muitas regiões do Mundo, e no Brasil são especialmente importantes ao longo da Serra do Mar. 40

4 Chuvas convectivas As chuvas convectivas ocorrem pelo aquecimento de massas de ar, relativamente pequenas, que estão em contato direto com a superfície quente dos continentes e oceanos. O aquecimento do ar pode resultar na sua subida para níveis mais altos da atmosfera onde as baixas temperaturas condensam o vapor, formando nuvens. Este processo pode ou não resultar em chuva, e as chuvas convectivas são caracterizadas pela alta intensidade e pela curta duração. Normalmente, porém, as chuvas convectivas ocorrem de forma concentrada sobre áreas relativamente pequenas. No Brasil há uma predominância de chuvas convectivas, especialmente nas regiões tropicais. Os processos convectivos produzem chuvas de grande intensidade e de duração relativamente curta. Problemas de inundação em áreas urbanas estão, muitas vezes, relacionados às chuvas convectivas. Medição da chuva A chuva é medida utilizando instrumentos chamados pluviômetros que nada mais são do que recipientes para coletar a água precipitada com algumas dimensões padronizadas. O pluviômetro mais utilizado no Brasil tem uma forma cilíndrica com uma área superior de captação da chuva de 400 cm 2, de modo que um volume de 40 ml de água acumulado no pluviômetro corresponda a 1 mm de chuva. O pluviômetro é instalado a uma altura padrão de 1,50 m do solo (Figura 5. 3) e a uma certa distância de casas, árvores e outros obstáculos que podem interferir na quantidade de chuva captada. Nos pluviômetros da rede de observação mantida pela Agência Nacional da Água (ANA) no Brasil, a medição da chuva é realizada uma vez por dia, sempre às 7:00 da manhã, por um observador que anota o valor lido em uma caderneta. A ANA tem uma rede de 2473 estações pluviométricas distribuídos em todo o Brasil. Além da ANA existem outras instituições e empresas que mantém pluviômetros, como o Instituto Nacional de Meteorologia (INMET), empresas de geração de energia hidrelétrica e empresas de Figura 5. 3: Características de um pluviômetro de leitura manual. 41

5 W. C O L L I S C H O N N I P H - U F R G S pesquisa agropecuária. No banco de dados da ANA ( estão cadastradas estações pluviométricas de diversas entidades, mas apenas 8760 estão em atividade atualmente (2007). Existem pluviômetros adaptados para realizar medições de forma automática, registrando os dados medidos em intervalos de tempo inferiores a um dia. São os pluviógrafos, que originalmente eram mecânicos, utilizavam uma balança para pesar o peso da água e um papel para registrar o total precipitado. Os pluviógrafos antigos com registro em papel foram substituídos, nos últimos anos, por pluviógrafos eletrônicos com memória (data-logger). O pluviógrafo mais comum atualmente é o de cubas basculantes, em que a água recolhida é dirigida para um conjunto de duas cubas articuladas por um eixo central. A água é dirigida inicialmente para uma das cubas e quando esta cuba recebe uma quantidade de água equivalente a 20 g, aproximadamente, o conjunto báscula em torno do eixo, a cuba cheia esvazia e a cuba vazia começa a receber água. Cada movimento das cubas basculantes equivale a uma lâmina precipitada (por exemplo 0,25 mm), e o aparelho registra o número de movimentos e o tempo em que ocorre cada movimento. A principal vantagem do pluviógrafo sobre o pluviômetro é que permite analisar detalhadamente os eventos de chuva e sua variação ao longo do dia. Além disso, o pluviógrafo eletrônico pode ser acoplado a um sistema de transmissão de dados via rádio ou telefone celular. A chuva também pode ser estimada utilizando radares meteorológicos. A medição de chuva por radar está baseada na emissão de pulsos de radiação eletromagnética que são refletidos pelas partículas de chuva na atmosfera, e na medição do da intensidade do sinal refletido. A relação entre a intensidade do sinal enviado e recebido, denominada refletividade, é correlacionada à intensidade de chuva que está caindo em uma região. A principal vantagem do radar é a possibilidade de fazer estimativas de taxas de precipitação em uma grande região no entorno da antena emissora e receptora, embora existam erros consideráveis quando as estimativas são comparadas com dados de pluviógrafos. No Brasil são poucos os radares para uso meteorológico, com a exceção do Estado de São Paulo em que existem alguns em operação. Em alguns países, como os EUA, a Inglaterra e a Alemanha, já existe uma cobertura completa com sensores de radar para estimativa de chuva. Também é possível fazer estimativas da precipitação a partir de imagens obtidas por sensores instalados em satélites. A temperatura do topo das nuvens, que pode ser estimada a partir de satélites, tem uma boa correlação com a precipitação. Além disso, existem experimentos de radares a bordo de satélites que permitem aprimorar a estimativa baseada em dados de temperatura de topo de nuvem. 42

6 Análise de dados de chuva As variáveis que caracterizam a chuva são a sua altura (lâmina precipitada), a intensidade, a duração e a freqüência. Duração é o período de tempo durante o qual a chuva cai. Normalmente é medida em minutos ou horas. A altura é a espessura média da lâmina de água que cobriria a região atingida se esta região fosse plana e impermeável. A unidade de medição da altura de chuva é o milímetro de chuva. Um milímetro de chuva corresponde a 1 litro de água distribuído em um metro quadrado. Intensidade é a altura precipitada dividida pela duração da chuva, e é expressa, normalmente, em mm.hora -1. Freqüência é a quantidade de ocorrências de eventos iguais ou superiores ao evento de chuva considerado. Chuvas muito intensas tem freqüência baixa, isto é, ocorrem raramente. Chuvas pouco intensas são mais comuns. A Tabela 5. 1 apresenta a análise de freqüência de ocorrência de chuvas diárias de diferentes intensidades ao longo de um período de 23 anos em uma estação pluviométrica no interior do Paraná. Observase que ocorreram 5597 dias sem chuva (P = zero) no período total de 8279 dias, isto é, em 67% dos dias do período não ocorreu chuva. Em pouco mais de 17% dos dias do período ocorreram chuvas com intensidade baixa (menos do que 10 mm). A medida em que aumenta a intensidade da chuva diminui a freqüência de ocorrência. A variável utilizada na hidrologia para avaliar eventos extremos como chuvas muito intensas é o tempo de retorno (TR), dado em anos. O tempo de retorno é uma estimativa do tempo em que um evento é igualado ou superado, em média. Por exemplo, uma chuva com intensidade equivalente ao tempo de retorno de 10 anos é igualada ou superada somente uma vez a cada dez anos, em média. Esta última ressalva em média implica que podem, eventualmente, ocorrer duas chuvas de TR 10 anos em dois anos subseqüentes. O Tempo de Retorno é igual ao inverso da probabilidade. 43

7 W. C O L L I S C H O N N I P H - U F R G S Tabela 5. 1: Freqüência de ocorrência de chuvas diárias de diferentes alturas em um posto pluviométrico no interior do Paraná ao longo de um período de, aproximadamente, 23 anos. Bloco Freqüência P = zero 5597 P < 10 mm < P < 20 mm < P < 30 mm < P < 40 mm < P < 50 mm < P < 60 mm < P < 70 mm < P < 80 mm < P < 90 mm < P < 100 mm < P < 110 mm < P < 120 mm < P < 130 mm < P < 140 mm < P < 150 mm < P < 160 mm < P < 170 mm < P < 180 mm < P < 190 mm < P < 200 mm 0 P > 200 mm 0 Total 8279 O tempo de retorno pode, também, ser definido como o inverso da probabilidade de ocorrência de um determinado evento em um ano qualquer. Por exemplo, se a chuva de 130 mm em um dia é igualada ou superada apenas 1 vez a cada 10 anos diz-se que seu Tempo de Retorno é de 10 anos, e que a probabilidade de acontecer um dia com chuva igual ou superior a 130 mm em um ano qualquer é de 10%, ou seja: TR = 1 Pr obabilidade Variabilidade espacial da chuva Os dados de chuva dos pluviômetros e pluviógrafos referem-se a medições executadas em áreas muito restritas (400 cm 2 ), quase pontuais. Porém a chuva caracteriza-se por uma grande variabilidade espacial. Assim, durante um evento de chuva um pluviômetro pode ter registrado 60 mm de chuva enquanto um outro pluviômetro, a 30 km de distância registrou apenas 40 mm para o mesmo evento. Isto ocorre porque 44

8 a chuva apresenta uma grande variabilidade espacial, principalmente se é originada por um processo convectivo. A forma de representar a variabilidade espacial da chuva para um evento, para um ano inteiro de dados ou para representar a precipitação média anual ao longo de um período de 30 anos são as linhas de mesma precipitação (isoietas) desenhadas sobre um mapa. As isoietas são obtidas por interpolação dos dados de pluviômetros ou pluviógrafos e podem ser traçadas de forma manual ou automática. A Figura 5. 4 apresenta um mapa de isoietas de chuva média anual do Estado de São Paulo, com base em dados de 1943 a Observa-se que a chuva média anual sobre a maior parte do Estado é da ordem de 1300 a 1500 mm por ano, mas há uma região próxima ao litoral com chuvas anuais de mais de 3000 mm por ano. As regiões onde as isoietas ficam muito próximas entre si é caracterizada por uma grande variabilidade espacial. Variabilidade sazonal da chuva Um dos aspectos mais importantes do clima e da hidrologia de uma região é a época de ocorrência das chuvas. Existem regiões com grande variabilidade sazonal da chuva, com estações do ano muito secas ou muito úmidas. Na maior parte do Brasil o verão é o período das maiores chuvas. No Rio Grande do Sul, entretanto, a chuva é relativamente bem distribuída ao longo de todo o ano (em média). Isto não impede, entretanto, que em alguns anos ocorram invernos ou verões extremamente secos ou extremamente úmidos. A variabilidade sazonal da chuva é representada por gráficos com a chuva média mensal, como o apresentado na Figura 5. 5 para Porto Alegre e para Cuiabá. Observase que no Sul do Brasil existe uma distribuição mais homogênea das chuvas ao longo do ano, enquanto no Centro-Oeste ocorrem verões muito úmidos e invernos muito secos. 45

9 W. C O L L I S C H O N N I P H - U F R G S Figura 5. 4: Exemplo de representação da variabilidade especial da chuva com um mapa de isoietas. Figura 5. 5: Variabilidade sazonal da chuva em Porto Alegre e Cuiabá, representada pelas chuvas médias mensais no período de 1961 a

