PLANIFICAÇÃO DE MATEMÁTICA setembro/outubro

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "PLANIFICAÇÃO DE MATEMÁTICA setembro/outubro"

Transcrição

1 AGRUPAMNTO D SCOLAS MARQUÊS D MARIALVA- Cntnhede 1.º ANO D SCOLARIDAD PLANIFICAÇÃO D MATMÁTICA setembr/utubr (GM1) (dptds à unidde) bjets e pnts; Cmprçã de distâncis entre pres de bjets e pnts UNIDAD 1 Objetivs/Descritres de desempenh (Mets Curriculres) 1. Situr-se e situr bjets n espç 1. Utilizr crretmente vcbulári própri ds relções de psiçã de dis bjets. 2. Recnhecer que um bjet está situd à frente de utr qund cult ttl u prcilmente d vist de quem bserv e utilizr crretmente s expressões «à frente de» e «pr detrás de». 3. Recnhecer que se um bjet estiver à frente de utr entã primeir está mis pert d bservdr e utilizr crretmente s expressões «mis pert» e «mis lnge». 4. Identificr linhments de três u mis bjets (incluind u nã bservdr) e utilizr dequdmente neste cntext s expressões «situd entre», «mis distnte de», «mis próxim de» e utrs equivlentes. Orgnizçã Representçã de cnjunts 1. Representr cnjunts e elements e Trtment Cnjunt, element pertencente um 1. Utilizr crretmente s terms «cnjunt», «element» e s expressões «pertence cnjunt», de Dds cnjunt, crdinl de um cnjunt; «nã pertence cnjunt» e «crdinl d cnjunt». (OTD1) Digrms de Venn cm cnjunts disjunts. Númers e Númers nturis 1. Cntr té cem Operções Crrespndêncis um um e cmprçã 1. Verificr que dis cnjunts têm mesm númer de elements u determinr qul ds dis é (NO1) d númer de elements de dis cnjunts; mis numers utiliznd crrespndêncis um um. Cntgens de té 5 bjets; 2. Sber de memóri sequênci ds nmes ds númers nturis té vinte e utilizr crretmente O cnjunt vzi e númer zer; s numeris d sistem deciml pr s representr. Númers nturis té 5; cntgens 3. Cntr té vinte bjets e recnhecer que resultd finl nã depende d rdem de cntgem prgressivs e regressivs. esclhid. 4. Asscir pel cntgem diferentes cnjunts mesm númer nturl, cnjunt vzi númer zer e recnhecer que um cnjunt tem menr númer de elements que utr se resultd d cntgem d primeir fr nterir, n rdem nturl, resultd d cntgem d segund. 5. fetur cntgens prgressivs e regressivs envlvend númers té cem. O r t d i t Sistem de numerçã deciml 2. Descdificr sistem de numerçã deciml Ordem nturl; s símbls «<» e «>»; 4. Cmprr númers nturis té 100 tirnd prtid d vlr psicinl ds lgrisms e utilizr cmprçã e rdençã de númers té crretmente s símbls «<» e «>» Adicinr númers nturis 1. Sber que sucessr de um númer n rdem nturl é igul esse númer mis 1. 1

2 AGRUPAMNTO D SCOLAS MARQUÊS D MARIALVA- Cntnhede UNIDAD 1 Númers e (NO1) (dptds à unidde) Objetivs/Descritres de desempenh (Mets Curriculres) 4. Reslver prblems 1. Reslver prblems de um pss envlvend situções de juntr u crescentr. 6. Reslver prblems 1. Reslver prblems de um pss envlvend situções de retirr, cmprr u cmpletr. T O P r t t 2

3 AGRUPAMNTO D SCOLAS MARQUÊS D MARIALVA- Cntnhede 1.º ANO D SCOLARIDAD PLANIFICAÇÃO D MATMÁTICA nvembr/dezembr Númers e (NO1) (dptds à unidde) Cntgens té nve bjets; Númers nturis té 9; cntgens prgressivs e regressivs UNIDAD 2 Objetivs/Descritres de desempenh (Mets Curriculres) 1. Cntr té cem 2. Sber de memóri sequênci ds nmes ds númers nturis té vinte e utilizr crretmente s numeris d sistem deciml pr s representr. 5. fetur cntgens prgressivs e regressivs envlvend númers té cem. Sistem de numerçã deciml 2. Descdificr sistem de numerçã deciml Ordem nturl; s símbls «<» e «>»; 4. Cmprr númers nturis té 100 tirnd prtid d vlr psicinl ds lgrisms e utilizr cmprçã e rdençã de númers té crretmente s símbls «<» e «>». 10. Adiçã 3. Adicinr númers nturis Adições cuj sm sej inferir 10 pr 1. Sber que sucessr de um númer n rdem nturl é igul esse númer mis cálcul mentl, métds infrmis. 2. fetur dições envlvend númers nturis té 20, pr mnipulçã de bjets u recrrend Os símbls «+» e «=»; desenhs e esquems. Decmpsiçã de númers té 10 em 3. Utilizr crretmente s símbls «+» e «=» e s terms «prcel» e «sm». sms; 4. Recnhecer que sm de qulquer númer cm zer é igul esse númer. Prblems de um pss envlvend 5. Adicinr fluentemente dis númers de um lgrism. situções de juntr e crescentr. 7. Decmpr um númer nturl té 20 em sms de dis u mis númers de um lgrism. 4. Reslver prblems 1. Reslver prblems de um pss envlvend situções de juntr u crescentr. T O P r t d i t Subtrçã 5. Subtrir númers nturis Subtrções envlvend númers nturis 1. fetur subtrções envlvend númers nturis té 20 pr mnipulçã de bjets u té nve pr métds infrmis; recrrend desenhs e esquems. Relçã entre subtrçã e diçã; 2. Utilizr crretmente símbl e s terms «ditiv», «subtrtiv» e «diferenç». Subtrções de númers té 10 utiliznd 3. Relcinr subtrçã cm diçã, identificnd diferenç entre dis númers cm númer cntgens prgressivs e regressivs; que se deve dicinr subtrtiv pr bter ditiv. O símbl ; 4. fetur subtrçã de dis númers pr cntgens prgressivs u regressivs de, n máxim, Prblems de um pss envlvend nve uniddes. situções de retirr, cmprr u cmpletr. 6. Reslver prblems 1. Reslver prblems de um pss envlvend situções de retirr, cmprr u cmpletr. 3

