Campo Magnético - Força de Lorentz

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Campo Magnético - Força de Lorentz"

Transcrição

1 Campo Magnético - Força de Lorentz Evandro Bastos dos Santos 22 de Maio de Campo Magnético Podemos entender que a região próxima a um ímã influencia outros ímãs ou materiais ferromagnéticos e paramagnéticos, como cobalto e ferro. Essa região é uma região que possui um campo magnético. Nessa aula não veremos, ainda, a origem do campo magnético mas veremos como um campo magnético afeta uma carga elétrica em movimento. O vetor que descreva este campo, chamado vetor indução magnética, é simbolizado por B. Se pudermos colocar uma pequena bússola em um ponto sob ação do campo o vetor B terá direção da reta em que a agulha se alinha e sentido para onde aponta o polo norte magnético da agulha. Se pudermos traçar todos os pontos onde há um vetor indução magnética associado veremos linhas que são chamadas linhas de indução do campo magnético. Estas são orientados do polo norte em direção ao sul, e em cada ponto o vetor B tangencia estas linhas. Figura 1: Campo magnético produzido por um ímã As linhas de indução existem também no interior do ímã, portanto são linhas fechadas e sua orientação interna é do polo sul ao polo norte. Assim como as linhas de força, as linhas de indução não podem se cruzar e são mais densas onde o campo é mais intenso. Os pólos norte e sul de um ímã não podem ser separados, veremos nas próximas aulas o porque da não-existência do monopolo magnético. O nosso planeta é um grande ímã. Os pólos geográficos norte e sul, não coincidem com os pólos magnéticos norte e sul. Essa diferença, chamamos de declinação magnética. Essa diferença varia para cada região do planeta, em nossa região é em torno de 27 o. 1

2 Figura 2: Declinação Magnética 2 Força sobre uma partícula carregada Vimos que o campos elétrico e o campo gravitacional podem ser escritos como a força elétrica ou a força gravitacional, respectivamente, por unidade de carga elétrica e de massa. E = F e q g = F g m No caso do campo magnético, muitas situações que são válidas para o campo elétrico e campo gravitacional não são válidas para o campo magnético. Ele é bem particular nesses aspectos, o primeiro diz sobre a interação do campo magnético com uma carga elétrica. Para entendermos como funciona essa interação vamos considerar uma particula carregada com carga elétrica q, que se move em uma região de campo magnético (convenção do símbolo x indica o sentido do campo para dentro do plano). (1) (2) Figura 3: Particula carregada se movendo sob a ação de um campo magnético 2

3 Essa partícula, então, sofre a ação de uma força que é perpendicular ao vetor velocidade e ao vetor indução magnética, simultaneamente. O sentido do vetor força pode ser determinado pela regra da mão direita, indicada pela figura 4. Figura 4: Regra da mão direita O módulo da força magnética é obtido por F = qvb sin θ (3) em que, θ é o angulo entre a velocidade e o campo magnético. Portando, ao considerar a direção da força, temos que v e B compõem um produto vetorial e portando a força F pode ser escrita como F = q v B (4) A unidade do campo magnético, ou mais precisamente indução magnética, é o Tesla [T]. Usualmente também temos o Gauss [G], que equivale 1G = 10 4 T. Se a carga elétrica estiver, também, sob ação de um campo elétrico ( F = q E), então pelo princípio da superposição, podemos somar as duas forças, elétrica e magnética e obter. F = q E + q v B (5) F = q( E + v B) (6) Essa forma completa é conhecida por força de Lorentz, que representa a força sofrida por uma carga elétrica na ação de um campo elétrico e um campo magnético. Exemplo 1: Considere uma carga elétrica de valor desconhecido que se move sob a ação de um campo magnético de 2mT, quando sofre a ação de uma força de 2N sua velocidade é medida e igual a 200m/s. Calcule o valor da carga elétrica. 2.1 Aplicação a um espectrômetro de massas Um espectrômetro de massas é um equipamento muito utilizado em química que tem por finalidade separar em uma amostra desconhecida, seus componentes com massas, ou relação carga/massa, diferentes. Seu funcionamento básico é muito simples. Há um seletor de velocidades, que possui um campo elétrico (E) entre as suas placas e um campo magnético (B 1 ) perpendicular. Quando uma carga entra na região dos campos, sofre a ação das duas forças, que nesse caso são opostas. Se a velocidade 3

4 F e = F m (7) qe = qvb 1 (8) v = E B 1 (9) é respeitada, a força sobre a partícula é nula, então ela cruza sem sofrer qualquer deflexão. Após passar pelo sistema de seleção, a carga entra em uma outra região de campo magnético (B 2 ), sem campo elétrico, e sofre portanto uma deflexão. A força resultante é exatamente a força centrípeta que atua sobre a partícula, sendo também somente a força magnética. Então podemos obter F c = F m (10) m v2 r = qvb 2 (11) r = mv qb 2. (12) Esse valor de r é o ponto em que a partícula irá colidir no detector, como todas as partículas tem velocidade v, pois foram selecionadas, e o campo é o mesmo, apenas a relação m que é diferente. Sendo então para cada valor de m uma posição de detecção diferente. O q q esquema é mostrado na figura 5. Figura 5: Esquema de um espectrômetro de massas 3 Movimento de uma partícula em um campo magnético A figura 6 mostra que se a velocidade da partícula tiver a mesma direção do campo magnético, a força será nula, resultando num movimento retilíneo uniforme. Por outro lado, se o ângulo entre o vetor velocidade e o vetor campo magnético for diferente de zero, podemos decompor o vetor velocidade em duas direções: uma na direção de B, e outra perpendicular. Isto é, v = v + v (13) Portanto, o movimento de uma partícula, de massa m e carga q, numa região do espaço onde existe um campo magnético, é sempre composto de um movimento retilíneo uniforme 4