10 Chuvas médias numa área Os dados de chuva dos pluviômetros e pluviógrafos referem-se a uma área de coleta de 400 cm 2, ou seja, quase pontual. Porém, o maior interesse na hidrologia é por chuvas médias que atingem uma região, como a bacia hidrográfica. O cálculo da chuva média em uma bacia pode ser realizado utilizando o método da média aritmética; das Isoietas; dos polígonos de Thiessen ou através de interpolação em Sistemas de Informação Geográfica (SIGs). O método mais simples é o da média aritmética, em que se calcula a média das chuvas ocorridas em todos os pluviômetros localizados no interior de uma bacia. E X E M P L O 1) Qual é a precipitação média na bacia da Figura 5. 6? Utilizando o método da média aritmética considera-se os pluviômetros que estão no interior da bacia. A média da chuva é Pm = ( )/4 = 50 mm. Figura 5. 6: Mapa de uma bacia com as chuvas observadas em cinco pluviômetros. O método das isoietas parte de um mapa de isoietas, como o da Figura 5. 4, e calcula a área da bacia que corresponde ao intervalo entre as isoietas. Assim, considera-se que a área entre as isoietas de 1200 e 1300 mm receba 1250 mm de chuva. Em todo o resto ele é semelhante ao método de Thiessen, descrito a seguir. 47

11 W. C O L L I S C H O N N I P H - U F R G S Método dos polígonos de Thiessen Um dos métodos mais utilizados, entretanto, é o método de Thiessen, ou do vizinho mais próximo. Neste método é definida a área de influência de cada posto e é calculada uma média ponderada da precipitação com base nestas áreas de influência. Utilizando o método dos polígonos de Thiessen o primeiro passo é traçar linhas que unem os postos pluviométricos mais próximos entre si. A seguir é determinado o ponto médio em cada uma destas linhas e, a partir desse ponto é traçada uma linha perpendicular. A interceptação das linhas médias entre si e com os limites da bacia definem a área de influência de cada um dos postos. A chuva média é uma média ponderada utilizando as áreas de influência como ponderador. Este método pode ser melhor compreendido através de um exemplo, como o que segue. Figura 5. 7: Mapa da bacia com chuvas nos postos pluviométricos para o exemplo 2. E X E M P L O 2) Qual é a precipitação média na bacia da Figura 5. 7? Utilizando o método dos polígonos de Thiessen o primeiro passo é traçar linhas que unem os postos pluviométricos mais próximos. A seguir é determinado o ponto médio em cada uma destas linhas e traçada uma linha perpendicular. A interceptação das linhas médias entre si e com os limites da bacia vão definir a área de influência de cada um dos postos. A seqüência é apresentada na próxima página. Área total = 100 km 2 Área sob influência do posto com 120 mm = 15 km 2 Área sob influência do posto com 70 mm = 40 km 2 Área sob influência do posto com 50 mm = 30 km 2 Área sob influência do posto com 75 mm = 5 km 2 48

12 Área sob influência do posto com 82 mm = 10 km 2 Precipitação média na bacia: Pm = 120x0,15+70x0,40+50x0,30+75x0,05+82x0,10 = 73 mm. Se fosse utilizado o método da média aritmética haveria apenas dois postos no interior da bacia, com uma média de 60 mm. Se fosse calculada uma média incluindo os postos que estão fora da bacia chegaríamos a 79,5 mm. 49

13 W. C O L L I S C H O N N I P H - U F R G S Traçar linhas que unem os postos pluviométricos mais próximos entre si. Traçar linhas médias perpendiculares às linhas que unem os postos pluviométricos. Definir a região de influência de cada posto pluviométrico e medir a sua área. Figura 5. 8: Exemplo de definição dos polígonos de Thiessen. 50

14 Método da interpolação ponderada pela distância A chuva média em uma bacia hidrográfica pode ser calculada facilmente em um computador se a bacia for dividida em um grande número de células quadradas, como nas análises do relevo usando um Modelo Digital de Elevação, no capítulo 3. Neste caso é possível fazer uma estimativa de chuva para cada uma das células por um método de interpolação espacial, e a média dos valores de precipitação de todas as células corresponde à chuva média na bacia. Um dos métodos de interpolação mais utilizados é baseado numa ponderação por inverso da distância. Este método considera que a chuva em um local (ponto) pode ser calculada como uma média ponderada das chuvas registradas em pluviômetros da região. A ponderação é feita de forma que os postos pluviométricos mais próximos sejam considerados com um peso maior no cálculo da média. Considere a figura abaixo, onde a bacia hidrográfica é aproximada por um conjunto de células quadradas, um posto pluviométrico é identificado por um ponto cinza e o centro de uma célula está identificado por um ponto preto. y y i dij y j x i x j x Figura 5. 9: Ilustração do método de interpolação ponderada por inverso da distância. 51

15 W. C O L L I S C H O N N I P H - U F R G S A distância entre o posto pluviométrico (ponto cinza) e o centro da célula (ponto preto) é calculada a partir das coordenadas dos pontos, de acordo com a equação abaixo: d ij = ( x x ) + ( y y ) 2 i 2 j i j onde d ij é a distância entre o centro da célula e o posto pluviométrico, x j e y j são as coordenadas do pluviômetro e x i e y i são as coordenadas do centro da célula. Havendo mais de um posto pluviométrico, a precipitação média numa célula i pode ser calculada pela equação a seguir: Pm i NP j j= 1 ( d ) = NP P ij 1 j= 1 ( d ) ij b b onde NP é o número de postos pluviométricos com dados disponíveis; P j é a chuva observada no posto j; e b um expoente. Quando o valor do expoente b é 2, o método de interpolação é conhecido como ponderado pelo inverso da distância ao quadrado. Este valor é normalmente arbitrado para o expoente b, mas não é certo que produza os melhores resultados. Este método de interpolação pode ser aplicado para todas as NC células que representam uma bacia, obtendo-se o valor da chuva média para cada uma delas. A chuva média da bacia é calculada como a média de todas as células que compõe a bacia, de acordo com a equação que segue: Pm NC i= = 1 Pm NC i onde Pm é a chuva média na bacia e NC é o número de células que compõe a bacia. Tratamento de dados pluviométricos e identificação de erros O objetivo de um posto de medição de chuvas é o de obter uma série ininterrupta de precipitações ao longo dos anos. Em qualquer caso pode ocorrer a existência de períodos sem informações ou com falhas nas observações, devido a problemas com os 52

16 aparelhos de registro ou com o operador do posto. A seguir são descritos os processos empregados na consistência dos dados. Identificação de erros grosseiros As causas mais comuns de erros grosseiros nas observações são: a) preenchimento errado do valor na caderneta de campo; b) soma errada do número de provetas, quando a precipitação é alta; c) valor estimado pelo observador, por não se encontrar no local no dia da amostragem; d) crescimento de vegetação ou outra obstrução próxima ao posto de observação; e) danificação do aparelho; f) problemas mecânicos no registrador gráfico. Após esta análise as séries poderão apresentar falhas, que devem ser preenchidas por alguns dos métodos indicados a seguir. Preenchimento de falhas Em alguns casos pode haver falha na leitura ou no arquivamento de dados pluviométricos, resultando em falha de informação para alguns períodos. Em alguns casos é possível fazer o preenchimento destas falhas, utilizando dados de postos pluviométricos da vizinhança. Este tipo de preenchimento não substitui os dados originais, e somente pode ser aplicado para dados em intervalo de tempo mensal ou anual. Método da ponderação regional É um método simplificado, de fácil aplicação, e normalmente utilizado para o preenchimento de séries mensais ou anuais de precipitações. Para exemplificar o método, considere um posto Y, que apresenta as falhas a serem preenchidas. É necessário selecionar pelo menos três postos da vizinhança que possuam no mínimo dez anos de dados (X 1, X 2 e X 3 ). Para preencher as falhas do posto Y, adota-se a equação a seguir: PY PMy PMy PMy 1 =. PX1+. PX 2 +. PX 3. PMX 1 PMX 2 PMX 3 3 onde PY é a precipitação do posto Y a ser estimada; PX1, PX2 e PX3 são as precipitações correspondentes ao mês (ou ano) que se deseja preencher nos outros três postos; PMy é a precipitação média do posto Y; PMX 1 a PMX 3 são as precipitações médias nas três estações vizinhas. Os postos vizinhos escolhidos devem estar numa região climática semelhante ao posto a ser preenchido. O preenchimento efetuado por esta metodologia é simples e apresenta algumas limitações, quando cada valor é visto isoladamente. Para o preenchimento de valores diários de precipitação não se deve utilizar esta metodologia, pois os resultados podem ser muito ruins. Normalmente valores diários são de difícil 53

17 W. C O L L I S C H O N N I P H - U F R G S preenchimento devido a grande variação espacial e temporal da precipitação para os eventos de freqüências médias e pequenas. Método da regressão linear Também é um método simplificado, que utiliza uma regressão linear simples ou múltipla para gerar informação no período com falha. Na regressão linear simples, as precipitações do posto com falhas (Y) e de um posto vizinho (X) são correlacionadas. As estimativas dos dois parâmetros da equação podem ser obtidas graficamente ou através do critério de mínimos quadrados. Para o ajuste da regressão linear simples, correlaciona-se o posto com falhas (Y) com outro vizinho (X). A correlação produz uma equação, cujos parâmetros podem ser estimados por métodos como o de mínimos quadrados, ou graficamente através da plotagem cartesiana dos pares de valores (X, Y), traçando-se a reta que melhor representa os pares de pontos. Uma vez definida a equação semelhante à apresentada abaixo, as falhas podem ser preenchidas. Y = a + b. X Por exemplo, considerando as duas séries de precipitação dos postos P1 (código ANA ) e P2 (código ANA ), ambos localizados próximos à Estação Ecológica do Taim/RS, apresentadas na Tabela O preenchimento das falhas dos meses de Abril e Maio no posto P1 pode ser feito com base na regressão linear simples. A equação obtida é apresentada no gráfico da Figura Tabela 5. 2: Dados de chuva mensal de dois postos pluviométricos no Sul do RS para exemplo de preenchimento de falhas. Mês/Ano Precipitação mensal (mm) Posto Posto / / / /2001 Falha /2001 Falha / / / / / / /

