Classificação de Padrões. Abordagem prática com Redes Neurais Artificiais

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Classificação de Padrões. Abordagem prática com Redes Neurais Artificiais"

Transcrição

1 Classificação de Padrões Abordagem prática com Redes Neurais Artificiais

2 Agenda Parte I - Introdução ao aprendizado de máquina Parte II - Teoria RNA Parte III - Prática RNA Parte IV - Lições aprendidas

3 Aprendizado de Máquina Parte I

4 Aprendizado de máquina? Aprendizado de máquina - machine learning - é um campo da inteligência artificial, cujo objetivo é desenvolver algoritmos capazes de aperfeiçoar seu desempenho ao realizar tarefas específicas.

5 Exemplos de aplicações Identificar fraudes Reconhecer padrões em imagens Recomendação de conteúdo Análise de sentimentos baseada em texto Filtragem de spam em s etc...

6 Tipos de aprendizado Aprendizado supervisionado Aprendizado não supervisionado Aprendizado por reforço

7 Aprendizado supervisionado Dividido em treinamento e classificação. Exemplos: Identificação de spam e reconhecimento de fraudes.

8 Aprendizado não supervisionado Quando não existe conhecimento acerca dos dados. Exemplos: Padrões de compras e consumo, agrupamento de dados e mapeamento de perfil de usuários.

9 Aprendizado por reforço Aplicado à sistemas dinâmicos e séries temporais. Exemplos: Forecast e previsões financeiras.

10 Exemplos Aprendizado Supervisionado

11 Redes Neurais Artificiais - Teoria Parte II

12 Redes Neurais Artificiais São modelo computacionais inspirados no sistema nervoso central biológico, capazes de aprender tarefas específicas.

13 Redes Neurais Artificiais Quando aplicadas à classificação, é uma técnica de aprendizado supervisionado, normalmente dividida em duas fases: Treinamento e Classificação.

14 Separação dos dados Separar os dados em duas partes: 70% para treino 30% para teste

15 Neurônio Biológico vs Artificial

16 Características importantes O valor dos pesos são inicializados aleatoriamente A função de transferência depende do problema

17 Treinamento - Neurônio Artificial X0 X1 X2 S. Esperada

18 Treinamento - Neurônio Artificial Entradas: Pesos: X0 = 0 X1 = 1 X2 = 1 W0 = 0.3 W1 = 0.1 W2 = 0.6 X0 X1 X2 S. Esperada SIGMA (função de soma): U = (X0 * W0) + (X1 * W1) + (X2 * W2) U = U = 0.7 F. Transf. (Y): SE (U > 0.5) Y = 1 SENAO Y = 0

19 Treinamento - Neurônio Artificial Entradas: Pesos: X0 = 0 X1 = 1 X2 = 1 W0 = 0.3 W1 = 0.1 W2 = 0.6 X0 X1 X2 S. Esperada SIGMA (função de soma): U = (X0 * W0) + (X1 * W1) + (X2 * W2) U = U = 0.7 F. Transf. (Y): SE (U > 0.5) Y = 1 SENAO Y = 0

20 Treinamento - Neurônio Artificial Entradas: Pesos: X0 = 1 X1 = 1 X2 = 1 W0 = 0.3 W1 = 0.1 W2 = 0.6 X0 X1 X2 S. Esperada SIGMA (função de soma): U = (X0 * W0) + (X1 * W1) + (X2 * W2) U = U = 1.0 F. Transf. (Y): SE (U > 0.5) Y = 1 SENAO Y = 0

21 Treinamento - Neurônio Artificial Entradas: Pesos: X0 = 1 X1 = 1 X2 = 1 W0 = 0.3 W1 = 0.1 W2 = 0.6 X0 X1 X2 S. Esperada SIGMA (função de soma): U = (X0 * W0) + (X1 * W1) + (X2 * W2) U = U = 1.0 F. Transf. (Y): SE (U > 0.5) Y = 1 SENAO Y = 0

22 Acertou 50%, então vamos treinar o modelo

23 Treinamento - Neurônio Artificial Entradas: Pesos: X0 = 0 X1 = 1 X2 = 1 W0 = 0.1 W1 = 0.2 W2 = 0.3 X0 X1 X2 S. Esperada SIGMA (função de soma): U = (X0 * W0) + (X1 * W1) + (X2 * W2) U = U = 0.5 F. Transf. (Y): SE (U > 0.5) Y = 1 SENAO Y = 0

24 Treinamento - Neurônio Artificial Entradas: Pesos: X0 = 1 X1 = 1 X2 = 1 W0 = 0.1 W1 = 0.2 W2 = 0.3 X0 X1 X2 S. Esperada SIGMA (função de soma): U = (X0 * W0) + (X1 * W1) + (X2 * W2) U = U = 0.6 F. Transf. (Y): SE (U > 0.5) Y = 1 SENAO Y = 0

25 Treinamento Os valores dos pesos podem ser inicializados aleatoriamente, pois serão ajustados durante o treinamento O conhecimento da rede neural está contido nos pesos (um vetor)

26 Calculando o treinamento Função de transferência - Sigmoid:

27 Ajustando o modelo Função de custo a ser minimizada:

28 Ajustando o modelo Derivando a função custo: Dado que o fator delta corresponde a multiplicação dos dados de entrada pelo erro (diferença entre os valores esperados e valores obtidos).

29 Redes Neurais Artificiais - Prática Parte III

30 Experimento Prático Experimento prático baseado em Redes Neurais Artificiais. Os requisitos são: Implementação em Python Instalação da biblioteca Numpy

31 Experimento Prático O conjunto de treino possui 100 registros em duas dimensões (x, y). Separamos esse conjunto em duas partes: 70% para treino 30% para teste

32 Experimento Prático Implementando a função sigmoid:

33 Ajustando o modelo Derivando a função custo: Dado que o fator delta corresponde a multiplicação dos dados de entrada pelo erro (diferença entre os valores esperados e valores obtidos).

34 Considerações Finais Parte IV

35 Considerações Finais Alguns fatores importantes devem ser considerados: O fator alpha, necessário para o treinamento deve ser determinado É necessário considerar um erro quadrático médio (SME) mínimo para interromper o treinamento A análise gráfica do modelo treinado só é possível até três dimensões.

36 Considerações Finais Alguns fatores importantes devem ser considerados: A rede neural apresentada trata-se de um Perceptron de Única Camada. Essa rede é restrita à problemas lineares. Problemas não lineares podem ser tratados a partir de Redes Neurais de Múltiplas Camadas (MLP). Todos os dados processados por uma Rede Neural devem ser convertidos em valores numéricos.