5 e de um movimento circular. Este tipo de movimento é esquematizado na figura 6. Como se vê a força centrípeta, que proporciona o movimento circular, é igual à força magnética. Figura 6: Movimento de uma partícula sob um campo B. Assim, a partícula movimenta-se num círculo com raio r = mv qb (14) Da relação v = ωr, obtém-se a velocidade angular ω = qb m (15) Da relação ω = 2πf, obtém-se a frequência e o período f = qb 2πm (16) T = 1 f = 2πm qb (17) Exemplo 2: Determine, no exemplo 1, o raio de curvatura do movimento. O período e a frequência. Exercícios: Halliday 9ed: 3, 7, 17, 27. 5

7. A importância do aterramento na Qualidade da Energia.

7. A importância do aterramento na Qualidade da Energia. 7. A importância do aterramento na Qualidade da Energia. Em primeiro lugar é preciso esclarecer o que significa e para que serve o aterramento do sistema elétrico. Ao contrário do que é usual considerar,

Leia mais

UNIVERSIDADE FEDERAL DO AMAPÁ UNIFAP PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO - PROGRAD DEPARTAMENTO DE CIENCIAS EXATAS E TECNOLÓGICAS-DCET CURSO DE FÍSICA

UNIVERSIDADE FEDERAL DO AMAPÁ UNIFAP PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO - PROGRAD DEPARTAMENTO DE CIENCIAS EXATAS E TECNOLÓGICAS-DCET CURSO DE FÍSICA UNIVERSIDADE FEDERAL DO AMAPÁ UNIFAP PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO - PROGRAD DEPARTAMENTO DE CIENCIAS EXATAS E TECNOLÓGICAS-DCET CURSO DE FÍSICA Disciplina: Física Básica III Prof. Dr. Robert R.

Leia mais

Fundamentos do Eletromagnetismo (FEMZ4)

Fundamentos do Eletromagnetismo (FEMZ4) Fundamentos do Eletromagnetismo (FEMZ4) Aulas (período diurno): 3as-feiras: Três aulas de teoria 5as.-feiras: Duas aulas de laboratório Conteúdo: Campos Magnéticos. Forças Magnéticas. Leis de Maxwell:

Leia mais

A unidade de freqüência é chamada hertz e simbolizada por Hz: 1 Hz = 1 / s.

A unidade de freqüência é chamada hertz e simbolizada por Hz: 1 Hz = 1 / s. Movimento Circular Uniforme Um movimento circular uniforme (MCU) pode ser associado, com boa aproximação, ao movimento de um planeta ao redor do Sol, num referencial fixo no Sol, ou ao movimento da Lua

Leia mais

Cap. 6 - Campo Magnético e Força Magnética

Cap. 6 - Campo Magnético e Força Magnética Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 6 - Campo Magnético e Força Magnética Prof. Elvis Soares Nesse capítulo, estudaremos as forças que agem em cargas elétricas

Leia mais

FÍSICA. A) 2 J B) 6 J C) 8 J D) 10 J E) Zero. A) 6,2x10 6 metros. B) 4,8x10 1 metros. C) 2,4x10 3 metros. D) 2,1x10 9 metros. E) 4,3x10 6 metros.

FÍSICA. A) 2 J B) 6 J C) 8 J D) 10 J E) Zero. A) 6,2x10 6 metros. B) 4,8x10 1 metros. C) 2,4x10 3 metros. D) 2,1x10 9 metros. E) 4,3x10 6 metros. FÍSICA 16) Numa tempestade, ouve-se o trovão 7,0 segundos após a visualização do relâmpago. Sabendo que a velocidade da luz é de 3,0x10 8 m/s e que a velocidade do som é de 3,4x10 2 m/s, é possível afirmar

Leia mais

Física Experimental III

Física Experimental III Física Experimental III Unidade 4: Circuitos simples em corrente alternada: Generalidades e circuitos resistivos http://www.if.ufrj.br/~fisexp3 agosto/26 Na Unidade anterior estudamos o comportamento de

Leia mais

Ondas EM no Espaço Livre (Vácuo)

Ondas EM no Espaço Livre (Vácuo) Secretaria de Educação Profissional e Tecnológica Instituto Federal de Santa Catarina Campus São José Área de Telecomunicações ELM20704 Eletromagnetismo Professor: Bruno Fontana da Silva 2014-1 Ondas EM

Leia mais

Geometria Diferencial de Curvas Espaciais

Geometria Diferencial de Curvas Espaciais Geometria Diferencial de Curvas Espaciais 1 Aceleração tangencial e centrípeta Fernando Deeke Sasse Departamento de Matemática CCT UDESC Mostremos que a aceleração de uma partícula viajando ao longo de

Leia mais

Física Geral III F -328. Aula 8 Campo Magnético. 1 0 semestre, 2014

Física Geral III F -328. Aula 8 Campo Magnético. 1 0 semestre, 2014 Física Geral III F -328 Aula 8 Campo Magnético 1 0 semestre, 2014 Diferenças campos magnéticos e elétricos E Campo elétrico Devido a cargas elétricas * Carga isolada Linhas de campo da carga + para a carga

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Professores: Edson Vaz e Renato Medeiros EXERCÍCIOS NOTA DE AULA IV Goiânia - 2013 EXERCÍCIO 1. Usando a regra do determinante,

Leia mais

Universidade Federal de Goiás Campus Catalão Departamento de Matemática

Universidade Federal de Goiás Campus Catalão Departamento de Matemática Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Álgebra Linear Professor: André Luiz Galdino Aluno(a): 4 a Lista de Exercícios 1. Podemos entender transformações lineares

Leia mais

Lei de Gauss. 2.1 Fluxo Elétrico. O fluxo Φ E de um campo vetorial E constante perpendicular Φ E = EA (2.1)

Lei de Gauss. 2.1 Fluxo Elétrico. O fluxo Φ E de um campo vetorial E constante perpendicular Φ E = EA (2.1) Capítulo 2 Lei de Gauss 2.1 Fluxo Elétrico O fluxo Φ E de um campo vetorial E constante perpendicular a uma superfície é definido como Φ E = E (2.1) Fluxo mede o quanto o campo atravessa a superfície.