18 250 P2xP1 P1 = P P P2 Figura 5. 10: Relação linear entre as precipitações mensais de dois postos pluviométricos no Sul do RS, para preenchimento de falhas. Com base na equação ajustada por mínimos quadrados (Figura 5. 10), os valores de chuva dos meses de Abril e Maio no posto P1 seriam 108,7 e 112,1 mm, respectivamente. Na regressão linear múltipla as informações pluviométricas do posto Y são correlacionadas com as correspondentes observações de vários postos vizinhos através de equações como a apresentada abaixo: Y = a + b. X1+ c. X 2 + d. X 3 + e. X onde: a, b, c, d, e,... são os coeficientes a serem estimados a partir dos dados disponíveis. Análise de consistência de dados pluviométricos A análise de consistência de dados pluviométricos é um conjunto de procedimentos que é aplicado aos dados para verificar se são coerentes e se estão isentos de desvios sistemáticos e erros diversos. A análise de consistência completa inclui um grande número de métodos, e apenas uma breve introdução é apresentada neste texto. Método Dupla-massa Um dos métodos mais conhecidos para a análise de consistência dos dados de precipitação é o Método da Dupla-Massa, desenvolvido pelo Geological Survey (USA). A principal finalidade da aplicação do método é identificar se ocorreram mudanças no comportamento da precipitação ao longo do tempo, ou mesmo no local de observação. 55

19 W. C O L L I S C H O N N I P H - U F R G S O Método da Dupla-Massa é baseado no princípio que o gráfico de uma quantidade acumulada, plotada contra outra quantidade acumulada, durante o mesmo período, deve ser uma linha reta, sempre que as quantidades sejam proporcionais. A declividade da reta ajustada nesse processo representa então, a constante de proporcionalidade. Especificamente, devem ser selecionados os postos de uma região, acumular para cada um deles os valores mensais (ou anuais), e plotar num gráfico cartesiano os valores acumulados correspondentes ao posto a consistir (nas ordenadas) e de um outro posto confiável adotado como base de comparação (nas abscissas). Pode-se também modificar o método, considerando valores médios das precipitações mensais acumuladas em vários postos da região, e plotar esses valores no eixo das abscissas. Quando não se observa o alinhamento dos dados segundo uma única reta, podem ter ocorrido as seguintes situações: alterações de condições climáticas ou condições físicas do local, mudança de observador, ou erros sistemáticos de leitura. Tendo sido constatada uma inconsistência nos dados é necessário identificar o fator causador da mudança de declividade na curva de Dupla-Massa. A seguir é possível tentar corrigir os dados suspeitos, usando um método semelhante ao de preenchimento de falhas, mas fazendo uso dos dados suspeitos. Estes métodos são explicados de forma mais completa em livros como o de Tucci (1993). Chuvas anuais têm uma distribuição de freqüências semelhante a Normal. Chuvas totais anuais A chuva média anual é uma das variáveis mais importantes na definição do clima de uma região, bem como sua variabilidade sazonal. O total de chuva precipitado ao longo de um ano influencia fortemente a vegetação existente numa bacia e as atividades humanas que podem ser exercidas na região. Na região de Porto Alegre, por exemplo, chove aproximadamente 1300 mm por ano, em média. Em muitas regiões da Amazônia chove mais do que 2000 mm por ano, enquanto na região do Semi-Árido do Nordeste há áreas com menos de 600 mm de chuva por ano. O clima, entretanto, não é constante, e ocorrem variações importantes em torno da média da precipitação anual. A Figura apresenta um histograma de freqüências de chuvas anuais de um posto localizado no interior de Minas Gerais, no período de 1942 a A chuva média neste período é de 1433 mm, mas observa-se que ocorreu um ano com chuva inferior a 700 mm, e um ano com chuva superior a 2300 mm. A distribuição de freqüência da Figura é aproximadamente gaussiana (parecida com a distribuição Normal). Conhecendo o desvio padrão das chuvas e considerando que a distribuição é Normal, podemos estimar que 68% dos anos apresentam chuvas entre a média menos um 56

20 desvio padrão e a média mais um desvio padrão. Da mesma forma podemos considerar que 95% dos anos apresentam chuvas entre a média menos duas vezes o desvio padrão e a média mais duas vezes o desvio padrão. O desvio padrão da chuva anual no posto pluviométrico da Figura é de 298,8 mm. Figura 5. 11: Histograma de freqüência de chuvas anuais no posto , no município de Lamounier (MG). E X E M P L O 3) O desvio padrão da chuva anual no posto pluviométrico da Figura é de 298,8 mm e a média de 1433 mm. Estime qual o valor de precipitação anual que é igualado ou superado apenas 5 vezes a cada 200 anos, em média. A faixa de chuva entre a média menos duas vezes o desvio padrão e a média mais duas vezes o desvio padrão inclui 95% dos anos em média, e 2,5 % dos anos tem precipitação inferior à média menos duas vezes o desvio padrão, enquanto 2,5% tem precipitação superior à média mais duas vezes o desvio padrão, o que corresponde a 5 anos a cada 200, em média. Assim, a chuva anual que é superada ou igualada apenas 5 vezes a cada 200 anos é: P 2,5% = x298,8 = 2030 mm Chuvas máximas As chuvas intensas são as causas das cheias e as cheias são causas de grandes prejuízos quando os rios transbordam e inundam casas, ruas, estradas, escolas, podendo destruir plantações, edifícios, pontes etc. e interrompendo o tráfego. As cheias também podem trazer sérios prejuízos à saúde pública ao disseminar doenças de veiculação hídrica. 57

21 W. C O L L I S C H O N N I P H - U F R G S Por estes motivos existe o interesse pelo conhecimento detalhado de chuvas máximas no projeto de estruturas hidráulicas como bueiros, pontes, canais e vertedores. O problema da análise de freqüência de chuvas máximas é calcular a precipitação P que atinge uma área A em uma duração D com uma dada probabilidade de ocorrência em um ano qualquer. A forma de relacionar quase todas estas variáveis é a curva de Intensidade Duração Freqüência (curva IDF). A curva IDF é obtida a partir da análise estatística de séries longas de dados de um pluviógrafo (mais de 15 anos, pelo menos). A metodologia de desenvolvimento da curva IDF baseia-se na seleção das maiores chuvas de uma duração escolhida (por exemplo 15 minutos) em cada ano da série de dados. Com base nesta série de tamanho N (número de anos) é ajustada uma distribuição de freqüências que melhor represente a distribuição dos valores observados. O procedimento é repetido para diferentes durações de chuva (5 minutos; 10 minutos; 1 hora; 12 horas; 24 horas; 2 dias; 5 dias) e os resultados são resumidos na forma de um gráfico, ou equação, com a relação das três variáveis: Intensidade, Duração e Freqüência (ou tempo de retorno). A Figura apresenta uma curva IDF obtida a partir da análise dos dados de um pluviógrafo que esteve localizado no Parque da Redenção, em Porto Alegre. Cada uma das linhas representa um Tempo de Retorno; no eixo horizontal estão as durações e no eixo vertical estão as intensidades. Observa-se que quanto menor a duração maior a intensidade da chuva. Da mesma forma, quanto maior o Tempo de Retorno, maior a intensidade da chuva. Por exemplo, a chuva de 1 hora de duração com tempo de retorno de 20 anos tem uma intensidade de 60 mm.hora -1. Evidentemente as curvas IDF são diferentes em diferentes locais. Assim, a curva IDF do Parque da Redenção em Porto Alegre vale para a região próxima a esta cidade. Infelizmente não existem séries de dados de pluviógrafos longas em todas as cidades, assim, muitas vezes, é necessário considerar que a curva IDF de um local é válida para uma grande região do entorno. No Brasil existem estudos de chuvas intensas com curvas IDF para a maioria das capitais dos Estados e para algumas cidades do interior, apenas. 58

22 Figura 5. 12: Curva IDF para a cidade de Porto Alegre, com base nos dados coletados pelo pluviógrafo do DMAE localizado no Parque da Redenção, publicada pelo DMAE em 1972 (adaptado de Tucci, 1993). Uma curva IDF também pode ser expressa na forma de uma equação. De maneira geral as equações IDF tem a forma apresentada a seguir: a TR I = ( t + c) d d b 59

23 W. C O L L I S C H O N N I P H - U F R G S onde I é a intensidade da chuva (mm.hora -1 ); a, b, c e d são parâmetros característicos da IDF de cada local; TR é o tempo de retorno em anos; t d é a duração da precipitação em minutos. Um trabalho recente revisou as curvas IDF baseada em dados do Aeroporto e do 8º. Distrito de Meteorologia (DISME) de Porto Alegre (Bemfica, 1999), chegando às equações dadas na Tabela Estas curvas foram ajustadas para durações de até 1440 minutos, e para tempos de retorno de até 100 anos. Tabela 5. 3: Exemplos de equações de curves IDF. Local Equação Fonte 8º. DISME Porto Alegre, RS Aeroporto Porto Alegre, RS 1297,9 TR I = ( t + 11,619 ) 0, 85 d 826,806 TR I = 0,171 ( t + 13,326) 0, 793 d 0,143 Bemfica, 1999 Bemfica, 1999 Em termos práticos, para a utilização de uma IDF é necessário informar o tempo de retorno de projeto e a duração da chuva. O tempo de retorno a ser utilizado é um critério relacionado com o tipo de obra de engenharia. Por exemplo, no projeto de um sistema de drenagem pluvial urbano as bocas-de-lobo são em geral dimensionadas para chuvas de 3 a 5 anos de período de retorno, enquanto que o vertedor de uma barragem como Itaipú no rio Paraná, é dimensionado para uma vazão de anos de período de retorno. Com relação à duração da chuva, normalmente adota-se o critério de utilização da duração da chuva igual ao tempo de concentração da bacia hidrográfica para a qual será desenvolvido o estudo. Em alguns casos especiais, a duração da chuva também pode seguir um critério pré-estabelecido, como por exemplo, a duração máxima de 10 minutos é utilizada para o dimensionamento de redes de microdrenagem em Porto Alegre. É interessante comparar as intensidade de chuva das curvas IDF apresentadas com as chuvas da Tabela 5. 4, que apresenta as chuvas mais intensas já registradas no mundo, para diferentes durações. Observa-se que existem regiões da China em que já ocorreu em 10 horas a chuva de 1400 mm, que é equivalente ao total anual médio de precipitação em Porto Alegre. 60