37 Links relacionados A seguir, links relacionados com palestras sobre Redes Neurais Artificiais e Aprendizado de Máquina: Classificação de Documentos: aseada-em-inteligencia-artificial Biblioteca Java para Aprendizado de Máquina: -apache-mahout Redes MLP:

38 Lições aprendidas A maior parte das bibliotecas de ML são pouco flexíveis quanto a parametrização, principalmente quanto ao algoritmo de ajuste (treinamento). A performance e o tempo de treinamento pode variar bastante entre diferentes algoritmos de classificação.

39 Lições aprendidas A separação dos conjuntos de treino e teste precisa ser cuidadosa, pois pode induzir ao erro. A proporção 70 / 30 nem sempre precisa ser respeitada. Em algumas situações é possível obter resultados melhores aplicando redução de dimensionalidade nos dados.

Redes Neurais Artificiais. Everton Gago

Redes Neurais Artificiais. Everton Gago Redes Neurais Artificiais Everton Gago Como vai ser? O que é RNA? Conglomerado de neurônios!?!? Neurônio: Neurônio: Entradas: X0 = 0 X1 = 1 X2 = 1 Neurônio: Entradas: X0 = 0 X1 = 1 X2 = 1 Pesos: W0 = 0.3

Leia mais

3 Redes Neurais Artificiais

3 Redes Neurais Artificiais 3 Redes Neurais Artificiais 3.1. Introdução A capacidade de implementar computacionalmente versões simplificadas de neurônios biológicos deu origem a uma subespecialidade da inteligência artificial, conhecida

Leia mais

Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 21 Projeto de RNA

Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 21 Projeto de RNA Inteligência Artificial Prof. Tiago A. E. Ferreira Aula 21 Projeto de RNA Projeto de Redes Neurais Projeto de Redes Neurais Baseado apenas em dados Exemplos para treinar uma rede devem ser compostos por

Leia mais

Inteligência Artificial

Inteligência Artificial Universidade Federal de Campina Grande Departamento de Sistemas e Computação Pós-Graduação em Ciência da Computação Inteligência Artificial Aprendizagem Outras Técnicas Prof. a Joseana Macêdo Fechine Régis

Leia mais

INTELIGÊNCIA ARTIFICIAL

INTELIGÊNCIA ARTIFICIAL INTELIGÊNCIA ARTIFICIAL REDES NEURAIS Caracterização Intuitiva: Em termos intuitivos, Redes Neurais Artificiais (RNAs) são modelos matemáticos inspirados nos princípios de funcionamento dos neurônios biológicos

Leia mais

Protótipo de Software para Reconhecimento de Impressões Digitais

Protótipo de Software para Reconhecimento de Impressões Digitais Protótipo de Software para Reconhecimento de Impressões Digitais Aluno: Alex Sandro da Silva Orientador: Paulo de Tarso Mendes Luna Semestre - 99/1 Roteiro da Apresentação INTRODUÇÃO CONCEITOS BÁSICOS

Leia mais

Redes Neurais: MLP. Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação

Redes Neurais: MLP. Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Redes Neurais: MLP DCA0121 Inteligência Artificial Aplicada Heitor Medeiros 1 Tópicos Redes diretas de múltiplas

Leia mais

Redes Neurais Artificiais. Professor: Juan Moises Villanueva

Redes Neurais Artificiais. Professor: Juan Moises Villanueva Redes Neurais Artificiais Mestrando: Lucas Nicolau Email: lucasfnicolau@gmail.com Professor: Juan Moises Villanueva Sumário 1. Sistemas Inteligentes 2. Introdução as Redes Neurais Artificias Neurônio Biológico

Leia mais

Introdução à Redes Neurais. Prof. Matheus Giovanni Pires EXA 868 Inteligência Artificial Não-Simbólica B Universidade Estadual de Feira de Santana

Introdução à Redes Neurais. Prof. Matheus Giovanni Pires EXA 868 Inteligência Artificial Não-Simbólica B Universidade Estadual de Feira de Santana Introdução à Redes Neurais Artificiais Prof. Matheus Giovanni Pires EXA 868 Inteligência Artificial Não-Simbólica B Universidade Estadual de Feira de Santana 2 Introdução Redes Neurais Artificiais (RNAs)

Leia mais

serotonina (humor) dopamina (Parkinson) serotonina (humor) dopamina (Parkinson) Prozac inibe a recaptação da serotonina

serotonina (humor) dopamina (Parkinson) serotonina (humor) dopamina (Parkinson) Prozac inibe a recaptação da serotonina Redes Neurais O modelo biológico O cérebro humano possui cerca 100 bilhões de neurônios O neurônio é composto por um corpo celular chamado soma, ramificações chamadas dendritos (que recebem as entradas)

Leia mais

Introdução às Redes Neurais Artificiais

Introdução às Redes Neurais Artificiais Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Introdução às Redes Neurais Artificiais DCA0121 Inteligência Artificial Aplicada Heitor Medeiros 1 Tópicos

Leia mais

Inteligência Artificial. IA Conexionista: Perceptron de Múltiplas Camadas Mapas Auto-Organizáveis. Renan Rosado de Almeida

Inteligência Artificial. IA Conexionista: Perceptron de Múltiplas Camadas Mapas Auto-Organizáveis. Renan Rosado de Almeida Inteligência Artificial IA Conexionista: Redes Neurais Artificiais Perceptron de Múltiplas Camadas Mapas Auto-Organizáveis Renan Rosado de Almeida rralmeida@inf.ufrgs.br Perceptron de Múltiplas Camadas

Leia mais

3 Aprendizado por reforço

3 Aprendizado por reforço 3 Aprendizado por reforço Aprendizado por reforço é um ramo estudado em estatística, psicologia, neurociência e ciência da computação. Atraiu o interesse de pesquisadores ligados a aprendizado de máquina

Leia mais

Machine Learning. Classificação de documentos com Apache Mahout.