4 AGRUPAMNTO D SCOLAS MARQUÊS D MARIALVA- Cntnhede 1.º ANO D SCOLARIDAD PLANIFICAÇÃO D MATMÁTICA jneir UNIDAD 3 Subdmínis/Cnteúds Dmínis prgrmátics (dptds à Objetivs/Descritres de desempenh (Mets Curriculres) unidde) Orgnizçã e Representçã de dds 2. Reclher e representr cnjunts de dds Trtment de Gráfic de pnts e pictgrm 1. Ler gráfics de pnts e pictgrms em que cd figur represent um unidde. Dds em que cd figur represent 2. Reclher e registr dds utiliznd gráfics de pnts e pictgrms em que cd figur represent um (OTD1) um unidde. unidde. Númers e Númers nturis 1. Cntr té cem Operções Cntgens de té vinte bjets; 2. Sber de memóri sequênci ds nmes ds númers nturis té vinte e utilizr crretmente s (NO1) Númers nturis té 20; numeris d sistem deciml pr s representr. cntgens prgressivs e 5. fetur cntgens prgressivs e regressivs envlvend númers té cem. regressivs. Sistem de numerçã deciml 2. Descdificr sistem de numerçã deciml Ordens decimis: uniddes e 1. Designr dez uniddes pr um dezen e recnhecer que n representçã «10» lgrism «1» se dezens; encntr num nv psiçã mrcd pel clcçã d «0». Vlr psicinl ds lgrisms; 2. Sber que s númers nturis entre 11 e 19 sã cmpsts pr um dezen e um, dus, três, qutr, Ordem nturl; s símbls «<» cinc, seis, sete, it u nve uniddes. e «>»; cmprçã e rdençã 3. Ler e representr qulquer númer nturl té 100, identificnd vlr psicinl ds lgrisms que de númers té 20. cmpõem. 4. Cmprr númers nturis té 100 tirnd prtid d vlr psicinl ds lgrisms e utilizr crretmente s símbls «<» e «>». T r t d i t Adiçã 3. Adicinr númers nturis Adições cuj sm sej inferir 2. fetur dições envlvend númers nturis té 20, pr mnipulçã de bjets u recrrend pr cálcul mentl, métds desenhs e esquems. infrmis e tirnd prtid d 3. Utilizr crretmente s símbls «+» e «=» e s terms «prcel» e «sm». sistem deciml de psiçã; 4. Recnhecer que sm de qulquer númer cm zer é igul esse númer. Decmpsiçã de númers té 5. Adicinr fluentemente dis númers de um lgrism. 20 em sms; 6. Decmpr um númer nturl inferir 100 n sm ds dezens cm s uniddes. Prblems de um pss 7. Decmpr um númer nturl té 20 em sms de dis u mis númers de um lgrism. envlvend situções de juntr e 8. Adicinr mentlmente um númer de dis lgrisms cm um númer de um lgrism e um númer de crescentr. dis lgrisms cm um númer de dis lgrisms termind em 0, ns css em que sm é inferir

5 AGRUPAMNTO D SCOLAS MARQUÊS D MARIALVA- Cntnhede UNIDAD 3 (té meds de fevereir) UNIDAD 3 Subdmínis/Cnteúds prgrmátics Dmínis (dptds à unidde) Objetivs/Descritres de desempenh (Mets Curriculres) Númers e Subtrçã 5. Subtrir númers nturis Operções Subtrções envlvend númers 1. fetur subtrções envlvend númers nturis té 20 pr mnipulçã de bjets u recrrend (NO1) nturis té 20 pr métds desenhs e esquems. infrmis; 2. Utilizr crretmente símbl e s terms «ditiv», «subtrtiv» e «diferenç». Relçã entre subtrçã e 3. Relcinr subtrçã cm diçã, identificnd diferenç entre dis númers cm númer que se diçã; deve dicinr subtrtiv pr bter ditiv. Prblems de um pss 4. fetur subtrçã de dis númers pr cntgens prgressivs u regressivs de, n máxim, nve envlvend situções de retirr, uniddes. cmprr u cmpletr. 1.º ANO D SCOLARIDAD PLANIFICAÇÃO D MATMÁTICA fevereir 4. Reslver prblems 1. Reslver prblems de um pss envlvend situções de juntr u crescentr. 6. Reslver prblems 1. Reslver prblems de um pss envlvend situções de retirr, cmprr u cmpletr. T O r t d i t Gemetri e Lclizçã e rientçã n 1. Situr-se e situr bjets n espç Medid espç 1. Utilizr crretmente vcbulári própri ds relções de psiçã de dis bjets. (GM1) Relções de psiçã e 3. Recnhecer que se um bjet estiver à frente de utr entã primeir está mis pert d bservdr e linhments de bjets e utilizr crretmente s expressões «mis pert» e «mis lnge». pnts; 4. Identificr linhments de três u mis bjets (incluind u nã bservdr) e utilizr Cmprçã de distâncis entre dequdmente neste cntext s expressões «situd entre», «mis distnte de», «mis próxim de» e pres de bjets e pnts; utrs equivlentes. Figurs gemetricmente iguis. 5. Utilizr term «pnt» pr identificr psiçã de um bjet de dimensões desprezáveis e efetur e recnhecer representções de pnts linhds e nã linhds. 6. Cmprr distâncis entre pres de bjets e de pnts utiliznd deslcments de bjets rígids e utilizr dequdmente neste cntext s expressões «à mesm distânci», «igulmente próxim», «mis distntes», «mis próxims» e utrs equivlentes. Figurs gemétrics Prtes retilínes de bjets e 2. Recnhecer e representr frms gemétrics desenhs; prtes plns de 1. Identificr prtes retilínes de bjets e desenhs, representr segments de ret sbend que sã bjets; cnstituíds pr pnts linhds e utilizr crretmente s terms «segment de ret», «extrems (u Segments de ret e extrems de extremiddes) d segment de ret» e «pnts d segment de ret». um segment de ret; 2. Identificr pres de segments de ret cm mesm cmpriment cm queles cujs extrems estã à Cmprçã de cmpriments e mesm distânci e sber que sã gemetricmente iguis. iguldde gemétric de segments de ret. 5