24 Tabela 5. 4: Chuvas mais intensas já registradas no Mundo (adaptado de Ward e Trimble, 2003). Duração Precipitação (mm) Local e Data 1 minuto 38 Barot, Guadeloupe 26/11/ minutos 198 Plumb Point, Jamaica 12/05/ minutos 280 Sikeshugou, Hebei, China 03/07/ minutos 401 Shangdi, Mongólia, China 03/07/ horas 1400 Muduocaidang, Mongólia, China 01/08/ horas 1825 Foc Foc, Ilhas Reunião 07 e 08/01/ meses Cherrapunji, Índia Ago. de 1860 a Jul. de 1861 Chuvas de projeto Em projetos de drenagem urbana freqüentemente são geradas estimativas de vazão a partir de informações de chuvas intensas. Para isto são gerados cenários com eventos de chuva idealizados, denominados eventos de chuva de projeto ou chuvas de projeto. As curvas IDF podem ser utilizadas para gerar chuvas de projeto, a partir da obtenção de valores de precipitação em intervalos de tempo menores do que a duração total da chuva. Por exemplo, deseja-se obter a precipitação com 20 minutos de duração e 2 anos de tempo de retorno da cidade de Porto Alegre, utilizando uma discretização temporal de 5 minutos. Na Tabela 5. 5 é apresentado esse processo usando uma curva IDF desenvolvida a partir de dados medidos no IPH-UFRGS, para a qual os parâmetros são a=509,86; b=0,196; c=10; d=0,72. Tabela 5. 5: Exemplo da determinação da precipitação em intervalos de 5 minutos a partir da curva IDF. Tempo (min) I (mm/h) Pacum (mm) P (mm) 5 83,11 6,93 6, ,56 11,26 4, ,54 14,38 3, ,46 16,82 2,44 61

25 W. C O L L I S C H O N N I P H - U F R G S Na primeira coluna da tabela a duração respectiva de cada precipitação até os 20 minutos; na segunda coluna é apresentada a intensidade da precipitação correspondente a cada duração; na terceira coluna é apresentada a lâmina de água acumulada de chuva (=I*Tempo/60); e na última coluna é apresentada a precipitação de forma desacumulada (Pacum t -Pacum t-1 ). É interessante observar que na última coluna da tabela anterior a precipitação encontrase desagregada, isto é, aparecem apenas os valores incrementais para o intervalo de tempo de 5 minutos, no entanto, distribui-se do maior para o menor valor, como se houvesse ocorrido uma pancada de chuva no início do tempo, e gradativamente a mesma foi diminuindo. Isto pode não representar o comportamento real de uma chuva. Assim, para gerar uma chuva de projeto existem alguns procedimentos para fazer a redistribuição temporal da chuva gerada a partir de uma IDF, que serão discutidos adiante no texto. Leituras adicionais Análise da aplicabilidade de padrões de chuva de projeto a Porto Alegre Dissertação de mestrado de Daniela da Costa Bemfica, IPH-UFRGS, Exercícios 1) Qual é a diferença entre um pluviômetro e um pluviógrafo? 2) Além do pluviômetro e do pluviógrafo, quais são as outras opções para medir ou estimar a precipitação? 3) Uma análise de 40 anos de dados revelou que a chuva média anual em um local na bacia do rio Uruguai é de 1800 mm e o desvio padrão é de 350 mm. Considerando que a chuva anual neste local tem uma distribuição normal, qual é o valor de chuva anual de um ano muito seco, com tempo de recorrência de 40 anos? 4) Considerando a curva IDF do DMAE para o posto pluviográfico do Parque da Redenção, qual é a intensidade da chuva com duração de 40 minutos que tem 1% de probabilidade de ser igualada ou superada em um ano qualquer em Porto Alegre? 5) Considerando a curva IDF do Aeroporto de Porto Alegre, qual é a intensidade da chuva com duração de 40 minutos que tem 1% de probabilidade de ser igualada ou superada em um ano qualquer em Porto Alegre? 62

26 6) Admita que os dados do posto pluviométrico Hospital em Arroio Grande (RS), apresentados na tabela abaixo, seguem uma distribuição normal. Calcule a chuva total anual de um ano muito úmido, com tempo de retorno de 100 anos. ANO P total annual (mm) , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,7 7) No dia 03 de janeiro de 2007 uma chuva intensa atingiu Porto Alegre. Na Zona Sul a medição em um pluviômetro indicou 111 mm em 2 horas, e no centro outro pluviômetro indicou 80 mm em 2 horas. Qual foi o tempo de retorno da chuva em cada um destes locais? Considere intensidade constante e utilize a curva IDF do Parque da Redenção. 63

27 W. C O L L I S C H O N N I P H - U F R G S 8) Qual é a diferença entre a chuva de 10 anos de tempo de retorno e 15 minutos de duração em Porto Alegre e a maior chuva já registrada no mundo com esta duração? Utilize a equação da curva IDF do 8º. DISME de Porto Alegre. 9) Mostre que o cálculo de chuva média numa bacia usando o método de interpolação ponderado pelo inverso da distância se o expoente b for igual a zero é equivalente ao método da média aritmética. 10) Qual é a chuva média na bacia da figura abaixo considerando que a chuva observada em A é de 1300 mm, a chuva observada em B é de 900 mm e a chuva observada em C é de 1100 mm? Utilize o método dos polígonos de Thiessen. Depois utilize o método da interpolação pelo inverso da distância ao quadrado, aproximando a forma da bacia com células de 10 x 10 km, sendo que a grade sobreposta ao desenho tem resolução de 1 x 1 km. 64

HIDROLOGIA AULAS 04 E 05

HIDROLOGIA AULAS 04 E 05 HIDROLOGIA AULAS 04 E 05 5 semestre - Engenharia Civil Profª. Priscila Pini prof.priscila@feitep.edu.br Exercício revisão (balanço hídrico) 1. A região da bacia hidrográfica do rio Taquari recebe precipitações

Leia mais

CC54Z - Hidrologia. Precipitação: definição, métodos de medição e grandezas características. Universidade Tecnológica Federal do Paraná

CC54Z - Hidrologia. Precipitação: definição, métodos de medição e grandezas características. Universidade Tecnológica Federal do Paraná Universidade Tecnológica Federal do Paraná CC54Z - Hidrologia Precipitação: definição, métodos de medição e grandezas características Prof. Fernando Andrade Curitiba, 2014 Objetivos da aula Definir a importância

Leia mais

Universidade Tecnológica Federal do Paraná. CC54Z - Hidrologia. Precipitação: análise de dados pluviométricos. Prof. Fernando Andrade Curitiba, 2014

Universidade Tecnológica Federal do Paraná. CC54Z - Hidrologia. Precipitação: análise de dados pluviométricos. Prof. Fernando Andrade Curitiba, 2014 Universidade Tecnológica Federal do Paraná CC54Z - Hidrologia Precipitação: análise de dados pluviométricos Prof. Fernando Andrade Curitiba, 2014 Objetivos da aula Identificar erros em séries de dados

Leia mais

HIDROLOGIA. Precipitação. Prof Miguel Toledo del Pino, Eng. Agrícola Dr.

HIDROLOGIA. Precipitação. Prof Miguel Toledo del Pino, Eng. Agrícola Dr. HIDROLOGIA Precipitação Prof Miguel Toledo del Pino, Eng. Agrícola Dr. 2018 2.1 INTRODUÇÃO A precipitação constitui-se num dos principais componentes do ciclo hidrológico, representando a água que entra

Leia mais

HIDROLOGIA AULA semestre - Engenharia Civil. REVISÃO PROVA 1º BIMESTRE Profª. Priscila Pini

HIDROLOGIA AULA semestre - Engenharia Civil. REVISÃO PROVA 1º BIMESTRE Profª. Priscila Pini HIDROLOGIA AULA 09 5 semestre - Engenharia Civil REVISÃO PROVA 1º BIMESTRE Profª. Priscila Pini prof.priscila@feitep.edu.br AULA 2 Bacia Hidrográfica É a área de captação natural dos fluxos de água originados

Leia mais

ATMOSFERA. Finalizada em 30/08/16.

ATMOSFERA. Finalizada em 30/08/16. ATMOSFERA Finalizada em 30/08/16. Precipitações Conceitos gerais Água proveniente do meio atmosférico que atinge a superfície. Tipos de precipitação: neblina, chuva, granizo, saraiva, orvalho, geada e

Leia mais

RECURSOS HÍDRICOS. Precipitação

RECURSOS HÍDRICOS. Precipitação RECURSOS HÍDRICOS Precipitação Precipitação Compreende todas formas de umidade vindas da atmosfera e depositadas na superfície terrestre. umidade atmosférica elemento fundamental para formação de precipitações

Leia mais

Formação das precipitações

Formação das precipitações 6.1. Definição A precipitação consiste no produto da condensação atmosférica depositado no solo. As formas mais comuns de precipitação entre outras são a chuva, a neve, o granizo e o orvalho. Formação

Leia mais

PRECIPITAÇÕES DEFINIÇÃO

PRECIPITAÇÕES DEFINIÇÃO PRECIPITAÇÕES José Antonio Tosta dos Reis Departamento de Engenharia Ambiental Universidade Federal do Espírito Santo DEFINIÇÃO Definição: água proveniente da condensação do vapor d água da atmosfera,

Leia mais

Exercício 1: Calcular a declividade média do curso d água principal da bacia abaixo, sendo fornecidos os dados da tabela 1:

Exercício 1: Calcular a declividade média do curso d água principal da bacia abaixo, sendo fornecidos os dados da tabela 1: IPH 110 Hidráulica e Hidrologia Aplicadas Exercícios de Hidrologia Exercício 1: Calcular a declividade média do curso d água principal da bacia abaixo, sendo fornecidos os dados da tabela 1: Tabela 1 Características

Leia mais

Fundação Carmelitana Mário Palmério-FUCAMP Curso de Bacharelado em Engenharia Civil. Hidrologia Aplicada C A ROLI NA A. G H ELLI

Fundação Carmelitana Mário Palmério-FUCAMP Curso de Bacharelado em Engenharia Civil. Hidrologia Aplicada C A ROLI NA A. G H ELLI Fundação Carmelitana Mário Palmério-FUCAMP Curso de Bacharelado em Engenharia Civil Hidrologia Aplicada PRECIPITAÇÃO C A ROLI NA A. G H ELLI 1 Objetivos 1.Conhecer o processo físico de formação das chuvas

Leia mais

Precipitação I. Mario Thadeu Leme de Barros Renato Carlos Zambon

Precipitação I. Mario Thadeu Leme de Barros Renato Carlos Zambon Precipitação I Mario Thadeu Leme de Barros Renato Carlos Zambon Precipitações Fonte de água da bacia hidrográfica Condiciona o regime do rio (vazões médias, estiagens e cheias) Variações no tempo (sazonais,

