UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT. Lista de Exercícios 01.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT. Lista de Exercícios 01."

Transcrição

1 UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT Curso de Bacharel em Ciência da Computação Disciplina: Matemática Discreta Professor: Rafael Stubs Parpinelli ) Diga se é verdadeiro ou falso. Justifique. a) {,, } = {x N x > 0 e x < 4} b) {,, } {,,,,,, } c) {,, } {,,,,,, } d) e) f) { } g) { } h) {x, y} {x, {x, y}} i) {x, y} {x, {x, y}} j) {,, } {{,, }} k) {,, } {{,, }} l) {,, } = m) {,, } {,, } = {,, } Lista de Exercícios 0. ) Para os conjuntos A = {}, B = {, } e C = {{}, }, diga se as afirmações são verdadeiras ou falsas. Justifique. a) A B b) A B c) A B d) A C e) A C f) A g) C h) {} A i) {} C j) C k) C l) B A m) B A ) Sejam a = {x x = 6} e b =. Justifique ou refute as seguintes afirmações: a) a = b b) b a c) b a

2 4) Qual o conjunto das partes dos conjuntos abaixo? a) A = {a, b, c} b) B = {a, {b, c}, D} dado que D = {, } 5) Sejam A = {0,,,, 4, 5}, B = {, 4, 5, 6, 7, 8}, C = {,, 7, 8}, D = {, 4}, E = {, }, F = {} e X um conjunto desconhecido. Para cada item abaixo, determine quais dos conjuntos A, B, C, D, E ou F podem ser iguais a X: a) X A e X B b) X B e X C c) X A e X C d) X B e X C 6) Dados os conjuntos U = {, m, a,, 5, 6, 8, t, e, 9, 0, i, c,, 5, 6}, A = {9, 0}, B = {a,, 5, 6, m, t, 5}, C = {m,, 5, 6, t, e, i,, 6}, D = {, e, m, i, 5, 6}, E = {i}, resolva: (Lembre-se que o conjunto U é o conjunto universo) a) C C D b) B c) E d) C U E e) C U φ f) C U C C D 7) Faça o diagrama de Venn dos conjuntos do exercício 6. 8) Considerando os conjuntos do exercício 6, quais os conjuntos resultantes das seguintes operações: a) C D' b) B A C ' c) A D C B d) B C D ' C e) C A 9) Seja S = {, 5, 7, 7}. Quais das seguintes afirmações são verdadeiras? a. 5 S b. + 5 S c. S d. S S 0) Qual a cardinalidade dos seguintes conjuntos: a. S = {a, {a, {a}}} b. S = {{a}, {{a}}} c. S = { } d. S = { } e. S = {a, { }, } f. S = {, {, { }}, {, {, { }}}} ) Dada uma descrição do conjunto A = {, 4, 8,...}, você acha que 6 A? ) Sejam:

3 R = {,, pi, 4, 9, 0} S = {{},, 9, 0} T = {,, pi} U = {{,, pi}, } Quais afirmações são verdadeiras? E para as que não são, por que não? a. S R b. R c. S d. U e. {} T f. {} S g. T R h. {} S i. S j. T U k. T U l. T R m. T R n. S {,, 9, 0} ) Sejam: A = {x x R e x 4x + < 0} e B = {x x R e 0 < x < 6}. Mostre que A B. b ± b ac (Fórmula de Báscara: 4 x = ) a 4) Mostre qual das proposições a seguir são verdadeiras para quaisquer conjuntos A, B e C e diga por quê é verdade ou não. a. se A B e B A, então A = B b. { } = c. { } = {0} d. { } e. A f. A g. se A B e B C, então A C h. se A B e B C, então A C i. se A B e B C, então A C 5) Sejam A = {a}, B = {a, b} e C = {0,, }. Encontre: a. A B b. B C c. C B d. A e. B f. A Ν (Naturais) g. A B C h. (A B) C i. A (B C) j. P(A B) k. P(A) P(B) 6) Para qualquer conjunto finito S, denote por S o número de elementos em S. Se A = e B = 4, encontre: a. A B b. A c. B d. o maior valor possível para A B e. o menor valor possível para A B 7) Encontre: a. P(S) para S = {, { }, {, { }} } b. P(P(S)) para S = {a, b} 8) O que pode-se dizer sobre A se P(A) = {, {x}, {y}, {x, y}} 9) Mostre que: a. (A ) = A b. P(A) P(B) = P(A B) c. A (B C) = (A B) (A C) d. A B = A B 0) A, B e C são subconjuntos de um conjunto S. Prove as identidades a seguir usando as identidades básicas e as demais identidades já encontradas. a. [A (B C)] = A (B C ) b. [(A B) (A B )] = A c. (A B) (A B ) = A d. (A B) C = (A C) B e. A (A B) = A B ) Quais das expressões a seguir definem operações binárias ou unárias nos conjuntos indicados? Para as que não definem, por que não?

