MODULAÇÃO DELTA. Laboratório 2 Modulação Delta. Sistemas de Telecomunicações Guiados LABORATÓRIO 2

Tamanho: px
Começar a partir da página:

Download "MODULAÇÃO DELTA. Laboratório 2 Modulação Delta. Sistemas de Telecomunicações Guiados LABORATÓRIO 2"

Transcrição

1 CH APT ER 1 SECTION 1 Sistemas de Telecomunicações Guiados LABORATÓRIO 2 MODULAÇÃO DELTA 1 RESUMOEQUATION O principal objectivo deste trabalho é proporcionar aos alunos o contacto com equipamento que efectua a modulação delta bastante usada para transmissão de sinais de voz e sinais vídeo. A principal vantagem da modulação delta sobre a codificação PCM, é a simplicidade do hardware utilizado tanto no receptor como no emissor. Em particular, vai ser estudado pormenorizadamente todo o processo de modulação e desmodulação Delta que permite de uma forma simples, a conversão de sinais analógicos em sinais digitais, a sua transmissão e recuperação do sinal analógico após uma conversão digital-analógica do sinal transmitido. 2 INTRODUÇÃO O principal objectivo deste trabalho é proporcionar aos alunos o contacto específico com o equipamento que efectua a modulação e desmodulação delta de um sinal analógico. 2.1 FUNCIONAMENTO DA SESSÃO DE LABORATÓRIO As experiências são realizadas por um grupo de três alunos que têm de entregar no final da aula um relatório da sessão de laboratório. O grupo dispõe de 2 horas para a realização das montagens e elaboração do respectivo relatório. O presente guia de laboratório descreve as montagens e as experiências que têm de ser realizadas e serve simultaneamente como relatório. Cada grupo deverá entregar no final da aula uma cópia do relatório com todos os dados e resultados das experiências devidamente preenchidos, bem como pequenas descrições e justificações sobre os resultados obtidos. A composição dos grupos e o horário da respectiva sessão de laboratório são previamente marcados pelo docente da disciplina. Cada grupo poderá apenas comparecer no horário de laboratório previamente acordado. Antes da sessão de laboratório os alunos terão de ler cuidadosamente este guia de laboratório e preencher a respectiva secção de dimensionamento. Só será autorizado o acesso ao laboratório aos grupos que entreguem ao docente no início de cada sessão uma cópia do dimensionamento. Os alunos podem tirar dúvidas sobre o seu ensaio durante os horários de dúvidas da cadeira ou enviando as suas questões para o do docente (joao.rebola@iscte.pt). 2.2 DESCRIÇÃO DO EQUIPAMENTO Nesta sessão de laboratório utilizam-se os seguintes equipamentos: PLACA MODICOM 4 O bloco principal desta experiência de laboratório é a placa MODICOM 4 Modulação Delta, que se encontra representada na Figura 1. Este módulo é constituído por 4 blocos que são apresentados em seguida. Pág. 1

2 Figura 1. Placa MODICOM Entradas de alimentação Estas são os pontos de alimentação do módulo de Modulação Delta que permitem o correcto funcionamento do circuito. Figura 2. Entradas de alimentação Gerador de funções Este circuito é responsável por gerar sinais de entrada que são usados como sinais de informação no codificador delta da placa MODICOM 4. Este gerador gera um sinal contínuo e quatro sinais sinusoidais com frequências distintas (f o = 250 Hz, 500 Hz, 1000 Hz e 2000 Hz). Pág. 2

3 Figura 3. Gerador de funções Circuito emissor Este circuito é responsável por receber o sinal de informação e gerar o sinal transmitido à saída do modulador. Figura 4. Circuito emissor A. Comparador (Voltage comparator) O comparador de voltagem tem duas entradas, uma entrada não-inversora (+) e a outra entrada inversora ( ). As tensões de entrada são comparadas e o resultado desta comparação determina a tensão à saída do comparador. Se a tensão na entrada (+) for Pág. 3

4 superior à da entrada ( ), o comparador apresenta à sua saída uma tensão de +5V (nível lógico 1). Se a tensão na entrada (+) for inferior à da entrada ( ), o comparador apresenta à sua saída uma tensão de 0V (nível lógico 0). B. D-type bistable De cada vez que ocorre um impulso de relógio, o D-type bistable copia o nível lógico que tiver à entrada DATA INPUT para a sua saída DATA OUTPUT. C. Comutador do nível de tensão (Level changer) Tem como função inverter o sinal de entrada e alterar a sua tensão para +4V ou 4V. Um bit 1 lógico de entrada de +5V é convertido numa tensão de 4V. Um bit 0 lógico de entrada de 0V é convertido numa tensão de +4V. D. Integrador O integrador produz uma rampa à sua saída quando tem à sua entrada uma tensão constante. Este integrador é também inversor, pois para uma tensão positiva constante produz à sua saída uma rampa com declive negativo. Pode-se alterar o ganho do integrador usando os interruptores A e B do circuito GAIN CONTROL. De cada vez que se aumenta o ganho do integrador, este passa para o dobro Circuito receptor Este circuito de desmodulação é responsável por receber o sinal transmitido e recuperar o sinal original. Figura 5. Circuito receptor A. D-type bistable, comutador do nível de tensão Operam exactamente da mesma maneira que no emissor. Pág. 4

5 B. Filtro passa-baixo Serve para eliminar as componentes de frequência indesejadas do sinal que se obtém à saída do integrador. Tem uma frequência de corte f c = 3.4 khz Circuito de relógio O sinal transmitido e recebido tem de ser amostrado num determinado intervalo de tempo e a uma determinada taxa. A amostragem é obtida através das ondas quadradas geradas pelo circuito de relógio. O número de pulsos de relógio que ocorrem durante o período de sinal, determinam o número de amostras ocorridas. Qualquer uma das quatro frequências ( f s = 32 khz, 64 khz, 128 khz e 256 khz) apresentadas na Figura 6, pode ser seleccionada através dos interruptores A e B do CLOCK FREQUENCY SELECTOR OSCILOSCÓPIO Figura 6. Circuito de relógio Permite visualizar a variação temporal das tensões provenientes de um ou dois canais independentes FONTE DE ALIMENTAÇÃO DC A fonte de alimentação DC fornece os valores de tensão contínua 12V, 0V, 5V e 12V ao bloco MODICOM SEGURANÇA Antes de aplicar qualquer tensão assegure-se que todas as ligações estão correctamente efectuadas. Nenhum equipamento pode sair do laboratório. É especialmente importante não tocar com as pontas dos cabos de ligação em parte alguma dos circuitos que não a apropriada pois estes circuitos são muito frágeis e facilmente se avariam. Todas as ligações nos módulos têm de ser realizadas com a fonte de alimentação desligada. Pág. 5