Aos pais e professores

Aos pais e professores MAT3_015_F01_5PCImg.indd 9 9/09/16 10:03 prcels ou termos som ou totl Pr dicionres mentlmente, podes decompor os números e dicioná-los por ordens. 136 + 5 = (100 + 30 + 6) + (00 + 50 + ) 300 + 80 + 8 MAT3_015_F0.indd

Leia mais

é: 31 2 d) 18 e) 512 y y x y

é: 31 2 d) 18 e) 512 y y x y 0. Dentre s firmtivs bio, ssinle quel que NÃO é verddeir pr todo nturl n: ) -) n = b) -) n- = -) n+ n n c) ) ) d) -) n = --) n e) -) n- = --) n 07. O lgrismo ds uniddes de 00. 7 00. 00 é igul : ) b) c)

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática 1 NÚMEROS E OPERAÇÕES 1.1 Lingugem Mtemátic AULA 1 1 1.2 Conjuntos Numéricos Chm-se conjunto o grupmento num todo de objetos, bem definidos e discerníveis, de noss percepção ou de nosso entendimento, chmdos

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mis Aprov n GV FGV ADM 04/dezembro/016 MATEMÁTICA APLICADA 01. ) Represente grficmente no plno crtesino função: P(t) = t 4t + 10 se t 4 1 t se t > 4 Se função P(t), em centens de reis,

Leia mais

Sumário. Volta às aulas. Vamos recordar? Regiões planas e seus contornos Números Sólidos geométricos... 29

Sumário. Volta às aulas. Vamos recordar? Regiões planas e seus contornos Números Sólidos geométricos... 29 Sumário Volt às uls. Vmos recordr?... 7 1 Números... 10 Números... ej como tudo começou... 11 Os números de 0 10... 13 A dezen... 18 Os números de 0 1... 1 Números e dinheiro... 23 Ordem nos números...

Leia mais

Conjuntos Numéricos e Operações I

Conjuntos Numéricos e Operações I Conjuntos Numéricos e Operções I Ao estudr o livro, o luno está sendo conduzido pel mão do utor. Os exercícios lhe fornecem o ensejo de cminhr mis solto e, ssim, ir gnhndo independênci. Pr quem está convencido

Leia mais

Incertezas e Propagação de Incertezas. Biologia Marinha

Incertezas e Propagação de Incertezas. Biologia Marinha Incertezs e Propgção de Incertezs Cursos: Disciplin: Docente: Biologi Biologi Mrinh Físic Crl Silv Nos cálculos deve: Ser coerente ns uniddes (converter tudo pr S.I. e tender às potêncis de 10). Fzer um

Leia mais

Conjuntos Numéricos. Conjuntos Numéricos

Conjuntos Numéricos. Conjuntos Numéricos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA.. Proprieddes dos números

Leia mais

Aula 1 - POTI = Produtos Notáveis

Aula 1 - POTI = Produtos Notáveis Aul 1 - POTI = Produtos Notáveis O que temos seguir são s demonstrções lgébrics dos sete principis produtos notáveis e tmbém prov geométric dos três primeiros. 1) Qudrdo d Som ( + b) = ( + b) * ( + b)

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - CAPES MATRIZES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr Ciêncis Sociis

Leia mais

Os números racionais. Capítulo 3

Os números racionais. Capítulo 3 Cpítulo 3 Os números rcionis De modo informl, dizemos que o conjunto Q dos números rcionis é composto pels frções crids prtir de inteiros, desde que o denomindor não sej zero. Assim como fizemos nteriormente,

Leia mais

Um disco rígido de 300Gb foi dividido em quatro partições. O conselho directivo ficou. 24, os alunos ficaram com 3 8

Um disco rígido de 300Gb foi dividido em quatro partições. O conselho directivo ficou. 24, os alunos ficaram com 3 8 GUIÃO REVISÕES Simplificção de expressões Um disco rígido de 00Gb foi dividido em qutro prtições. O conselho directivo ficou com 1 4, os docentes ficrm com 1 4, os lunos ficrm com 8 e o restnte ficou pr

Leia mais

Algarismo Correto e Algarismo Duvidoso

Algarismo Correto e Algarismo Duvidoso Algrismo Correto e Algrismo Duvidoso Vmos supor que gor você está efetundo medição de um segmento de ret, utilizndo pr isso um régu grdud em milímetros. Você oserv que o segmento de ret tem um pouco mis

Leia mais

( ) Logaritmos. Logaritmos. a é a base do logaritmo, b é o logaritmando, x é o logaritmo. Exemplos

( ) Logaritmos. Logaritmos. a é a base do logaritmo, b é o logaritmando, x é o logaritmo. Exemplos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Lgritms. Cneit de lgritm

Leia mais

Progressões Aritméticas

Progressões Aritméticas Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo

Leia mais

CONJUNTOS NUMÉRICOS Símbolos Matemáticos

CONJUNTOS NUMÉRICOS Símbolos Matemáticos CONJUNTOS NUMÉRICOS Símolos Mtemáticos,,... vriáveis e prâmetros igul A, B,... conjuntos diferente pertence > mior que não pertence < menor que está contido mior ou igul não está contido menor ou igul

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 19/03/11

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 19/03/11 RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 9// PROFESSORES: CARIBE E MANUEL O slário bruto mensl de um vendedor é constituído de um prte fi igul R$., mis um comissão de % sobre o

Leia mais

UNITAU APOSTILA. SUCESSÃO, PA e PG PROF. CARLINHOS

UNITAU APOSTILA. SUCESSÃO, PA e PG PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA SUCESSÃO, PA e PG PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portlpositivo.com.br/cpitcr 1 SUCESSÃO OU SEQUENCIA NUMÉRICA Sucessão ou seqüênci

Leia mais

IV.5 O transformador linear

IV.5 O transformador linear ircuits Elétrics.5 O trnsfrmdr liner Um trnsfrmdr é um dispsitiv cnstituíd pr dis u mis enrlments mgneticmente cplds. O trnsfrmdr liner d Figur.7 é utilizd cm dispsitiv de cplment entre fnte e crg. Z F