4 a. x ο y = x + ; S = N b. x ο y = x + y ; S = N c. x ο y = d. 4 x se x é ímpar x se x é 4 5 par ; S = {,, } e. x ο y = min{x, y}; S = N ; S = Z ) Marque os conjuntos que são alfabetos. Justifique. a) Conjunto dos números naturais [ ] b) Conjunto dos números primos [ ] c) Conjunto das letras do alfabeto brasileiro [ ] d) Conjunto dos algarismos romanos [ ] e) Conjunto {a, b, c} [ ] f) Conjunto das consoantes [ ] ) Sejam Σ = {a, b, c,..., z} e Dígitos = {0,,,, 4, 5, 6, 7, 8, 9} alfabetos. Discuta as seguintes afirmações: a) Português é uma linguagem sobre Σ, ou seja, é um subconjunto de Σ * ; b) N (conjunto dos números naturais) é uma linguagem sobre Dígitos, ou seja, é um subconjunto de Dígitos *. 4) Correlacione os conjuntos descritos por 'enumeração dos elementos' com os conjuntos descritos por uma 'propriedade': (a) {,, 5, 7,,, 7, 9} (b) {, 5, 8,, 4, 7} (c) {África, América, Ásia, Europa, Oceania} (d) {Matemática Discreta, Geometria Básica, Cálculo} (e) {, } () {continentes} () {x x é número natural primo, x < 0} () {disciplinas de matemática do curso de CC} (4) {x x = 9} (5) {x N x é múltiplo de, 0 < x < 0} 5) Se o conjunto Universo U = {números inteiros} e A = {números inteiros pares}, então qual o complemento de A? 6) Considere o conjunto de todos os carros vendidos em uma certa concessionária. Um vendedor classificou os carros em três subconjuntos, de acordo com os opcionais de cada carro.

5 D = {carros com direção hidráulica}, A = {carros com ar-condicionado}, V = {carros com vidro elétrico}. Faça o diagrama de Venn para os seguintes casos: a) Carros com, pelo menos, alguma das três opções. b) Carros com ar-condicionado, mas sem direção hidráulica e sem vidro elétrico. c) Carros com direção hidráulica ou ar-condicionado, mas sem vidro elétrico. d) Carros com vidro elétrico e ar-condicionado. e) Carros com vidro elétrico, ar-condicionado e direção hidráulica. f) Conjunto dos carros vendidos sem nenhum dos três opcionais.

AULA 6 LÓGICA DOS CONJUNTOS

AULA 6 LÓGICA DOS CONJUNTOS Disciplina: Matemática Computacional Crédito do material: profa. Diana de Barros Teles Prof. Fernando Zaidan AULA 6 LÓGICA DOS CONJUNTOS Intuitivamente, conjunto é a coleção de objetos, que em geral, tem

Leia mais

Universidade Federal do ABC. Sinais Aleatórios. Prof. Marcio Eisencraft

Universidade Federal do ABC. Sinais Aleatórios. Prof. Marcio Eisencraft Universidade Federal do ABC Sinais Aleatórios Prof. Marcio Eisencraft São Paulo 2011 Capítulo 1 Probabilidades Neste curso, trata-se dos fenômenos que não podem ser representados de forma determinística

Leia mais

Unidade Curricular Matemática Aplicada Prof. Angelo Gonçalves da Luz Teoria dos Conjuntos

Unidade Curricular Matemática Aplicada Prof. Angelo Gonçalves da Luz Teoria dos Conjuntos Unidade Curricular Matemática Aplicada Prof. Angelo Gonçalves da Luz Teoria dos Conjuntos 1) O tipo float está contido dentro de quais conjuntos? (Mais de uma alternativa pode ser marcada como correta).

Leia mais

Álgebra Booleana. Introdução ao Computador 2010/01 Renan Manola

Álgebra Booleana. Introdução ao Computador 2010/01 Renan Manola Álgebra Booleana Introdução ao Computador 2010/01 Renan Manola Histórico George Boole (1815-1864) Considerado um dos fundadores da Ciência da Computação, apesar de computadores não existirem em seus dias.

Leia mais

Programa de Formação Contínua em Matemática para Professores do 1.º e 2.º Ciclos do Ensino Básico. I. Conjuntos

Programa de Formação Contínua em Matemática para Professores do 1.º e 2.º Ciclos do Ensino Básico. I. Conjuntos I. Conjuntos 1. Introdução e notações 1.1. Relação de pertença 1.2. Modos de representar um conjunto 1.3. Classificação de conjuntos quanto ao número de elementos 1.4. Noção de correspondência 2. Relações

Leia mais

PROF. LUIZ CARLOS MOREIRA SANTOS

PROF. LUIZ CARLOS MOREIRA SANTOS 1 - CONCEITO PROF. LUIZ CARLOS MOREIRA SANTOS CONJUNTOS Conjunto proporciona a idéia de coleção, admitindo-se coleção de apenas um elemento (conjunto unitário) e coleção sem nenhum elemento (conjunto vazio).

Leia mais

RELAÇÕES BINÁRIAS Produto Cartesiano A X B

RELAÇÕES BINÁRIAS Produto Cartesiano A X B RELAÇÕES BINÁRIAS PARES ORDENADOS Um PAR ORDENADO, denotado por (x,y), é um par de elementos onde x é o Primeiro elemento e y é o Segundo elemento do par A ordem é relevante em um par ordenado Logo, os

Leia mais

Faculdade de Tecnologia de Teresina-PI Tecnologia em Redes de Computadores. Arquitetura de Computadores Prof. Nathan Saraiva

Faculdade de Tecnologia de Teresina-PI Tecnologia em Redes de Computadores. Arquitetura de Computadores Prof. Nathan Saraiva Faculdade de Tecnologia de Teresina-PI Tecnologia em Redes de Computadores Arquitetura de Computadores Prof. Nathan Saraiva Tópicos Introdução Valor analógico x valor digital Sistema Analógico X Sistema

Leia mais

II. DEFINIÇÕES INICIAIS 1

II. DEFINIÇÕES INICIAIS 1 -1- ELPO: Definições Iniciais [MSL] II. DEFINIÇÕES INICIAIS 1 No que se segue, U é um conjunto qualquer e X, Y,... são os subconjuntos de U. Ex.: U é um quadrado e X, Y e Z são três círculos congruentes

Leia mais

Sistemas de Numerações.