Machine Learning. Classificação de documentos com Apache Mahout. Machine Learning Classificação de documentos com Apache Mahout. Agenda Contexto Objetivo Solução Resultados Prática Contexto Contexto Uma assessoria jurídica separa, classifica e encaminha convocações

Leia mais

Multi-Layer. Perceptrons. Algoritmos de Aprendizado. Perceptrons. Perceptrons

Multi-Layer. Perceptrons. Algoritmos de Aprendizado. Perceptrons. Perceptrons Algoritmos de Aprendizado Regra de Hebb Perceptron Delta Rule (Least Mean Square) Back Propagation Multi-Layer Perceptrons Redes de apenas uma camada só representam funções linearmente separáveis Redes

Leia mais

Inteligência Artificial Redes Neurais Artificiais

Inteligência Artificial Redes Neurais Artificiais Pós-Graduação em Engenharia Elétrica Inteligência Artificial Redes Neurais Artificiais João Marques Salomão Rodrigo Varejão Andreão Arquitetura e composição das RNAs Uma rede neural artificial é composta

Leia mais

PREVISÃO CLIMÁTICA DE PRECIPITAÇÃO USANDO REDE NEURAL

PREVISÃO CLIMÁTICA DE PRECIPITAÇÃO USANDO REDE NEURAL PREVISÃO CLIMÁTICA DE PRECIPITAÇÃO USANDO REDE NEURAL Juliana A. ANOCHI 1, Sabrina B. M. SAMBATTI 1, Eduardo F. P. da LUZ 1, Haroldo F. de CAMPOS VELHO 1 Instituto Nacional de Pesquisas Espaciais - INPE

Leia mais

Transformação de Imagens Digitais em Código CNC Aprimoradas com Redes Neurais Artificiais

Transformação de Imagens Digitais em Código CNC Aprimoradas com Redes Neurais Artificiais Transformação de Imagens Digitais em Código CNC Aprimoradas com Redes Neurais Artificiais Abstract. Jader Teixeira 1, Alex Vinícios Telocken 1 1 Universidade de Cruz Alta (UNICRUZ) jader033139@unicruz.edu.br,

Leia mais

ESTIMATIVA DE RADIAÇÃO SOLAR NA REGIÃO DO MACIÇO DE BATURITÉ: ABORDAGEM VIA REDES NEURAIS ARTIFICIAIS.

ESTIMATIVA DE RADIAÇÃO SOLAR NA REGIÃO DO MACIÇO DE BATURITÉ: ABORDAGEM VIA REDES NEURAIS ARTIFICIAIS. ESTIMATIVA DE RADIAÇÃO SOLAR NA REGIÃO DO MACIÇO DE BATURITÉ: ABORDAGEM VIA REDES NEURAIS ARTIFICIAIS. Arini de Menezes Costa 1, Kaio Martins Ramos 2, Hugo Hermano da Costa Castro 3, Antonio Alisson P.

Leia mais

Paradigmas de Aprendizagem

Paradigmas de Aprendizagem Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Paradigmas de Aprendizagem Redes Neurais Artificiais Site: http://jeiks.net E-mail: jacsonrcsilva@gmail.com

Leia mais

4 Redes Neurais Artificiais

4 Redes Neurais Artificiais 4 Redes Neurais Artificiais Inteligência computacional pode ser definida como um conjunto de modelos, algoritmos, técnicas, ferramentas e aplicações em sistemas computadorizados que emulem características

Leia mais

Uma Introdução a SVM Support Vector Machines. Obs: Baseada nos slides de Martin Law

Uma Introdução a SVM Support Vector Machines. Obs: Baseada nos slides de Martin Law Uma Introdução a SVM Support Vector Machines Obs: Baseada nos slides de Martin Law Sumário Historia das SVMs Duas classes, linearmente separáveis O que é um bom limite para a decisão? Duas classes, não

Leia mais

Inteligência Computacional

Inteligência Computacional Inteligência Computacional INTRODUÇÃO ÀS REDES NEURAIS ARTIFICIAIS Renato Dourado Maia Faculdade de Ciência e Tecnologia de Montes Claros Fundação Educacional Montes Claros Na Aula Passada... O que é uma

Leia mais

XII Congresso Brasileiro de Meteorologia, Foz de Iguaçu-PR, 2002

XII Congresso Brasileiro de Meteorologia, Foz de Iguaçu-PR, 2002 ESTUDO PRELIMINAR DA UTILIZAÇÃO DE REDES NEURAIS NA PREVISÃO DE TEMPERATURA MÉDIA DIÁRIA PARA A CIDADE DE PELOTAS-RS Ariane Frassoni dos Santos 1, João Gerd Zell de Mattos 1, Paulo Roberto Krebs 2 1 Faculdade

Leia mais

UM MODELO NEURAL PARA A PREVISÃO DA DEMANDA DE ENERGIA ELÉTRICA NA CIDADE DE FRANCA

UM MODELO NEURAL PARA A PREVISÃO DA DEMANDA DE ENERGIA ELÉTRICA NA CIDADE DE FRANCA UM MODELO NEURAL PARA A PREVISÃO DA DEMANDA DE ENERGIA ELÉTRICA NA CIDADE DE FRANCA SOUZA, REGIANE MÁXIMO YOSHINO, RUI TADASHI HANISC,H, WERNER SIEGFRIED ETO, REGINA FUMIE Palavras-chaves: Artificial Neural

Leia mais

Classificação e Predição de Dados - Profits Consulting - Consultoria Empresarial - Serviços SAP- CRM Si

Classificação e Predição de Dados - Profits Consulting - Consultoria Empresarial - Serviços SAP- CRM Si Classificação e Predição de Dados - Profits Consulting - Consultoria Empresarial - Serviços SAP- CRM Si Classificação de Dados Os modelos de classificação de dados são preditivos, pois desempenham inferências

Leia mais

Algoritmos de Aprendizado. Formas de Aprendizado. Aprendizado Batch x Incremental. Aprendizado Batch x Incremental

Algoritmos de Aprendizado. Formas de Aprendizado. Aprendizado Batch x Incremental. Aprendizado Batch x Incremental Algoritmos de Aprendizado Regra de Hebb Perceptron Delta Rule (Least Mean Square Back Propagation Formas de Aprendizado Existe dois métodos básicos de aplicação do algoritmo Back Propagation: Aprendizado

Leia mais

Automação Inteligente de Processos e Sistemas

Automação Inteligente de Processos e Sistemas Automação Inteligente de Processos e Sistemas Prof. Dr. Ivan Nunes da Silva USP/EESC/SEL insilva@sc.usp.br 3 de agosto de 203. Sistemas Inteligentes Conjunto de ferramentas computacionais que tentam simular

Leia mais

ESTUDO DE ALGORITMO MLP COMO APROXIMADOR DE FUNÇÃO

ESTUDO DE ALGORITMO MLP COMO APROXIMADOR DE FUNÇÃO Congresso Técnico Científico da Engenharia e da Agronomia CONTECC 2016 Rafain Palace Hotel & Convention Center- Foz do Iguaçu - PR 29 de agosto a 1 de setembro de 2016 ESTUDO DE ALGORITMO MLP COMO APROXIMADOR

Leia mais

Máquinas de suporte vetorial e sua aplicação na detecção de spam

Máquinas de suporte vetorial e sua aplicação na detecção de spam e sua aplicação na detecção de spam Orientador: Paulo J. S. Silva (IME-USP) Universidade de São Paulo Instituto de Matemática e Estatística Departamento de Ciência da Computação MAC499 Trabalho de Formatura

Leia mais

Algoritmos de Aprendizado. CONTEÚDO Introdução Motivação, Objetivo, Definição, Características Básicas e Histórico. Regra de HEBB.