6 Data: Horário: Turma: Turno: Grupo: Aluno N : Nome: Aluno N : Nome: Aluno N : Nome: 3 DIMENSIONAMENTO Esta secção visa preparar os alunos para as experiências que irão realizar no laboratório. Todos os grupos terão de no início da sessão de laboratório entregar ao docente uma cópia desta secção. a) Pretende-se codificar um sinal analógico x( t) Asen ( 2 f t ) = π usando modulação delta. Considerando que se obtém as amostras de sinal à frequência de amostragem f s, calcule o passo de quantificação mínimo que permite codificar o sinal sinusoidal sem saturação do declive. o b) Utilizando a fórmula obtida na alínea a), calcule o passo de quantificação mínimo para os diferentes sinais sinusoidais de entrada, sabendo que a amplitude máxima do sinal é 5V. f s [khz] min (V) f s [khz] min (V) f s [khz] min (V) f s [khz] min (V) (A) f o = 250 Hz (B) f o = 500 Hz (C) f o = 1 khz (D) f o = 2 khz Tabela 1 Passo de quantificação mínimo c) Sabendo que o codificador delta para a frequência de amostragem f s = 32 khz, tem um passo de quantificação = 0.5V, indique quais os sinais que apresentam saturação do declive. d) Sabendo que o filtro do receptor tem uma frequência de corte, f c = 3.4 khz, e considerando um passo de quantificação = 0.5V para a frequência de amostragem f s = 32 khz, calcule a Pág. 6

7 relação sinal-ruído de quantificação, em db, para o sinal sinusoidal x( t) 5sen ( 2 f t) = π [Não se esqueça que o passo de quantificação se altera com a variação de f s ]. Justifique todos os cálculos apresentados e preencha a Tabela 2. o f s [khz] S/N q (db) Tabela 2 Relação sinal-ruído de quantificação Pág. 7

8 4 ESQUEMA DA MONTAGEM De seguida, enumeram-se os passos da montagem da experiência a realizar. A. Assegure-se que a fonte de alimentação se encontra desligada. B. Fazer as ligações entre a placa MODICOM 4 e a fonte de alimentação, como se ilustra na Figura 7. Figura 7. Ligações para a alimentação do módulo MODICOM 4. C. Efectuar as ligações ilustradas na Figura 8 na placa da modulação Delta. Figura 8. Ligações necessárias para efectuar a experiência. D. No módulo emissor comute os seguintes interruptores: a. Interruptores A e B do circuito GAIN CONTROL do integrador para a posição A=0 e B=0 (corresponde ao ganho mínimo do integrador); b. Interruptor S1 do integrador para a posição esquerda; E. No módulo receptor comute os seguintes interruptores: Pág. 8

9 a. Interruptores A e B do circuito GAIN CONTROL do integrador para a posição A=0 e B=0; b. Interruptor S1 do integrador para a posição direita; F. No circuito de relógio, coloque os interruptores A e B do CLOCK FREQUENCY SELECTOR nas posições A=0 e B=0 (a frequência de relógio corresponde a 32 khz); G. No gerador de funções, rode totalmente todos os potenciómetros no sentido contrário aos ponteiros do relógio. H. Ligue a saída do gerador de funções de 250 Hz à entrada (+) do comparador de voltagem. I. Chame o docente para que as ligações sejam verificadas antes de ligar a fonte de alimentação. J. Ligue a fonte de alimentação. 5 EXPERIÊNCIAS De seguida descrevem-se as experiências que têm ser efectuadas pelos alunos. 5.1 RUÍDO DE QUANTIFICAÇÃO 1) Ligue a ponta de prova do canal 1 do osciloscópio ao porto TP7 no emissor (assegure-se que a ponta de prova tem o multiplicador em 1 e verifique esse valor no MENU do canal 1 do osciloscópio) e ajuste o potenciómetro de ~250 Hz até que a amplitude do sinal atinja 10 Volts pico-a-pico (V pp ). Ligue a ponta de prova do canal 2 do osciloscópio ao porto TP47 no receptor (assegure-se que a ponta de prova tem o multiplicador em 1 e verifique esse valor no MENU do canal 2 do osciloscópio). Configure ambos os canais do osciloscópio para modo DC. Faça o TRIGGER do osciloscópio usando o canal 1. 2) Verifique que o sinal é correctamente descodificado à saída do filtro passa-baixo. Observe a existência de um ligeiro ripple no sinal descodificado, principalmente nas transições menos abruptas do sinal. Este ligeiro ripple no sinal descodificado deve-se ao ruído de quantificação [Se necessário, para conseguir um melhor desempenho na codificação/descodificação delta, ajuste os potenciómetros LEVEL ADJUST dos BISTABLE do emissor e do receptor]. 3) Observe o sinal à saída do Integrador 1 (TP13) no canal 2 do osciloscópio, e usando o menu CURSORES do osciloscópio e fazendo zoom ao canal 2, calcule o passo de quantificação da modulação delta para as diversas frequências de relógio (alterando os interruptores A e B do CLOCK FREQUENCY SELECTOR). Preencha a Tabela 3 com os valores obtidos para o passo de quantificação.verifique que há medida que aumenta a frequência de relógio diminui o ruído de quantificação [Sugestão: para efectuar mais facilmente a medição, páre a imagem no ecrã do osciloscópio usando o botão run-stop ]. 4) Recoloque os interruptores A e B do circuito de relógio na posição A=0 e B=0. Altere o sinal de entrada no codificador delta para o sinal com frequência de ~2 khz (não se esqueça de ajustar a amplitude do sinal a 10 V pp ). 5) Mantenha o canal 2 do osciloscópio no ponto TP13, e verifique que o sinal gerado pelo codificador delta não consegue acompanhar a variação do declive do sinal de entrada (há ruído de saturação do declive). Tendo em conta, os circuitos utilizados neste codificador delta, o passo de quantificação mínimo, min, calculado no dimensionamento e o valor do passo de quantificação obtidos na Tabela 3, explique porque aparece este ruído. 6) Coloque os interruptores A e B dos integradores 1 e 2 na posição A=1 e B=1. Observe o sinal à saída do filtro passa-baixo do descodificador delta e verifique que deixou de existir ruído de saturação do declive. Observe que existe ruído de quantificação no sinal Pág. 9

10 descodificado. Recolocando a ponta-de-prova do canal 2 na saída do integrador 1, preencha a Tabela 4 com os valores obtidos para o passo de quantificação quando se altera a frequência de relógio. [Se necessário, para medir o passo de quantificação, páre a imagem no ecrã do osciloscópio usando o botão run-stop ]. 7) Recoloque a frequência de relógio a 32 khz, os interruptores dos integradores na posição A=0 e B=0 e mude o sinal de entrada para o sinal sinusoidal com frequência ~250 Hz. Ajuste a amplitude deste sinal para 1.5 V pp. Observe o sinal à saída do filtro passa-baixo e explique o que está a acontecer. 8) Recoloque a amplitude do sinal a 10 V pp. Coloque a ponta de prova do canal 2 na saída do BISTABLE (TP18) do emissor e observe os bits transmitidos na codificação delta. Explique qual a função do circuito BISTABLE neste modulador delta. 9) Observando no canal 1, a saída do integrador 1 (TP13), ponha no osciloscópio a escala de tempos a 100(µs/div). Registe as formas de onda observadas na Figura 9 e faça a correspondência entre os bits observados à saída do BISTABLE e os flancos do integrador [Se necessário, para parar a imagem utilize o botão run-stop e faça zoom na escala de amplitudes dos dois canais do osciloscópio]. 6 CONCLUSÃO DA SESSÃO DE LABORATÓRIO A sua sessão de laboratório terminou. Porém, e para que outros grupos também possam usufruir do equipamento, é essencial que deixe tudo como encontrou e siga mais estes pequenos passos: a) Desligue a fonte de alimentação e o osciloscópio. b) Desmonte as ligações por si efectuadas e deixe o material arrumado. Pág. 10