Sistemas de Numerações. Matemática Profº: Carlos Roberto da Silva; Lourival Pereira Martins. Sistema de numeração: Binário, Octal, Decimal, Hexadecimal; Sistema de numeração: Conversões; Sistemas de Numerações. Nosso sistema

Leia mais

TEORIA DOS CONJUNTOS Símbolos

TEORIA DOS CONJUNTOS Símbolos 1 MATERIAL DE APOIO MATEMÁTICA Turmas 1º AS e 1º PD Profº Carlos Roberto da Silva A Matemática apresenta invenções tão sutis que poderão servir não só para satisfazer os curiosos como, também para auxiliar

Leia mais

Contagem. Prof. Dr. Leandro Balby Marinho. Matemática Discreta. Fundamentos Inclusão/Exclusão Princípio da Casa dos Pombos Permutações Combinações

Contagem. Prof. Dr. Leandro Balby Marinho. Matemática Discreta. Fundamentos Inclusão/Exclusão Princípio da Casa dos Pombos Permutações Combinações Contagem Prof. Dr. Leandro Balby Marinho Matemática Discreta Prof. Dr. Leandro Balby Marinho 1 / 39 UFCG CEEI Motivação Contagem e combinatória são partes importantes da matemática discreta. Se resumem

Leia mais

Lista n 0 1 de Exercícios de Teoria da Computação

Lista n 0 1 de Exercícios de Teoria da Computação Lista n 0 1 de Exercícios de Teoria da Computação UFU-Curso de Bacharelado em Ciência da Computação - 7 0 período Profa. Sandra de Amo Exercícios de Revisão : Autômatos e Gramáticas 1. Mostre que a linguagem

Leia mais

MD Teoria dos Conjuntos 1

MD Teoria dos Conjuntos 1 Teoria dos Conjuntos Renato Martins Assunção assuncao@dcc.ufmg.br Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br MD Teoria dos Conjuntos 1 Introdução O que os seguintes objetos têm em comum? um

Leia mais

Noções de Probabilidade

Noções de Probabilidade Noções de Probabilidade Bacharelado em Economia - FEA - Noturno 1 o Semestre 2015 Gilberto A. Paula G. A. Paula - MAE0219 (IME-USP) Noções de Probabilidade 1 o Semestre 2015 1 / 59 Objetivos da Aula Sumário

Leia mais

MÓDULO 6 INTRODUÇÃO À PROBABILIDADE

MÓDULO 6 INTRODUÇÃO À PROBABILIDADE MÓDULO 6 INTRODUÇÃO À PROBBILIDDE Quando estudamos algum fenômeno através do método estatístico, na maior parte das vezes é preciso estabelecer uma distinção entre o modelo matemático que construímos para

Leia mais

Matemática Discreta para Ciência da Computação

Matemática Discreta para Ciência da Computação Matemática Discreta para Ciência da Computação P. Blauth Menezes blauth@inf.ufrgs.br Departamento de Informática Teórica Instituto de Informática / UFRGS Matemática Discreta para Ciência da Computação

Leia mais

Processamento da Informação Teoria. Algoritmos e Tipos de dados

Processamento da Informação Teoria. Algoritmos e Tipos de dados Processamento da Informação Teoria Algoritmos e Tipos de dados Semana 01 Prof. Jesús P. Mena-Chalco 24/04/2013 (*) Slides adaptados das aulas do Prof. Harlen Costa Batagelo Algumas definições de algoritmo

Leia mais

Francisco Ramos. 100 Problemas Resolvidos de Matemática

Francisco Ramos. 100 Problemas Resolvidos de Matemática Francisco Ramos 100 Problemas Resolvidos de Matemática SUMÁRIO Questões de vestibulares... 1 Matrizes e Determinantes... 25 Geometria Plana e Espacial... 39 Aritmética... 61 QUESTÕES DE VESTIBULARES

Leia mais

Cap. 4 - Probabilidade

Cap. 4 - Probabilidade statística para Cursos de ngenharia e Informática edro lberto Barbetta / Marcelo Menezes Reis / ntonio Cezar Bornia São aulo: tlas, 2004 Cap. 4 - robabilidade OIO: undação de Ciência e Tecnologia de Santa

Leia mais

Circuitos Combinacionais

Circuitos Combinacionais ORGANIZAÇÃO E ARQUITETURA DE COMPUTADORES Circuitos Combinacionais Portas Lógicas Sistemas Digitais 2 Definição funcional: Aparato dotado de conjuntos finitos de entradas e saídas e capaz de processar

Leia mais

Estruturas Discretas INF 1631

Estruturas Discretas INF 1631 Estruturas Discretas INF 1631 Thibaut Vidal Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro Rua Marquês de São Vicente, 225 - Gávea, Rio de Janeiro - RJ, 22451-900, Brazil

Leia mais

Cálculo Numérico Aula 1: Computação numérica. Tipos de Erros. Aritmética de ponto flutuante

Cálculo Numérico Aula 1: Computação numérica. Tipos de Erros. Aritmética de ponto flutuante Cálculo Numérico Aula : Computação numérica. Tipos de Erros. Aritmética de ponto flutuante Computação Numérica - O que é Cálculo Numérico? Cálculo numérico é uma metodologia para resolver problemas matemáticos

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1 Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA Números e Funções Reais Avaliação - GABARITO 3 de abril de 203. Determine se as afirmações a seguir são verdadeiras

Leia mais

Faculdades Pitágoras de Uberlândia. Matemática Básica 1

Faculdades Pitágoras de Uberlândia. Matemática Básica 1 Faculdades Pitágoras de Uberlândia Sistemas de Informação Disciplina: Matemática Básica 1 Prof. Walteno Martins Parreira Júnior www.waltenomartins.com.br waltenomartins@yahoo.com 2010 Professor Walteno

Leia mais

Este material traz a teoria necessária à resolução das questões propostas.

