Capítulo 6 Estatística não-paramétrica

Tamanho: px
Começar a partir da página:

Download "Capítulo 6 Estatística não-paramétrica"

Transcrição

1 Capítulo 6 Estatística não-paramétrica Slide 1 Teste de ajustamento do Qui-quadrado Testes de independência e de homogeneidade do Qui-quadrado Testes dos sinais e de Wilcoxon Teste de Mann-Whitney Teste de correlação ordinal de Spearman

2 Algumas considerações Slide 2 v As duas primeiras secções deste capítulo referem-se à análise de dados categorizados (qualitativos ou atributos) os quais podem ser classificados em diferentes categorias (frequentemente designadas por células). v Vamos usar a distribuição χ 2 (Qui-quadrado). v No teste de ajustamento temos uma tabela com apenas uma linha ou uma coluna. v Nos testes de independência e de homogeneidade as tabelas têm, pelo menos, 2 linhas e 2 colunas.

3 Algumas considerações Slide 3 Definições v Testes Paramétricos Os testes paramétricos obrigam a que as populações envolvidas obedeçam a certas premissas. v Testes Não-Paramétricos Nos testes não-paramétricos as populações não têm que obedecer a quaisquer premissas. Assim sendo, este testes são também designados por testes distribution-free.

4 Vantagens dos Métodos Não-paramétricos Slide 4 1. Os métodos não-paramétricos podem ser aplicados numa grande variedade de situações pois não exigem premissas rígidas, tal como acontece com os métodos paramétricos. Em particular, os métodos não-paramétricos não exigem que as populações tenham distribuição Normal. 2. Ao contrário do que acontece com os métodos paramétricos, os métodos não-paramétricos podem ser aplicados a dados qualitativos. 3. Habitualmente, os métodos não-paramétricos envolvem cálculos mais simples do que os correspondentes métodos paramétricos, donde são mais fáceis de perceber e aplicar.

5 Desvantagens dos Métodos Não-paramétricos Slide 5 1. Os métodos não-paramétricos tendem a desperdiçar informação uma vez que, frequentemente, os dados quantitativos são transformados em dados qualitativos. 2. Os testes não-paramétricos não são tão eficientes como os métodos paramétricos logo, em geral, com um teste não-paramétrico é necessário uma maior evidência (como, por exemplo, uma amostra maior ou maiores diferenças) para poder rejeitar a hipótese nula.

6 Definição Slide 6 Experiência Multinomial Esta é uma experiência que obedece às seguintes condições: 1. O número de provas é fixo. 2. As provas são independentes. 3. Todos os resultados de uma prova devem poder ser classificados numa só das diferentes categorias. 4. As probabilidades para cada uma das categorias permanecem constantes em cada prova.

7 Definição Slide 7 Teste de ajustamento Um teste de ajustamento é usado para testar a hipótese de uma certa distribuição de frequências observadas seguir uma certa distribuição teórica.

8 Teste de ajustamento Slide 8 Notação 0 representa a frequência (ou valor) observada (o) E representa a frequência esperada (de acordo com a distribuição teórica) k n representa o número de categorias representa a dimensão da amostra (ou seja, neste contexto, o número de provas)

9 Frequências Esperadas Slide 9 Se todas as frequências esperadas forem iguais: E = n k cada valor esperado é a soma de todas as frequências observadas dividida pelo número de categorias.

10 Frequências Esperadas Slide 10 Se as frequências esperadas forem diferentes: E = n p cada valor esperado determina-se multiplicando a soma de todas as frequências observadas pela probabilidade de cada categoria.

11 Teste de ajustamento Slide 11 Estatística de teste X 2 = Σ (O E)2 E Valores críticos 1. Determinam-se usando a tabela da distribuição Qui-quadrado com k 1 graus de liberdade, onde k = número de categorias. 2. A hipótese alternativa é sempre unilateral direita.

12 Slide 12 v Se os valores observados estiverem próximos dos valores esperados, então o valor da estatística de teste será pequeno (que é o mesmo do que dizer que o P-value será grande) e vice-versa. v Um valor muito elevado da estatística de teste levará à rejeição da hipótese nula (a qual diz que não há diferença entre os valores observados e os valores esperados)

13 Slide 13 Tabelas de contingência: Independência e Homogeneidade

14 Definição Slide 14 v Uma tabela de contingência é uma tabela de frequências que representa um conjunto de dados que foram classificados simultaneamente segundo duas (bidimensional) ou mais variáveis (multidimensional). As tabelas de contingência têm, pelo menos, 2 linhas e 2 colunas.

15 Slide 15

16 Definição Slide 16 v Teste de Independência Este método testa a hipótese nula de a variável linha e a variável coluna numa tabela de contingência não estarem relacionadas. (A hipótese nula afirma que as duas variáveis são independentes.)