Leia mais

Resolução Comentada Fuvest - 1ª fase 2014

Resolução Comentada Fuvest - 1ª fase 2014 Resolução Comentada Fuvest - 1ª fase 2014 01 - Em uma competição de salto em distância, um atleta de 70kg tem, imediatamente antes do salto, uma velocidade na direção horizontal de módulo 10m/s. Ao saltar,

Leia mais

8 -SISTEMA DE PROJEÇÃO UNIVERSAL TRANSVERSA DE MERCATOR - UTM

8 -SISTEMA DE PROJEÇÃO UNIVERSAL TRANSVERSA DE MERCATOR - UTM 8 -SISTEMA DE PROJEÇÃO UNIVERSAL TRANSVERSA DE MERCATOR - UTM Introdução: histórico; definições O Sistema de Projeção UTM é resultado de modificação da projeção Transversa de Mercator (TM) que também é

Leia mais

0.1 Introdução Conceitos básicos

0.1 Introdução Conceitos básicos Laboratório de Eletricidade S.J.Troise Exp. 0 - Laboratório de eletricidade 0.1 Introdução Conceitos básicos O modelo aceito modernamente para o átomo apresenta o aspecto de uma esfera central chamada

Leia mais

1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS

1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS Matemática 2 Pedro Paulo GEOMETRIA PLANA X 1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS 1.2 Triângulo equilátero circunscrito A seguir, nós vamos analisar a relação entre alguns polígonos regulares e as circunferências.

Leia mais

Capítulo1 Tensão Normal

Capítulo1 Tensão Normal - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Referências Bibliográficas:

Leia mais

Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo:

Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo: Aula 5 5. Funções O conceito de função será o principal assunto tratado neste curso. Neste capítulo daremos algumas definições elementares, e consideraremos algumas das funções mais usadas na prática,

Leia mais

Acionamento de Motores: PWM e Ponte H

Acionamento de Motores: PWM e Ponte H Warthog Robotics USP São Carlos www.warthog.sc.usp.br warthog@sc.usp.br Acionamento de Motores: PWM e Ponte H Por Gustavo C. Oliveira, Membro da Divisão de Controle (2014) 1 Introdução Motores são máquinas

Leia mais

LIGAÇÕES TRIFÁSICAS LIGAÇÃO ESTRELA ESTRELA. 1. Yy Sem neutro dos 2 lados

LIGAÇÕES TRIFÁSICAS LIGAÇÃO ESTRELA ESTRELA. 1. Yy Sem neutro dos 2 lados LIGAÇÃO ESTRELA ESTRELA 1. Yy Sem neutro dos 2 lados LIGAÇÕES TRIFÁSICAS a) Em vazio Como não existe neutro no primário não pode circular o harmónico de tripla frequência da corrente magnetizante. O fluxo

Leia mais

1 Circuitos Pneumáticos

1 Circuitos Pneumáticos 1 Circuitos Pneumáticos Os circuitos pneumáticos são divididos em várias partes distintas e, em cada uma destas divisões, elementos pneumáticos específicos estão posicionados. Estes elementos estão agrupados

Leia mais

M =C J, fórmula do montante

M =C J, fórmula do montante 1 Ciências Contábeis 8ª. Fase Profa. Dra. Cristiane Fernandes Matemática Financeira 1º Sem/2009 Unidade I Fundamentos A Matemática Financeira visa estudar o valor do dinheiro no tempo, nas aplicações e

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes Equações básicas Uma análise de qualquer problema em Mecânica dos Fluidos, necessariamente se inicia, quer diretamente ou indiretamente, com a definição das leis básicas que governam o movimento do fluido.

Leia mais

Campo Magnético. Prof a. Michelle Mendes Santos michelle.mendes@ifmg.edu.br

Campo Magnético. Prof a. Michelle Mendes Santos michelle.mendes@ifmg.edu.br Campo Magnético Prof a. Michelle Mendes Santos michelle.mendes@ifmg.edu.br O Magnetismo O magnetismo é um efeito observado e estudado há mais de 2000 anos. O magnetismo descreve o comportamento de objetos

Leia mais

Prof. Michel Sadalla Filho

Prof. Michel Sadalla Filho MECÂNICA APLICADA Prof. Michel Sadalla Filho MOMENTO DE UMA FORÇA + EQUILÍBRIO DE UMA BARRA (No Plano XY) Referência HIBBELER, R. C. Mecânica Estática. 10 ed. São Paulo: Pearson Education do Brasil, 2005,

Leia mais

Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo:

Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo: Circunferência Trigonométrica É uma circunferência de raio unitário orientada de tal forma que o sentido positivo é o sentido anti-horário. Associamos a circunferência (ou ciclo) trigonométrico um sistema

Leia mais

MICROFONE E ALTIFALANTE

MICROFONE E ALTIFALANTE MICROFONE E ALTIFALANTE Um microfone é um transdutor que transforma energia mecânica (onda sonora) em energia elétrica (sinal elétrico de corrente alternada). O altifalante é um transdutor que transforma