11 Data: Horário: Turma: Turno: Grupo: Aluno N : Nome: Aluno N : Nome: Aluno N : Nome: 7 RELATÓRIO Cada grupo após terminar a sessão de laboratório terá de entregar ao docente uma cópia deste relatório. Os alunos deverão preencher todos os valores solicitados, justificar os resultados obtidos e se possível efectuar a comparação com os valores teóricos estimados. Preencha a Tabela 3 com o passo de quantificação, a potência de ruído n q, a relação sinalruído, em unidades lineares e em db, obtidos para as diferentes frequências de relógio (frequências de amostragem), sendo o sinal de entrada, um sinal sinusoidal com f o = 250 Hz. Compare com os valores obtidos na Tabela 1. f s [khz] (V) n q (mw) s/n q S/N q (db) Tabela 3 Passo de quantificação e relação sinal-ruído de quantificação para as diversas frequências de amostragem para um sinal de entrada com frequência 250 Hz. Tendo em conta, os circuitos utilizados neste codificador delta, o passo de quantificação mínimo, min, calculado no dimensionamento e o valor do passo de quantificação obtidos na Tabela 3, explique porque aparece o ruído de saturação do declive para um sinal sinusoidal com 2 khz. Para além de aumentar o ganho do integrador e aumentar a frequência de relógio, indique outra forma de eliminar o ruído de saturação do declive. Indique qual o problema desta solução. Pág. 11

12 Preencha a Tabela 4 com o valor do passo de quantificação, a potência de ruído n q, a relação sinal-ruído, em unidades lineares e em db, obtidos para as diferentes frequências de relógio, sendo o sinal de entrada, um sinal sinusoidal com frequência 2 khz. Comente os valores obtidos. f s [khz] (V) n q (W) s/n q S/N q (db) Tabela 4 Passo de quantificação e relação sinal-ruído de quantificação para as diversas frequências de amostragem para um sinal de entrada com frequência 2 khz. Explique o que observa à saída do descodificador delta quando o sinal de entrada é sinusoidal com frequência 250 Hz e amplitude 1.5 V pp. Sugira formas de reduzir o que está a observar. Explique qual a função do circuito BISTABLE neste modulador delta. Pág. 12

13 Desenhe na Figura 9, as formas de onda registadas no canal 1 para a saída do integrador 1 e no canal 2 para a saída do BISTABLE. Faça a correspondência entre os bits observados à saída do BISTABLE e os flancos do integrador. Represente na figura o intervalo de amostragem, T s. Figura 9 Formas de onda à saída do BISTABLE do emissor e à saída do integrador 1. Tendo em conta, os sinais que já observou nesta sessão de laboratório, explique como funciona este modulador delta [se quiser, e para ajudar na explicação, observe o sinal em vários pontos do emissor]. Pág. 13

MODULAÇÃO DELTA. Laboratório 2 Modulação Delta. Sistemas de Telecomunicações Guiados LABORATÓRIO 2

MODULAÇÃO DELTA. Laboratório 2 Modulação Delta. Sistemas de Telecomunicações Guiados LABORATÓRIO 2 CH APT ER 1 SECTION 1 Sistemas de Telecomunicações Guiados LABORATÓRIO 2 MODULAÇÃO DELTA 1 RESUMOEQUATION O principal objectivo deste trabalho é proporcionar aos alunos o contacto com equipamento que efectua

Leia mais

PULSE CODE MODULATION (PCM)

PULSE CODE MODULATION (PCM) LABORATÓRIO 1 PULSE CODE MODULATION (PCM) 1. RESUMOEQUATION CHAPTER 1 SECTION 1 Na sessão de laboratório vão ser realizadas experiências que permitem corroborar os conhecimentos sobre a representação digital

Leia mais

PULSE CODE MODULATION (PCM)

PULSE CODE MODULATION (PCM) LABORATÓRIO 1 PULSE CODE MODULATION (PCM) 1. RESUMOEQUATION CHAPTER 1 SECTION 1 Na sessão de laboratório vão ser realizadas experiências que permitem corroborar os conhecimentos sobre a representação digital

Leia mais

LABORATÓRIO 4 MULTIPLEXAGEM POR DIVISÃO NO TEMPO

LABORATÓRIO 4 MULTIPLEXAGEM POR DIVISÃO NO TEMPO LABORATÓRIO 4 MULTIPLEXAGEM POR DIVISÃO NO TEMPO 1. RESUMOEQU ATION CH APT ER 1 SECTION 1 Na sessão de laboratório vão ser realizadas experiências que permitem corroborar os conhecimentos sobre sinais

Leia mais

Data: Horário: Turma: Turno: Grupo: Aluno N : Nome: Aluno N : Nome: Aluno N : Nome:

Data: Horário: Turma: Turno: Grupo: Aluno N : Nome: Aluno N : Nome: Aluno N : Nome: Data: Horário: Turma: Turno: Grupo: 3. DIMENSIONAMENTO Esta secção visa preparar os alunos para as experiências que irão realizar no laboratório. Todos os grupos terão de no início da sessão de laboratório

Leia mais

Data: Horário: Turma: Turno: Grupo: Aluno N : Nome: Aluno N : Nome: Aluno N : Nome:

Data: Horário: Turma: Turno: Grupo: Aluno N : Nome: Aluno N : Nome: Aluno N : Nome: Data: Horário: Turma: Turno: Grupo: 3. DIMENSIONAMENTO Esta secção visa preparar os alunos para as experiências que irão realizar no laboratório. Todos os grupos terão de no início da sessão de laboratório

Leia mais

GUIA DE LABORATÓRIO LABORATÓRIO 5 LEI DE FARADAY

GUIA DE LABORATÓRIO LABORATÓRIO 5 LEI DE FARADAY GUIA DE LABORATÓRIO LABORATÓRIO 5 LEI DE FARADAY 1. RESUMO Confirmação da lei de Faraday. Verificação da força electromotriz induzida numa bobine em função da sua secção, do número de espiras e da dependência

Leia mais

GUIA DE LABORATÓRIO LABORATÓRIO 1 TANQUE ELECTROLÍTICO

GUIA DE LABORATÓRIO LABORATÓRIO 1 TANQUE ELECTROLÍTICO GUIA DE LABORATÓRIO LABORATÓRIO 1 TANQUE ELECTROLÍTICO 1. RESUMO Estudo do campo eléctrico estático entre superfícies equipotenciais. Determinação experimental das linhas equipotenciais e do campo eléctrico.