17 Pressupostos 1. As observações são seleccionadas aleatoriamente. Slide A hipótese nula H 0 afirma que as variáveis linha e coluna são independentes; a hipótese alternativa H 1 afirma que as variáveis linha e coluna são dependentes. 3. O valor esperado, E, de cada célula da tabela de contingência tem que ser, pelo menos, 5. (Que não é o mesmo do que dizer que cada valor observado, O, de cada célula da tabela de contingência tenha que ser, pelo menos, 5.)

18 Teste de Independência Estatística de teste Slide 18 Valores críticos: X 2 = Σ X 2 = Σ (O E)2 E Correcção de Yates: aplica-se quando a tabela de contingência é 2x2. Neste caso, a estatística de teste é ( O E -0.5)2 E 1. Determinam-se através da tabela da distribuição Quiquadrado com (r 1)(c 1)=graus de liberdade onde r é o número de linhas e c o número de colunas da tabela de contingência.

19 Slide A hipótese alternativa é sempre unilateral direita. E = (total de linha) (total de coluna) (total) E = n i. n.j n

20 Teste de Independência Slide 20 H 0 : A variável linha é independente da variável coluna. H 1 : A variável linha é dependente (está relacionada com a) da variável coluna. A dependência entre as duas variáveis significa apenas que as duas variáveis estão relacionadas, não especifica o tipo de relação (por exº, do tipo causa/efeito).

21 Frequências Observadas e Esperadas Slide 21 Survived Died Men Women Boys Girls Total Total Vamos usar a tabela de contingência referente aos passageiros do Titanic para calcular as frequências esperadas. Para a primeira célula, a que se encontra na posição 11, ou seja, 1ª linha e 1ª coluna, temos: E 11 = n 1. n.1 n = (706)(1692) 2223 =

22 Frequências Observadas e Esperadas Slide 22 Survived Men Women Boys Girls Total Died Total Cálculo da frequência esperada da célula na posição 21, sob a hipótese de independência entre as variáveis. E 21 = (1517)(1692) 2223 =

23 Frequências Observadas e Esperadas Slide 23 Survived Men Women Boys Girls Total Died Total Para interpretar o resultado obtido para a célula, por exemplo, na posição 21, dizemos que embora tivessem sido observadas 1360 mortes nos homens, se houvesse independência entre a sobrevivência e o facto de um indivíduo ser homem, mulher, rapaz ou rapariga, esperaríamos apenas mortes nos homens.

24 Slide 24 Exemplo: Teste a hipótese de a sobrevivência dos passageiros do Titanic ser independente do facto do passageiro ser homem, mulher, rapaz ou rapariga, usando um nível de significância de H 0 : A sobrevivência dos passageiros é independente do facto de ser homem, mulher, rapaz ou rapariga. H 1 : A sobrevivência dos passageiros é dependente do facto de ser homem, mulher, rapaz ou rapariga.

25 Slide 25 Cálculos: X 2 = ( ) 2 + ( ) 2 + ( ) 2 + ( ) ( ) 2 + ( ) 2 + ( ) 2 + ( ) X 2 = =

26 Slide 26 O número de graus de liberdade é (r 1)(c 1) = (2 1)(4 1) = 3 pois a tabela tem 2 linhas e 4 colunas. Então, o valor crítico é χ 2 (0.05;3) = 7.815

27 Estatística de teste: X 2 = Slide 27 com α = 0.05 e (r 1) (c 1) = (2 1) (4 1) = 3 graus de liberdade Valor crítico: χ 2 = 7.815

28 Relações entre as componentes num Teste de Independência Slide 28 Com pare os valores observados, O, com os respectivos valores esperados, E. O `s e E `s próxim os. X 2 pequeno, P-value grande. O `s e E `s afastados. X 2 grande, P-value pequeno. X 2 aqui X 2 aqui N ão rejeitar H 0. R ejeitar H 0.

29 Definição Slide 29 v Teste de Homogeneidade Num teste de homogeneidade, verificamos se diferentes populações têm as mesmas características.

30 Como distinguir um teste de homogeneidade dum teste de independência: Slide 30 A dimensão das amostras provenientes das diferentes populações foi fixada à partida (teste de homogeneidade), ou foi recolhida apenas uma amostra que depois foi classificada aleatoriamente nas diferentes linhas e colunas (teste de independência)?

31 Slide 31 Exemplo: Através da tabela que se segue, teste o efeito do sexo do entrevistador nas respostas de uma amostra de indivíduos do sexo masculino a uma certa sondagem, com um nível de significância de 0.05.