Leia mais

Revendo a primeira aula

Revendo a primeira aula Revendo a primeira aula 1. Defina ciclo hidrológico 2. Comenta a seguinte afirmação: O PLANETA ESTÁ SECANDO 3. Quem é mais denso ar úmido ou o ar seco? Justifique 4. Defina bacia hidrográfica 5. O que

Leia mais

Precipitações Tipos, medição, interpretação, chuva média

Precipitações Tipos, medição, interpretação, chuva média Universidade de São Paulo PHA2307 Hidrologia Aplicada Escola Politécnica da Universidade de São Paulo Departamento de Engenharia Hidráulica e Ambiental Precipitações Tipos, medição, interpretação, chuva

Leia mais

Aula PRECIPITAÇÃO

Aula PRECIPITAÇÃO Aula 03 1. PRECIPITAÇÃO 1.1. Definição Entende-se por precipitação a água proveniente do vapor de água da atmosfera depositada na superfície terrestre sob qualquer forma: chuva, granizo, neblina, neve,

Leia mais

PRECIPITAÇÕES EXTREMAS

PRECIPITAÇÕES EXTREMAS GPA CIÊNCIAS AGRÁRIAS, BIOLÓGICAS E ENGENHARIAS PRECIPITAÇÕES EXTREMAS Eng. Walter Corrêa Carvalho Junior, Esp. Cálculos Pluviométricos; Conteúdo da Aula Cálculo de Chuvas Máximas (Eventos Extremos). Com

Leia mais

Processos Hidrológicos CST 318 / SER 456. Tema 9 -Métodos estatísticos aplicados à hidrologia ANO 2016

Processos Hidrológicos CST 318 / SER 456. Tema 9 -Métodos estatísticos aplicados à hidrologia ANO 2016 Processos Hidrológicos CST 318 / SER 456 Tema 9 -Métodos estatísticos aplicados à hidrologia ANO 2016 Camilo Daleles Rennó Laura De Simone Borma http://www.dpi.inpe.br/~camilo/prochidr/ Caracterização

Leia mais

Hidrologia - Lista de exercícios 2008

Hidrologia - Lista de exercícios 2008 Hidrologia - Lista de exercícios 2008 1) Qual seria a vazão de saída de uma bacia completamente impermeável, com área de 22km 2, sob uma chuva constante à taxa de 50 mm.hora -1? 2) A região da bacia hidrográfica

Leia mais

HIDROLOGIA Prof. Antover Panazzolo Sarmento

HIDROLOGIA Prof. Antover Panazzolo Sarmento MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE GOIÁS REGIONAL CATALÃO ENGENHARIA CIVIL - HIDROLOGIA HIDROLOGIA Prof. Antover Panazzolo Sarmento MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE GOIÁS REGIONAL

Leia mais

Precipitação Prof. Fábio Marin

Precipitação Prof. Fábio Marin UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA "LUIZ DE QUEIROZ" DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS LEB 306 Meteorologia Agrícola 1 o Semestre de 2018 Precipitação Prof. Fábio Marin Ciclo

Leia mais

ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ ESALQ/USP LEB 1440 HIDROLOGIA E DRENAGEM Prof. Fernando Campos Mendonça PRECIPITAÇÕES

ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ ESALQ/USP LEB 1440 HIDROLOGIA E DRENAGEM Prof. Fernando Campos Mendonça PRECIPITAÇÕES Hidrologia e Drenagem Aula 3 1 ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ ESALQ/USP LEB 1440 HIDROLOGIA E DRENAGEM Prof. Fernando Campos Mendonça PRECIPITAÇÕES 1. Importância dos dados de chuva Exemplos:

Leia mais

PRECIPITAÇÃO CARLOS ROGÉRIO DE MELLO DEG/UFLA

PRECIPITAÇÃO CARLOS ROGÉRIO DE MELLO DEG/UFLA PRECIPITAÇÃO CARLOS ROGÉRIO DE MELLO DEG/UFLA 1. Ciclo Hidrológico 2. A atmosfera da Terra a) AR SECO (CONSTITUIÇÃO FIXA, EM %): - Nitrogênio (N2): 78,084% - Oxigênio (O2): 20,948% - Argônio (Ar): 0,934%

Leia mais

Professora: Amanara Potykytã de Sousa Dias Vieira HIDROLOGIA

Professora: Amanara Potykytã de Sousa Dias Vieira HIDROLOGIA Professora: Amanara Potykytã de Sousa Dias Vieira HIDROLOGIA O que é? Na hidrologia, estuda-se a água presente na natureza, buscando-se a quantificação do armazenamento e movimentação da água nos vários

Leia mais

Precipitação 16/03/2016. Revisão: ATMOSFERA: ATMOSFERA: TROPOSFERA: Prof. Luis César de Aquino Lemos Filho Dr. Engenharia de Água e Solo

Precipitação 16/03/2016. Revisão: ATMOSFERA: ATMOSFERA: TROPOSFERA: Prof. Luis César de Aquino Lemos Filho Dr. Engenharia de Água e Solo Revisão: Precipitação de Aquino Lemos Filho Dr. Engenharia de Água e Solo Universidade Federal Rural do Semi-Árido Mossoró, RN ATMOSFERA: Camada gasosa que envolve a terra, constituída por uma mistura

Leia mais

Como praticamente vivemos sobre bacias hidrográfica (bacias de drenagem) é fundamental que saibamos analisar, tanto o período de retorno como a

Como praticamente vivemos sobre bacias hidrográfica (bacias de drenagem) é fundamental que saibamos analisar, tanto o período de retorno como a Como praticamente vivemos sobre bacias hidrográfica (bacias de drenagem) é fundamental que saibamos analisar, tanto o período de retorno como a frequência dos totais precipitados, isto porque a precipitação,

Leia mais

CAPÍTULO II II. CHUVAS

CAPÍTULO II II. CHUVAS CAPÍTULO II II. CHUVAS II.1. Introdução As águas de drenagem superficial são fundamentalmente originárias de precipitações pluviométricas cujos possíveis transtornos que seriam provocados por estes escoamentos,

Leia mais

PRECIPITAÇÃO CARLOS ROGÉRIO DE MELLO DEG/UFLA

PRECIPITAÇÃO CARLOS ROGÉRIO DE MELLO DEG/UFLA PRECIPITAÇÃO CARLOS ROGÉRIO DE MELLO DEG/UFLA 1. Ciclo Hidrológico 2. A atmosfera da Terra a) AR SECO (CONSTITUIÇÃO FIXA, EM %): - Nitrogênio (N2): 78,084% - Oxigênio (O2): 20,948% - Argônio (Ar): 0,934%

Leia mais

UNIVERSIDADE FEDERAL DE SERGIPE GESTÃO E MANEJO DE BACIAS HIDROGRÁFICAS CICLO HIDROLÓGICO

UNIVERSIDADE FEDERAL DE SERGIPE GESTÃO E MANEJO DE BACIAS HIDROGRÁFICAS CICLO HIDROLÓGICO UNIVERSIDADE FEDERAL DE SERGIPE GESTÃO E MANEJO DE BACIAS HIDROGRÁFICAS CICLO HIDROLÓGICO SÃO CRISTÓVÃO - SETEMBRO 2011 CICLO HIDROLÓGICO O comportamento natural da água quanto à sua ocorrência, transformações

Leia mais

Hidráulica e Hidrologia

Hidráulica e Hidrologia 86 VIII. ESCOAMENTO SUPERFICIAL 8.1. Introdução Das fases básicas do ciclo hidrológico, talvez a mais importante para o engenheiro seja a do escoamento superficial, que é a fase que trata da ocorrência

Leia mais

Precipitações. Chuva e Granizo

Precipitações. Chuva e Granizo Precipitações Chuva e Granizo 1 Introdução Conceito É a queda de água, no estado sólido ou líquido, da atmosfera para a superfície terrestre 2 3 4 Importância Importância Fonte de água para vegetais Arrasta

Leia mais

CLIMAS DO BRASIL Profº Gustavo Silva de Souza

CLIMAS DO BRASIL Profº Gustavo Silva de Souza CLIMAS DO BRASIL Profº Gustavo Silva de Souza CLIMA BRASIL: tipos climáticos 1 Equatorial 2 Tropical 3 Tropical de Altitude 4 Tropical Atlântico/Úmido 5 Semi-Árido 6- Subtropical -Inverno rigoroso - chuvas

Leia mais

HIDROLOGIA AULA 14 HIDROLOGIA ESTATÍSTICA. 5 semestre - Engenharia Civil. Profª. Priscila Pini

HIDROLOGIA AULA 14 HIDROLOGIA ESTATÍSTICA. 5 semestre - Engenharia Civil. Profª. Priscila Pini HIDROLOGIA AULA 14 5 semestre - Engenharia Civil HIDROLOGIA ESTATÍSTICA Profª. Priscila Pini prof.priscila@feitep.edu.br INTRODUÇÃO Chuva e vazão Grande variabilidade no tempo! Estatística em Hidrologia:

Leia mais

Parâmetros Da Equação De Chuvas Intensas Nos Municípios De Viçosa E Palmeira Dos Índios- AL

Parâmetros Da Equação De Chuvas Intensas Nos Municípios De Viçosa E Palmeira Dos Índios- AL Parâmetros Da Equação De Chuvas Intensas Nos Municípios De Viçosa E Palmeira Dos Índios- AL Karla Nayara Santos de Almeida¹; Kaíse Barbosa de Souza 2 ; Gabriel Soares Lopes Gomes 3 ; João Batista Lopes

Leia mais

PONTIFICIA UNIVERSIDADE CATÓLICA DE GOIÁS ESCOLA DE ENGENHARIA HIDROLOGIA APLICADA SEMESTRE I

PONTIFICIA UNIVERSIDADE CATÓLICA DE GOIÁS ESCOLA DE ENGENHARIA HIDROLOGIA APLICADA SEMESTRE I PONTIFICIA UNIVERSIDADE CATÓLICA DE GOIÁS ESCOLA DE ENGENHARIA HIDROLOGIA APLICADA SEMESTRE I 2016 PROF. M.Sc. Felipe Correa V. dos Santos Obs: Entregar no dia da avaliação de N1(antes de fazer a prova)

Leia mais

1. PRECIPITAÇÃO 1.1. DEFINIÇÃO

1. PRECIPITAÇÃO 1.1. DEFINIÇÃO Capítulo Precipitação 1. PRECIPITAÇÃO 1.1. DEFINIÇÃO Precipitação, em Hidrologia, é o termo geral dado a todas as formas de água depositada na superfície terrestre e oriunda do vapor d água na atmosfera,