Algoritmos de Aprendizado. CONTEÚDO Introdução Motivação, Objetivo, Definição, Características Básicas e Histórico. Regra de HEBB. CONTEÚDO Introdução Motivação, Objetivo, Definição, Características Básicas e Histórico Conceitos Básicos Neurônio Artificial, Modos de Interconexão Processamento Neural Recall e Learning Regras de Aprendizado

Leia mais

PROTÓTIPO DE SOFTWARE PARA CONTROLE DE ACESSO DE FUNCIONÁRIOS UTILIZANDO REDES NEURAIS PARA IDENTIFICAÇÃO DE IMPRESSÃO DIGITAL

PROTÓTIPO DE SOFTWARE PARA CONTROLE DE ACESSO DE FUNCIONÁRIOS UTILIZANDO REDES NEURAIS PARA IDENTIFICAÇÃO DE IMPRESSÃO DIGITAL PROTÓTIPO DE SOFTWARE PARA CONTROLE DE ACESSO DE FUNCIONÁRIOS UTILIZANDO REDES NEURAIS PARA IDENTIFICAÇÃO DE IMPRESSÃO DIGITAL Aluna: Alexsandra Zaparoli Orientador: Jomi Fred Hubner Banca: Roberto Heinzle

Leia mais

RECONHECIMENTO DE TRAJETÓRIA COM REDES NEURAIS

RECONHECIMENTO DE TRAJETÓRIA COM REDES NEURAIS 1 RECONHECIMENTO DE TRAJETÓRIA COM REDES NEURAIS Giovanni Crestan Leonardo Enomoto Araki Thiago Antonio Grandi De Tolosa Wânderson de Oliveira Assis Wilson Carlos Siqueira Lima Júnior IMT Instituto Mauá

Leia mais

Aplicações Práticas com Redes Neurais Artificiais em Java

Aplicações Práticas com Redes Neurais Artificiais em Java com em Java Luiz D Amore e Mauro Schneider JustJava 2009 17 de Setembro de 2009 Palestrantes Luiz Angelo D Amore luiz.damore@metodista.br Mauro Ulisses Schneider mauro.schneider@metodista.br http://blog.mauros.org

Leia mais

3 Modelos Comparativos: Teoria e Metodologia

3 Modelos Comparativos: Teoria e Metodologia 3 Modelos Comparativos: Teoria e Metodologia Para avaliar o desempenho do modelo STAR-Tree, foram estimados os modelos Naive, ARMAX e Redes Neurais. O ajuste dos modelos ARMAX e das redes neurais foi feito

Leia mais

UTILIZAÇÃO DE REDES NEURAIS ARTIFICIAIS PARA PREVISÃO DE PREÇOS DE FRUTAS E HORTALIÇAS

UTILIZAÇÃO DE REDES NEURAIS ARTIFICIAIS PARA PREVISÃO DE PREÇOS DE FRUTAS E HORTALIÇAS UTILIZAÇÃO DE REDES NEURAIS ARTIFICIAIS PARA PREVISÃO DE PREÇOS DE FRUTAS E HORTALIÇAS 1 Leandro Oliveira Araujo; 1 Heder Saito Nunes; 1 Alex Vinicius de Bastos Rangel; 1 Thiago Santiago Barbosa; 1 Aluno

Leia mais

CÁLCULO DO EQUILIBRIO DE TROCA-IÔNICA DO SISTEMA Na + -Pb 2+ -Cu 2+ USANDO REDES NEURAIS ARTIFICIAIS.

CÁLCULO DO EQUILIBRIO DE TROCA-IÔNICA DO SISTEMA Na + -Pb 2+ -Cu 2+ USANDO REDES NEURAIS ARTIFICIAIS. CÁLCULO DO EQUILIBRIO DE TROCA-IÔNICA DO SISTEMA Na + -Pb 2+ -Cu 2+ USANDO REDES NEURAIS ARTIFICIAIS. A. B. B. GIOPATTO 1, E. A. SILVA 2, T. D. MARTINS 1 1 Universidade Federal de São Paulo, Departamento

Leia mais

INTELIGÊNCIA COMPUTACIONAL EM AMBIENTES DE PROCESSAMENTO PARALELO. Lamartine N. F. Guimarães.

INTELIGÊNCIA COMPUTACIONAL EM AMBIENTES DE PROCESSAMENTO PARALELO. Lamartine N. F. Guimarães. INTELIGÊNCIA COMPUTACIONAL EM AMBIENTES DE PROCESSAMENTO PARALELO Lamartine N. F. Guimarães. Roteiro Inteligência Computacional: Problemas. Os BEOWULFS do IEAv. Possibilidades de Paralelismo. Redes neurais:

Leia mais

APLICAÇÃO DE REDES NEURAIS ARTIFICIAIS PARA REPRESENTAR O COMPORTAMENTO VISCOELÁSTICO

APLICAÇÃO DE REDES NEURAIS ARTIFICIAIS PARA REPRESENTAR O COMPORTAMENTO VISCOELÁSTICO APLICAÇÃO DE REDES NEURAIS ARTIFICIAIS PARA REPRESENTAR O COMPORTAMENTO VISCOELÁSTICO Marcelo Massarani Escola Politécnica da Universidade de São Paulo, Departamento de Engenharia Mecânica, Av. Prof. Mello

Leia mais

Mineração de Dados e Aprendizado de Máquinas. Rodrigo Leite Durães.

Mineração de Dados e Aprendizado de Máquinas. Rodrigo Leite Durães. Mineração de Dados e Aprendizado de Máquinas. Rodrigo Leite Durães. O que é mineração de dados Mineração de Dados é um passo no processo de KDD que consiste na aplicação de análise de dados e algoritmos

Leia mais

Introdução às Redes Neurais Artificiais. Eduardo Simas

Introdução às Redes Neurais Artificiais. Eduardo Simas Introdução às Redes Neurais Artificiais Eduardo Simas (eduardo.simas@ufba.br) Sumário O que são as Redes Neurais Artificiais? Para que servem? Processamento da Informação Tipos de Redes Neurais Modos de

Leia mais

Utilização de Redes Neurais Artificiais para Interpolação de Resultados do Método de Elementos Finitos

Utilização de Redes Neurais Artificiais para Interpolação de Resultados do Método de Elementos Finitos Utilização de Redes Neurais Artificiais para Interpolação de Resultados do Método de Elementos Finitos Leandro M. de Souza Resumo Neste artigo, é proposta uma metodologia que utiliza Redes Neurais Artificiais