Leia mais

Corrente elétrica, potência, resistores e leis de Ohm

Corrente elétrica, potência, resistores e leis de Ohm Corrente elétrica, potência, resistores e leis de Ohm Corrente elétrica Num condutor metálico em equilíbrio eletrostático, o movimento dos elétrons livres é desordenado. Em destaque, a representação de

Leia mais

ATIVIDADE DE FÍSICA PARA AS FÉRIAS 8. o A/B PROF. A GRAZIELA

ATIVIDADE DE FÍSICA PARA AS FÉRIAS 8. o A/B PROF. A GRAZIELA ATIVIDADE DE FÍSICA PARA AS FÉRIAS 8. o A/B PROF. A GRAZIELA QUESTÃO 1) Utilize as informações do texto abaixo para responder às questões que o seguem. Uma máquina simples para bombear água: A RODA D ÁGUA

Leia mais

FÍSICA EXPERIMENTAL 3001

FÍSICA EXPERIMENTAL 3001 FÍSICA EXPERIMENTAL 3001 EXPERIÊNCIA 1 CIRCUITO RLC EM CORRENTE ALTERNADA 1. OBJETIOS 1.1. Objetivo Geral Apresentar aos acadêmicos um circuito elétrico ressonante, o qual apresenta um máximo de corrente

Leia mais

LISTA ELETROSTÁTICA 3ª SÉRIE

LISTA ELETROSTÁTICA 3ª SÉRIE 1. (Pucrj 013) Duas cargas pontuais q1 3,0 μc e q 6,0 μc são colocadas a uma distância de 1,0 m entre si. Calcule a distância, em metros, entre a carga q 1 e a posição, situada entre as cargas, onde o

Leia mais

Resolução Comentada Unesp - 2013-1

Resolução Comentada Unesp - 2013-1 Resolução Comentada Unesp - 2013-1 01 - Em um dia de calmaria, um garoto sobre uma ponte deixa cair, verticalmente e a partir do repouso, uma bola no instante t0 = 0 s. A bola atinge, no instante t4, um

Leia mais

Tema de Física Eletrostática Força elétrica e campo elétrico Prof. Alex S. Vieira

Tema de Física Eletrostática Força elétrica e campo elétrico Prof. Alex S. Vieira Tema de Física Eletrostática Força elétrica e campo elétrico 1) Se, após o contato e posterior separação, F 2 é o módulo da força coulombiana entre X e Y, podese afirmar corretamente que o quociente F

Leia mais

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá.

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá. ANÁLISE GRÁFICA QUANDO y. CORRESPONDE A ÁREA DA FIGURA Resposta: Sempre quando o eio y corresponde a uma taa de variação, então a área compreendida entre a curva e o eio do será o produto y. Isto é y =

Leia mais

Exercícios cinemática Conceitos básicos e Velocidade média

Exercícios cinemática Conceitos básicos e Velocidade média Física II Professor Alexandre De Maria Exercícios cinemática Conceitos básicos e Velocidade média COMPETÊNCIA 1 Compreender as Ciências Naturais e as tecnologias a elas associadas como construções humanas,

Leia mais

Lei de Gauss e Condutores em Equilíbrio Eletrostático

Lei de Gauss e Condutores em Equilíbrio Eletrostático Lei de Gauss e Condutores em Equilíbrio Eletrostático 2008 Fluxo Elétrico: Está relacionado com o número líquido de linhas de força que atravessam uma superfície. φ e = EA 1 ou φ e = EA 2 cosθ = E ˆnA2

Leia mais

Aplicações Diferentes Para Números Complexos

Aplicações Diferentes Para Números Complexos Material by: Caio Guimarães (Equipe Rumoaoita.com) Aplicações Diferentes Para Números Complexos Capítulo II Aplicação 2: Complexos na Geometria Na rápida revisão do capítulo I desse artigo mencionamos

Leia mais

MÓDULO 2 Topologias de Redes

MÓDULO 2 Topologias de Redes MÓDULO 2 Topologias de Redes As redes de computadores de modo geral estão presentes em nosso dia adia, estamos tão acostumados a utilizá las que não nos damos conta da sofisticação e complexidade da estrutura,

Leia mais

Técnicas de Contagem I II III IV V VI

Técnicas de Contagem I II III IV V VI Técnicas de Contagem Exemplo Para a Copa do Mundo 24 países são divididos em seis grupos, com 4 países cada um. Supondo que a escolha do grupo de cada país é feita ao acaso, calcular a probabilidade de

Leia mais

O Plano. Equação Geral do Plano:

O Plano. Equação Geral do Plano: O Plano Equação Geral do Plano: Seja A(x 1, y 1, z 1 ) um ponto pertencente a um plano π e n = (a, b, c), n 0, um vetor normal (ortogonal) ao plano (figura ao lado). Como n π, n é ortogonal a todo vetor

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

PARTE 11 VETOR GRADIENTE:

PARTE 11 VETOR GRADIENTE: PARTE 11 VETOR GRADIENTE: INTERPRETAÇÃO GEOMÉTRICA 11.1 Introdução Dada a função real de n variáveis reais, f : Domf) R n R X = 1,,..., n ) f 1,,..., n ), se f possui todas as derivadas parciais de primeira

Leia mais

-ESTRUTURA VIÁRIA TT048 SUPERELEVAÇÃO

-ESTRUTURA VIÁRIA TT048 SUPERELEVAÇÃO INFRAINFRA -ESTRUTURA VIÁRIA TT048 SUPERELEVAÇÃO Profa. Daniane Franciesca Vicentini Prof. Djalma Pereira Prof. Eduardo Ratton Profa. Márcia de Andrade Pereira DEFINIÇÕES CORPO ESTRADAL: forma assumida

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência Artificial Aula 7 Programação Genética M.e Guylerme Velasco Programação Genética De que modo computadores podem resolver problemas, sem que tenham que ser explicitamente programados para isso?