Este material traz a teoria necessária à resolução das questões propostas. Inclui Teoria e Questões Inteiramente Resolvidas dos assuntos: Contagem: princípio aditivo e multiplicativo. Arranjo. Permutação. Combinação simples e com repetição. Lógica sentencial, de primeira ordem

Leia mais

Exercícios de Teoria da Computação Autómatos finitos não deterministas

Exercícios de Teoria da Computação Autómatos finitos não deterministas Licenciatura em Engenharia Informática e de Computadores - LEIC Licenciatura em Engenharia de Redes de Comunicações - LERC Exercícios de Teoria da Computação Autómatos finitos não deterministas Secção

Leia mais

I. MATEMÁTICA FINANCEIRA - ANDRÉ ARRUDA TAXAS DE JUROS. Taxas Proporcionais

I. MATEMÁTICA FINANCEIRA - ANDRÉ ARRUDA TAXAS DE JUROS. Taxas Proporcionais 1º BLOCO...2 I. Matemática Financeira - André Arruda...2 2º BLOCO...6 I. Matemática - Daniel Lustosa...6 3º BLOCO... 10 I. Tabela de Acumulação de Capital... 10 I. MATEMÁTICA FINANCEIRA - ANDRÉ ARRUDA

Leia mais

Bases Matemáticas. Aula 2 Métodos de Demonstração. Rodrigo Hausen. v. 2013-7-31 1/15

Bases Matemáticas. Aula 2 Métodos de Demonstração. Rodrigo Hausen. v. 2013-7-31 1/15 Bases Matemáticas Aula 2 Métodos de Demonstração Rodrigo Hausen v. 2013-7-31 1/15 Como o Conhecimento Matemático é Organizado Definições Definição: um enunciado que descreve o significado de um termo.

Leia mais

Alfabeto e palavras. Alfabeto conjunto finito de símbolos (Σ).

Alfabeto e palavras. Alfabeto conjunto finito de símbolos (Σ). Alfabeto e palavras Alfabeto conjunto finito de símbolos (Σ). {A,...,Z}, {α, β,... }, {a,b}, {0,1}, ASCII Palavra de Σ sequência finita de símbolos do alfabeto Σ Σ = {a, b} aabba a aaaaaaaa Comprimento

Leia mais

PROBABILIDADE Prof. Adriano Mendonça Souza, Dr.

PROBABILIDADE Prof. Adriano Mendonça Souza, Dr. PROBABILIDADE Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM - O intelecto faz pouco na estrada que leva à descoberta, acontece um salto na consciência, chameo de

Leia mais

A lógica de programação ajuda a facilitar o desenvolvimento dos futuros programas que você desenvolverá.

A lógica de programação ajuda a facilitar o desenvolvimento dos futuros programas que você desenvolverá. INTRODUÇÃO A lógica de programação é extremamente necessária para as pessoas que queiram trabalhar na área de programação, seja em qualquer linguagem de programação, como por exemplo: Pascal, Visual Basic,

Leia mais

2. Representação Numérica

2. Representação Numérica 2. Representação Numérica 2.1 Introdução A fim se realizarmos de maneira prática qualquer operação com números, nós precisamos representa-los em uma determinada base numérica. O que isso significa? Vamos

Leia mais

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,...

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... 0) O que veremos na aula de hoje? Um fato interessante Produtos notáveis Equação do 2º grau Como fazer a questão 5 da 3ª

Leia mais

Renata de Freitas e Petrucio Viana. IME, UFF 12 de março de 2015

Renata de Freitas e Petrucio Viana. IME, UFF 12 de março de 2015 Definições por indução e por recursão Renata de Freitas e Petrucio Viana IME, UFF 12 de março de 2015 Sumário Lógica formal e principais sistemas lógicos Definições indutivas Definições recursivas Exercícios

Leia mais

Probabilidade - Conceitos Básicos. Anderson Castro Soares de Oliveira

Probabilidade - Conceitos Básicos. Anderson Castro Soares de Oliveira - Conceitos Básicos Castro Soares de Oliveira é o ramo da matemática que estuda fenômenos aleatórios. está associada a estatística, porque sua teoria constitui a base de estatística inferencial. Conceito

Leia mais

Regra do Evento Raro p/ Inferência Estatística:

Regra do Evento Raro p/ Inferência Estatística: Probabilidade 3-1 Aspectos Gerais 3-2 Fundamentos 3-3 Regra da Adição 3-4 Regra da Multiplicação: 3-5 Probabilidades por Meio de Simulações 3-6 Contagem 1 3-1 Aspectos Gerais Objetivos firmar um conhecimento

Leia mais

Probabilidade - aula I

Probabilidade - aula I e 27 de Fevereiro de 2015 e e Experimentos Aleatórios e Objetivos Ao final deste capítulo você deve ser capaz de: Entender e descrever espaços amostrais e eventos para experimentos aleatórios. Interpretar

Leia mais

PLANIFICAÇÃO ANUAL DO NOVO PROGRAMA DE MATEMÁTICA

PLANIFICAÇÃO ANUAL DO NOVO PROGRAMA DE MATEMÁTICA PLANIFICAÇÃO ANUAL DO NOVO PROGRAMA DE MATEMÁTICA 5º ano 2012/2013 UNIDADE: Números e Operações 1 - NÚMEROS NATURAIS OBJECTIVOS GERAIS: - Compreender e ser capaz de usar propriedades dos números inteiros