Leia mais

UNISINOS - UNIVERSIDADE DO VALE DO RIO DOS SINOS

UNISINOS - UNIVERSIDADE DO VALE DO RIO DOS SINOS UNISINOS - UNIVERSIDADE DO VALE DO RIO DOS SINOS Curso: Informática Disciplina: Redes Neurais Prof. Fernando Osório E-mail: osorio@exatas.unisinos.br EXEMPLO DE QUESTÕES DE PROVAS ANTIGAS 1. Supondo que

Leia mais

Inteligência Artificial. Redes Neurais Artificiais

Inteligência Artificial. Redes Neurais Artificiais Curso de Especialização em Sistemas Inteligentes Aplicados à Automação Inteligência Artificial Redes Neurais Artificiais Aulas Práticas no Matlab João Marques Salomão Rodrigo Varejão Andreão Matlab Objetivos:

Leia mais

Redes Neurais no WEKA

Redes Neurais no WEKA Redes Neurais WEKA http://www.cs.waikato.ac.nz/ml/weka/ Redes Neurais no WEKA Introdução ao WEKA Base Benchmark Estudo de Casos Análise de Crédito Bancário 1 Redes Neurais no Weka WEKA (Waikaito Environment

Leia mais

REDE NEURAL DE ELMAN APLICADA NA PREVISÃO DE PREÇOS DE COMBUSTÍVEIS

REDE NEURAL DE ELMAN APLICADA NA PREVISÃO DE PREÇOS DE COMBUSTÍVEIS REDE NEURAL DE ELMAN APLICADA NA PREVISÃO DE PREÇOS DE COMBUSTÍVEIS Renan Pires de Araújo 1 ; Adrião Duarte Dória Neto 2 1 Universidade Federal do Rio Grande do Norte, Programa de Pós-Graduação em Ciência

Leia mais

Multi-Layer. Perceptron. Sumário. Aplicações de Redes Neurais. Previsão de Séries Temporais. Aplicações de Previsão

Multi-Layer. Perceptron. Sumário. Aplicações de Redes Neurais. Previsão de Séries Temporais. Aplicações de Previsão Aplicações de Redes Neurais Multi-Layer Perceptron Previsão de Séries Temporais Inferência da Qualidade de Produtos de Destilação (Soft Sensors) Classificação de Imagens Determinação da Carga Limite em

Leia mais

2011 Profits Consulting. Inteligência Computacional

2011 Profits Consulting. Inteligência Computacional Inteligência Computacional Quem Somos Excelência em Soluções Tecnológicas A Profits Consulting é uma empresa composta por consultores com ampla experiência em Tecnologia que desenvolve soluções inovadoras,

Leia mais

REDES NEURAIS. É um conjunto complexo de células que determina o funcionamento e comportamento dos seres vivos. Sua unidade fundamental é o neurônio

REDES NEURAIS. É um conjunto complexo de células que determina o funcionamento e comportamento dos seres vivos. Sua unidade fundamental é o neurônio REDES NEURAIS Sistema Nervoso 2 O que é? É um conjunto complexo de células que determina o funcionamento e comportamento dos seres vivos Engloba o cérebro Sua unidade fundamental é o neurônio Se diferencia

Leia mais

Tópicos em Mineração de Dados

Tópicos em Mineração de Dados Tópicos em Mineração de Dados Descoberta de agrupamentos Método k-médias 1. Introdução A descoberta de agrupamentos é uma tarefa descritiva que procura agrupar dados utilizando a similaridade dos valores

Leia mais

SCC Capítulo 5 Perceptron Multicamadas

SCC Capítulo 5 Perceptron Multicamadas Introdução Back-propagation (BP) MLPs Convolução SCC-5809 - Capítulo 5 Perceptron Multicamadas João Luís Garcia Rosa 1 1 SCC-ICMC-USP - joaoluis@icmc.usp.br 2011 João Luís G. Rosa c 2011 - SCC-5809: Redes

Leia mais

REDES NEURAIS ARTIFICIAIS: UMA CONTRIBUIÇÃO AO PROCESSO DE DECISÕES FINANCEIRAS

REDES NEURAIS ARTIFICIAIS: UMA CONTRIBUIÇÃO AO PROCESSO DE DECISÕES FINANCEIRAS REDES NEURAIS ARTIFICIAIS: UMA CONTRIBUIÇÃO AO PROCESSO DE DECISÕES FINANCEIRAS WILSON KENDY TACHIBANA VERIDIANA DE FÁTIMA ORLANDI Resumo: As redes neurais artificiais são modelos baseados no comportamento

Leia mais

Sistemas de Informação e Decisão. Douglas Farias Cordeiro

Sistemas de Informação e Decisão. Douglas Farias Cordeiro Sistemas de Informação e Decisão Douglas Farias Cordeiro Decisão Tomamos decisões a todo momento! O que é uma decisão? Uma decisão consiste na escolha de um modo de agir, entre diversas alternativas possíveis,

Leia mais

Universidade Regional de Blumenau Centro de Ciências Exatas e Naturais Departamento de Sistemas e Computação

Universidade Regional de Blumenau Centro de Ciências Exatas e Naturais Departamento de Sistemas e Computação Universidade Regional de Blumenau Centro de Ciências Exatas e Naturais Departamento de Sistemas e Computação Desenvolvimento da Aplicação para Aprovação do Limite de Crédito Financeiro de uma Empresa Têxtil

Leia mais

Sistemas Inteligentes

Sistemas Inteligentes Sistemas Inteligentes UNIDADE 5 Redes Neurais Artificiais (Perceptron Multicamadas Conceitos) Prof. Ivan Nunes da Silva. Rede Perceptron Multicamadas Aspectos de arquitetura Redes Perceptron de Múltiplas

Leia mais

MLP (Multi Layer Perceptron)

MLP (Multi Layer Perceptron) MLP (Multi Layer Perceptron) André Tavares da Silva andre.silva@udesc.br Roteiro Rede neural com mais de uma camada Codificação de entradas e saídas Decorar x generalizar Perceptron Multi-Camada (MLP -

Leia mais

Uso de Redes Neurais Artificiais na Determinação dos Zeros de Funções Polinomiais

Uso de Redes Neurais Artificiais na Determinação dos Zeros de Funções Polinomiais Revista Tecnologias em Proeção v n p 8-5 dez 8 Uso de Redes Neurais Artificiais na Determinação dos Zeros de Funções Polinomiais Ircílio Chissolucombe Resumo A Inteligência Artificial tem sido muito utilizada

Leia mais

Aula 06 - Máquina Multinível e Von Neumann

Aula 06 - Máquina Multinível e Von Neumann Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte Campus Currais Novos Instalação e Organização de Computadores Aula 06 - Máquina Multinível e Von Neumann Prof. Diego Pereira