Leia mais

DETERMINAÇÃO DOS PARÂMETROS DA EQUAÇÃO DE CHUVAS INTENSAS PARA O MUNICÍPIO DE ALHANDRA, PARAÍBA

DETERMINAÇÃO DOS PARÂMETROS DA EQUAÇÃO DE CHUVAS INTENSAS PARA O MUNICÍPIO DE ALHANDRA, PARAÍBA DETERMINAÇÃO DOS PARÂMETROS DA EQUAÇÃO DE CHUVAS INTENSAS PARA O MUNICÍPIO DE ALHANDRA, PARAÍBA Matheus Patrick Araújo da Silva ¹; Gabriel Carlos Moura Pessoa²; José Joaquim de Souza Neto³; Raniele Adame

Leia mais

CHUVAS INTENSAS NO MUNICÍPIO DE IRECÊ-BA

CHUVAS INTENSAS NO MUNICÍPIO DE IRECÊ-BA CHUVAS INTENSAS NO MUNICÍPIO DE IRECÊ-BA Mariana Lima Figueredo¹; Fagna Maria Silva Cavalcante²; Igor Bruno Machado dos Anjos 3; Sara Alves de Carvalho Araújo Guimarães 4 ; Manoel Moisés Ferreira de Queiroz

Leia mais

HIDROLOGIA AULA semestre - Engenharia Civil EVAPOTRANSPIRAÇÃO. Profª. Priscila Pini

HIDROLOGIA AULA semestre - Engenharia Civil EVAPOTRANSPIRAÇÃO. Profª. Priscila Pini HIDROLOGIA AULA 08 5 semestre - Engenharia Civil EVAPOTRANSPIRAÇÃO Profª. Priscila Pini prof.priscila@feitep.edu.br CONCEITOS Retorno da água precipitada para a atmosfera, fechando o ciclo hidrológico.

Leia mais

INFORMATIVO CLIMÁTICO

INFORMATIVO CLIMÁTICO GOVERNO DO ESTADO DO MARANHÃO UNIVERSIDADE ESTADUAL DO MARANHÃO NÚCLEO GEOAMBIENTAL LABORATÓRIO DE METEOROLOGIA INFORMATIVO CLIMÁTICO Condições do tempo no Estado do Maranhão em Fevereiro de 2011 O mês

Leia mais

INFORMATIVO CLIMÁTICO

INFORMATIVO CLIMÁTICO GOVERNO DO MARANHÃO UNIVERSIDADE ESTADUAL DO MARANHÃO NÚCLEO GEOAMBIENTAL LABORATÓRIO DE METEOROLOGIA INFORMATIVO CLIMÁTICO MARANHÃO As massas de ar quente e seco começam a ganhar força no mês de julho

Leia mais

5 - Precipitação. Todas as formas de umidade emanadas da atmosfera e depositadas na superfície da terra: Chuva Granizo Neve Orvalho Geada Neblina

5 - Precipitação. Todas as formas de umidade emanadas da atmosfera e depositadas na superfície da terra: Chuva Granizo Neve Orvalho Geada Neblina 5 - Precipitação Todas as formas de umidade emanadas da atmosfera e depositadas na superfície da terra: Chuva Granizo Neve Orvalho Geada Neblina Maior contribuição para Q rios 1 5.1 - Generalidades Características

Leia mais

Clima: seus elementos e fatores de influência. Professor Fernando Rocha

Clima: seus elementos e fatores de influência. Professor Fernando Rocha Clima: seus elementos e fatores de influência Professor Fernando Rocha O que é Clima? Definições Não confundir Tempo e Clima Tempo (meteorológico): são condições atmosféricas de um determinado lugar em

Leia mais

Dados ambientais. Previsão do tempo. Imagem de satélite GOES

Dados ambientais. Previsão do tempo. Imagem de satélite GOES Dados ambientais. A terra recebe energia solar continuamente. A instituição recebe a radiação solar, que a através do aquecimento diurno e resfriamento noturno caracteriza o clima. Serão estudados dentro

Leia mais

Pontifícia Universidade Católica de Goiás Engenharia Civil. Precipitações. Professora: Mayara Moraes

Pontifícia Universidade Católica de Goiás Engenharia Civil. Precipitações. Professora: Mayara Moraes Pontifícia Universidade Católica de Goiás Engenharia Civil Precipitações Professora: Mayara Moraes Água da atmosfera que atinge a superfície na forma de chuva, granizo, neve, orvalho, neblina ou geada

Leia mais

CLIMATOLOGIA GEOGRÁFICA Prof ª Gustavo Silva de Souza

CLIMATOLOGIA GEOGRÁFICA Prof ª Gustavo Silva de Souza CLIMATOLOGIA GEOGRÁFICA Prof ª Gustavo Silva de Souza CLIMATOLOGIA GEOGRÁFICA O CONCEITO DE CLIMA Para compreender o clima de um determinado local, é preciso estudar os diversos tipos de tempo que costumam

Leia mais

COMUNICAÇÃO TÉCNICA Nº Modelagem de inundações: curvas IDF e modelagem chuva-vazão. Filipe Antonio Marques Falcetta.

COMUNICAÇÃO TÉCNICA Nº Modelagem de inundações: curvas IDF e modelagem chuva-vazão. Filipe Antonio Marques Falcetta. COMUNICAÇÃO TÉCNICA Nº 175329 Modelagem de inundações: curvas IDF e modelagem chuva-vazão Filipe Antonio Marques Falcetta Palestra ministrada no 1.Seminário Processos Hidrológicos Urbanos e seus Impactos,

Leia mais

Camadas da Atmosfera (características físico químicas)

Camadas da Atmosfera (características físico químicas) Camadas da Atmosfera (características físico químicas) Gradiente médio negativo temperatura aumenta conforme aumenta a altitude. Gradiente médio positivo temperatura diminui conforme aumenta a altitude.

Leia mais

CHUVA E VENTO. Nuvens e precipitação pluvial Conceitos Básicos

CHUVA E VENTO. Nuvens e precipitação pluvial Conceitos Básicos CL43B CLIMATOLOGIA CHUVA E VENTO PROF. DR. FREDERICO M. C. VIEIRA Nuvens e precipitação pluvial Conceitos Básicos Precipitação pluvial: éaformaprincipalpelaqualaáguaretornada atmosfera para a superfície

Leia mais

ESTADO DE MATO GROSSO SECRETARIA DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP DEPARTAMENTO DE

ESTADO DE MATO GROSSO SECRETARIA DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP DEPARTAMENTO DE ESTADO DE MATO GROSSO SECRETARIA DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP DEPARTAMENTO DE ENGENHARIA CIVIL Hidrologia Cálculo de vazões Método Racional

Leia mais

INFORMATIVO CLIMÁTICO

INFORMATIVO CLIMÁTICO GOVERNO DO MARANHÃO UNIVERSIDADE ESTADUAL DO MARANHÃO NÚCLEO GEOAMBIENTAL LABORATÓRIO DE METEOROLOGIA INFORMATIVO CLIMÁTICO MARANHÃO O destaque do mês de junho de 2016 foi o episódio de chuva e ventos

Leia mais

Recursos hídricos. Especificidade do clima português

Recursos hídricos. Especificidade do clima português Recursos hídricos Especificidade do clima português Recurso insubstituível e suporte de Vida A água é fundamental para os sistemas naturais, para a vida humana e para as atividades económicas. O Tejo,

Leia mais

Por que estudar os fatores pluviométricos?

Por que estudar os fatores pluviométricos? ANÁLISE PLUVIOMÉTRICA APLICADA AO ESTUDO DE BACIAS HIDROGRÁFICAS AUTOR: JOÃO BATISTA PEREIRA CABRAL Lic em Geografia - FIC Dr. Geologia Ambiental UFPR Prof. Adj 3 GEO/CAJ/UFG Por que estudar os fatores

Leia mais

INFORMATIVO CLIMÁTICO

INFORMATIVO CLIMÁTICO GOVERNO DO MARANHÃO UNIVERSIDADE ESTADUAL DO MARANHÃO NÚCLEO GEOAMBIENTAL LABORATÓRIO DE METEOROLOGIA INFORMATIVO CLIMÁTICO MARANHÃO Chuvas em todo o Estado do Maranhão em fevereiro de 2016 foram determinantes

Leia mais

FACULDADE SUDOESTE PAULISTA CURSO - ENGENHARIA CIVIL DISCIPLINA - HIDROLOGIA APLICADA EXERCÍCIO DE REVISÃO

FACULDADE SUDOESTE PAULISTA CURSO - ENGENHARIA CIVIL DISCIPLINA - HIDROLOGIA APLICADA EXERCÍCIO DE REVISÃO FACULDADE SUDOESTE PAULISTA CURSO - ENGENHARIA CIVIL DISCIPLINA - HIDROLOGIA APLICADA EXERCÍCIO DE REVISÃO 1. CONCEITUE HIDROLOGIA? 2. QUAL A IMPORTÂNCIA DA HIDROLOGIA NA ENGENHARIA CIVIL? 3. ASSINALE

Leia mais

Universidade Tecnológica Federal do Paraná. CC54Z - Hidrologia. Evaporação e evapotranspiração. Prof. Fernando Andrade Curitiba, 2014

Universidade Tecnológica Federal do Paraná. CC54Z - Hidrologia. Evaporação e evapotranspiração. Prof. Fernando Andrade Curitiba, 2014 Universidade Tecnológica Federal do Paraná CC54Z - Hidrologia Evaporação e evapotranspiração Prof. Fernando Andrade Curitiba, 2014 Objetivos da aula Definir os conceitos básicos da evaporação e evapotranspiração

Leia mais

Climatologia e meteorologia

Climatologia e meteorologia Climatologia e meteorologia 1. Introdução A climatologia é a ciência que se ocupa do estudo dos climas. Os estudos climatológicos referem-se, de uma maneira geral, a territórios mais ou menos vastos e

Leia mais

Hidrologia. 3 - Coleta de Dados de Interesse para a Hidrologia 3.1. Introdução 3.2. Sistemas clássicos Estações meteorológicas

Hidrologia. 3 - Coleta de Dados de Interesse para a Hidrologia 3.1. Introdução 3.2. Sistemas clássicos Estações meteorológicas Hidrologia 1 - Introdução 1.1. Generalidades 1.2. Ciclo hidrológico 1.3. Métodos de estudos 1.4. Exemplos de aplicações da hidrologia à engenharia 2 - Fundamentos Geofísicos da Hidrologia 2.1. A atmosfera