Leia mais

HABILITAÇÃO COMPONENTE TITULAÇÃO

HABILITAÇÃO COMPONENTE TITULAÇÃO Operação de Software Aplicativo Científica Engenharia da Produção Engenharia de Engenharia de Produção Matemática Aplicada às Matemática Aplicada e Científica Matemática com Tecnologia em - Ênfase em Gestão

Leia mais

Introdução à Lógica de Programação

Introdução à Lógica de Programação Sistemas Operacionais e Introdução à Programação Introdução à Lógica de Programação 1 Estruturas de dados Representação computacional das informações do problema ser resolvido Informações podem ser de

Leia mais

Bioestatística Aula 3

Bioestatística Aula 3 Aula 3 Castro Soares de Oliveira Probabilidade Probabilidade é o ramo da matemática que estuda fenômenos aleatórios. Probabilidade é uma medida que quantifica a sua incerteza frente a um possível acontecimento

Leia mais

Logo, para estar entre os 1% mais caros, o preço do carro deve ser IGUAL OU SUPERIOR A:

Logo, para estar entre os 1% mais caros, o preço do carro deve ser IGUAL OU SUPERIOR A: MQI 00 ESTATÍSTICA PARA METROLOGIA - SEMESTRE 008.0 Teste 6/05/008 GABARITO PROBLEMA O preço de um certo carro usado é uma variável Normal com média R$ 5 mil e desvio padrão R$ 400,00. a) Você está interessado

Leia mais

Problemas insolúveis. Um exemplo simples e concreto

Problemas insolúveis. Um exemplo simples e concreto Surge agora uma outra questão. Viemos buscando algoritmos para resolver problemas. No entanto, será que sempre seria possível achar esses algoritmos? Colocando de outra forma: será que, para todo problema,

Leia mais

Matemática. Disciplina: CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS. Varginha Minas Gerais

Matemática. Disciplina: CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS. Varginha Minas Gerais CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS Curso Pró-Técnico Disciplina: Matemática Texto Experimental 1 a Edição Antonio José Bento Bottion e Paulo Henrique Cruz Pereira Varginha Minas Gerais

Leia mais

I. Experimentos Aleatórios

I. Experimentos Aleatórios A teoria do azar consiste em reduzir todos os acontecimentos do mesmo gênero a um certo número de casos igualmente possíveis, ou seja, tais que estejamos igualmente inseguros sobre sua existência, e em

Leia mais

7- Probabilidade da união de dois eventos

7- Probabilidade da união de dois eventos . 7- Probabilidade da união de dois eventos Sejam A e B eventos de um mesmo espaço amostral Ω. Vamos encontrar uma expressão para a probabilidade de ocorrer o evento A ou o evento B, isto é, a probabilidade

Leia mais

Trabalho compilado da Internet Prof. Claudio Passos. Sistemas Numéricos

Trabalho compilado da Internet Prof. Claudio Passos. Sistemas Numéricos Trabalho compilado da Internet Prof. Claudio Passos Sistemas Numéricos A Informação e sua Representação O computador, sendo um equipamento eletrônico, armazena e movimenta as informações internamente sob

Leia mais

Tópicos. Medidas Medidas e Medições Tipos de Medições Diretas. Indiretas.

Tópicos. Medidas Medidas e Medições Tipos de Medições Diretas. Indiretas. Medidas e Erros Medidas Medidas e Medições Tipos de Medições Diretas. Indiretas. Tópicos Dados e Resultados Eperimentais Erros Tipos de Erros. Algarismos Significativos Arredondamento de números Parâmetros

Leia mais

MATEMÁTICA DISCRETA SISTEMAS DE INFORMAÇÃO 1 PERÍODO. Aluno:

MATEMÁTICA DISCRETA SISTEMAS DE INFORMAÇÃO 1 PERÍODO. Aluno: MATEMÁTICA DISCRETA SISTEMAS DE INFORMAÇÃO 1 PERÍODO Aluno: MATEMÁTICA DISCRETA Carga Horária: 72 horas/aula Avaliações Cada nota bimestral será baseada na média das notas obtidas nos trabalhos (peso 3,0)

Leia mais

Projeto de Circuitos. Introdução ao Computador 2008/01 Bernardo Gonçalves

Projeto de Circuitos. Introdução ao Computador 2008/01 Bernardo Gonçalves Projeto de Circuitos Lógicos Introdução ao Computador 2008/01 Bernardo Gonçalves Sumário Da Álgebra de Boole ao projeto de circuitos digitais; Portas lógicas; Equivalência de circuitos; Construindo circuitos

Leia mais

1ª Lista de exercícios

1ª Lista de exercícios 1ª Lista de exercícios NOTA: Por favor tente resolver todos os exercícios sozinho, caso tente e não consiga entre em contato no email: suporte@mjailton.com.br. Após a resolução envie as respostas para

Leia mais

BC0501 Linguagens de Programação

BC0501 Linguagens de Programação BC0501 Linguagens de Programação Aula Prática: 03 Assunto: Comandos de Seleção 1. Introdução Um comando de seleção define uma condição em um programa, que permite que grupos de comandos sejam executados

Leia mais

Estruturas de Repetição Parte II PARA-ATÉ

Estruturas de Repetição Parte II PARA-ATÉ Estruturas de Repetição Parte II PARA-ATÉ Prof. Dr. Edson Pimentel Centro de Matemática, Computação e Cognição Objetivos Aprender a sintaxe da Estrutura de Repetição PARA-ATÉ na linguagem PORTUGOL Aprender