Leia mais

NOTA DE AULA. Tópicos em Matemática

NOTA DE AULA. Tópicos em Matemática Universidde Tecnológic Federl do Prná Cmpus Curitib Prof. Lucine Deprtmento Acdêmico de Mtemátic NOTA DE AULA Tópicos em Mtemátic Fonte: http://eclculo.if.usp.br/ 1. CONJUNTOS NUMÉRICOS: 1.1 Números Nturis

Leia mais

CONCURSO DE SELEÇÃO 2003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

CONCURSO DE SELEÇÃO 2003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CONCURSO DE SELEÇÃO 003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO 41100 0$7(0É7,&$ RESOLUÇÃO PELA PROFESSORA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA $ LOXVWUDomR TXH VXEVWLWXL D RULJLQDO GD TXHVWmR H DV GDV UHVROXo}HV

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades MTMÁTI Seu pé direito ns melhores fculddes 0. João entrou n lnchonete OG e pediu hmbúrgueres, suco de lrnj e cocds, gstndo $,0. N mes o ldo, lgums pessos pedirm 8 hmbúrgueres, sucos de lrnj e cocds, gstndo

Leia mais

Eletrotécnica TEXTO Nº 7

Eletrotécnica TEXTO Nº 7 Eletrotécnic TEXTO Nº 7 CIRCUITOS TRIFÁSICOS. CIRCUITOS TRIFÁSICOS EQUILIBRADOS E SIMÉTRICOS.. Introdução A quse totlidde d energi elétric no mundo é gerd e trnsmitid por meio de sistems elétricos trifásicos

Leia mais

1. Conceito de logaritmo

1. Conceito de logaritmo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Logritmos Prof.: Rogério

Leia mais

AGRUPAMENTO de ESCOLAS de PEDRÓGÃO GRANDE CONSELHO de DOCENTES Planificação Trimestral - 1.º Ano /2016 Matemática 1.º Período 65 dias letivos

AGRUPAMENTO de ESCOLAS de PEDRÓGÃO GRANDE CONSELHO de DOCENTES Planificação Trimestral - 1.º Ano /2016 Matemática 1.º Período 65 dias letivos Números naturais Correspondências um a um e comparação do número de elementos de dois conjuntos; Contagens de até vinte objetos; O conjunto vazio e o número zero; Números naturais até 9; contagens progressivas

Leia mais

Nome: N.º: endereço: data: Telefone: PARA QUEM CURSA A 1 a SÉRIE DO ENSINO MÉDIO EM Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone:   PARA QUEM CURSA A 1 a SÉRIE DO ENSINO MÉDIO EM Disciplina: MaTeMÁTiCa Nome: N.º: endereço: dt: Telefone: E-mil: Colégio PARA QUEM CURSA A SÉRIE DO ENSINO MÉDIO EM 05 Disciplin: MTeMÁTiC Prov: desfio not: QUESTÃO 6 O Dr. Mni Aco not os números trvés de um código especil.

Leia mais

Canguru Matemático sem Fronteiras 2010

Canguru Matemático sem Fronteiras 2010 Cnguru Mtemático sem Fronteirs 2010 Durção: 1h30min Destintários: lunos do 9 Ano de Escolridde Nome: Turm: Não podes usr clculdor. Há pens um respost correct em cd questão. As questões estão grupds em

Leia mais

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017 Potencil Elétrico Evndro Bstos dos Sntos 14 de Mrço de 2017 1 Energi Potencil Elétric Vmos começr fzendo um nlogi mecânic. Pr um corpo cindo em um cmpo grvitcionl g, prtir de um ltur h i té um ltur h f,

Leia mais

Reta vertical é uma reta paralela ao eixo das ordenadas, é do tipo: Reta vertical é uma reta paralela ao eixo das ordenadas, é do tipo:

Reta vertical é uma reta paralela ao eixo das ordenadas, é do tipo: Reta vertical é uma reta paralela ao eixo das ordenadas, é do tipo: mta0 geometri nlític Referencil crtesino no plno Referencil Oxy o.n. (ortonormdo) é um referencil no plno em que os eixos são perpendiculres (referencil ortogonl) s uniddes de comprimento em cd um dos

Leia mais

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b...

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b... Cálculo Numérico Módulo V Resolução Numéric de Sistems Lineres Prte I Profs.: Bruno Correi d Nóbreg Queiroz José Eustáquio Rngel de Queiroz Mrcelo Alves de Brros Sistems Lineres Form Gerl onde: ij ij coeficientes

Leia mais

PLANIFICAÇÃO ANUAL MATEMÁTICA 1

PLANIFICAÇÃO ANUAL MATEMÁTICA 1 PLANIFICAÇÃO ANUAL MATEMÁTICA 1 DOMÍNIOS OBJETIVOS ATIVIDADES NÚMEROS E OPERAÇÕES Contar até cem Verificar que dois conjuntos têm o mesmo número de elementos ou determinar qual dos dois é mais numeroso

Leia mais

LISTA PREPARATÓRIA PARA RECUPERAÇÃO FINAL MATEMÁTICA (9º ano)

LISTA PREPARATÓRIA PARA RECUPERAÇÃO FINAL MATEMÁTICA (9º ano) PARTE I ) Determine s potêncis: ) 4 = b) - = ) Escrev usndo potênci de bse 0: ) 7 bilhões: b) um milionésimo: ) Trnsforme os números ddos em potencições e simplifique epressão: 0000000 00000 5 = 4) Escrev

Leia mais

CPV conquista 70% das vagas do ibmec (junho/2007)

CPV conquista 70% das vagas do ibmec (junho/2007) conquist 70% ds vgs do ibmec (junho/007) IBME 08/Junho /008 NÁLISE QUNTITTIV E LÓGI DISURSIV 0. Num lv-rápido de crros trblhm três funcionários. tbel bio mostr qunto tempo cd um deles lev sozinho pr lvr

Leia mais

81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$

81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$ 81,9(56,'$'( )('(5$/ ' 5, '( -$1(,5 &1&856 '( 6(/(d 0$7(0É7,&$ -867,),48( 7'$6 $6 68$6 5(667$6 De um retângulo de 18 cm de lrgur e 48 cm de comprimento form retirdos dois qudrdos de ldos iguis 7 cm, como

Leia mais

REVISÃO Lista 12 Geometria Analítica., então r e s são coincidentes., então r e s são perpendiculares.