Leia mais

ESTIMAÇÃO DA VELOCIDADE DE DESLOCAMENTO DE UMA ESTEIRA TRANSPORTADORA UTILIZANDO REDES NEURAIS ARTIFICIAIS

ESTIMAÇÃO DA VELOCIDADE DE DESLOCAMENTO DE UMA ESTEIRA TRANSPORTADORA UTILIZANDO REDES NEURAIS ARTIFICIAIS ESTIMAÇÃO DA VELOCIDADE DE DESLOCAMENTO DE UMA ESTEIRA TRANSPORTADORA UTILIZANDO REDES NEURAIS ARTIFICIAIS Samuel Vieira DIAS (1); Geraldo Luis Bezerra RAMALHO (2); (1) Instituto Federal de Educação, Ciência

Leia mais

Protótipo de um robô rastreador de objetos. Orientando: Emerson de Oliveira Orientador : Miguel Wisintainer

Protótipo de um robô rastreador de objetos. Orientando: Emerson de Oliveira Orientador : Miguel Wisintainer Protótipo de um robô rastreador de objetos Orientando: Emerson de Oliveira Orientador : Miguel Wisintainer Estrutura da apresentação Introdução Processamento e análise de imagens Redes neurais e reconhecimento

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Professor: Rosalvo Ferreira de Oliveira Neto Disciplina: Inteligência Artificial Tópicos 1. Definições 2. Tipos de aprendizagem 3. Paradigmas de aprendizagem 4. Modos de aprendizagem

Leia mais

Introdução às Redes Neurais Artificiais

Introdução às Redes Neurais Artificiais Introdução às Redes Neurais Artificiais Mapas Auto-Organizáveis Prof. João Marcos Meirelles da Silva http://www.professores.uff.br/jmarcos Departamento de Engenharia de Telecomunicações Escola de Engenharia

Leia mais

Vocal: Assistente para o uso de smartphones operado por voz

Vocal: Assistente para o uso de smartphones operado por voz Departamento de Sistemas e Computação FURB Curso de Ciência da Computação Trabalho de Conclusão de Curso 2016/1 Vocal: Assistente para o uso de smartphones operado por voz Acadêmico: Eli Tonny de Souza

Leia mais

Professor José Gomes de Carvalho Jr. Modelos Conexionistas - Redes Neurais 1 INTRODUÇÃO

Professor José Gomes de Carvalho Jr. Modelos Conexionistas - Redes Neurais 1 INTRODUÇÃO Modelos Conexionistas - Redes Neurais 1 INTRODUÇÃO Redes Neurais Artificiais ou simplesmente Redes Neurais (também conhecidas como modelos conexionistas) têm sido, ao longo dos últimos anos, uma área de

Leia mais

MAC 0425/ Inteligência Artificial

MAC 0425/ Inteligência Artificial MAC 0425/5739 - Inteligência Artificial Exercício-Programa 4 - Clasificação Prazo limite de entrega: 23:59 07/12/2016 1 Introdução Neste exercício-programa estudaremos o problema de aprendizagem supervisionado

Leia mais

Protótipo de Software de Reconhecimento de Voz Para Navegação em Jogos, Utilizando Rede Neural Artificial

Protótipo de Software de Reconhecimento de Voz Para Navegação em Jogos, Utilizando Rede Neural Artificial Protótipo de Software de Reconhecimento de Voz Para Navegação em Jogos, Utilizando Rede Neural Artificial Orientando: Derlei Brancher Orientador: Prof. Jacques Robert Heckmann - Mestre 1. Introdução Roteiro

Leia mais

PREVISÃO DE TEMPERATURA ATRAVÉS DE REDES NEURAIS ARTIFICIAIS

PREVISÃO DE TEMPERATURA ATRAVÉS DE REDES NEURAIS ARTIFICIAIS PREVISÃO DE TEMPERATURA ATRAVÉS DE REDES NEURAIS ARTIFICIAIS Alexandre Pinhel Soares 1 André Pinhel Soares 2 Abstract : The temperature monitoring is a quasi-continuous and judicious task that gives a

Leia mais

Reconhecimento facial. uma aplicação prática do reconhecimento de padrões

Reconhecimento facial. uma aplicação prática do reconhecimento de padrões Reconhecimento facial uma aplicação prática do reconhecimento de padrões Márcio Koch, junho 2014 Pauta Apresentação Visão computacional Reconhecimento de padrões Analise de Componentes Principais Reconhecimento

Leia mais

Detecção de Faces Humanas em Imagens Coloridas Utilizando Redes Neurais Artificiais

Detecção de Faces Humanas em Imagens Coloridas Utilizando Redes Neurais Artificiais Detecção de Faces Humanas em Imagens Coloridas Utilizando Redes Neurais Artificiais Wellington da Rocha Gouveia Universidade de São Paulo Escola de Engenharia de São Carlos Departamento de Engenharia Elétrica

Leia mais

1 INTRODUÇÂO. 1.1.Motivação

1 INTRODUÇÂO. 1.1.Motivação 22 1 INTRODUÇÂO 1.1.Motivação Duas componentes formam as perdas globais das empresas distribuidoras: perdas técnicas e perdas comerciais também denominadas perdas não técnicas. As perdas técnicas são,

Leia mais

FÁBIO BARROS TEBALDI ESTUDO DE REDES NEURAIS ARTIFICIAS PARA VERIFICAÇÃO E CLASSIFICAÇÃO DE ASSINATURAS ATRAVÉS DE IMAGENS

FÁBIO BARROS TEBALDI ESTUDO DE REDES NEURAIS ARTIFICIAS PARA VERIFICAÇÃO E CLASSIFICAÇÃO DE ASSINATURAS ATRAVÉS DE IMAGENS FUNDAÇÃO DE ENSINO EURÍPIDES SOARES DA ROCHA CENTRO UNIVERSITARIO EURÍPIDES DE MARÍLIA UNIVEM CURSO DE CIÊNCIA DA COMPUTAÇÃO BACHARELADO FÁBIO BARROS TEBALDI ESTUDO DE REDES NEURAIS ARTIFICIAS PARA VERIFICAÇÃO

Leia mais

Máquina de Vetores Suporte

Máquina de Vetores Suporte Máquina de Vetores Suporte André Ricardo Gonçalves andreric [at] dca.fee.unicamp.br www.dca.fee.unicamp.br/~andreric Sumário 1 Máquina de Vetores Suporte p. 3 1.1 Teoria da Aprendizado Estatístico.......................