32 Slide 32 H 0 : A proporção de respostas concordantes/discordantes é a mesma quer o entrevistador seja do sexo masculino ou feminino. H 1 : A proporção é diferente. Chi-Square Tests Value df Asymp. Sig. (2-sided) Pearson Chi-Square 6,529(b) 1,011 Continuity Correction(a) 6,184 1,013 Likelihood Ratio 6,662 1,010 Exact Sig. (2-sided) Exact Sig. (1-sided) Fisher's Exact Test,011,006 Linear-by-Linear Association 6,524 1,011 N of Valid Cases 1200 a Computed only for a 2x2 table b 0 cells (,0%) have expected count less than 5. The minimum expected count is 110,67.

33 Slide 33 O SPSS fornece-nos o valor da estatística de teste X 2 = e o P-value (pois a tabela é 2x2). Usando a abordagem através do P-value, rejeitamos a hipótese nula de igualdade (homogeneidade) das proporções (porque o P-value é menor do que 0.05). Assim, concluímos que existe evidência suficiente para rejeitar a hipótese de igualdade de proporções.

34 Definição Slide 34 Os dados estão ordenados quando estão dispostos de acordo com algum critério como, por exemplo, do menor para o maior ou do melhor para o pior. Um rank é um número que é atribuído a cada elemento da amostra tendo em conta a sua ordem na lista ordenada. Ao primeiro elemento da lista ordenada é atribuído o rank 1, ao segundo o rank 2 e assim sucessivamente.

35 Exemplo Slide Valores da amostra Valores dispostos por ordem Ranks

36 Como lidar com observações empatadas Slide 36 Use os ranks médios das observações empatadas Valores da amostra Ranks As observações 2 e 3 estão empatadas.

37 Teste de Correlação Ordinal de Spearman Slide 37 v A correlação ordinal (entre os ranks) é determinada usando os ranks das observações das amostras emparelhadas. v O teste de correlação ordinal de Spearman é usado para testar a existência de associação entre duas variáveis. v H o : ρ s = 0 (Não existe correlação entre as duas variáveis.) v H 1 : ρ s 0 (Existe correlação entre as duas variáveis.)

38 Vantagens Slide O método não-paramétrico de correlação ordinal (correlação entre os ranks) pode ser usado numa maior variedade de situações do que o seu correspondente paramétrico (Teste de correlação linear de Pearson). 2. A correlação ordinal pode ser usada para detectar algumas (não todas) relações que não são lineares. 3. Os cálculos necessários para determinar a correlação ordinal são mais simples do que os para determinar a correlação linear.

39 Pressupostos Slide A amostra é uma amostra aleatória. 2. Não existe qualquer exigência quanto à distribuição de qualquer uma das duas populações, ao contrário do que sucede com os métodos paramétricos.

40 Notação Slide 40 r s = coeficiente de correlação ordinal para amostras emparelhadas (r s é uma estatística amostral) ρ s = coeficiente de correlação ordinal da população (ρ s é um parâmetro populacional) n = número de pares de observações d = diferença dos ranks de cada par de observações r s designa-se por coeficiente de correlação ordinal de Spearman.

41 Estatística de Teste para o Coeficiente de Correlação Ordinal Slide 41 onde cada valor de d corresponde à diferença dos ranks de cada par de observações. Valores críticos: r s = 1 6 Σd2 n(n 2 1) v Se n 30, consulte a tabela da estatística de Spearman v Se n > 30, use a fórmula que se segue e, em seguida, consulte a tabela da distribuição Normal

42 Slide 42 r s = ± z n 1 (valores críticos quando n > 30) onde o valor de z determina-se tendo em conta o nível de significância.

43 Coeficiente de correlação ordinal para testar H 0 : ρ s = 0 Início Slide 43 Os n pares de valores estão na forma de ranks? Sim Calcule a diferença d para cada par de ranks subtraindo o rank menor ao rank maior. Não Converta os valores de cada amostra em ranks (de 1 até n) Eleve ao quadrado cada diferença d e, em seguida, Determine a soma dos quadrados Let n equal the total number Σ(d of signs. 2 ) Complete the computation of r s = 1 6Σd2 n(n 2 1) to get the sample statistic.

44 Coeficiente de correlação ordinal para testar H 0 : ρ s = 0 Slide 44 Complete the computation of r s = 1 6Σd2 n(n 2 1) to get the sample statistic. n 30? Sim Não Calcule os valores críticos r s = ± z n 1 onde z determina-se tendo em conta o nível de significância Determine os valores críticos de r s na tabela da estatística de Spearman Se a estatística amostral r s é positiva e excede o valor crítico, existe correlação. Se a estatística amostral r s é negativa e é menor do que o valor crítico, existe correlação. Se a estatística amostral r s estiver entre os valores críticos, não existe correlação.