Leia mais

DGES DIRECÇÃO GERAL DO ENSINO SUPERIOR MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR

DGES DIRECÇÃO GERAL DO ENSINO SUPERIOR MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR B ESTRUTURA CURRICULAR E PLANO DE ESTUDOS 1. Estabelecimento de ensino: 2. Unidade orgânica (faculdade, escola, instituto, etc.):. Curso: Engenharia e Tecnologia de Materiais 4. Grau ou diploma: Licenciatura

Leia mais

Nome: N.º Turma: Suficiente (50% 69%) Bom (70% 89%)

Nome: N.º Turma: Suficiente (50% 69%) Bom (70% 89%) Escola E.B. 2,3 Eng. Nuno Mergulhão Portimão Ano Letivo 2012/2013 Teste de Avaliação Escrita de Matemática 9.º ano de escolaridade Duração do Teste: 90 minutos 17 de outubro de 2012 Nome: N.º Turma: Classificação:

Leia mais

FUNÇÃO REAL DE UMA VARIÁVEL REAL

FUNÇÃO REAL DE UMA VARIÁVEL REAL Hewlett-Packard FUNÇÃO REAL DE UMA VARIÁVEL REAL Aulas 01 a 04 Elson Rodrigues, Gabriel Carvalho e Paulo Luís Ano: 2015 Sumário INTRODUÇÃO AO PLANO CARTESIANO... 2 PRODUTO CARTESIANO... 2 Número de elementos

Leia mais

Portas Lógicas Básicas Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 2h/60h

Portas Lógicas Básicas Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 2h/60h Portas Lógicas Básicas Prof. Rômulo Calado Pantaleão Camara Carga Horária: 2h/60h Colegiado de Engenharia da Computação CECOMP Introdução à Algebra de Boole Em lógica tradicional, uma decisão é tomada

Leia mais

Construção de tabelas verdades

Construção de tabelas verdades Construção de tabelas verdades Compreender a Lógica como instrumento da ciência e como estrutura formal do pensamento, conhecendo e compreendendo as operações com os principais conceitos proposicionais

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7 RACIOCÍNIO LÓGICO AULA 7 TEORIA DAS PROBABILIDADES Vamos considerar os seguintes experimentos: Um corpo de massa m, definida sendo arrastado horizontalmente por uma força qualquer, em um espaço definido.

Leia mais

Estruturas de Seleção Parte II Seleção Encadeada SOLUÇÃO DE EXERCÍCIO PROPOSTO

Estruturas de Seleção Parte II Seleção Encadeada SOLUÇÃO DE EXERCÍCIO PROPOSTO Estruturas de Seleção Parte II Seleção Encadeada SOLUÇÃO DE EXERCÍCIO PROPOSTO Prof. Dr. Edson Pimentel Centro de Matemática, Computação e Cognição Objetivos Aprender a resolver problemas que requeiram

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 5.º ANO PLANIFICAÇÃO GLOBAL ANO LETIVO 2012/2013 Planificação Global 5º Ano 2012-2013 1/7 NÚMEROS

Leia mais

Instituto de Matemática e Estatística, UFF Outubro de 2013

Instituto de Matemática e Estatística, UFF Outubro de 2013 Instituto de Matemática e Estatística, UFF Outubro de 2013 Sumário.. Lógico-Matemático britânico (País de Gales). Logicismo. Prêmio Nobel da Literatura (1950). Bertrand (1872 1970) Definição Seja A um

Leia mais

ÁLGEBRA BOOLEANA. Foi um modelo formulado por George Boole, por volta de 1850.

ÁLGEBRA BOOLEANA. Foi um modelo formulado por George Boole, por volta de 1850. ÁLGEBRA BOOLEANA Foi um modelo formulado por George Boole, por volta de 1850. Observando a lógica proposicional e a teoria de conjuntos verificamos que elas possuem propriedades em comum. Lógica Proposicional

Leia mais

Atividade: matrizes e imagens digitais

Atividade: matrizes e imagens digitais Atividade: matrizes e imagens digitais Aluno(a): Turma: Professor(a): Parte 01 MÓDULO: MATRIZES E IMAGENS BINÁRIAS 1 2 3 4 5 6 7 8 Indique, na tabela abaixo, as respostas dos 8 desafios do Jogo dos Índices

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Introdução a Probabilidade Existem dois tipos

Leia mais

Contagem II. Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em casos

Contagem II. Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em casos Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 5 Contagem II Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em

Leia mais

CAPÍTULO 1- OPERAÇÕES COM NÚMEROS INTEIROS Indicadores de aprendizagem Verifica se sabes: Identificar o conjunto dos números inteiros.

CAPÍTULO 1- OPERAÇÕES COM NÚMEROS INTEIROS Indicadores de aprendizagem Verifica se sabes: Identificar o conjunto dos números inteiros. CAPÍTULO 1- OPERAÇÕES COM NÚMEROS INTEIROS Identificar o conjunto dos números inteiros. Representar na recta numérica os números inteiros. Indicar o valor absoluto e o simétrico de um número. Comparar

Leia mais

Autómatos Finitos Determinísticos

Autómatos Finitos Determinísticos Ficha 2 Autómatos Finitos Determinísticos 2.1 Introdução Se olharmos, de forma simplificada, para um computador encontramos três componentes principais: a) A unidade de processamento central b) As unidades

Leia mais

Lógica Formal e Booleana. Cálculo Proposicional

Lógica Formal e Booleana. Cálculo Proposicional Lógica Formal e Booleana Cálculo Proposicional lara.popov@ifsc.edu.br Charada: uma introdução ao uso de símbolos Um homem estava olhando uma foto, e alguém lhe perguntou: - De quem é esta foto? Ao que