Leia mais

Laboratório 3 Modulação Analógica em Frequência. Data: Horário: Turma: Turno: Grupo: Aluno N : Nome: Aluno N : Nome: Aluno N : Nome:

Laboratório 3 Modulação Analógica em Frequência. Data: Horário: Turma: Turno: Grupo: Aluno N : Nome: Aluno N : Nome: Aluno N : Nome: Data: Horário: Turma: Turno: Grupo: 3. DIMENSIONAMENTO Esta secção visa preparar os alunos para as experiências que irão realizar no laboratório. Todos os grupos terão de no início da sessão de laboratório

Leia mais

Laboratório 4 Fontes do campo magnético GUIA DE LABORATÓRIO LABORATÓRIO 4 FONTES DO CAMPO MAGNÉTICO

Laboratório 4 Fontes do campo magnético GUIA DE LABORATÓRIO LABORATÓRIO 4 FONTES DO CAMPO MAGNÉTICO GUIA DE LABORATÓRIO LABORATÓRIO 4 FONTES DO CAMPO MAGNÉTICO 1. RESUMO Verificação do campo de indução magnética criado por um fio longo, um anel de corrente e uma bobine. Confirmação da lei de Biot-Savarts

Leia mais

Data: Horário: Turma: Turno: Grupo: Aluno N : Nome: Aluno N : Nome: Aluno N : Nome:

Data: Horário: Turma: Turno: Grupo: Aluno N : Nome: Aluno N : Nome: Aluno N : Nome: Data: Horário: Turma: Turno: Grupo: 3. DIMENSIONAMENTO Esta secção visa preparar os alunos para as experiências que irão realizar no laboratório. Todos os grupos terão de no início da sessão de laboratório

Leia mais

Laboratório 4 Amostragem e Reconstrução de Sinais. Data: Horário: Turma: Turno: Grupo: Aluno N : Nome: Aluno N : Nome: Aluno N : Nome:

Laboratório 4 Amostragem e Reconstrução de Sinais. Data: Horário: Turma: Turno: Grupo: Aluno N : Nome: Aluno N : Nome: Aluno N : Nome: Data: Horário: Turma: Turno: Grupo: 3. DIMENSIONAMENTO Esta secção visa preparar os alunos para as experiências que irão realizar no laboratório. Todos os grupos terão de no início da sessão de laboratório

Leia mais

Trabalho de Modulação de Frequência. Guia de procedimento

Trabalho de Modulação de Frequência. Guia de procedimento Trabalho de Modulação de Frequência Guia de procedimento Turma : Grupo : Data: / /2003 Nomes: Este guia contem o conjunto de experiências, observações e medidas a efectuar durante as aulas práticas laboratoriais.

Leia mais

Aula Prática: Filtros Analógicos

Aula Prática: Filtros Analógicos Curso Técnico Integrado em Telecomunicações PRT60806 Princípios de Telecomunicações Professor: Bruno Fontana da Silva 2015-1 Aula Prática: Filtros Analógicos Objetivos: em laboratório, montar um circuito

Leia mais

Conversão Analógico-digital

Conversão Analógico-digital Conversão Analógico-digital Trabalho Laboratorial Objectivos estudar vários aspectos da conversão analógico-digital, nomeadamente, a sobreposição espectral, a quantificação e alguns aspectos relativos

Leia mais

Laboratório 4 Interferência em Microondas GUIA DE LABORATÓRIO LABORATÓRIO 4 INTERFERÊNCIA EM MICROONDAS

Laboratório 4 Interferência em Microondas GUIA DE LABORATÓRIO LABORATÓRIO 4 INTERFERÊNCIA EM MICROONDAS GUIA DE LABORATÓRIO LABORATÓRIO 4 INTERFERÊNCIA EM MICROONDAS 1. RESUMO Utilização de uma corneta rectangular para emissão de uma onda electromagnética em microondas. Estudo do padrão de interferência

Leia mais

Laboratório 3 Polarização e Transmissão de uma Onda Electromagnética GUIA DE LABORATÓRIO

Laboratório 3 Polarização e Transmissão de uma Onda Electromagnética GUIA DE LABORATÓRIO GUIA DE LABORATÓRIO LABORATÓRIO 3 POLARIZAÇÃO E TRANSMISSÃO DE UMA ONDA ELECTROMAGNÉTICA 1. RESUMO Utilização de duas cornetas rectangulares para emissão e recepção de uma onda electromagnética linearmente

Leia mais

SINAIS E SISTEMAS MECATRÓNICOS

SINAIS E SISTEMAS MECATRÓNICOS SINAIS E SISTEMAS MECATRÓNICOS Laboratório #1: Introdução à utilização de aparelhos de medida e geração de sinal: multímetro, osciloscópio e gerador de sinais Mestrado Integrado em Engenharia Mecânica

Leia mais

ELECTRÓNICA GERAL CONVERSOR DIGITAL ANALÓGICO 2º TRABALHO DE LABORATÓRIO 1º SEMESTRE 2015/2016 PEDRO VITOR E JOSÉ GERALD

ELECTRÓNICA GERAL CONVERSOR DIGITAL ANALÓGICO 2º TRABALHO DE LABORATÓRIO 1º SEMESTRE 2015/2016 PEDRO VITOR E JOSÉ GERALD ELECTRÓNICA GERAL 2º TRABALHO DE LABORATÓRIO CONVERSOR DIGITAL ANALÓGICO 1º SEMESTRE 2015/2016 PEDRO VITOR E JOSÉ GERALD AGOSTO 2015 1. Objectivos Pretende-se neste trabalho proceder ao estudo de um conversor

Leia mais

ELECTRÓNICA I. ANÁLISE EM CORRENTE ALTERNADA DE UM CIRCUITO RC Guia de Montagem do Trabalho Prático

ELECTRÓNICA I. ANÁLISE EM CORRENTE ALTERNADA DE UM CIRCUITO RC Guia de Montagem do Trabalho Prático Universidade do Minho Circuito RC - Guia de Montagem Escola de Engenharia Dep. Electrónica Industrial 1/8 ELECTRÓNICA I ANÁLISE EM CORRENTE ALTERNADA DE UM CIRCUITO RC Guia de Montagem do Trabalho Prático

Leia mais

Transmissão em Banda de Base

Transmissão em Banda de Base GUIA DO 2 O TRABALHO DE LABORATÓRIO DE SISTEMAS DE COMUNICAÇÕES Transmissão em Banda de Base Ano Lectivo de 2015/16 Introdução Neste trabalho analisam-se alguns aspectos da transmissão em banda de base

Leia mais

Experiência 2 Metrologia Elétrica. Medições com Osciloscópio e Gerador de Funções

Experiência 2 Metrologia Elétrica. Medições com Osciloscópio e Gerador de Funções Experiência 2 Metrologia Elétrica Medições com Osciloscópio e Gerador de Funções 1) Meça uma onda senoidal de período 16,6ms e amplitude de 4V pico a pico, centrada em 0V. Em seguida configure o menu Measures

Leia mais

MEDIÇÃO DE GRANDEZAS ELÉCTRICAS UTILIZAÇÃO DO OSCILOSCÓPIO E DO MULTÍMETRO

MEDIÇÃO DE GRANDEZAS ELÉCTRICAS UTILIZAÇÃO DO OSCILOSCÓPIO E DO MULTÍMETRO TRABALHO PRÁTICO MEDIÇÃO DE GRANDEZAS ELÉCTRICAS UTILIZAÇÃO DO OSCILOSCÓPIO E DO MULTÍMETRO Objectivo Este trabalho tem como objectivo a familiarização com alguns dos equipamentos e técnicas de medida

Leia mais

PROTOCOLOS DAS AULAS PRÁTICAS. LABORATÓRIOS 2 - Campos e ondas

PROTOCOLOS DAS AULAS PRÁTICAS. LABORATÓRIOS 2 - Campos e ondas PROTOCOLOS DAS AULAS PRÁTICAS DE LABORATÓRIOS 2 - Campos e ondas Conteúdo P1 - Amplificador operacional...3 P2 - RTEC....5 P3 - RTET e RTEC....7 P4 - Realimentação positiva...9 P5 - Intensidade luminosa....11