Leia mais

FACULDADE CAMPO LIMPO PAULISTA (FACCAMP) COORDENADORIA DE EXTENSÃO E PESQUISA CURSO DE PÓS-GRADUAÇÃO LATO SENSU EM MINERAÇÃO E CIÊNCIA DOS DADOS

FACULDADE CAMPO LIMPO PAULISTA (FACCAMP) COORDENADORIA DE EXTENSÃO E PESQUISA CURSO DE PÓS-GRADUAÇÃO LATO SENSU EM MINERAÇÃO E CIÊNCIA DOS DADOS FACULDADE CAMPO LIMPO PAULISTA (FACCAMP) COORDENADORIA DE EXTENSÃO E PESQUISA CURSO DE PÓS-GRADUAÇÃO LATO SENSU EM MINERAÇÃO E CIÊNCIA DOS DADOS PROJETO PEDAGÓGICO CAMPO LIMPO PAULISTA 2015 1. Público

Leia mais

Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 20 - Backpropagation

Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 20 - Backpropagation Inteligência Artificial Prof. Tiago A. E. Ferreira Aula 20 - Backroagation Introdução Redes de uma camada resolvem aenas roblemas linearmente searáveis Solução: utilizar mais de uma camada Camada 1: uma

Leia mais

Emails: slsnazario@aluno.feis.unesp.br, hcbo@cin.ufpe.br, kitano@dee.feis.unesp.br, jacira@agr.feis.unesp.br, tokio@dee.feis.unesp.

Emails: slsnazario@aluno.feis.unesp.br, hcbo@cin.ufpe.br, kitano@dee.feis.unesp.br, jacira@agr.feis.unesp.br, tokio@dee.feis.unesp. CLASSIFICAÇÃO DO TEOR DE GORDURA EM LEITE UHT UTILIZANDO TÉCNICAS DE ULTRA-SOM E REDES NEURAIS EM FUNÇÃO DA TEMPERATURA Sérgio Luiz Sousa Nazario, Humberto Cesar Brandao de Oliveira, Claudio Kitano, Jacira

Leia mais

Introdução a Programação

Introdução a Programação Introdução a Programação Prof. André Gustavo Duarte de Almeida andre.almeida@ifrn.edu.br docente.ifrn.edu.br/andrealmeida Aula 01 Informática e a Programação Roteiro Informática Pensar e Programar Atividades

Leia mais

SELEÇÃO DE CARACTERÍSTICAS DE DADOS UTILIZANDO REDES NEURAIS ARTIFICIAIS

SELEÇÃO DE CARACTERÍSTICAS DE DADOS UTILIZANDO REDES NEURAIS ARTIFICIAIS ÁLVARO HENRIQUE NOGUEIRA DE LIMA SELEÇÃO DE CARACTERÍSTICAS DE DADOS UTILIZANDO REDES NEURAIS ARTIFICIAIS LAVRAS MG 2012 ÁLVARO HENRIQUE NOGUEIRA DE LIMA SELEÇÃO DE CARACTERÍSTICAS DE DADOS UTILIZANDO

Leia mais

Algoritmos Genéticos Fundamentos e Aplicações. Prof. Juan Moisés Mauricio Villanueva

Algoritmos Genéticos Fundamentos e Aplicações. Prof. Juan Moisés Mauricio Villanueva Algoritmos Genéticos Fundamentos e Aplicações Prof. Juan Moisés Mauricio Villanueva jmauricio@cear.ufpb.br Conteúdo Introdução Inteligência Artificial (IA) Algoritmos Genéticos Aplicações de Algoritmos

Leia mais

DIAGNÓSTICO AUTOMATIZADO DE DOENÇAS NO COLO DO ÚTERO BASEADO EM REDES NEURAIS ARTIFICIAIS E PROCESSAMENTO DE IMAGENS DIGITAIS

DIAGNÓSTICO AUTOMATIZADO DE DOENÇAS NO COLO DO ÚTERO BASEADO EM REDES NEURAIS ARTIFICIAIS E PROCESSAMENTO DE IMAGENS DIGITAIS DIAGNÓSTICO AUTOMATIZADO DE DOENÇAS NO COLO DO ÚTERO BASEADO EM REDES NEURAIS ARTIFICIAIS E PROCESSAMENTO DE IMAGENS DIGITAIS Edroaldo Lummertz da Rocha 1 Evânio Ramos Nicoleit 2 Merisandra Cortes de Mattos

Leia mais

Previsão de séries temporais mediante redes neurais

Previsão de séries temporais mediante redes neurais Previsão de séries temporais mediante redes neurais Aluna: João Pedro Mano Orientadora: Celia Anteneodo Introdução Atualmente, com o crescimento dos mercados financeiros, e com as mudanças bruscas nos

Leia mais

Grupo de Pesquisa Computação Afetiva UFRGS

Grupo de Pesquisa Computação Afetiva UFRGS Grupo de Pesquisa Computação Afetiva UFRGS 1 Magda Bercht, 2 Fabrícia Damando Santos, 3 Roceli Pereira Lima 1 Universidade Federal do Rio Grande do Sul, 2 Universidade Estadual do Rio Grande do Sul, 3

Leia mais

Tabela de Pré-Requisitos. Interdisciplinar 36 Não há

Tabela de Pré-Requisitos. Interdisciplinar 36 Não há Nome da UC Categoria CH Total Pré-Requisitos Álgebra Linear Eletiva 72 Geometria Analítica Álgebra Linear Computacional Eletiva 72 Cálculo Numérico Álgebra Linear II Eletiva 72 Álgebra Linear Algoritmos

Leia mais

Introdução a Sistemas Inteligentes

Introdução a Sistemas Inteligentes Introdução a Sistemas Inteligentes Conceituação Prof. Ricardo J. G. B. Campello ICMC / USP Créditos Parte do material a seguir consiste de adaptações e extensões dos originais gentilmente cedidos pelo

Leia mais

Estatística e Matemática Aplicadas a Data Science. Diógenes Justo BM&FBOVESPA & Professor FIAP

Estatística e Matemática Aplicadas a Data Science. Diógenes Justo BM&FBOVESPA & Professor FIAP Estatística e Matemática Aplicadas a Data Science Diógenes Justo BM&FBOVESPA & Professor FIAP Agenda Modelagem para Data Science (Matemática e Estatística) Detecção de Fraudes Forecast (financeiro) Conclusões

Leia mais

Aprendizado de Máquina

Aprendizado de Máquina Aprendizado de Máquina Introdução ao WEKA Luiz Eduardo S. Oliveira Universidade Federal do Paraná Departamento de Informática http://web.inf.ufpr.br/luizoliveira Luiz S. Oliveira (UFPR) Aprendizado de

Leia mais

Identificação de Produtos por Imagem Utilizando o Algoritmo SURF

Identificação de Produtos por Imagem Utilizando o Algoritmo SURF Identificação de Produtos por Imagem Utilizando o Algoritmo SURF Um Comparativo Entre Redes Perceptron Multicamadas e Máquinas de Vetor de Suporte Guilherme Defreitas Juraszek, Alexandre Gonçalves Silva