REVISÃO Lista 12 Geometria Analítica., então r e s são coincidentes., então r e s são perpendiculares. NOME: ANO: º Nº: PROFESSOR(A): An Luiz Ozores DATA: REVISÃO List Geometri Anlític Algums definições y Equções d ret: by c 0, y mb, y y0 m( 0) e p q Posições de dus rets: Dds s rets r : y mr br e s y ms

Leia mais

Gráfico do Método de Newton original

Gráfico do Método de Newton original Cmetáris Adiiis d Métd de Newt-Rphs Métd de Newt Mdiid Sej epressã gerl d métd: Oserve que d iterçã é luld derivd d uçã v pt. A iterpretçã grái d métd está igur i. A d iterçã iliçã d ret tgete é mdiid.

Leia mais

MATRIZES. Em uma matriz M de m linhas e n colunas podemos representar seus elementos da seguinte maneira:

MATRIZES. Em uma matriz M de m linhas e n colunas podemos representar seus elementos da seguinte maneira: MATRIZES Definiçã Chm-se mtriz d tip m x n (m IN* e n IN*) td tel M frmd pr númers reis distriuíds em m linhs e n cluns. Em um mtriz M de m linhs e n cluns pdems representr seus elements d seguinte mneir:

Leia mais

Planificação Anual Departamento 1.º Ciclo

Planificação Anual Departamento 1.º Ciclo Ano : 1º ano Ano letivo 2013.2014 Disciplina : MATEMÁTICA Turmas: 1º ano Professores: todos os docentes do 1º ano Números e Operações Números naturais 1- Contar até cem 1. Verificar que dois conjuntos

Leia mais

Razão entre dois números é o quociente do primeiro pelo segundo número. a : b ou. antecedente. a b. consequente

Razão entre dois números é o quociente do primeiro pelo segundo número. a : b ou. antecedente. a b. consequente 1 PROPORCIONALIDADE Rzão Rzão entre dois números é o quociente do primeiro pelo segundo número. Em um rzão A rzão temos que: ntecedente é lid como está pr. : ou consequente Proporção Chmmos de proporção

Leia mais

Tópicos Especiais de Álgebra Linear Tema # 2. Resolução de problema que conduzem a s.e.l. com única solução. Introdução à Resolução de Problemas

Tópicos Especiais de Álgebra Linear Tema # 2. Resolução de problema que conduzem a s.e.l. com única solução. Introdução à Resolução de Problemas Tópicos Especiis de Álgebr Liner Tem # 2. Resolução de problem que conduzem s.e.l. com únic solução Assunto: Resolução de problems que conduzem Sistem de Equções Lineres utilizndo invers d mtriz. Introdução

Leia mais

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos Mtemátic pr Economists LES uls e Mtrizes Ching Cpítulos e Usos em economi Mtrizes ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Márci.F. Dis de Mores Álgebr Mtricil Conceitos Básicos

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: Nº: Turm: Professor: FÁBIO LUÍS Série: 1ª Dt: / / 01 LISTA DE EXERCÍCIOS TRIGONOMETRIA PARTE I 1 Os ctetos de um triângulo retângulo medem cm e 18cm

Leia mais

PLANIFICAÇÃO ANUAL 2016/2017 MATEMÁTICA 1º ANO

PLANIFICAÇÃO ANUAL 2016/2017 MATEMÁTICA 1º ANO PLANIFICAÇÃO ANUAL 2016/2017 MATEMÁTICA 1º ANO Calendarização Domínio/ Subdomínio Objetivos Descritores de desempenho Números e Operações/Números 1. Contar até cem 1. Verificar que dois conjuntos têm o

Leia mais

Plano de Trabalho Docente Ensino Médio

Plano de Trabalho Docente Ensino Médio Plno de Trblho Docente 2014 Ensino Médio Etec Etec: PROF. MÁRIO ANTÔNIO VERZA Código: 164 Município: PALMITAL Áre de conhecimento: Ciêncis d Nturez, Mtemátic e sus Tecnologis Componente Curriculr: MATEMÁTICA

Leia mais

I REVISÃO DE CONCEITOS BÁSICOS

I REVISÃO DE CONCEITOS BÁSICOS I REVISÃO DE CONCEITOS BÁSICOS. Elementos Básicos de Mtemátic. Regrs de Sinis ADIÇÃO: - qundo os números tem o mesmo sinl, somm-se os módulos e tribui-se o resultdo o sinl comum. E: (+)+(+9)=+4 ou 4 (-)+(-)=

Leia mais

ESTÁTICA DO SISTEMA DE SÓLIDOS.

ESTÁTICA DO SISTEMA DE SÓLIDOS. Definições. Forçs Interns. Forçs Externs. ESTÁTIC DO SISTEM DE SÓLIDOS. (Nóbreg, 1980) o sistem de sólidos denomin-se estrutur cuj finlidde é suportr ou trnsferir forçs. São quels em que ção e reção, pertencem

Leia mais

II NÚMEROS RACIONAIS NÃO NEGATIVOS 3. FRAÇÕES DECIMAIS. PERCENTAGENS SIMPLIFICAÇÃO DE FRAÇÕES. FRAÇÃO IRREDUTÍVEL 42

II NÚMEROS RACIONAIS NÃO NEGATIVOS 3. FRAÇÕES DECIMAIS. PERCENTAGENS SIMPLIFICAÇÃO DE FRAÇÕES. FRAÇÃO IRREDUTÍVEL 42 ÍNDIE I NÚMEROS NTURIS 1. NÚMEROS NTURIS 4 2. DIÇÃO E SUTRÇÃO 6 3. MULTIPLIÇÃO 8 4. DIVISÃO 10 5. MÚLTIPLOS E DIVISORES 12 6. EXPRESSÕES LGÉRIS E PROLEMS 14 7. RITÉRIOS DE DIVISIILIDDE POR 2, 3, 4, 5,

Leia mais

Matriz Curricular 1º Ciclo. Ano Letivo: 2013 / 2014 Ano de Escolaridade: 1.º Ano Matemática