Leia mais

Espaços não reversíveis

Espaços não reversíveis {Nome da seção} Notas de aula Espaços não reversíveis Fernando Lucatelli Nunes UnB-UC/UP 1 Se X e Y são espaços topológicos quaisquer, o gráfico de uma função f : X Y é o conjunto G( f )={(x, f (x)) :

Leia mais

Capítulo 2. Álgebra e imagens binárias. 2.1 Subconjuntos versus funções binárias

Capítulo 2. Álgebra e imagens binárias. 2.1 Subconjuntos versus funções binárias Capítulo 2 Álgebra e imagens binárias Em Análise de Imagens, os objetos mais simples que manipulamos são as imagens binárias. Estas imagens são representadas matematicamente por subconjuntos ou, de maneira

Leia mais

Os jogos nas aulas de matemática

Os jogos nas aulas de matemática UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE DEPARTAMENTO DE EDUCAÇÃO ENCONTRO REGIONAL DE EDUCAÇÃO MATEMÁTICA Oficina: Os jogos nas aulas de matemática Professora: Odenise Maria bezerra Natal, agosto de

Leia mais

Para Computação. Aula de Monitoria - Miniprova

Para Computação. Aula de Monitoria - Miniprova Para Computação Aula de Monitoria - Miniprova 1 2013.1 Roteiro Provas e Proposições Conjuntos Provas e Proposições Proposição - Sentença que ou é verdadeira ou é falsa. ex: Hoje é sábado. -> É uma proposição.

Leia mais

Introdução à Lógica de Programação

Introdução à Lógica de Programação Introdução à Lógica de Programação Sistemas Numéricos As informações inseridas em um computador são traduzidos em dados, ou seja, em sinais que podem ser manipulados pelo computador. O computador trabalha

Leia mais

Teoria dos Conjuntos. Matemática Discreta. Teoria dos Conjuntos - Parte I. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG.

Teoria dos Conjuntos. Matemática Discreta. Teoria dos Conjuntos - Parte I. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. Matemática Discreta Teoria dos Conjuntos - Parte I Profa. Sheila Morais de Almeida DAINF-UTFPR-PG abril - 2017 Letras maiúsculas: conjuntos. Letras minúsculas: elementos do conjunto. Pertinência: o símbolo

Leia mais

A função do primeiro grau

A função do primeiro grau Módulo 1 Unidade 9 A função do primeiro grau Para início de conversa... Já abordamos anteriormente o conceito de função. Mas, a fim de facilitar e aprofundar o seu entendimento, vamos estudar algumas funções

Leia mais

Projeto Rumo ao ITA Exercícios estilo IME

Projeto Rumo ao ITA Exercícios estilo IME Exercícios estilo IME PROGRAMA IME ESPECIAL ANÁLISE COMBINATÓRIA PROF. PAULO ROBERTO 01. Em um baile há seis rapazes e dez moças. Quantos pares podem ser formados para a dança: a) sem restrição; b) se

Leia mais

Atividades 1 - Matemática Discreta /02

Atividades 1 - Matemática Discreta /02 Atividades 1 - Matemática Discreta - 2014/02 1. Descreva cada um dos conjuntos a seguir, listando seus elementos: (a) P = {x R x 2 x 2 = 0}; (b) Q = {x x é uma letra na palavra amor }; (c) R = {x Z x 2

Leia mais

Contagem. George Darmiton da Cunha Cavalcanti CIn - UFPE

Contagem. George Darmiton da Cunha Cavalcanti CIn - UFPE Contagem George Darmiton da Cunha Cavalcanti CIn - UFPE Sumário Princípios Básicos de Contagem A Regra do Produto A Regra da Soma O número de subconjuntos de um conjunto finito Princípio da Inclusão-Exclusão

Leia mais

3. Tipos de Dados, Constantes e Variáveis.

3. Tipos de Dados, Constantes e Variáveis. 3. Tipos de Dados, Constantes e Variáveis. O computador realiza a sua tarefa trabalhando as informações contidas em sua memória, essas podem ser classificadas em dois tipos básicos: as instruções e os

Leia mais

Prova da segunda fase - Nível 1

Prova da segunda fase - Nível 1 Caro Aluno, Parabéns pela sua participação na nona edição da Olimpíada de Matemática de São José do Rio Preto! Lembre-se de que uma Olimpíada é diferente de uma prova escolar. Muitas vezes, as questões

Leia mais

ESCOLA ESTADUAL DE ENSINO MÉDIO RAUL PILLA COMPONENTE CURRICULAR: Matemática PROFESSORA: Maria Inês Castilho. Conjuntos

ESCOLA ESTADUAL DE ENSINO MÉDIO RAUL PILLA COMPONENTE CURRICULAR: Matemática PROFESSORA: Maria Inês Castilho. Conjuntos ESCOL ESTDUL DE ENSINO MÉDIO UL PILL COMPONENTE CUICUL: Matemática POFESSO: Maria Inês Castilho Noções básicas: Conjuntos 1º NOS DO ENSINO MÉDIO Um conjunto é uma coleção qualquer de objetos, de dados,

Leia mais

BCC202 - Estrutura de Dados I

BCC202 - Estrutura de Dados I BCC202 - Estrutura de Dados I Aula 04: Análise de Algoritmos (Parte 1) Reinaldo Fortes Universidade Federal de Ouro Preto, UFOP Departamento de Ciência da Computação, DECOM Website: www.decom.ufop.br/reifortes

Leia mais

MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 19 de Agosto, 2013 Probabilidade: uma Introdução / Aula 3 1 Probabilidade Discreta: Exemplos

Leia mais

Introdução à Computação para o Ensino Médio. Centro Técnico Científico

Introdução à Computação para o Ensino Médio. Centro Técnico Científico Introdução à Computação para o Ensino Médio Centro Técnico Científico Abril de 2010 Algoritmo: Descrição, passo a passo, de uma metodologia que conduz à resolução de um problema ou à execução de uma tarefa.