Leia mais

RECORRÊNCIA DE CHUVAS FORTES NA CIDADE DE SÃO PAULO

RECORRÊNCIA DE CHUVAS FORTES NA CIDADE DE SÃO PAULO RECORRÊNCIA DE CHUVAS FORTES NA CIDADE DE SÃO PAULO 5/1 1 de Setembro de 1 Departamento de Casualty & Marine Munich Re do Brasil 1. Introdução Os impactos causados por condições adversas de tempo afetam

Leia mais

ECA_2ª etapa. 2. Observe os gráficos a seguir: Página 1 de 6

ECA_2ª etapa. 2. Observe os gráficos a seguir: Página 1 de 6 1. Analise os dois climogramas que seguem e, pelas informações que eles apresentam e pelos seus conhecimentos sobre o tema, identifique a classificação climática e a cidade onde ocorrem. a) 1) Equatorial

Leia mais

ANÁLISE DE SÉRIE HISTÓRICA DE PRECIPITAÇÃO. ESTUDO DE CASO: PRINCESA ISABEL PB

ANÁLISE DE SÉRIE HISTÓRICA DE PRECIPITAÇÃO. ESTUDO DE CASO: PRINCESA ISABEL PB ANÁLISE DE SÉRIE HISTÓRICA DE PRECIPITAÇÃO. ESTUDO DE CASO: PRINCESA ISABEL PB Kaio Sales de Tancredo Nunes (1); Amanda Maria Felix Badú (2); Maria Helena de Lucena Justiniano (3); (1) Universidade Federal

Leia mais

Equações De Chuvas Intensas Para Os Municípios De Maceió E Arapiraca - AL

Equações De Chuvas Intensas Para Os Municípios De Maceió E Arapiraca - AL Equações De Chuvas Intensas Para Os Municípios De Maceió E Arapiraca - AL Temístocles Pacheco Lima¹; Fabrina Teixeira Ferraz 2 ; Luciano Cavalcante de Jesus França 3 ; Gabriel Soares Lopes Gomes 4 ; João

Leia mais

PRECIPITAÇÃO é o nome que se atribui a toda forma de umidade que, proveniente da atmosfera, deposita-se sobre a superfície da Terra.

PRECIPITAÇÃO é o nome que se atribui a toda forma de umidade que, proveniente da atmosfera, deposita-se sobre a superfície da Terra. 3 3 PRECIPITAÇÃO PRECIPITAÇÃO é o nome que se atribui a toda forma de umidade que, proveniente da atmosfera, deposita-se sobre a superfície da Terra. Ocorre na forma de chuva, granizo, neve, neblina, orvalho

Leia mais

VIII-Castro-Brasil-1 COMPARAÇÃO ENTRE O TEMPO DE RETORNO DA PRECIPITAÇÃO MÁXIMA E O TEMPO DE RETORNO DA VAZÃO GERADA PELO EVENTO

VIII-Castro-Brasil-1 COMPARAÇÃO ENTRE O TEMPO DE RETORNO DA PRECIPITAÇÃO MÁXIMA E O TEMPO DE RETORNO DA VAZÃO GERADA PELO EVENTO VIII-Castro-Brasil-1 COMPARAÇÃO ENTRE O TEMPO DE RETORNO DA PRECIPITAÇÃO MÁXIMA E O TEMPO DE RETORNO DA VAZÃO GERADA PELO EVENTO Andréa Souza Castro (1) - Aluna de Doutorado do Programa de Pós-Graduação

Leia mais

INFORMATIVO CLIMÁTICO

INFORMATIVO CLIMÁTICO GOVERNO DO MARANHÃO UNIVERSIDADE ESTADUAL DO MARANHÃO NÚCLEO GEOAMBIENTAL LABORATÓRIO DE METEOROLOGIA INFORMATIVO CLIMÁTICO MARANHÃO A Zona de Convergência Intertropical continuou atuando ao norte de sua

Leia mais

Definição. é uma ciência que estuda o. tempo atmosférico e suas variações ao longo do. dia, sendo também conhecido como

Definição. é uma ciência que estuda o. tempo atmosférico e suas variações ao longo do. dia, sendo também conhecido como Definição A é uma ciência que estuda o tempo atmosférico e suas variações ao longo do dia, sendo também conhecido como. A meteorologia vem, portanto a se dedicar ao estudo das variações do tempo atmosférico

Leia mais

Universidade Tecnológica Federal do Paraná. CC54Z - Hidrologia. Infiltração e água no solo. Prof. Fernando Andrade Curitiba, 2014

Universidade Tecnológica Federal do Paraná. CC54Z - Hidrologia. Infiltração e água no solo. Prof. Fernando Andrade Curitiba, 2014 Universidade Tecnológica Federal do Paraná CC54Z - Hidrologia Infiltração e água no solo Prof. Fernando Andrade Curitiba, 2014 Objetivos da aula Definir as grandezas características e a importância da

Leia mais

ANÁLISE DA VARIAÇÃO PLUVIOMÉTRICA DO MUNICÍPIO DE CAJAZEIRINHAS PB A PARTIR DE SÉRIES HISTÓRICAS

ANÁLISE DA VARIAÇÃO PLUVIOMÉTRICA DO MUNICÍPIO DE CAJAZEIRINHAS PB A PARTIR DE SÉRIES HISTÓRICAS ANÁLISE DA VARIAÇÃO PLUVIOMÉTRICA DO MUNICÍPIO DE CAJAZEIRINHAS PB A PARTIR DE SÉRIES HISTÓRICAS Rayanne Maria Galdino Silva 1 ; Vitória Régia do Nascimento Lima 3 ; Lilian de Queiroz Firmino 1; Gleyton

Leia mais

PROGNÓSTICO CLIMÁTICO DE VERÃO. Características do Verão

PROGNÓSTICO CLIMÁTICO DE VERÃO. Características do Verão Instituto Nacional de Meteorologia INMET Coordenação-Geral de Meteorologia Aplicada, Desenvolvimento e Pesquisa Serviço de Pesquisa Aplicada SEPEA Endereço: Eixo Monumental via S1 Sudoeste Fone: + 55 (61)

Leia mais

Precipitação Pluviométrica

Precipitação Pluviométrica Precipitação Pluviométrica Capítulo XI Objetivos: 1. Definir chuva e destacar a sua importância agronômica 2. Explicar o processo de formação da chuva 3. Distinguir entre os diferentes tipos de chuva 4.

Leia mais

Fenómenos de condensação

Fenómenos de condensação Fenómenos de condensação Quando o ar atmosférico atinge a saturação, o vapor de água em excesso condensa-se, o que se traduz pela formação de nuvens, constituídas por pequenas gotículas de água ou cristais

Leia mais

Quantificação de grandezas Ambientais

Quantificação de grandezas Ambientais Quantificação de grandezas Ambientais Hidrologia Cursos d água Perenes: permanece com água o tempo todo, mesmo em períodos em seca. Intermitentes: escoam durante as chuvas, entretanto secam durante as

Leia mais

HIDROLOGIA AULA semestre - Engenharia Civil. Profª. Priscila Pini

HIDROLOGIA AULA semestre - Engenharia Civil. Profª. Priscila Pini HIDROLOGIA AULA 01 5 semestre - Engenharia Civil Profª. Priscila Pini prof.priscila@feitep.edu.br HIDROLOGIA AULA 01 5 semestre - Engenharia Civil PROGRAMA DA DISCIPLINA 1. Introdução à Hidrologia 2. Precipitação

Leia mais

Aula Clima Brasil. Prof. Diogo Máximo

Aula Clima Brasil. Prof. Diogo Máximo Aula Clima Brasil Prof. Diogo Máximo CLIMA Sucessão habitual dos tipos de tempo. TEMPO Estado momentâneo da atmosfera em um determinado local e em certo período de hora. Definição Clima e Tempo O conjunto

Leia mais

Método Kimbal...P= m/n+1; observando que para P menor ou igual a

Método Kimbal...P= m/n+1; observando que para P menor ou igual a 4.5.Medidas Pluviométricas.- São as grandezas e dimensões utilizadas para medir as precipitações.- a)altura pluviométrica ( H ). É a altura ou lâmina d água registrada em um pluviômetro. O pluviômetro

Leia mais

Curvas Intensidade-Duração-Frequência das precipitações extremas para o município de Cuiabá (MT)

Curvas Intensidade-Duração-Frequência das precipitações extremas para o município de Cuiabá (MT) Curvas Intensidade-Duração-Frequência das precipitações extremas para o município de Cuiabá (MT) Intensity-Duration-Frequency Curves of extreme precipitation for the city of Cuiabá (MT) Resumo Ana Letícia

Leia mais

INFORMATIVO CLIMÁTICO

INFORMATIVO CLIMÁTICO GOVERNO DO MARANHÃO UNIVERSIDADE ESTADUAL DO MARANHÃO NÚCLEO GEOAMBIENTAL LABORATÓRIO DE METEOROLOGIA INFORMATIVO CLIMÁTICO MARANHÃO As chuvas de novembro de 2016 se concentraram no centro-sul do Maranhão,

Leia mais

ANÁLISE PLUVIOMÉTRICA DA BACIA DO CHORÓ, MUNÍCIPIO DE CHORÓ CEARÁ

ANÁLISE PLUVIOMÉTRICA DA BACIA DO CHORÓ, MUNÍCIPIO DE CHORÓ CEARÁ ANÁLISE PLUVIOMÉTRICA DA BACIA DO CHORÓ, MUNÍCIPIO DE CHORÓ CEARÁ Valesca Poliana Sampaio Santana (1); Emanuelle Ribeiro Martins (2); Raul Lopes Sampaio Grangeiro (3); Ramon Müller dos Santos (4); Luiz

Leia mais

INFORMATIVO CLIMÁTICO

INFORMATIVO CLIMÁTICO GOVERNO DO ESTADO DO MARANHÃO UNIVERSIDADE ESTADUAL DO MARANHÃO NÚCLEO GEOAMBIENTAL LABORATÓRIO DE METEOROLOGIA INFORMATIVO CLIMÁTICO Condições do tempo no Estado do Maranhão em Janeiro de 2011 Considerado