45 Exemplo: Percepção de Beleza Slide 45 Use os dados da tabela que se segue para determinar se existe correlação entre os rankings dos homens e das mulheres em termos do que eles acham atraente. Use um nível de significância α = 0.10.

46 Exemplo: Percepção de Beleza Slide 46 H 0 : ρ s = 0 H 1 : ρ s 0 n = 10 r s = 1 6 Σd2 n(n 2 1) r s = 1 6(74) 10(10 2 1) r s = 0.552

47 Exemplo: Percepção de Beleza Slide 47 Ao consultar a tabela da estatística de Spearman, verificamos que os valores críticos são ± Como o valor da estatística de teste r s = não excede o valor crítico e é maior do que , não rejeitamos a hipótese nula. Assim, não existe evidência suficiente para afirmar que existe correlação entre os rankings dos homens e das mulheres.

48 Exemplo: Percepção de Beleza com amostras grandes Slide 48 Considere o exemplo anterior, mas onde se incluíu um total de 40 mulheres, resultando numa estatística de teste r s com o valor Se o nível de significância for α = 0.05, o que se pode concluir acerca da correlação?

49 Exemplo: Percepção de Beleza com amostras grandes Slide 49 ± z r s = n 1 ± 1.96 r s = 40 1 = ± Valores críticos.

50 Exemplo: Percepção de Beleza com amostras grandes Slide 50 O valor da estatística de teste r s = não excede o valor crítico e é superior a , logo não rejeitamos a hipótese nula. Assim, não existe evidência suficiente para afirmar que existe correlação entre os rankings dos homens e das mulheres.

Capítulo 6 Estatística não-paramétrica

Capítulo 6 Estatística não-paramétrica Capítulo 6 Estatística não-paramétrica Slide 1 Teste de ajustamento do Qui-quadrado Testes de independência e de homogeneidade do Qui-quadrado Algumas considerações Slide 2 As secções deste capítulo referem-se

Leia mais

Estimação e Testes de Hipóteses

Estimação e Testes de Hipóteses Estimação e Testes de Hipóteses 1 Estatísticas sticas e parâmetros Valores calculados por expressões matemáticas que resumem dados relativos a uma característica mensurável: Parâmetros: medidas numéricas

Leia mais

Testes não paramétricos são testes de hipóteses que não requerem pressupostos sobre a forma da distribuição subjacente aos dados.

Testes não paramétricos são testes de hipóteses que não requerem pressupostos sobre a forma da distribuição subjacente aos dados. TESTES NÃO PARAMÉTRICOS Testes não paramétricos são testes de hipóteses que não requerem pressupostos sobre a forma da distribuição subjacente aos dados. Bioestatística, 2007 15 Vantagens dos testes não

Leia mais

- Testes Qui-quadrado - Aderência e Independência

- Testes Qui-quadrado - Aderência e Independência - Testes Qui-quadrado - Aderência e Independência 1 1. Testes de Aderência Objetivo: Testar a adequabilidade de um modelo probabilístico a um conjunto de dados observados Exemplo 1: Segundo Mendel (geneticista

Leia mais

- Testes Qui-quadrado. - Aderência e Independência

- Testes Qui-quadrado. - Aderência e Independência - Testes Qui-quadrado - Aderência e Independência 1 1. Testes de Aderência Objetivo: Testar a adequabilidade de um modelo probabilístico a um conjunto de dados observados Exemplo 1: 1 Genética Equilíbrio

Leia mais

TESTES NÃO-PARAMÉTRICOS

TESTES NÃO-PARAMÉTRICOS Les-0773: ESTATÍSTICA APLICADA III TESTES NÃO-PARAMÉTRICOS AULA 3 26/05/17 Prof a Lilian M. Lima Cunha Maio de 2017 Revisão... Teste dos Sinais A Comparar valores de medianas de uma amostra com um valor

Leia mais

TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA

TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA Suponha que numa amostra aleatória de tamanho n de uma dada população são observados dois atributos ou características A e B (qualitativas ou quantitativas), uma

Leia mais

IMC para adolescentes:

IMC para adolescentes: ANEXO 1 Anexo 1 IMC para adolescentes: Idade Sexo Baixo Peso Peso Normal 6 anos 7 anos 8 anos 9 anos 10 anos 11 anos 12 anos 13 anos 14 anos 15 anos 16 anos 17 anos Masculino Feminino Masculino Feminino

Leia mais

Testes de Hipóteses Não Paramétricos. Rita Brandão (Univ. Açores) Testes de hipóteses não paramétricos 1 / 48

Testes de Hipóteses Não Paramétricos. Rita Brandão (Univ. Açores) Testes de hipóteses não paramétricos 1 / 48 Testes de Hipóteses Não Paramétricos Rita Brandão (Univ. Açores) Testes de hipóteses não paramétricos 1 / 48 Testes de Hipóteses Não Paramétricos:Introdução Nos testes de hipóteses não paramétricos não