Leia mais

Instituto Politécnico do Porto Instituto Superior de Engenharia do Porto

Instituto Politécnico do Porto Instituto Superior de Engenharia do Porto Instituto Politécnico do Porto Instituto Superior de Engenharia do Porto Departamento de Engenharia Electrotécnica Licenciatura em Engenharia Electrotécnica e de Computadores disciplina de Teoria dos Circuitos

Leia mais

1º Trabalho de laboratório Iniciação ao uso da instrumentação electrónica. Circuitos RC simples. Circuitos com AmpOps. Parte III

1º Trabalho de laboratório Iniciação ao uso da instrumentação electrónica. Circuitos RC simples. Circuitos com AmpOps. Parte III 1º Trabalho de laboratório Iniciação ao uso da instrumentação electrónica. Circuitos RC simples. Circuitos com AmpOps. Parte III Alunos: Turma: Data: / /2006 A entregar na aula de / /2006 Docente: Classificação:

Leia mais

Laboratório de Fundamentos de Telecomunicações Guia no. 2. Modulação de Amplitude e de Frequência

Laboratório de Fundamentos de Telecomunicações Guia no. 2. Modulação de Amplitude e de Frequência Laboratório de Fundamentos de Telecomunicações Guia no. 2 Modulação de Amplitude e de Frequência Departamento de Engenharia Electrotécnica e de Computadores Instituto Superior Técnico, Março 2016 Guia

Leia mais

Escola Secundária. tensão = número de divisões na escala vertical tensão/divisão. tensão = 4,2 10 mv = 42 mv

Escola Secundária. tensão = número de divisões na escala vertical tensão/divisão. tensão = 4,2 10 mv = 42 mv Grupo de Trabalho: Classificação Professor Numa empresa de telecomunicações investigam-se materiais e métodos inovadores para a comunicação. O sistema de segurança da empresa é bastante rígido. A empresa

Leia mais

Instrumentação e Medidas. Osciloscópios

Instrumentação e Medidas. Osciloscópios Experiência 1 Compreender o funcionamento do modo de disparo dos osciloscópios analógicos e as suas diversas opções. Osciloscópio analógico KIKUSUI 5020 (OSC); Gerador de funções SIEMENS FG 5-3 (GF). 2.

Leia mais

ELECTRÓNICA GERAL FILTROS ACTIVOS E OSCILADORES 1º TRABALHO DE LABORATÓRIO 1º SEMESTRE 2015/2016 JOSÉ GERALD E PEDRO VITOR

ELECTRÓNICA GERAL FILTROS ACTIVOS E OSCILADORES 1º TRABALHO DE LABORATÓRIO 1º SEMESTRE 2015/2016 JOSÉ GERALD E PEDRO VITOR ELECTRÓNICA GERAL 1º TRABALHO DE LABORATÓRIO FILTROS ACTIVOS E OSCILADORES 1º SEMESTRE 2015/2016 JOSÉ GERALD E PEDRO VITOR AGOSTO 2015 Sessão 1 Secções Biquadráticas com 3 Amplificadores Operacionais 1.1

Leia mais

INSTITUTO SUPERIOR TÉCNICO Departamento de Engenharia Electrotécnica e de Computadores (DEEC) Área Científica de Electrónica ELECTRÓNICA GERAL

INSTITUTO SUPERIOR TÉCNICO Departamento de Engenharia Electrotécnica e de Computadores (DEEC) Área Científica de Electrónica ELECTRÓNICA GERAL INSTITUTO SUPERIOR TÉCNICO Departamento de Engenharia Electrotécnica e de Computadores (DEEC) Área Científica de Electrónica ELECTRÓNICA GERAL Mestrado Integrado em Engenharia Biomédica e Mestrado Bolonha

Leia mais

Lab 12 Modulação ASK, PSK e FSK

Lab 12 Modulação ASK, PSK e FSK Objectivos Analisar os sinais ASK, PSK e FSK em relação à largura de banda e espectro em frequência, com e sem utilização de filtro. Mostrar a vantagem de utilização deste tipo de modulação para circuitos

Leia mais

A.L.2.1 OSCILOSCÓPIO

A.L.2.1 OSCILOSCÓPIO A.L.2. OSCILOSCÓPIO FÍSICA.ºANO QUESTÃO-PROBLEMA Perante o aumento da criminalidade tem-se especulado sobre a possibilidade de formas de identificação, alternativas à impressão digital. Uma dessas formas

Leia mais

INSTITUTO SUPERIOR TÉCNICO. Conversores Electrónicos de Potência Comutados a Alta Frequência 5º TRABALHO DE LABORATÓRIO (GUIA) INVERSOR MONOFÁSICO

INSTITUTO SUPERIOR TÉCNICO. Conversores Electrónicos de Potência Comutados a Alta Frequência 5º TRABALHO DE LABORATÓRIO (GUIA) INVERSOR MONOFÁSICO INSTITUTO SUPERIOR TÉCNICO Conversores Electrónicos de Potência Comutados a Alta Frequência 5º TRABALHO DE LABORATÓRIO (GUIA) INVERSOR MONOFÁSICO Beatriz Vieira Borges e Hugo Ribeiro IST - 2013 1 INSTITUTO

Leia mais

TRABALHO 2 Amplificadores Operacionais e Diodos

TRABALHO 2 Amplificadores Operacionais e Diodos GUIA DE LABORATÓRIO Análise de Circuitos - LEE TRABALHO 2 Amplificadores Operacionais e Diodos INSTITUTO SUPERIOR TÉCNICO Departamento de Engenharia Electrotécnica e de Computadores Secção de Electrónica

Leia mais

Conversão analógico-digital e digital-analógica

Conversão analógico-digital e digital-analógica Objectivos Conversão analógico-digital e digital-analógica Trabalho Laboratorial 6 Estudo da conversão analógico-digital (A/D). Determinação do quantum Q e da curva característica do conversor Estudo da

Leia mais

CIRCUITOS E SISTEMAS ELECTRÓNICOS

CIRCUITOS E SISTEMAS ELECTRÓNICOS INSTITUTO SUPERIOR DE CIÊNCIAS DO TRABALHO E DA EMPRESA Enunciado do 1º Trabalho de Laboratório CIRCUITOS E SISTEMAS ELECTRÓNICOS MODELAÇÃO E SIMULAÇÃO DE CIRCUITOS COM AMPLIFICADORES OPERACIONAIS (AMPOPS)

Leia mais

ELECTROTECNIA TEÓRICA MEEC IST

ELECTROTECNIA TEÓRICA MEEC IST ELECTROTECNIA TEÓRICA MEEC IST 2º Semestre 2017/18 4º TRABALHO LABORATORIAL REGIMES TRANSITÓRIOS Prof. V. Maló Machado Prof. M. Guerreiro das Neves Prof.ª Mª Eduarda Pedro ELECTROTECNIA TEÓRICA CIRCUITOS

Leia mais

CET em Telecomunicações e Redes Telecomunicações. Lab 6 Modulação PAM

CET em Telecomunicações e Redes Telecomunicações. Lab 6 Modulação PAM Objectivos Comprovar que o parâmetro de onda que transporta a informação é a amplitude. Qual a função do circuito de amostragem. Determinar o formato do espectro do sinal PAM e o efeito dos parâmetros

Leia mais

MEDIÇÃO DE GRANDEZAS ELÉCTRICAS UTILIZAÇÃO DO OSCILOSCÓPIO E DO MULTÍMETRO

MEDIÇÃO DE GRANDEZAS ELÉCTRICAS UTILIZAÇÃO DO OSCILOSCÓPIO E DO MULTÍMETRO TRABALHO PRÁTICO MEDIÇÃO DE GRANDEZAS ELÉCTRICAS UTILIZAÇÃO DO OSCILOSCÓPIO E DO MULTÍMETRO Objectivo - Este trabalho tem como objectivo a familiarização com alguns dos equipamentos e técnicas de medida

Leia mais

Objetivo Geral Entender o funcionamento e as principais características do amplificador operacional ou ampop como comparador de sinais.