Matriz Curricular 1º Ciclo. Ano Letivo: 2013 / 2014 Ano de Escolaridade: 1.º Ano Matemática NÚMEROS E OPERAÇÕES Ano Letivo: 2013 / 2014 Ano de Escolaridade: 1.º Ano Matemática Domínio de Referência Subdomínio Objetivos Descritores 1. Contar até cem 1. Verificar que dois conjuntos têm o mesmo

Leia mais

VETORES. Com as noções apresentadas, é possível, de maneira simplificada, conceituar-se o

VETORES. Com as noções apresentadas, é possível, de maneira simplificada, conceituar-se o VETORES INTRODUÇÃO No módulo nterior vimos que s grndezs físics podem ser esclres e vetoriis. Esclres são quels que ficm perfeitmente definids qundo expresss por um número e um significdo físico: mss (2

Leia mais

Recordando produtos notáveis

Recordando produtos notáveis Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único

Leia mais

Aprender o conceito de vetor e suas propriedades como instrumento apropriado para estudar movimentos não-retilíneos;

Aprender o conceito de vetor e suas propriedades como instrumento apropriado para estudar movimentos não-retilíneos; Aul 5 Objetivos dest Aul Aprender o conceito de vetor e sus proprieddes como instrumento proprido pr estudr movimentos não-retilíneos; Entender operção de dição de vetores e multiplicção de um vetor por

Leia mais

4 SISTEMAS DE ATERRAMENTO

4 SISTEMAS DE ATERRAMENTO 4 SISTEMAS DE ATEAMENTO 4. esistênci de terr Bix frequênci considerr o solo resistivo CONEXÃO À TEA Alt frequênci considerr cpcitânci indutânci e resistênci Em lt frequênci inclui-se s áres de telecomunicções

Leia mais

Solução da prova da 1 fase OBMEP 2013 Nível 1

Solução da prova da 1 fase OBMEP 2013 Nível 1 Solução d prov d fse OBMEP 0 Nível QUESTÃO Qundo brir fit métric, Don Céli verá o trecho d fit representdo n figur; mnch cinzent corresponde à porção d fit que estv em volt d cintur de Mrt. A medid d cintur

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I Associção de Professores de Mtemátic Contctos: Ru Dr. João Couto, n.º 27-A 1500-236 Lisbo Tel.: +351 21 716 36 90 / 21 711 03 77 Fx: +351 21 716 64 24 http://www.pm.pt emil: gerl@pm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

Simbolicamente, para. e 1. a tem-se

Simbolicamente, para. e 1. a tem-se . Logritmos Inicilmente vmos trtr dos ritmos, um ferrment crid pr uilir no desenvolvimento de cálculos e que o longo do tempo mostrou-se um modelo dequdo pr vários fenômenos ns ciêncis em gerl. Os ritmos

Leia mais

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas Resolução ds tividdes complementres Mtemátic M Progressões Geométrics p. 7 Qul é o o termo d PG (...)? q q? ( ) Qul é rzão d PG (...)? q ( )? ( ) 8 q 8 q 8 8 Três números reis formm um PG de som e produto

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA. O gráfico de brrs bixo exibe distribuição d idde de um grupo de pessos. ) Mostre que, nesse grupo,

Leia mais

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos?

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos? A UA UL LA 58 Clculndo volumes Pr pensr l Considere um cubo de rest : Pr construir um cubo cuj rest sej o dobro de, de quntos cubos de rest precisremos? l Pegue um cix de fósforos e um cix de sptos. Considerndo

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT - ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA LISTA DE EXERCÍCIOS ) Sejm A, B e C mtries inversíveis de mesm ordem, encontre epressão d mtri X,

Leia mais

Falando. Matematicamente. Teste Intermédio. Escola: Nome: Turma: N.º: Data:

Falando. Matematicamente. Teste Intermédio. Escola: Nome: Turma: N.º: Data: Mtemticmente Flndo lexndr Conceição Mtilde lmeid Teste Intermédio vlição MTEMTICMENTE FLNDO LEXNDR CONCE ÇÃO MT LDE LME D lexndr Conceição Mtilde lmeid VLIÇÃO Escol: Nome: Turm: N.º: Dt: MTEMÁTIC.º NO

Leia mais

Relações de ordem em IR. Inequações 1

Relações de ordem em IR. Inequações 1 Agrupament de Esclas Antóni Crreia de Oliveira PLANIFICAÇÃO ANUAL DE MATEMÁTICA 9.º ANO ANO LETIVO 2016/17 Relações de rdem em IR. Inequações 1. Dmíni Subdmíni Cnteúds Metas Temps Letivs Númers perações

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I 1. A função objetivo é o lucro e é dd por L(x, y) = 30x + 50y. Restrições: x 0

Leia mais

CURSO DE MATEMÁTICA BÁSICA

CURSO DE MATEMÁTICA BÁSICA [Digite teto] CURSO DE MATEMÁTICA BÁSICA BELO HORIZONTE MG [Digite teto] CONJUNTOS NÚMERICOS. Conjunto dos números nturis Ν é o conjunto de todos os números contáveis. N { 0,,,,,, K}. Conjunto dos números

Leia mais

TRIGONOMETRIA. Para graduar uma reta basta escolher dois pontos e associar a eles os números zero e um.

TRIGONOMETRIA. Para graduar uma reta basta escolher dois pontos e associar a eles os números zero e um. TRIGONOMETRIA Pr grdur um ret bst escolher dois ontos e ssocir eles os números zero e um. A B 0 Com isto, ode-se reresentr n ret qulquer número rel. Pr grdur um circunferênci utilizremos o rio igul, onde

Leia mais

02 e D são vértices consecutivos de um quadrado e PAB é um triângulo equilátero, sendo P interno ao quadrado ABCD. Qual é a medida do ângulo PCB?