Leia mais

Figura 4.1: Diagrama de representação de uma função de 2 variáveis

Figura 4.1: Diagrama de representação de uma função de 2 variáveis 1 4.1 Funções de 2 Variáveis Em Cálculo I trabalhamos com funções de uma variável y = f(x). Agora trabalharemos com funções de várias variáveis. Estas funções aparecem naturalmente na natureza, na economia

Leia mais

LEIS DE NEWTON. Resultado da interação entre corpos. Altera o estado de repouso ou movimento de um corpo.

LEIS DE NEWTON. Resultado da interação entre corpos. Altera o estado de repouso ou movimento de um corpo. LEIS DE NEWTON RECORDANDO... Força: Resultado da interação entre corpos. Altera o estado de repouso ou movimento de um corpo. Produz deformações. Força resultante: Soma vetorial das forças que atuam em

Leia mais

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc.

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc. PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR Prof. Angelo Augusto Frozza, M.Sc. ROTEIRO Esta aula tem por base o Capítulo 2 do livro de Taha (2008): Introdução O modelo de PL de duas variáveis Propriedades

Leia mais

DETERMINAÇÃO DA RAZÃO Q/M PARA O ELECTRÃO ATRAVÉS DA EXPERIÊNCIA DE THOMSON

DETERMINAÇÃO DA RAZÃO Q/M PARA O ELECTRÃO ATRAVÉS DA EXPERIÊNCIA DE THOMSON DETERMINAÇÃO DA RAZÃO Q/M PARA O ELECTRÃO ATRAVÉS DA EXPERIÊNCIA DE THOMSON Objectivo: Determinação da razão q/m para o electrão por deflexão de raios catódicos por campos eléctricas e/ou magnéticos. Introdução:

Leia mais

20 TANGÊNCIA E CONCORDÂNCIA 20.1 PROPRIEDADES DE TANGÊNCIA

20 TANGÊNCIA E CONCORDÂNCIA 20.1 PROPRIEDADES DE TANGÊNCIA 144 20 TNGÊNI E ONORDÂNI 20.1 PROPRIEDDES DE TNGÊNI Definições: 1) tangente a uma curva é uma reta que tem um só ponto em comum com esta curva. 2) Duas curvas são tangentes num ponto dado T, quando as

Leia mais

Circuitos de Comunicação. Prática 1: PWM

Circuitos de Comunicação. Prática 1: PWM Circuitos de Comunicação Prática 1: PWM Professor: Hélio Magalhães Grupo: Geraldo Gomes, Paulo José Nunes Recife, 04 de Maio de 2014 SUMÁRIO Resumo 3 Parte I PWM - Teoria 3 Geração do PWM 5 Parte II Prática

Leia mais

Unidade 11 Geometria Plana I. Congruência e semelhança de figuras planas Relações métricas do triângulo retângulo Triângulo qualquer

Unidade 11 Geometria Plana I. Congruência e semelhança de figuras planas Relações métricas do triângulo retângulo Triângulo qualquer Unidade 11 Geometria Plana I Congruência e semelhança de figuras planas Relações métricas do triângulo retângulo Triângulo qualquer Congruência e Semelhança de Figuras Planas TRIÂNGULOS SEMELHANTES Dois

Leia mais

Física Geral 2010/2011

Física Geral 2010/2011 ísica Geral / 6 Energia otencial: té agora estudámos o conceito de energia cinética, associada ao movimento, e energia interna, associada á presença de forças de atrito. Vamos agora estudar o conceito

Leia mais

1.1- Vamos começar com a planta baixa, na escala 1:20. Obs: passe a planta, com as medidas indicadas em uma folha separada, na escala 1:20.

1.1- Vamos começar com a planta baixa, na escala 1:20. Obs: passe a planta, com as medidas indicadas em uma folha separada, na escala 1:20. 1 PONTO DE FUGA 1.1- Vamos começar com a planta baixa, na escala 1:20. Obs: passe a planta, com as medidas indicadas em uma folha separada, na escala 1:20. 30 1.2- Coloque essa planta na parte de cima

Leia mais

06-11-2015. Sumário. Da Terra à Lua. Movimentos no espaço 02/11/2015

06-11-2015. Sumário. Da Terra à Lua. Movimentos no espaço 02/11/2015 Sumário UNIDADE TEMÁTICA 1 Movimentos na Terra e no Espaço. Correção do 1º Teste de Avaliação. Movimentos no espaço. Os satélites geoestacionários. - O Movimentos de satélites. - Características e aplicações

Leia mais

+++++++ - - - - - - -

+++++++ - - - - - - - www.pascal.com.br Prof. Edson Osni Ramos 3. (UEPG - 99) ε = 2 - - - - - - - d = 0,2 cm = 0,002 m Entre as placas do capacitor não há corrente elétrico (existe um dielétrico). Nesse caso, o capacitor está

Leia mais

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS (INPE) CADERNO DE PROVAS PROVA DISCURSIVA

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS (INPE) CADERNO DE PROVAS PROVA DISCURSIVA Concurso Público - NÍVEL MÉDIO INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS (INPE) CARGO: Técnico da Carreira de Desenvolvimento Tecnológico Classe: Técnico 1 Padrão I TEMA: CADERNO DE PROVAS PROVA DISCURSIVA