Leia mais

ESTATÍSTICA INFERENCIAL. Prof. Dr. Guanis de Barros Vilela Junior

ESTATÍSTICA INFERENCIAL. Prof. Dr. Guanis de Barros Vilela Junior ESTATÍSTICA INFERENCIAL Prof. Dr. Guanis de Barros Vilela Junior As Hipóteses A Hipótese Nula (H 0 ) é, em geral, uma afirmação conservadora sobre uma situação da pesquisa. Por exemplo, se você quer testar

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5 MAE 229 - Introdução à Probabilidade e Estatística II Resolução Lista 5 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 (a) De uma forma geral, o desvio padrão é usado para medir a dispersão

Leia mais

Testes de Aderência, Homogeneidade e Independência

Testes de Aderência, Homogeneidade e Independência Testes de Aderência, Homogeneidade e Independência Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais O que é um teste de hipótese? Queremos saber se a evidência que temos em mãos significa

Leia mais

CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO

CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO Ana Paula Araujo Correa Eder Queiroz Newton Trevisan DEFINIÇÃO É um teste de hipóteses que se destina a encontrar um valor da dispersão para duas variáveis

Leia mais

Testes de Aderência Testes de Independência Testes de Homogeneidade

Testes de Aderência Testes de Independência Testes de Homogeneidade Testes de Aderência Testes de Independência Testes de Homogeneidade 1 1. Testes de Aderência Objetivo: Testar a adequabilidade de um modelo probabilístico a um conjunto de dados observados Exemplo 1: Genética

Leia mais

Teste Qui-quadrado. Dr. Stenio Fernando Pimentel Duarte

Teste Qui-quadrado. Dr. Stenio Fernando Pimentel Duarte Dr. Stenio Fernando Pimentel Duarte Exemplo Distribuição de 300 pessoas, classificadas segundo o sexo e o tabagismo Tabagismo Fumante (%) Não Fumante (%) Masculino 92 (46,0) 108 (54,0) Sexo Feminino 38

Leia mais

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 9 Correlação e Regressão 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 1 9-1 Aspectos Gerais Dados Emparelhados há uma relação? se há, qual

Leia mais

Por que testes não-paramétricos?

Por que testes não-paramétricos? Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Métodos Estatísticos Avançados em Epidemiologia Aula 3 Testes Não-Paramétricos: Wilcoxon Mann-Whitney Kruskal-Wallis

Leia mais

Os testes. Objetivos. O teste Q de Cochran; O teste de Friedman (Análise de variância de duplo fator por postos)

Os testes. Objetivos. O teste Q de Cochran; O teste de Friedman (Análise de variância de duplo fator por postos) Prof. Lorí Viali, Dr. http://www.mat.ufrgs.br/viali/ viali@mat.ufrgs.br Os testes O teste Q de Cochran; O teste de Friedman (Análise de variância de duplo fator por postos) William Gemmell Cochran (1909-1980)

Leia mais

Teste do Qui2. O tamanho de amígdala está associado com a presença da bactéria Streptoccocus pyogenes?

Teste do Qui2. O tamanho de amígdala está associado com a presença da bactéria Streptoccocus pyogenes? Teste do Qui2 Pré-requisitos: Elaboração do questionário Tratamentos e análises Muitas vezes, quando fazemos pesquisas, temos como interesse verificar a associação/independência entre duas variáveis qualitativas

Leia mais

MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência

MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência Introdução 1 Muito frequentemente fazemos perguntas do tipo se alguma coisa tem relação com outra. Estatisticamente

Leia mais

Métodos Quantitativos Aplicados

Métodos Quantitativos Aplicados Métodos Quantitativos Aplicados Aula 6 http://www.iseg.utl.pt/~vescaria/mqa/ Tópicos apresentação Análise de dados bivariada: os casos dos testes de proporções para duas amostras independentes e emparelhadas

Leia mais

Análise de Variância a um factor

Análise de Variância a um factor 1 Análise de Variância a um factor Análise de experiências com vários grupos de observações classificados através de um só factor (por exemplo grupos de indivíduos sujeitos a diferentes tratamentos para

Leia mais

16/6/2014. Teste Qui-quadrado de independência

16/6/2014. Teste Qui-quadrado de independência UNIVERSIDADE FEDERAL DA PARAÍBA TESTES NÃO- PARAMÉTRICOS Parte I Prof. Luiz Medeiros Departamento de Estatística Teste Qui-quadrado de independência Um dos principais objetivos de se construir uma tabela

Leia mais

Universidade Federal do Pará Instituto de Ciências Exatas e Naturais Faculdade de Estatística Bacharelado em Estatística