Objetivo Geral Entender o funcionamento e as principais características do amplificador operacional ou ampop como comparador de sinais. ( ) Prova ( ) Prova Semestral ( ) Exercícios ( ) Prova Modular ( ) Segunda Chamada ( ) Exame Final ( ) Prática de Laboratório ( ) Aproveitamento Extraordinário de Estudos Nota: Disciplina: Turma: Aluno

Leia mais

UNIVERSIDADE LUSÓFONA DE HUMANIDADES E TECNOLOGIAS LICENCIATURA EM ENGENHARIA ELECTROTÉCNICA ELECTRÓNICA GERAL

UNIVERSIDADE LUSÓFONA DE HUMANIDADES E TECNOLOGIAS LICENCIATURA EM ENGENHARIA ELECTROTÉCNICA ELECTRÓNICA GERAL UNIVERSIDDE LUSÓFON DE HUMNIDDES E TENOLOGIS LIENITUR EM ENGENHRI ELETROTÉNI ELETRÓNI GERL º TRLHO DE LORTÓRIO Montagens básicas com mpops e características não ideais dos mpops João eirante 1. Introdução

Leia mais

ANÁLISE DE CIRCUITOS LABORATÓRIO

ANÁLISE DE CIRCUITOS LABORATÓRIO ANÁLISE DE CIRCUITOS LABORATÓRIO Ano Lectivo 20 / 20 Curso Grupo Classif. Rubrica Trabalho N.º 4 A Bobina Plano de Trabalhos e Relatório: 1. As bobinas nos circuitos em corrente alternada sinusoidal. A

Leia mais

PSI LABORATÓRIO DE CIRCUITOS ELÉTRICOS

PSI LABORATÓRIO DE CIRCUITOS ELÉTRICOS ESCOLA POLITÉCNICA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 3212 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS GUIA DE EXPERIMENTOS Experiência 2 - Medição de Grandezas Elétricas

Leia mais

Medição de Tensões e Correntes Eléctricas. Leis de Ohm e de Kirchhoff

Medição de Tensões e Correntes Eléctricas. Leis de Ohm e de Kirchhoff Ano lectivo: 2010 2011 Medição de Tensões e Correntes Eléctricas. Leis de Ohm e de Kirchhoff 1. OBJECTIVO Aprender a utilizar um osciloscópio e um multímetro digital. Medição de grandezas AC e DC. Conceito

Leia mais

Guias de Laboratório da Unidade Curricular Eletrónica 2 (Licenciatura em Engenharia Eletrotécnica e de Computadores)

Guias de Laboratório da Unidade Curricular Eletrónica 2 (Licenciatura em Engenharia Eletrotécnica e de Computadores) Guias de Laboratório da Unidade Curricular Eletrónica 2 (Licenciatura em Engenharia Eletrotécnica e de Computadores) Jorge Manuel Martins ESTSetúbal, julho de 2017 Índice Lab. 1 - Estudo de um Amplificador

Leia mais

Física II. Laboratório 1 Instrumentação electrónica

Física II. Laboratório 1 Instrumentação electrónica Física II Laboratório 1 Instrumentação electrónica OBJECTIVO Utilizar instrumentos electrónicos: osciloscópios, geradores de sinais, fontes de corrente e tensão, multímetros. 1. INTRODUÇÃO Com o multímetro

Leia mais

Modulações Digitais Binárias

Modulações Digitais Binárias GUIA DO 3 O TRABALHO DE LABORATÓRIO DE SISTEMAS DE COMUNICAÇÕES Modulações Digitais Binárias Ano Lectivo de 2015/16 Introdução Neste trabalho analisam-se alguns aspectos das modulações digitais binárias

Leia mais

Modulação e Codificação

Modulação e Codificação INSTITUTO SUPERIOR DE CIÊNCIAS DO TRABALHO E DA EMPRESA Departamento de Ciências e Tecnologias de Informação Engenharia de Telecomunicações e Informática Modulação e Codificação Ano Lectivo 2001/2002 2º

Leia mais

Trabalho prático nº 2 de Electrónica 2009/2010

Trabalho prático nº 2 de Electrónica 2009/2010 Trabalho prático nº 2 de Electrónica 2009/2010 Título: Amplificador operacional. Configuração inversora. Sumário Proceder se á à montagem de circuitos simples com amplificadores operacionais (ampops) em

Leia mais

Universidade de São Paulo

Universidade de São Paulo Universidade de São Paulo Instituto de Física NOTA PROFESSOR 4323202 Física Experimental B Equipe 1)... função... Turma:... 2)... função... Data:... 3)... função... Mesa n o :... EXP 3- Linhas de Transmissão

Leia mais

Medição de Características de Circuitos Atenuadores

Medição de Características de Circuitos Atenuadores Identificação: Alunos: 1. 2. Turma 3EEC Data: / / Classificação: (0-5) Medição de Características de Circuitos Atenuadores Trabalho Laboratorial 4 Objectivos Estudo de métodos de medição de: tensão, tempo,

Leia mais

Controlo por fase de uma carga indutiva

Controlo por fase de uma carga indutiva Trabalho Prático n o 6 Controlo por fase de uma carga indutiva Objectivos i) Consolidar o conceito de controlo por fase. ii) Estudar a conversão de corrente alternada em corrente contínua. iii) Chamar

Leia mais

Princípios de Telecomunicações. PRT60806 Aula 19: Modulação por Código de Pulso (PCM) Professor: Bruno Fontana da silva 2014

Princípios de Telecomunicações. PRT60806 Aula 19: Modulação por Código de Pulso (PCM) Professor: Bruno Fontana da silva 2014 1 Princípios de Telecomunicações PRT60806 Aula 19: Modulação por Código de Pulso (PCM) Professor: Bruno Fontana da silva 2014 Bloco de Comunicação Genérico Emissor sinais analógicos x sinais digitais Sinais

Leia mais

Trabalho prático nº 5 de Electrónica 2009/2010

Trabalho prático nº 5 de Electrónica 2009/2010 Trabalho prático nº 5 de Electrónica 29/21 Título: Circuito amplificador com um transístor em montagem de emissor comum (com e sem degenerescência do emissor). Sumário Proceder se á à montagem de um circuito

Leia mais

Conversão Analógico-Digital

Conversão Analógico-Digital GUIA DO 1 O TRABALHO DE LABORATÓRIO DE SISTEMAS DE COMUNICAÇÕES Conversão Analógico-Digital Ano Lectivo de 2015/2016 Introdução Neste trabalho analisam-se as várias etapas envolvidas na digitalização de