02 e D são vértices consecutivos de um quadrado e PAB é um triângulo equilátero, sendo P interno ao quadrado ABCD. Qual é a medida do ângulo PCB? 0 Num prov de vinte questões, vlendo meio ponto cd um, três questões errds nulm um cert. Qul é not de um luno que errou nove questões em tod ess prov? (A) Qutro (B) Cinco (C) Qutro e meio (D) Cindo e meio

Leia mais

Gabarito CN Solução: 1ª Solução: 2ª Solução:

Gabarito CN Solução: 1ª Solução: 2ª Solução: ) Sejm P e 5 9 Q 5 9 Qul é o resto de (A) (B) (C) 5 (D) (E) 5 P? Q GABARITO: B 6 8 0 5 9 P 5 9 6 8 0 5 9 Q 5 9 P Q P Q Dí, ) Sbendo que ABC é um triângulo retângulo de hipotenus BC =, qul é o vlor máximo

Leia mais

o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2.

o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2. Mtemátic I - Gestão ESTG/IPB Resolução. (i).0 : r 0.000.0 00.0 00 0 0.0 00 0 00.000 00 000.008 90 0.000.000 00 000 008 90.00 00 00 00 9 Dividedo = Divisor x Quociete + Resto.0 = x.008 + 0.000. Num divisão

Leia mais

C Sistema destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO

C Sistema destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO Pr Ordendo RACIOCÍNIO LÓGICO AULA 06 RELAÇÕES E FUNÇÕES O pr ordendo represent um ponto do sistem de eixos rtesinos. Este sistem é omposto por um pr de rets perpendiulres. A ret horizontl é hmd de eixo

Leia mais

Função Modular. x, se x < 0. x, se x 0

Função Modular. x, se x < 0. x, se x 0 Módulo de um Número Rel Ddo um número rel, o módulo de é definido por:, se 0 = `, se < 0 Observção: O módulo de um número rel nunc é negtivo. Eemplo : = Eemplo : 0 = ( 0) = 0 Eemplo : 0 = 0 Geometricmente,

Leia mais

A) O volume de cada bloco é igual à área da base multiplicada pela altura, isto é, 4 1

A) O volume de cada bloco é igual à área da base multiplicada pela altura, isto é, 4 1 OBMEP Nível 3 ª Fase Sluções QUESTÃO. Quincas Brba uniu quatr blcs retangulares de madeira, cada um cm 4 cm de cmpriment, cm de largura e cm de altura, frmand bjet mstrad na figura. A) Qual é vlume deste

Leia mais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES

Leia mais

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON PROFJWPS@GMAIL.COM MATRIZES Definição e Notção... 11 21 m1 12... 22 m2............ 1n.. 2n. mn Chmmos de Mtriz todo conjunto de vlores, dispostos

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º no Mtemátic FUNDMENTL tividdes complementres Este mteril é um complemento d obr Mtemátic 9 Pr Viver Juntos. Reprodução permitid somente pr uso escolr. Vend proibid. Smuel Csl Cpítulo 6 Rzões

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou POLINÔMIOS Definição: Um polinômio de gru n é um função que pode ser escrit n form P() n n i 0... n i em que cd i é um número compleo (ou i 0 rel) tl que n é um número nturl e n 0. Os números i são denomindos

Leia mais

Serviços de Acção Social da Universidade de Coimbra

Serviços de Acção Social da Universidade de Coimbra Serviços de Acção Socil d Universidde de Coimbr Serviço de Pessol e Recursos Humnos O que é o bono de fmíli pr crinçs e jovens? É um poio em dinheiro, pgo menslmente, pr judr s fmílis no sustento e n educção

Leia mais

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C.

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C. As grndezs A, B e C são tis que A é diretmente proporcionl B e inversmente proporcionl C. Qundo B = 00 e C = 4 tem-se A = 5. Qul será o vlor de A qundo tivermos B = 0 e C = 5? B AC Temos, pelo enuncido,

Leia mais

Escol Básic de Rieirão (Sede) ANO LETIVO 2012/2013 Fich de Trlho Mio 2013 Nome: N.º: Turm: 9.º Ano Compilção de Exercícios de Exmes Ncionis (EN) e de Testes Intermédios (TI) Tem: Trigonometri do Triângulo

Leia mais

x n NOTA Tipo de Avaliação: Material de Apoio Disciplina: Matemática Turma: Aulão + Professor (a): Jefferson Cruz Data: 24/05/2014 DICAS do Jeff

x n NOTA Tipo de Avaliação: Material de Apoio Disciplina: Matemática Turma: Aulão + Professor (a): Jefferson Cruz Data: 24/05/2014 DICAS do Jeff NOTA Tipo de Avlição: Mteril de Apoio Disciplin: Mtemátic Turm: Aulão + Professor (): Jefferson Cruz Dt: 24/05/2014 DICAS do Jeff Olhr s lterntivs ntes de resolver s questões, principlmente em questões

Leia mais

Aula 10 Estabilidade

Aula 10 Estabilidade Aul 0 Estbilidde input S output O sistem é estável se respost à entrd impulso 0 qundo t Ou sej, se síd do sistem stisfz lim y(t) t = 0 qundo entrd r(t) = impulso input S output Equivlentemente, pode ser

Leia mais

Estudo dos Logaritmos

Estudo dos Logaritmos Instituto Municipl de Ensino Superior de Ctnduv SP Curso de Licencitur em Mtemátic 3º no Prátic de Ensino d Mtemátic III Prof. M.Sc. Fbricio Edurdo Ferreir fbricio@ffic.br Situção inicil Estudo dos Logritmos

Leia mais

COLÉGIO MACHADO DE ASSIS. 1. Sejam A = { -1,1,2,3,} e B = {-3,-2,-1,0,1,2,3,4,5}. Para a função f: A-> B, definida por f(x) = 2x-1, determine:

COLÉGIO MACHADO DE ASSIS. 1. Sejam A = { -1,1,2,3,} e B = {-3,-2,-1,0,1,2,3,4,5}. Para a função f: A-> B, definida por f(x) = 2x-1, determine: COLÉGIO MACHADO DE ASSIS Disciplin: MATEMÁTICA Professor: TALI RETZLAFF Turm: 9 no A( ) B( ) Dt: / /14 Pupilo: 1. Sejm A = { -1,1,2,3,} e B = {-3,-2,-1,0,1,2,3,4,5}. Pr função f: A-> B, definid por f()

Leia mais

Apostila 02 - Linguagens Regulares Exercícios

Apostila 02 - Linguagens Regulares Exercícios Cursos: Bchreldo em Ciênci d Computção e Bchreldo em Sistems de Informção Disciplins: (1493A) Teori d Computção e Lingugens Formis, (4623A) Teori d Computção e Lingugens Formis e (1601A) Teori d Computção