Leia mais

Aula 15 Amplificadores Operacionais (pág. 453 a 459)

Aula 15 Amplificadores Operacionais (pág. 453 a 459) Aula 15 Amplificadores Operacionais (pág. 453 a 459) Prof. Dr. Aparecido Nicolett PUC-SP Slide 1 Considerações gerais: Amplificadores Operacionais são amplificadores diferencias com ganho muito alto, impedância

Leia mais

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Dois ou mais eventos são mutuamente exclusivos, ou disjuntos, se os mesmos não podem ocorrer simultaneamente. Isto é, a ocorrência de um

Leia mais

Comandos de Eletropneumática Exercícios Comentados para Elaboração, Montagem e Ensaios

Comandos de Eletropneumática Exercícios Comentados para Elaboração, Montagem e Ensaios Comandos de Eletropneumática Exercícios Comentados para Elaboração, Montagem e Ensaios O Método Intuitivo de elaboração de circuitos: As técnicas de elaboração de circuitos eletropneumáticos fazem parte

Leia mais

DESENHO TÉCNICO ( AULA 03)

DESENHO TÉCNICO ( AULA 03) Sólidos Geométricos DESENHO TÉCNICO ( AULA 03) Você já sabe que todos os pontos de uma figura plana localizam-se no mesmo plano. Quando uma figura geométrica tem pontos situados em diferentes planos, temos

Leia mais

Separação de misturas

Separação de misturas Separação de misturas Misturas Heterogêneas Sólido + Sólido Catação A catação é um tipo de separação manual de sistemas do tipo "sólidosólido". As substâncias são separadas manualmente e pode utilizar

Leia mais

Unidade 13 Introdução à Dinâmica Impulsiva. Introdução Quantidade de Movimento Impulso Teorema do Impulso

Unidade 13 Introdução à Dinâmica Impulsiva. Introdução Quantidade de Movimento Impulso Teorema do Impulso Unidade 13 Introdução à Dinâmica Impulsiva Introdução Quantidade de Movimento Impulso Teorema do Impulso Introdução Em um acidente automobilístico, nem sempre é fácil descobrir quem foi o culpado. Por

Leia mais

2 Conceitos Básicos. onde essa matriz expressa a aproximação linear local do campo. Definição 2.2 O campo vetorial v gera um fluxo φ : U R 2 R

2 Conceitos Básicos. onde essa matriz expressa a aproximação linear local do campo. Definição 2.2 O campo vetorial v gera um fluxo φ : U R 2 R 2 Conceitos Básicos Neste capítulo são apresentados alguns conceitos importantes e necessários para o desenvolvimento do trabalho. São apresentadas as definições de campo vetorial, fluxo e linhas de fluxo.

Leia mais

Cinemática Bidimensional

Cinemática Bidimensional Cinemática Bidimensional INTRODUÇÃO Após estudar cinemática unidimensional, vamos dar uma perspectiva mais vetorial a tudo isso que a gente viu, abrangendo mais de uma dimensão. Vamos ver algumas aplicações

Leia mais

GEOMETRIA DO TAXISTA. (a -b )² + (a -b )²

GEOMETRIA DO TAXISTA. (a -b )² + (a -b )² GEOMETRI O TXIST Geometria do Taxista é uma geometria não-euclidiana, no sentido em que a noção de distância não é a mesma e acordo com o desenho abaixo, suponhamos um motorista de táxi que apanha um cliente

Leia mais

FÍSICA - 2 o ANO MÓDULO 17 ELETRODINÂMICA: CORRENTE ELÉTRICA, RESISTORES E LEI DE OHM

FÍSICA - 2 o ANO MÓDULO 17 ELETRODINÂMICA: CORRENTE ELÉTRICA, RESISTORES E LEI DE OHM FÍSICA - 2 o ANO MÓDULO 17 ELETRODINÂMICA: CORRENTE ELÉTRICA, RESISTORES E LEI DE OHM A B FALTA DE CARGAS NEGATIVAS EXCESSO DE CARGAS NEGATIVAS A V A + - B V B U = V A - V B E A B U = V A - V B A + - B

Leia mais

RECUPERAÇÃO TURMAS: 2º ANO FÍSICA

RECUPERAÇÃO TURMAS: 2º ANO FÍSICA RECUPERAÇÃO TURMAS: 2º ANO Professor: XERXES DATA: 22 / 11 / 2015 RECUPERAÇÃO FINAL FORÇA ELÉTRICA (LEI DE COULOMB) FÍSICA Para todas as questões, considere a constante eletrostática no vácuo igual a 9.10

Leia mais

MS1122 v3.0 Instalação e Considerações Importantes

MS1122 v3.0 Instalação e Considerações Importantes MS1122 v3.0 Instalação e Considerações Importantes O conteúdo deste documento é destinado a quem já possui algum conhecimento e deseja utilizar algumas REDEs comerciais disponíveis... V3.0 R2 Operadoras

Leia mais

TC DE FÍSICA 2 a SÉRIE ENSINO MÉDIO

TC DE FÍSICA 2 a SÉRIE ENSINO MÉDIO TC DE FÍSICA 2 a SÉRIE ENSINO MÉDIO Professor(es): Odair Mateus 14/6/2010 1.Na(s) questão(ões) a seguir, escreva no espaço apropriado a soma dos itens corretos. Sobre os conceitos e aplicações da Eletricidade

Leia mais

CINEMÁTICA DO PONTO MATERIAL

CINEMÁTICA DO PONTO MATERIAL 1.0 Conceitos CINEMÁTICA DO PONTO MATERIAL Cinemática é a parte da Mecânica que descreve os movimentos. Ponto material é um corpo móvel cujas dimensões não interferem no estudo em questão. Trajetória é