Leia mais

Experiência: CIRCUITOS INTEGRADORES E DERIVADORES COM AMPOP

Experiência: CIRCUITOS INTEGRADORES E DERIVADORES COM AMPOP ( ) Prova ( ) Prova Semestral ( ) Exercícios ( ) Prova Modular ( ) Segunda Chamada ( ) Exame Final ( ) Prática de Laboratório ( ) Aproveitamento Extraordinário de Estudos Nota: Disciplina: Turma: Aluno

Leia mais

Guiões dos Trabalhos Práticos

Guiões dos Trabalhos Práticos UNIVERSIDADE NOVA DE LISBOA FACULDADE DE CIÊNCIAS E TECNOLOGIA SECÇÃO DE MATERIAIS ELECTROACTIVOS DEPARTAMENTO DE CIÊNCIA DOS MATERIAIS LICENCIATURA EM ENG.ª FÍSICA Acústica Aplicada Guiões dos Trabalhos

Leia mais

PSI LABORATÓRIO DE CIRCUITOS ELÉTRICOS

PSI LABORATÓRIO DE CIRCUITOS ELÉTRICOS ESCOLA POLITÉCNICA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 3212 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS GUIA DE EXPERIMENTOS Experiência 2 - Medição de Grandezas Elétricas

Leia mais

3º Trabalho de Laboratório Objectivo Geral: Largura de banda de impulsos; Espectros de sinais básicos; Propriedades da transformada de Fourier.

3º Trabalho de Laboratório Objectivo Geral: Largura de banda de impulsos; Espectros de sinais básicos; Propriedades da transformada de Fourier. Departamento de Engenharia Electrotécnica Secção de Telecomunicações Mestrado integrado em Engenharia Electrotécnica e de Computadores Licenciatura em Engenharia Informática Grupo: nº e 3º Trabalho de

Leia mais

PSI LABORATÓRIO DE CIRCUITOS ELÉTRICOS

PSI LABORATÓRIO DE CIRCUITOS ELÉTRICOS ESCOLA POLITÉCNICA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 3031 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS GUIA DE EXPERIMENTOS Experiência 2 - Medição de Grandezas Elétricas

Leia mais

UNIVERSIDADE LUSÓFONA DE HUMANIDADES E TECNOLOGIAS LICENCIATURA EM ENGENHARIA ELECTROTÉCNICA ELECTRÓNICA GERAL

UNIVERSIDADE LUSÓFONA DE HUMANIDADES E TECNOLOGIAS LICENCIATURA EM ENGENHARIA ELECTROTÉCNICA ELECTRÓNICA GERAL UNIVERSIDADE LUSÓFONA DE HUMANIDADES E TECNOLOGIAS LICENCIATURA EM ENGENHARIA ELECTROTÉCNICA ELECTRÓNICA GERAL 3º TRABALHO DE LABORATÓRIO DÍODO João Beirante 1º Parte do Trabalho de Laboratório 1. INTRODUÇÃO

Leia mais

Relatório: Experimento 1

Relatório: Experimento 1 Relatório: Experimento 1 Nome 1: Assinatura 1: Nome 2: Assinatura 2: Nome 3: Assinatura 3: Nome 4: Assinatura 4: Turma: Procedimento I: seleção dos parâmetros da forma de onda no gerador de funções e medida

Leia mais

EXPERIMENTO7: OSCILOSCÓPIO DIGITAL CIRCUITO RC

EXPERIMENTO7: OSCILOSCÓPIO DIGITAL CIRCUITO RC EXPERIMENTO7: OSCILOSCÓPIO DIGITAL CIRCUITO RC Nesse experimento você utilizará o osciloscópio como uma ferramenta para observar os sinais de tensão elétrica em um circuito contendo um resistor e um capacitor

Leia mais

Guia de Laboratório de Electrónica II. Amplificadores Operacionais

Guia de Laboratório de Electrónica II. Amplificadores Operacionais Instituto Superior Técnico Departamento de Engenharia electrotécnica e de Computadores Secção de Electrónica Guia de Laboratório de Electrónica II Amplificadores Operacionais (º trabalho) Grupo Nº Número

Leia mais

Lab 8 Modulação PPM e PDM

Lab 8 Modulação PPM e PDM CET em e Redes Objectivos Constatar que o parâmetro no qual a informação é transmitida é a largura dos pulsos, para a modulação DM e a distância entre os pulsos para a modulação M. Obter um sinal DM de

Leia mais

Medidas com circuito Ponte de Wheatstone DC e AC O aluno deverá entregar placa padrão com os circuitos montados, o kit montado não será devolvido.

Medidas com circuito Ponte de Wheatstone DC e AC O aluno deverá entregar placa padrão com os circuitos montados, o kit montado não será devolvido. Experiência Metrologia Elétrica Medidas com circuito Ponte de Wheatstone DC e AC O aluno deverá entregar placa padrão com os circuitos montados, o kit montado não será devolvido. ) Monte uma ponte de Wheatstone

Leia mais

Escola Politécnica - USP

Escola Politécnica - USP Escola Politécnica - USP Equipe:- Turma: PSI2327 Laboratório de Eletrônica III Exp 2: Amplificadores Operacionais - - Profs: - - Data de Realização do Experimento: Nota: Bancada: 2005 1. Objetivos Este

Leia mais

2 Ressonância e factor de qualidade

2 Ressonância e factor de qualidade Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia Departamento de Física Electromagnetismo e Física Moderna 2 Ressonância e factor de qualidade Os circuitos RLC Observar a ressonância em

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 2307 Laboratório de Eletrônica Exp.7 Amplificadores Operacionais Turma: ( ) SEG - T1-2 ( ) TER T3

Leia mais

Leia atentamente o texto da Aula 6, Corrente alternada: circuitos resistivos, e responda às questões que seguem.

Leia atentamente o texto da Aula 6, Corrente alternada: circuitos resistivos, e responda às questões que seguem. PRÉ-RELATÓRIO 6 Nome: turma: Leia atentamente o texto da Aula 6, Corrente alternada: circuitos resistivos, e responda às questões que seguem. 1 Explique o significado de cada um dos termos da Equação 1,

Leia mais

Introdução teórica Aula 10: Amplificador Operacional

Introdução teórica Aula 10: Amplificador Operacional Introdução Introdução teórica Aula 10: Amplificador Operacional O amplificador operacional é um componente ativo usado na realização de operações aritméticas envolvendo sinais analógicos. Algumas das operações

Leia mais

Trabalho prático nº 4 de Electrónica 2008/2009

Trabalho prático nº 4 de Electrónica 2008/2009 Trabalho prático nº 4 de Electrónica 2008/2009 Título: Circuito amplificador com um transístor em montagem de emissor comum (com e sem degenerescência do emissor). Sumário Proceder se á à montagem de um

Leia mais

Cursos de Engenharia Electrotécnica e Engª de Electrónica e Computadores. Electrónica I

Cursos de Engenharia Electrotécnica e Engª de Electrónica e Computadores. Electrónica I Cursos de Engenharia Electrotécnica e Engª de Electrónica e Computadores Electrónica I 2º Trabalho de Laboratório Estudo de circuitos com díodos Março de 2003 2º Trabalho de Laboratório Estudo de circuitos

Leia mais

1. Objetivos. 2. Preparação

1. Objetivos. 2. Preparação 1. Objetivos Este experimento tem como objetivo o levantamento experimental das principais características estáticas e dinâmicas de amplificadores operacionais através de medida e ajuste de off-set e medida