Leia mais

Modelo neural hierárquico para obtenção de comportamento adaptativo em um agente robótico

Modelo neural hierárquico para obtenção de comportamento adaptativo em um agente robótico Modelo neural hierárquico para obtenção de comportamento adaptativo em um agente robótico Eduardo W. Basso ewbasso@inf.ufrgs.br Semana Acadêmica 2005 PPGC UFRGS Motivação Desenvolvendo sistemas inteligentes

Leia mais

Reconhecendo Instrumentos Musicais Através de Redes Neurais Artificiais

Reconhecendo Instrumentos Musicais Através de Redes Neurais Artificiais Reconhecendo Instrumentos Musicais Através de Redes Neurais Artificiais Carlos Roberto Ferreira de Menezes Júnior, Eustáquio São José de Faria, Keiji Yamanaka Faculdade de Engenharia Elétrica (Programa

Leia mais

3 REDES NEURAIS ARTIFICIAIS

3 REDES NEURAIS ARTIFICIAIS 50 3 REDES NEURAIS ARTIFICIAIS Este capitulo apresenta uma descrição sucinta da teoria básica de Redes Neurais Artificiais e sobre a criação do Comitê de Redes Neurais. Se o leitor estiver familiarizado

Leia mais

Inteligência Computacional para Jogos Eletrônicos

Inteligência Computacional para Jogos Eletrônicos Inteligência Computacional para Jogos Eletrônicos Papéis da IA em Jogos Adversários Aliados Personagens de apoio NPC s (Non-player Character) Comentaristas Controle de câmera Geração de fases Nivelamento

Leia mais

IMPLEMENTAÇÃO DO FREx_SVM: MÁQUINAS DE VETOR SUPORTE PARA CLASSIFICAÇÃO EM MÚLTIPLAS CLASSES

IMPLEMENTAÇÃO DO FREx_SVM: MÁQUINAS DE VETOR SUPORTE PARA CLASSIFICAÇÃO EM MÚLTIPLAS CLASSES IMPLEMENTAÇÃO DO FREx_SVM: MÁQUINAS DE VETOR SUPORTE PARA CLASSIFICAÇÃO EM MÚLTIPLAS CLASSES Aluno: Aarão Irving Manhães Marins Orientador: Marley Maria Bernardes Rebuzzi Vellasco Introdução A máquina

Leia mais

Mineração de Dados para Detecção de Padrões de Mudança de Cobertura da Terra. Padrões e processos em Dinâmica de uso e Cobertura da Terra

Mineração de Dados para Detecção de Padrões de Mudança de Cobertura da Terra. Padrões e processos em Dinâmica de uso e Cobertura da Terra Mineração de Dados para Detecção de Padrões de Mudança de Cobertura da Terra Padrões e processos em Dinâmica de uso e Cobertura da Terra Introdução 1 2 3 4 Capacidade de Armazenamento X Análise e Interpretação

Leia mais

6. QUADRIMESTRE IDEAL 7. NÍVEL Graduação 8. Nº. MÁXIMO DE ALUNOS POR TURMA TEORIA: 60 LABORATÓRIO: 30

6. QUADRIMESTRE IDEAL 7. NÍVEL Graduação 8. Nº. MÁXIMO DE ALUNOS POR TURMA TEORIA: 60 LABORATÓRIO: 30 Universidade Federal do ABC Rua Santa Adélia, 166 - Bairro Bangu - Santo André - SP - Brasil CEP 09.210-170 - Telefone/Fax: +55 11 4996-3166 1. CÓDIGO E NOME DA DISCIPLINA MC5001 - SISTEMAS MULTIAGENTES

Leia mais

Introdução ao Python. Programa Computacional

Introdução ao Python. Programa Computacional Programa Computacional É um algoritmo escrito em uma linguagem computacional (C, Fortran, Pascal, MATLAB, Python, etc.). É a tradução do algoritmo para uma linguagem que será interpretada pelo computador.

Leia mais

RECONHECIMENTO FACIAL UTILIZANDO EIGENFACES

RECONHECIMENTO FACIAL UTILIZANDO EIGENFACES Universidade Federal do Rio de Janeiro Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia Programa de Engenharia de Sistemas e Computação Rio de Janeiro, RJ Brasil RECONHECIMENTO

Leia mais

Futebol de robôs: relatório final

Futebol de robôs: relatório final Universidade Federal do Rio Grande do Sul Instituto de Informática Redes Neurais e Sistemas Fuzzy INF01036 Futebol de robôs: relatório final Christian Northfleet 141976 Márcio de Oliveira 171485 4 de Dezembro

Leia mais

Comparação de Modelos Neurais Aplicados a Resistência de Fornos de Redução do Alumínio Primário

Comparação de Modelos Neurais Aplicados a Resistência de Fornos de Redução do Alumínio Primário Trabalho apresentado no DINCON, Natal - RN, 2015. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics Comparação de Modelos Neurais Aplicados a Resistência de Fornos de

Leia mais

BIG DATA INTRODUÇÃO. Humberto Sandmann humberto.sandmann@gmail.com

BIG DATA INTRODUÇÃO. Humberto Sandmann humberto.sandmann@gmail.com BIG DATA INTRODUÇÃO Humberto Sandmann humberto.sandmann@gmail.com Apresentação Humberto Sandmann humberto.sandmann@gmail.com Possui graduação em Ciências da Computação pelo Centro Universitário da Faculdade

Leia mais

Plano. Aspectos Relevantes de HMMs. Teoria de HMMs. Introdução aos Modelos Escondidos de Markov

Plano. Aspectos Relevantes de HMMs. Teoria de HMMs. Introdução aos Modelos Escondidos de Markov Plano Esta apresentação é para pessoas sem conhecimento prévio de HMMs Introdução aos Modelos Escondidos de Markov 2004 Objetivos: Ensinar alguma coisa, não tudo (Visão geral, sem muitos detalhes). Tentar

Leia mais

USO DE TÉCNICAS DE RECONHECIMENTO DE PADRÃO EM UM PROCESSO DE PRODUÇÃO DE ALUMINA PARA AUXÍLIO NO CONTROLE AMBIENTAL

USO DE TÉCNICAS DE RECONHECIMENTO DE PADRÃO EM UM PROCESSO DE PRODUÇÃO DE ALUMINA PARA AUXÍLIO NO CONTROLE AMBIENTAL Trabalho apresentado no CMAC-Sul, Curitiba-PR, 2014. USO DE TÉCNICAS DE RECONHECIMENTO DE PADRÃO EM UM PROCESSO DE PRODUÇÃO DE ALUMINA PARA AUXÍLIO NO CONTROLE AMBIENTAL Ruy Gomes da Silva Programa de

Leia mais