Leia mais

INFORMATIVO CLIMÁTICO

INFORMATIVO CLIMÁTICO GOVERNO DO ESTADO DO MARANHÃO UNIVERSIDADE ESTADUAL DO MARANHÃO NÚCLEO GEOAMBIENTAL LABORATÓRIO DE METEOROLOGIA INFORMATIVO CLIMÁTICO Condições do tempo no Estado do Maranhão em Dezembro de 2010 O mês

Leia mais

HIDROLOGIA AULA semestre - Engenharia Civil. MEDIÇÃO DE VAZÃO Profª. Priscila Pini

HIDROLOGIA AULA semestre - Engenharia Civil. MEDIÇÃO DE VAZÃO Profª. Priscila Pini HIDROLOGIA AULA 13 5 semestre - Engenharia Civil MEDIÇÃO DE VAZÃO Profª. Priscila Pini prof.priscila@feitep.edu.br INTRODUÇÃO Vazão: volume de água que passa por uma determinada seção de um rio ao longo

Leia mais

APLICAÇÃO DE FERRAMENTAS ESTATÍSTICAS NA ANÁLISE DA PLUVIOMETRIA NO MUNICÍPIO DE SÃO PAULO

APLICAÇÃO DE FERRAMENTAS ESTATÍSTICAS NA ANÁLISE DA PLUVIOMETRIA NO MUNICÍPIO DE SÃO PAULO APLICAÇÃO DE FERRAMETAS ESTATÍSTICAS A AÁLISE DA PLUVIOMETRIA O MUICÍPIO DE SÃO PAULO Vasques, R. S 1, Silva F. M. A, Vasques E. R 3, Barja P. R. n 1 Hifumi nº 911, Urbanova, São José dos Campos, São Paulo,

Leia mais

10.3 Métodos estatísticos

10.3 Métodos estatísticos 10.3 Métodos estatísticos O estudo de VAZÕES MÁXIMAS pode ser realizado através de DISTRIBUIÇÕES ESTATÍSTICAS DE VARIÁVEIS CONTÍNUAS Métodos: - Distribuição de Gumbel - Distribuição Exponencial de dois

Leia mais

INFORMATIVO CLIMÁTICO

INFORMATIVO CLIMÁTICO GOVERNO DO MARANHÃO UNIVERSIDADE ESTADUAL DO MARANHÃO NÚCLEO GEOAMBIENTAL LABORATÓRIO DE METEOROLOGIA INFORMATIVO CLIMÁTICO MARANHÃO Climatologicamente, o mês de dezembro marca o período de transição entre

Leia mais

FATORES CLIMÁTICOS Quais são os fatores climáticos?

FATORES CLIMÁTICOS Quais são os fatores climáticos? Quais são os fatores climáticos? o Latitude A distância a que os lugares se situam do equador determina as suas características climáticas. Por isso, existem climas quentes, temperados e frios. o Proximidade

Leia mais

Análise das Condições de Tempo Observadas no dia 10/11/2009.

Análise das Condições de Tempo Observadas no dia 10/11/2009. RELATÓRIO PREPARADO PELO CPTEC A PEDIDO DO MINISTÉRIO PÚBLICO Análise das Condições de Tempo Observadas no dia 10/11/2009. RESUMO Este relatório descreve as condições meteorológicas observadas durante

Leia mais

MOVIMENTO DE TRANSLAÇÃO

MOVIMENTO DE TRANSLAÇÃO CLIMA MOVIMENTO DE TRANSLAÇÃO Link para o vídeo que demonstra o movimento de translação da terra, comentando sobre as estações do ano e sobre a incidência dos raios solares na terra. http://www.youtube.com/watch?v=xczimavuxge

Leia mais

COMPARAÇÃO DOS MÉTODOS DA MÉDIA ARITMÉTICA E DE THIESSEN PARA DETERMINAÇÃO DA PLUVIOSIDADE MÉDIA DA SUB-BACIA DO RIO SIRIRI

COMPARAÇÃO DOS MÉTODOS DA MÉDIA ARITMÉTICA E DE THIESSEN PARA DETERMINAÇÃO DA PLUVIOSIDADE MÉDIA DA SUB-BACIA DO RIO SIRIRI COMPARAÇÃO DOS MÉTODOS DA MÉDIA ARITMÉTICA E DE THIESSEN PARA DETERMINAÇÃO DA PLUVIOSIDADE MÉDIA DA SUB-BACIA DO RIO SIRIRI Maria Caroline Silva Mendonça 1, Ivane Marcley Nascimento Sena 2, Myla Rebeca

Leia mais

INFORMATIVO CLIMÁTICO

INFORMATIVO CLIMÁTICO GOVERNO DO MARANHÃO UNIVERSIDADE ESTADUAL DO MARANHÃO NÚCLEO GEOAMBIENTAL LABORATÓRIO DE METEOROLOGIA INFORMATIVO CLIMÁTICO MARANHÃO Em setembro de 2016 os números de queimadas se destacaram principalmente

Leia mais

INFORMATIVO CLIMÁTICO

INFORMATIVO CLIMÁTICO GOVERNO DO MARANHÃO UNIVERSIDADE ESTADUAL DO MARANHÃO NÚCLEO GEOAMBIENTAL LABORATÓRIO DE METEOROLOGIA INFORMATIVO CLIMÁTICO MARANHÃO A Zona de Convergência Intertropical atuou ao norte de sua posição climatológica

Leia mais

INFORMATIVO CLIMÁTICO

INFORMATIVO CLIMÁTICO GOVERNO DO MARANHÃO UNIVERSIDADE ESTADUAL DO MARANHÃO NÚCLEO GEOAMBIENTAL LABORATÓRIO DE METEOROLOGIA INFORMATIVO CLIMÁTICO MARANHÃO O estabelecimento do fenômeno El Niño - Oscilação Sul (ENOS) e os poucos

Leia mais

Prognóstico Climático

Prognóstico Climático Prognóstico Climático PROGNÓSTICO TRIMESTRAL Trimestre: ago/set/out - 2001 O prognóstico climático do Instituto Nacional de Meteorologia - INMET, órgão do Ministério da Agricultura e do Abastecimento,

Leia mais

CLIMA, representado pela TEMPRATURAe PRECIPITAÇÃO. Fatores secundários: geologia e relevo

CLIMA, representado pela TEMPRATURAe PRECIPITAÇÃO. Fatores secundários: geologia e relevo Clima e a Hidrologia Hidrologia Global X Hidrologia Local O fator que exerce maior influência sobre a hidrologia local é o CLIMA, representado pela TEMPRATURAe PRECIPITAÇÃO Fatores secundários: geologia

Leia mais

JANEIRO / 2013 Versão 1.0 N O 1

JANEIRO / 2013 Versão 1.0 N O 1 GOVERNO DO ESTADO DE RONDÔNIA SECRETARIA DE ESTADO DO DESENVOLVIMENTO AMBIENTAL SEDAM BOLETIM MENSAL DE METEOROLOGIA JANEIRO / 2013 Versão 1.0 N O 1 EQUIPE TÉCNICA RESPONSÁVEL Marcelo José Gama da Silva

Leia mais

Tempo & Clima. é o estado físico das condições. atmosféricas em um determinado momento e local, podendo variar durante o mesmo dia.

Tempo & Clima. é o estado físico das condições. atmosféricas em um determinado momento e local, podendo variar durante o mesmo dia. Climatologia É uma parte da que estuda o tempo e o clima cientificamente, utilizando principalmente técnicas estatísticas na obtenção de padrões. É uma ciência de grande importância para os seres humanos,

Leia mais

Estimativa da Chuva e Vazão de Projeto Introdução

Estimativa da Chuva e Vazão de Projeto Introdução Universidade Regional do Cariri URCA Pró Reitoriade Ensino de Graduação Coordenação da Construção Civil Estimativa da Chuva e Vazão de Projeto Introdução Prof. Me. Renato de Oliveira Fernandes Professor

Leia mais

ESTUDO PLUVIOMÉTRICO E FLUVIOMÉTRICO PRELIMINAR NA BACIA HIDROGRÁFICA DO RIO EMBU-GUAÇU, SP.

ESTUDO PLUVIOMÉTRICO E FLUVIOMÉTRICO PRELIMINAR NA BACIA HIDROGRÁFICA DO RIO EMBU-GUAÇU, SP. ESTUDO PLUVIOMÉTRICO E FLUVIOMÉTRICO PRELIMINAR NA BACIA HIDROGRÁFICA DO RIO EMBU-GUAÇU, SP. Rita Monteiro Falcão - Aluna do curso de Geografia da FFLCH/USP. E-mail: rita.falcao@usp.br Emerson Galvani

Leia mais

INFORMATIVO CLIMÁTICO

INFORMATIVO CLIMÁTICO GOVERNO DO MARANHÃO UNIVERSIDADE ESTADUAL DO MARANHÃO NÚCLEO GEOAMBIENTAL LABORATÓRIO DE METEOROLOGIA INFORMATIVO CLIMÁTICO MARANHÃO Agosto marca o início do período seco no centro-norte do Maranhão. Nessa

Leia mais

PONTIFICIA UNIVERSIDADE CATÓLICA DE GOIÁS ESCOLA DE ENGENHARIA HIDROLOGIA APLICADA SEMESTRE I

PONTIFICIA UNIVERSIDADE CATÓLICA DE GOIÁS ESCOLA DE ENGENHARIA HIDROLOGIA APLICADA SEMESTRE I PONTIFICIA UNIVERSIDADE CATÓLICA DE GOIÁS ESCOLA DE ENGENHARIA HIDROLOGIA APLICADA SEMESTRE I 2017 PROF. Felipe Correa V. dos Santos Obs: Não é necessário a entrega Aluno: Turma: A01 1. Sabendo que a ET0

Leia mais

PREVISÃO CLIMÁTICA TRIMESTRAL

PREVISÃO CLIMÁTICA TRIMESTRAL PREVISÃO CLIMÁTICA TRIMESTRAL NOVEMBRO/DEZEMBRO-2017/JANEIRO-2018 Cooperativa de Energia Elétrica e Desenvolvimento Rural OUTUBRO/2017 Perspectivas para La Niña de fraca intensidade e curta duração As

Leia mais

INFORMATIVO CLIMÁTICO

INFORMATIVO CLIMÁTICO GOVERNO DO MARANHÃO UNIVERSIDADE ESTADUAL DO MARANHÃO NÚCLEO GEOAMBIENTAL LABORATÓRIO DE METEOROLOGIA INFORMATIVO CLIMÁTICO MARANHÃO O mês de janeiro de 2017 foi marcado, logo na primeira semana, por alguns

Leia mais