Leia mais

Trabalho prático nº 3 de Electrónica 2009/2010

Trabalho prático nº 3 de Electrónica 2009/2010 Trabalho prático nº 3 de Electrónica 2009/2010 Título: Amplificador operacional. ConFiguração não inversora (seguidor de tensão). Sensor de temperatura. Sumário Utilizar se á o circuito do trabalho prático

Leia mais

Electrónica I. 1º Semestre 2010/2011. Equipamento e Material de Laboratório. Guia de Utilização. Fernando Gonçalves Teresa Mendes de Almeida

Electrónica I. 1º Semestre 2010/2011. Equipamento e Material de Laboratório. Guia de Utilização. Fernando Gonçalves Teresa Mendes de Almeida Electrónica I 1º Semestre 2010/2011 Equipamento e Material de Laboratório Guia de Utilização Fernando Gonçalves Teresa Mendes de Almeida INSTITUTO SUPERIOR TÉCNICO Departamento de Engenharia Electrotécnica

Leia mais

Escola Superior de Tecnologia

Escola Superior de Tecnologia Escola Superior de Tecnologia Departamento de Engenharia Electrotécnica Electrónica I 1º Trabalho de Laboratório Características V-I do díodo de silício, do díodo Zener e do díodo emissor de luz - LED

Leia mais

Electrotecnia. Exercícios

Electrotecnia. Exercícios Electrotecnia Exercícios (72 Exercícios) Rui Antunes Ano Lectivo 2010/2011 1 - Considere o circuito da placa EB-101 constituído pelas resistências R11 a R14. a) Obtenha o valor das resistências R11 a R14,

Leia mais

01 - ( ) A informação ou sinal modulante está presente nas faixas laterais, modificando a amplitude e a freqüência destas componentes.

01 - ( ) A informação ou sinal modulante está presente nas faixas laterais, modificando a amplitude e a freqüência destas componentes. MODULAÇÃO EM AMPLITUDE 1 QUESTIONÁRIO DA UNIDADE II ASSUNTO: Modulação em Amplitude Nome: N o : Turma: Para cada período abaixo mencionado, analise seu conteúdo e marque F para uma situação FALSA ou V

Leia mais

Laboratório #2: Análise de sistemas de 2ª ordem puro.

Laboratório #2: Análise de sistemas de 2ª ordem puro. SINAIS E SISTEMAS MECATRÓNICOS Laboratório #: Análise de sistemas de ª ordem puro. Mestrado Integrado em Engenharia Mecânica Outubro 011 Realizar na aula de laboratório: 7ª Semana Duração: 1,5 horas. Relativamente

Leia mais

Conversores Digital/Analógico (D/A) e Analógico/Digital (A/D)

Conversores Digital/Analógico (D/A) e Analógico/Digital (A/D) Conversores Digital/Analógico (D/A) e Analógico/Digital (A/D) Conversores A/D e D/A são a base de todo o interfaceamento eletrônico entre o mundo analógico e o mundo digital. Estão presentes na grande

Leia mais

Aula 22. Conversão Sigma-Delta (continuação)

Aula 22. Conversão Sigma-Delta (continuação) Aula 22 Conversão Sigma-Delta (continuação) A estrutura mostrada na figura A.22.1 é chamado modulador Sigma-Delta (Σ- ). Esta estrutura, além de ser mais simples, pode ser considerada como uma versão suavizada

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 2307 Laboratório de Eletrônica Exp. 5 Amplificadores de Pequenos Sinais e Exp. 6 Amplificadores de

Leia mais

TRABALHO 1 Leis de Kirchhoff, Equivalente de Thévenin e Princípio de Sobreposição

TRABALHO 1 Leis de Kirchhoff, Equivalente de Thévenin e Princípio de Sobreposição GUIA DE LABORATÓRIO Análise de Circuitos - LEE TRABALHO 1 Leis de Kirchhoff, Equivalente de Thévenin e Princípio de Sobreposição INSTITUTO SUPERIOR TÉCNICO Departamento de Engenharia Electrotécnica e de

Leia mais

ELETRÔNICA DE POTÊNCIA I

ELETRÔNICA DE POTÊNCIA I ELETRÔNICA DE POTÊNCIA I Conversor Buck Módulo de Potência APARATO UTILIZADO: Você recebeu uma placa com de circuito com o circuito cujo esquema é mostrado na figura 1. O circuito é composto por um retificador

Leia mais

DESCARGA EM CIRCUITO RC

DESCARGA EM CIRCUITO RC INSTITUTO DE FÍSICA DA UNIVERSIDADE DE SÃO PAULO Laboratório de Eletromagnetismo (4300373) 2 o SEMESTRE DE 2013 Grupo:......... (nomes completos) Prof(a).:... Diurno ( ) Noturno ( ) Data : / / 1. Introdução

Leia mais

Objectivo Geral: Modulação digital por codificação de pulsos PCM (Pulse Code Modulation) e DPCM (Differential Pulse Code Modulation).

Objectivo Geral: Modulação digital por codificação de pulsos PCM (Pulse Code Modulation) e DPCM (Differential Pulse Code Modulation). Departamento de Engenharia Electrotécnica Secção de Telecomunicações Mestrado integrado em Engenharia Electrotécnica e de Computadores Licenciatura em Engenharia Informática 7º Trabalho de Laboratório

Leia mais

O amplificador operacional Parte 1: amplificador inversor não inversor

O amplificador operacional Parte 1: amplificador inversor não inversor Instituto uperior Técnico Departamento de Engenharia Electrotécnica e de Computadores Área de Electrónica O amplificador operacional Parte : amplificador inversor não inversor Trabalho de Laboratório Teoria

Leia mais

INSTITUTO DE FÍSICA UNIVERSIDADE DE SÃO PAULO. Grupo:... (nomes completos) Prof(a).:... Diurno ( ) Noturno ( ) Experiência 7

INSTITUTO DE FÍSICA UNIVERSIDADE DE SÃO PAULO. Grupo:... (nomes completos) Prof(a).:... Diurno ( ) Noturno ( ) Experiência 7 INSTITUTO DE FÍSICA UNIVERSIDADE DE SÃO PAULO Laboratório de Eletromagnetismo (4300373) Grupo:......... (nomes completos) Prof(a).:... Diurno Noturno Data : / / Experiência 7 MAPEAMENTO DE CAMPO MAGNÉTICO

Leia mais

MODULAÇÃO POR CÓDIGO DE PULSO PCM

MODULAÇÃO POR CÓDIGO DE PULSO PCM Instituto Federal de Santa Catarina Curso Técnico Integrado em Telecomunicações PRT- Princípios de Telecomunicações MODULAÇÃO POR CÓDIGO DE PULSO PCM Prof. Deise Monquelate Arndt Fontes: Princípios de

Leia mais

. Medição de tensões contínuas (DC) : Volt [V]. Medição de tensões alternas (AC)

. Medição de tensões contínuas (DC) : Volt [V]. Medição de tensões alternas (AC) Medição de Tensões e de Correntes Eléctricas. Leis de Ohm e de Kirchoff 1. Objectivo: Aprender a medir tensões e correntes eléctricas com um osci1oscópio e um multímetro digital. Conceito de resistência

Leia mais