Leia mais

4.4 Limite e continuidade

4.4 Limite e continuidade 4.4 Limite e continuidade Noções Topológicas em R : Dados dois pontos quaisquer (x 1, y 1 ) e (x, y ) de R indicaremos a distância entre eles por då(x 1, y 1 ), (x, y )è=(x 1 x ) + (y 1 y ). Definição

Leia mais

Lista de Exercícios - Força e Movimento I

Lista de Exercícios - Força e Movimento I UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA Departamento de Física Disciplina: Física Básica I Lista de Exercícios - Força e Movimento I Perguntas: 1. Na figura 1 as forças F 1 e F

Leia mais

Aula 09 Análise Estrutural - Treliça Capítulo 6 R. C. Hibbeler 10ª Edição Editora Pearson - http://www.pearson.com.br/

Aula 09 Análise Estrutural - Treliça Capítulo 6 R. C. Hibbeler 10ª Edição Editora Pearson - http://www.pearson.com.br/ Aula 09 Análise Estrutural - Treliça Capítulo 6 R. C. Hibbeler 10ª Edição Editora Pearson - http://www.pearson.com.br/ Estrutura Sistema qualquer de elementos ligados, construído para suportar ou transferir

Leia mais

a) N B > N A > N C. b) N B > N C > N A. c) N C > N B > N A. d) N A > N B > N C. e) N A = N C = N B.

a) N B > N A > N C. b) N B > N C > N A. c) N C > N B > N A. d) N A > N B > N C. e) N A = N C = N B. Prof. Renato SESI Carrão Física 1º. ano 2011 Lista de exercícios 1 (Aulas 13 a 24) *** Formulário *** v = Δx/Δt Δx = x f x i Δt = t f t i a = Δv/Δt Δv = v f v i F R = m.a g = 10 m/s 2 P = m.g F at = μ.n

Leia mais

Objetivo do Portal da Gestão Escolar

Objetivo do Portal da Gestão Escolar Antes de Iniciar Ambiente de Produção: É o sistema que contem os dados reais e atuais, é nele que se trabalha no dia a dia. Neste ambiente deve-se evitar fazer testes e alterações de dados sem a certeza

Leia mais

SISTEMAS DISTRIBUÍDOS

SISTEMAS DISTRIBUÍDOS SISTEMAS DISTRIBUÍDOS Introdução Slide 1 Nielsen C. Damasceno Introdução Tanenbaum (2007) definiu que um sistema distribuído é aquele que se apresenta aos seus usuários como um sistema centralizado, mas

Leia mais

ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ)

ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ) P L A N O S PARALELOS AOS EIXOS E AOS PLANOS COORDENADOS Casos Particulares A equação ax + by + cz = d na qual a, b e c não são nulos, é a equação de um plano π, sendo v = ( a, b, c) um vetor normal a

Leia mais

Geografia. Aula 02. Projeções Cartográficas A arte na construção de mapas. 2. Projeções cartográficas

Geografia. Aula 02. Projeções Cartográficas A arte na construção de mapas. 2. Projeções cartográficas Geografia. Aula 02 Projeções Cartográficas A arte na construção de mapas 2. Projeções cartográficas 2.1. Como representar figuras tridimensionais em um plano sem que ocorra deformidades? É possível eliminar

Leia mais

Aula 6 Corrente Alternada e Corrente Contínua

Aula 6 Corrente Alternada e Corrente Contínua INTODUÇÃO À ENGENHI DE COMPUTÇÃO PONTIFÍCI UNIVESIDDE CTÓLIC DO IO GNDE DO SUL FCULDDE DE ENGENHI Professores velino Francisco Zorzo e Luís Fernando lves Pereira ula 6 Corrente lternada e Corrente Contínua

Leia mais

Unidade 1: O Computador

Unidade 1: O Computador Unidade : O Computador.3 Arquitetura básica de um computador O computador é uma máquina que processa informações. É formado por um conjunto de componentes físicos (dispositivos mecânicos, magnéticos, elétricos

Leia mais

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de primeiro grau Introdução Equação é toda sentença matemática aberta que exprime

Leia mais

Equações paramétricas da Reta

Equações paramétricas da Reta 39 6.Retas e Planos Equações de Retas e Planos Equações da Reta Vamos supor que uma reta r é paralela a um vetor V = a, b, c) não nulo e que passa por um ponto P = x, y, z ). Um ponto P = x, pertence a

Leia mais

COMO PESQUISAR. Formulário de Pesquisa por Bases de Dados, Palavras e Pesquisa Avançada

COMO PESQUISAR. Formulário de Pesquisa por Bases de Dados, Palavras e Pesquisa Avançada COMO PESQUISAR Formulário de Pesquisa por Bases de Dados, Palavras e Pesquisa Avançada A Pesquisa Avançada permite pesquisar nos principais campos de busca das bases de dados, dentre eles: palavras, descritores

Leia mais

Atividade de revisão do 1º semestre de 2009 e autoavaliação de recuperação

Atividade de revisão do 1º semestre de 2009 e autoavaliação de recuperação Física Atividade 3 os anos Glorinha ago/09 Nome: Nº: Turma: Atividade de revisão do 1º semestre de 2009 e autoavaliação de recuperação Essa atividade tem o objetivo de revisar alguns conceitos estudados

Leia mais

Unidade 3 Função Afim

Unidade 3 Função Afim Unidade 3 Função Afim Definição Gráfico da Função Afim Tipos Especiais de Função Afim Valor e zero da Função Afim Gráfico definidos por uma ou mais sentenças Definição C ( x) = 10. x + Custo fixo 200 Custo