Universidade Federal do Pará Instituto de Ciências Exatas e Naturais Faculdade de Estatística Bacharelado em Estatística Universidade Federal do Pará Instituto de Ciências Exatas e Naturais Faculdade de Estatística Bacharelado em Estatística Disciplina: Estatística Aplicada Professores: Héliton Tavares e Regina Tavares Aluna:

Leia mais

Aula 7. Testes de Hipóteses Paramétricos (II)

Aula 7. Testes de Hipóteses Paramétricos (II) Aula 7. Testes de Hipóteses Paramétricos (II) Métodos Estadísticos 008 Universidade de Averio Profª Gladys Castillo Jordán IC e TH para comparação de valores médios µ X e µ Y de duas populações Normais.

Leia mais

Aula 7. Testes de Hipóteses Paramétricos (II)

Aula 7. Testes de Hipóteses Paramétricos (II) Aula 7. Testes de Hipóteses Paramétricos (II) Métodos Estadísticos 008 Universidade de Averio Profª Gladys Castillo Jordán IC e TH para comparação de valores médios µ X e µ Y de duas populações Normais.

Leia mais

Teste Mann-Whitney. Contrapartida não-paramétrica para. Teste-t para amostras independentes

Teste Mann-Whitney. Contrapartida não-paramétrica para. Teste-t para amostras independentes Teste Mann-Whitney Contrapartida não-paramétrica para Teste-t para amostras independentes Teste Mann-Whitney pequenas amostras independentes 1. Testes para Duas Populações, X e Y, Independentes. Corresponde

Leia mais

TESTE DE MANN-WHITNEY

TESTE DE MANN-WHITNEY TESTE DE MANN-WHITNEY A importância deste teste é ser a alternativa não paramétrica ao teste t para a diferença de médias. Sejam (X,X,...,X n ) e (Y,Y,...,Y m ) duas amostras independentes, de tamanhos

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Teste Qui-quadrado Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Teste Qui-quadrado É um teste não paramétrico, pois independe dos parâmetros

Leia mais

Medidas de associação entre duas variáveis qualitativas

Medidas de associação entre duas variáveis qualitativas Medidas de associação entre duas variáveis qualitativas Hoje vamos analisar duas variáveis qualitativas (categóricas) conjuntamente com o objetivo de verificar se existe alguma relação entre elas. Vamos

Leia mais

Estatística Computacional (Licenciatura em Matemática) Duração: 2h Exame 14/06/10 NOME:

Estatística Computacional (Licenciatura em Matemática) Duração: 2h Exame 14/06/10 NOME: DEPARTAMENTO DE MATEMÁTICA DA UNIVERSIDADE DE COIMBRA Estatística Computacional (Licenciatura em Matemática) Duração: 2h Exame 14/06/10 NOME: Observação: A resolução completa das perguntas inclui a justificação

Leia mais

Case Processing Summary

Case Processing Summary 17. O ficheiro Banco.sav encerra informação relativa a 474 empregados contratados por um banco, entre 1969 e 1971. Este banco esteve envolvido num processo judicial no âmbito da Igualdade de Oportunidade

Leia mais

ANÁLISE DOS RESÍDUOS. Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos:

ANÁLISE DOS RESÍDUOS. Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos: ANÁLISE DOS RESÍDUOS Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos: seguem uma distribuição normal; têm média zero; têm variância σ 2 constante

Leia mais

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA)

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA) 1. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância

Leia mais

Exemplo (tabela um) distribuições marginais enquanto que. Distribuição Conjunta

Exemplo (tabela um) distribuições marginais enquanto que. Distribuição Conjunta Distribuição Conjunta Suponha que se queira analisar o comportamento conjunto das variáveis = de Instrução e = Região de procedência. Neste caso, a distribuição de freqüências é apresentada como uma tabela

Leia mais

Filho, não é um bicho: chama-se Estatística!

Filho, não é um bicho: chama-se Estatística! Paulo Jorge Silveira Ferreira Filho, não é um bicho: chama-se Estatística! Estatística aplicada uma abordagem prática FICHA TÉCNICA EDIÇÃO: Paulo Ferreira TÍTULO: Filho, não é um bicho: chama-se Estatística!