Leia mais

Aula 02: C# - Estruturas de Decisão

Aula 02: C# - Estruturas de Decisão Aula 02: C# - Estruturas de Decisão Estruturas de decisão: if if...else Switch Exercícios em Sala de Aula Normalmente, os comandos em um programa são executados um depois do outro, na seqüência em que

Leia mais

Estruturas de Repetição Parte I EXEMPLOS e EXERCÍCIOS

Estruturas de Repetição Parte I EXEMPLOS e EXERCÍCIOS Estruturas de Repetição Parte I EXEMPLOS e EXERCÍCIOS Prof. Dr. Edson Pimentel Centro de Matemática, Computação e Cognição Objetivos Aprender a resolver problemas que requeiram o uso de ESTRUTURAS DE REPETIÇÃO

Leia mais

Bacharelado em Ciência e Tecnologia Bacharelado em Ciências e Humanidades. Representação Gráfica de Funções

Bacharelado em Ciência e Tecnologia Bacharelado em Ciências e Humanidades. Representação Gráfica de Funções Bacharelado em Ciência e Tecnologia Bacharelado em Ciências e Humanidades BC 0005 Bases Computacionais da Ciência Representação Gráfica de Funções Prof a Maria das Graças Bruno Marietto graca.marietto@ufabc.edu.br

Leia mais

Banco de Dados. Prof. Dr. Rogério Galante Negri

Banco de Dados. Prof. Dr. Rogério Galante Negri Banco de Dados Prof Dr Rogério Galante Negri Tradicionalmente O armazenamento dos dados utilizava arquivos individuais, sem nenhum relacionamento Cada programa utilizava seu próprio sistema de arquivo

Leia mais

Aula 1.1 Conteúdo: Como regionalizar o espaço mundial? O que são continentes? FORTALECENDO SABERES APRENDER A APRENDER CONTEÚDO E HABILIDADES

Aula 1.1 Conteúdo: Como regionalizar o espaço mundial? O que são continentes? FORTALECENDO SABERES APRENDER A APRENDER CONTEÚDO E HABILIDADES CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA A Aula 1.1 Conteúdo: Como regionalizar o espaço mundial? O que são continentes? 2 CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA A

Leia mais

Introdução à Probabilidade e Estatística

Introdução à Probabilidade e Estatística Professor Cristian F. Coletti Introdução à Probabilidade e Estatística (1 Para cada um dos casos abaixo, escreva o espaço amostral correspondente e conte seus elementos. a Uma moeda é lançada duas vezes

Leia mais

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe GABARITO - QUALIFICAÇÃO - Setembro de 0 Questão. (pontuação: ) No octaedro regular duas faces opostas são paralelas. Em um octaedro regular de aresta a, calcule a distância entre duas faces opostas. Obs:

Leia mais

Teoria das Probabilidades I. Ana Maria Lima de Farias Universidade Federal Fluminense

Teoria das Probabilidades I. Ana Maria Lima de Farias Universidade Federal Fluminense Teoria das Probabilidades I Ana Maria Lima de Farias Universidade Federal Fluminense Conteúdo 1 Probabilidade - Conceitos Básicos 1 1.1 Introdução....................................... 1 1.2 Experimento

Leia mais

Aula 01 Parte 03 Computadores e Algoritmos. Prof. Filipe Wall Mutz

Aula 01 Parte 03 Computadores e Algoritmos. Prof. Filipe Wall Mutz Aula 01 Parte 03 Computadores e Algoritmos Prof. Filipe Wall Mutz Agenda Estrutura de um Computador Digital Algoritmos Refinamentos sucessivos Estrutura de um Computador Digital Memória Unidade de Entrada

Leia mais

Matéria: Matemática Assunto: Divisores e Múltiplos Prof. Dudan

Matéria: Matemática Assunto: Divisores e Múltiplos Prof. Dudan Matéria: Matemática Assunto: Divisores e Múltiplos Prof. Dudan Matemática Divisores e Múltiplos Os múltiplos e divisores de um número estão relacionados entre si da seguinte forma: Se 15 é divisível por

Leia mais

Processamento de Imagem. Prof. MSc. André Yoshimi Kusumoto andrekusumoto.unip@gmail.com

Processamento de Imagem. Prof. MSc. André Yoshimi Kusumoto andrekusumoto.unip@gmail.com Processamento de Imagem Prof. MSc. André Yoshimi Kusumoto andrekusumoto.unip@gmail.com Visão Computacional Não existe um consenso entre os autores sobre o correto escopo do processamento de imagens, a

Leia mais

Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes

Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes Para ampliar sua compreensão sobre probabilidade total e Teorema de Bayes, estude este conjunto de exercícios resolvidos sobre o tema.

Leia mais

1. Estrutura de seleção. Seleção: algumas etapas (passos) do algoritmo são executadas dependendo do resultado de uma condição

1. Estrutura de seleção. Seleção: algumas etapas (passos) do algoritmo são executadas dependendo do resultado de uma condição 1 Estrutura de seleção Seleção: algumas etapas (passos) do algoritmo são executadas dependendo do resultado de uma condição - Necessário quando mais de uma ação deve ser tomada se uma condição for satisfeita

Leia mais