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros exercícios)

EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros exercícios) UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros eercícios) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Eercícios

Leia mais

ARQUITETURA DE COMPUTADORES. Professor: Clayton Rodrigues da Siva

ARQUITETURA DE COMPUTADORES. Professor: Clayton Rodrigues da Siva ARQUITETURA DE COMPUTADORES Professor: Clayton Rodrigues da Siva OBJETIVO DA AULA Objetivo: Conhecer a estrutura da arquitetura da Máquina de Von Neumann. Saber quais as funcionalidades de cada componente

Leia mais

FÍSICA (Eletromagnetismo) CAMPOS ELÉTRICOS

FÍSICA (Eletromagnetismo) CAMPOS ELÉTRICOS FÍSICA (Eletromagnetismo) CAMPOS ELÉTRICOS 1 O CONCEITO DE CAMPO Suponhamos que se fixe, num determinado ponto, uma partícula com carga positiva, q1, e a seguir coloquemos em suas proximidades uma segunda

Leia mais

A força elétrica F, que a carga negativa q sofre, e o campo elétrico E, presente no ponto onde ela é fixada, estão corretamente representados por

A força elétrica F, que a carga negativa q sofre, e o campo elétrico E, presente no ponto onde ela é fixada, estão corretamente representados por MOD 3. CAMPO ELETRICO 1. (Uea 014) Duas cargas elétricas puntiformes, Q e q, sendo Q positiva e q negativa, são mantidas a uma certa distância uma da outra, conforme mostra a figura. A força elétrica F,

Leia mais

Lista de Exercícios Campo Elétrico

Lista de Exercícios Campo Elétrico Considere k o = 9,0. 10 9 N. m 2 /C 2 Lista de Exercícios Campo Elétrico 1. Uma partícula de carga q = 2,5. 10-8 C e massa m = 5,0. 10-4 kg, colocada num determinado ponto P de uma região onde existe um

Leia mais

Autoria: Fernanda Maria Villela Reis Orientadora: Tereza G. Kirner Coordenador do Projeto: Claudio Kirner. Projeto AIPRA (Processo CNPq 559912/2010-2)

Autoria: Fernanda Maria Villela Reis Orientadora: Tereza G. Kirner Coordenador do Projeto: Claudio Kirner. Projeto AIPRA (Processo CNPq 559912/2010-2) Autoria: Fernanda Maria Villela Reis Orientadora: Tereza G. Kirner Coordenador do Projeto: Claudio Kirner 1 ÍNDICE Uma palavra inicial... 2 Instruções iniciais... 3 Retângulo... 5 Quadrado... 6 Triângulo...

Leia mais

ESCOLA BÁSICA INTEGRADA DE MANIQUE DO INTENDENTE Ano Letivo / Nome ; Ano/Turma ; N.º

ESCOLA BÁSICA INTEGRADA DE MANIQUE DO INTENDENTE Ano Letivo / Nome ; Ano/Turma ; N.º EDUCAÇÃO VISUAL ESCOLA BÁSICA INTEGRADA DE MANIQUE DO INTENDENTE Ano Letivo / APONTAMENTOS DE GEOMETRIA Nome ; Ano/Turma ; N.º 1 - O PONTO - ao colocares o bico do teu lápis no papel obténs um ponto. O

Leia mais

Modelo Entidade Relacionamento (MER) Professor : Esp. Hiarly Alves

Modelo Entidade Relacionamento (MER) Professor : Esp. Hiarly Alves Tópicos Apresentação Entidade, Atributo e Relacionamento Cardinalidade Representação simbólica Generalizações / Especializações Agregações Apresentação O Modelo Entidade-Relacionamento tem o objetivo de

Leia mais

Manual de Utilização do CNIPE

Manual de Utilização do CNIPE Manual de Utilização do CNIPE Sumário 1. INTRODUÇÃO... 4 2. ACESSANDO A APLICAÇÃO... 4 3. PÁGINA PARA CONSULTA DE PROCESSOS... 4 3.1. Consulta por Numeração Única do Processo do CNJ... 5 3.2. Consulta

Leia mais

1 PONTOS NOTÁVEIS. 1.1 Baricentro. 1.3 Circuncentro. 1.2 Incentro. Matemática 2 Pedro Paulo

1 PONTOS NOTÁVEIS. 1.1 Baricentro. 1.3 Circuncentro. 1.2 Incentro. Matemática 2 Pedro Paulo Matemática 2 Pedro Paulo GEOMETRIA PLANA VIII 1 PONTOS NOTÁVEIS 1.1 Baricentro O baricentro é o encontro das medianas de um triângulo. Na figura abaixo, é o ponto médio do lado, é o ponto médio do lado

Leia mais

ÁLGEBRA LINEAR. Transformações Lineares. Prof. Susie C. Keller

ÁLGEBRA LINEAR. Transformações Lineares. Prof. Susie C. Keller ÁLGEBRA LINEAR Transformações Lineares Prof. Susie C. Keller É um tipo especial de função (aplicação), onde o domínio e o contradomínio são espaços vetoriais. Tanto a variável independente quanto a variável

Leia mais

Aula 4-Movimentos,Grandezas e Processos

Aula 4-Movimentos,Grandezas e Processos Movimentos de Corte Os movimentos entre ferramenta e peça durante a usinagem são aqueles que permitem a ocorrência do processo de usinagem.convencionalmente se supõe a peça parada e todo o movimento sendo

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD.

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD. Questão Se Amélia der R$,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade do

Leia mais