Leia mais

7 Teste de Hipóteses

7 Teste de Hipóteses 7 Teste de Hipóteses 7-1 Aspectos Gerais 7-2 Fundamentos do Teste de Hipóteses 7-3 Teste de uma Afirmação sobre a Média: Grandes Amostras 7-4 Teste de uma Afirmação sobre a Média : Pequenas Amostras 7-5

Leia mais

Testes de Hipóteses Paramétricos

Testes de Hipóteses Paramétricos Testes de Hipóteses Paramétricos Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução Exemplos Testar se mais de metade da população irá consumir um novo produto

Leia mais

Resultados dos testes estatísticos

Resultados dos testes estatísticos Resultados dos testes estatísticos Estudo da fiabilidade do instrumento para avaliação dos comportamentos e atitudes Factor Analysis Communalities Initial Extraction Item47 1,000,759 Item48 1,000,801 Item49

Leia mais

Teste U Teste de Mann-whitney. Karla szczypkovski Silva Lilian Sayuri Sakamoto

Teste U Teste de Mann-whitney. Karla szczypkovski Silva Lilian Sayuri Sakamoto Teste U Teste de Mann-whitney Karla szczypkovski Silva Lilian Sayuri Sakamoto Testes Não-paramétricos VANTAGENS DOS MÉTODOS NÃO- PARAMÉTRICOS 1. Aplicado a uma grande variedade de situações ; 2. Não exige

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Distribuição Conjunta Suponha que se queira analisar o comportamento conjunto das variáveis X = Grau de Instrução e Y = Região

Leia mais

CORRELAÇÃO. Flávia F. Feitosa

CORRELAÇÃO. Flávia F. Feitosa CORRELAÇÃO Flávia F. Feitosa BH1350 Métodos e Técnicas de Análise da Informação para o Planejamento Junho de 2015 Revisão Inferência Estatística: Método científico para tirar conclusões sobre os parâmetros

Leia mais

Estimação parâmetros e teste de hipóteses. Prof. Dr. Alberto Franke (48)

Estimação parâmetros e teste de hipóteses. Prof. Dr. Alberto Franke (48) Estimação parâmetros e teste de hipóteses Prof. Dr. Alberto Franke (48) 91471041 Intervalo de confiança para média É um intervalo em que haja probabilidade do verdadeiro valor desconhecido do parâmetro

Leia mais

INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO PORTO Ano lectivo 2009/20010 EXAME: DATA 24 / 02 / NOME DO ALUNO:

INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO PORTO Ano lectivo 2009/20010 EXAME: DATA 24 / 02 / NOME DO ALUNO: INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO PORTO Ano lectivo 2009/20010 Estudos de Mercado EXAME: DATA 24 / 02 / 20010 NOME DO ALUNO: Nº INFORMÁTICO: TURMA: PÁG. 1_ PROFESSOR: ÉPOCA: Grupo I (10

Leia mais

TESTES DE HIPÓTESES. Conceitos, Testes de 1 proporção, Testes de 1 média

TESTES DE HIPÓTESES. Conceitos, Testes de 1 proporção, Testes de 1 média TESTES DE HIPÓTESES Conceitos, Testes de 1 proporção, Testes de 1 média 1 Testes de Hipóteses População Conjectura (hipótese) sobre o comportamento de variáveis Amostra Decisão sobre a admissibilidade

Leia mais

Aula 8. Teste Binomial a uma proporção p

Aula 8. Teste Binomial a uma proporção p Aula 8. Teste Binomial a uma proporção p Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán Teste Binomial a uma Proporção p Seja p ˆ = X n a proporção de indivíduos com uma

Leia mais

Teste de hipóteses. Testes de Hipóteses. Valor de p ou P-valor. Lógica dos testes de hipótese. Valor de p 31/08/2016 VPS126

Teste de hipóteses. Testes de Hipóteses. Valor de p ou P-valor. Lógica dos testes de hipótese. Valor de p 31/08/2016 VPS126 3/8/26 Teste de hipóteses Testes de Hipóteses VPS26 Ferramenta estatística para auxiliar no acúmulo de evidências sobre uma questão Média de glicemia de um grupo de animais é diferente do esperado? Qual

Leia mais

Testes de hipóteses Paramétricos

Testes de hipóteses Paramétricos Testes de hipóteses Paramétricos Modelos de análise de variância com um factor Teste de Bartlett Teste de comparações múltiplas de Scheffé Rita Brandão (Univ. Açores) Testes de hipóteses Paramétricos 1

Leia mais

Estatística Analítica

Estatística Analítica Teste de Hipótese Testes Estatísticos 2 Teste de Hipótese Testes Estatísticos 3 1 Teste de Hipótese Testes Estatísticos 4 Principais Testes: Teste Qui-quadrado Teste T de Student Teste ANOVA Teste de Correlação

Leia mais

Medidas de Dispersão ou variabilidade

Medidas de Dispersão ou variabilidade Medidas de Dispersão ou variabilidade A média - ainda que considerada como um número que tem a faculdade de representar uma série de valores - não pode, por si mesma, destacar o grau de homogeneidade ou