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? Cálculo II Prof. Adrin Cherri 1 INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região

Leia mais

Prof. A.F.Guimarães Física 3 Questões 9

Prof. A.F.Guimarães Física 3 Questões 9 Questão 1 Um fio retilíneo de rio R conduz um corrente constnte i; outro fio retilíneo de mesmo rio conduz um corrente contínu i cujo sentido é contrário o d corrente que flui no outro fio. Estime o módulo

Leia mais

Quantidade de oxigênio no sistema

Quantidade de oxigênio no sistema EEIMVR-UFF Refino dos Aços I 1ª Verificção Junho 29 1. 1 kg de ferro puro são colocdos em um forno, mntido 16 o C. A entrd de oxigênio no sistem é controld e relizd lentmente, de modo ir umentndo pressão

Leia mais

MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 =

MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 = MÓDULO IV. Defiição POTENCIACÃO Qudo um úmero é multiplicdo por ele mesmo, dizemos que ele está elevdo o qudrdo, e escrevemos:. Se um úmero é multiplicdo por ele mesmo váris vezes, temos um potêci:.. (

Leia mais

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário.

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário. Questão PROVA FINAL DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - OUTUBRO DE. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Um rod

Leia mais

Conversão de Energia II

Conversão de Energia II Deprtmento de ngenhri létric Aul 6. Máquins íncrons Prof. João Américo ilel Máquins íncrons Crcterístics vzio e de curto-circuito Curv d tensão terminl d rmdur vzio em função d excitção de cmpo. Crctéristic

Leia mais

GEOMETRIA ESPACIAL. 1) O número de vértices de um dodecaedro formado por triângulos é. 2) O número de diagonais de um prisma octogonal regular é

GEOMETRIA ESPACIAL. 1) O número de vértices de um dodecaedro formado por triângulos é. 2) O número de diagonais de um prisma octogonal regular é GEOMETRIA ESPACIAL 1) O número de vértices de um dodecedro formdo por triângulos é () 6 (b) 8 (c) 10 (d) 15 (e) 0 ) O número de digonis de um prism octogonl regulr é () 0 (b) (c) 6 (d) 40 (e) 60 ) (UFRGS)

Leia mais

Unidade 2 Geometria: ângulos

Unidade 2 Geometria: ângulos Sugestões de tividdes Unidde 2 Geometri: ângulos 7 MTEMÁTIC 1 Mtemátic 1. Respond às questões: 5. Considere os ângulos indicdos ns rets ) Qul é medid do ângulo correspondente à metde de um ân- concorrentes.

Leia mais

Colégio Visconde de Porto Seguro Unidade I Ensino Fundamental Nível I (1º ao 5º ano)

Colégio Visconde de Porto Seguro Unidade I Ensino Fundamental Nível I (1º ao 5º ano) Clégi Viscnde de Prt Segur Unidade I Ensin Fundamental Nível I (1º a 5º an) Ensin Fundamental Nível I Sistema de Recuperaçã 2º an 1º e 2º períds Prezads Pais Pense sempre em sua meta e trabalhe para alcançá-la.

Leia mais

MATEMÁTICA PARA REFLETIR! EXERCÍCIOS EXERCÍCIOS COMPLEMENTARES OPERAÇÕES COM MATRIZES PARA REFLETIR!...437

MATEMÁTICA PARA REFLETIR! EXERCÍCIOS EXERCÍCIOS COMPLEMENTARES OPERAÇÕES COM MATRIZES PARA REFLETIR!...437 ÍNICE MATEMÁTICA... PARA REFLETIR!... EXERCÍCIOS... EXERCÍCIOS COMPLEMENTARES... OPERAÇÕES COM MATRIZES... PARA REFLETIR!...7 EXERCÍCIOS E APLICAÇÃO...8 EXERCÍCIOS COMPLEMENTARES...8...9 PARA REFLETIR!...

Leia mais

1 Distribuições Contínuas de Probabilidade

1 Distribuições Contínuas de Probabilidade Distribuições Contínus de Probbilidde São distribuições de vriáveis letóris contínus. Um vriável letóri contínu tom um numero infinito não numerável de vlores (intervlos de números reis), os quis podem

Leia mais

DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS

DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS Eivil Secção de Mecânic Estruturl e Estruturs MEÂNI I ENUNIOS E ROLEMS Fevereiro de 2010 ÍTULO 3 ROLEM 3.1 onsidere plc em form de L, que fz prte d fundção em ensoleirmento gerl de um edifício, e que está

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática + = B =.. matrizes de M )

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática + = B =.. matrizes de M ) Se ( ij ) é um mtri, definid pel lei Universidde Federl de Viços Centro de Ciêncis Ets e ecnológics Deprtmento de Mtemátic LIS DE EXERCÍCIOS M 7 Prof Gem/ Prof Hugo/ Prof Mrgreth i j, se i j ij, clcule

Leia mais

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos 3. Cálculo integrl em IR 3.. Integrl Indefinido 3... Definição, Proprieddes e Exemplos A noção de integrl indefinido prece ssocid à de derivd de um função como se pode verificr prtir d su definição: Definição

Leia mais

Disciplina de Matemática Aplicada I Curso Técnico em Mecânica Profª Valéria Espíndola Lessa APOSTILA 1

Disciplina de Matemática Aplicada I Curso Técnico em Mecânica Profª Valéria Espíndola Lessa APOSTILA 1 Disciplin de Mtemátic Aplicd I Curso Técnico em Mecânic Profª Vléri Espíndol Less APOSTILA Frções Decimis Potêncis Rzão e Proporção Porcentgem Regr de Três Erechim, 0 FRAÇÕES E NÚMEROS DECIMAIS Frções

Leia mais

Resumo. Estruturas de Sistemas Discretos. A Explosão do Ariane 5. Objectivo. Representações gráficas das equações às diferenças

Resumo. Estruturas de Sistemas Discretos. A Explosão do Ariane 5. Objectivo. Representações gráficas das equações às diferenças Resumo Estruturs de Sistems Discretos Luís Clds de Oliveir lco@ist.utl.pt Instituto Superior Técnico Representções gráfics ds equções às diferençs Estruturs ásics de sistems IIR Forms trnsposts Estruturs

Leia mais