Leia mais

Escolha dos testes INTRODUÇÃO À BIOESTATÍSTICA QUANTIFICAÇÃO DOS GRUPOS DO ESTUDO PESQUISA INFERÊNCIA ESTATÍSTICA TESTE DE HIPÓTESES E

Escolha dos testes INTRODUÇÃO À BIOESTATÍSTICA QUANTIFICAÇÃO DOS GRUPOS DO ESTUDO PESQUISA INFERÊNCIA ESTATÍSTICA TESTE DE HIPÓTESES E Escolha dos testes INTRODUÇÃO À BIOESTATÍSTICA Determinada a pergunta/ hipótese Recolhidos os dados Análise descritiva = Estatística descritiva QUAIS TESTES ESTATÍSTICOS DEVEM SER REALIZADOS?? PROFESSORA:

Leia mais

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... ANÁLISE DE VARIÂNCIA. Departamento de Matemática ESTV.

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... ANÁLISE DE VARIÂNCIA. Departamento de Matemática ESTV. INTRODUÇÃO Exemplos Para curar uma certa doença existem quatro tratamentos possíveis: A, B, C e D. Pretende-se saber se existem diferenças significativas nos tratamentos no que diz respeito ao tempo necessário

Leia mais

Intervalos de Confiança

Intervalos de Confiança Intervalos de Confiança INTERVALOS DE CONFIANÇA.1 Conceitos básicos.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição numérica de

Leia mais

NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional

NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional Estimação Teste de Hipóteses Qual é a probabilidade de "cara no lançamento de uma moeda? A moeda é honesta ou desequilibrada?

Leia mais

Métodos Não Paramétricos

Métodos Não Paramétricos Métodos Não Paramétricos Para todos os testes estatísticos que estudamos até este ponto, assumimos que as populações tinham distribuição normal ou aproximadamente normal. Essa propriedade era necessária

Leia mais

Errata. Análise Categórica, Árvores de Decisão e Análise de Conteúdo

Errata. Análise Categórica, Árvores de Decisão e Análise de Conteúdo Errata Análise Categórica, Árvores de Decisão e Análise de Conteúdo 13, Exemplo 1.6 15, Última figura Sabendo que o número de avarias de uma máquina é uma Sabendo que o número de avarias que uma máquina

Leia mais

Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência

Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência Erica Castilho Rodrigues 2 de Agosto de 2013 3 Modelos de Poisson podem ser usados para analisar tabelas de contingência.

Leia mais

ANOVA FACTORIAL EXEMPLO 1. ANOVA TWO-WAY COM O SPSS. a capacidade de reconhecimento do odor materno

ANOVA FACTORIAL EXEMPLO 1. ANOVA TWO-WAY COM O SPSS. a capacidade de reconhecimento do odor materno ANOVA FACTORIAL Quando a variável dependente é influenciada por mais do que uma variável independente (Factor) estamos interessados em estudar o efeito não só de cada um dos factores mas e também a possível

Leia mais

Inferência para várias populações normais análise de variância (ANOVA)

Inferência para várias populações normais análise de variância (ANOVA) Inferência para várias populações normais análise de variância (ANOVA) Capítulo 15, Estatística Básica (Bussab&Morettin, 8a Edição) 9a AULA 11/05/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues

Leia mais

Análise de Dados Categóricos

Análise de Dados Categóricos Universidade Federal Fluminense Instituto de Matemática e Estatística Análise de Dados Categóricos Ana Maria Lima de Farias Fábio Nogueira Demarqui Departamento de Estatística Março 2017 Sumário 1 Análise

Leia mais

AULA 07 Inferência a Partir de Duas Amostras

AULA 07 Inferência a Partir de Duas Amostras 1 AULA 07 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 10 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola,

Leia mais

Teste de Hipótese e Intervalo de Confiança

Teste de Hipótese e Intervalo de Confiança Teste de Hipótese e Intervalo de Confiança Suponha que estamos interessados em investigar o tamanho da ruptura em um músculo do ombro... para determinar o tamanho exato da ruptura, é necessário um exame

Leia mais

Universidade Federal do Paraná Seminário de Bioestatistica. Teste de Wilcoxon. Danielle Pierin Olivia Cleto

Universidade Federal do Paraná Seminário de Bioestatistica. Teste de Wilcoxon. Danielle Pierin Olivia Cleto Universidade Federal do Paraná Seminário de Bioestatistica Teste de Wilcoxon Danielle Pierin Olivia Cleto Teste de Postos com Sinais de Wilcoxon para Pares Combinados Esse teste é usado com dados amostrais

Leia mais

( ) = σ 2. Capítulo 8 - Testes de hipóteses. 8.1 Introdução

( ) = σ 2. Capítulo 8 - Testes de hipóteses. 8.1 Introdução Capítulo 8 - Testes de hipóteses 8.1 Introdução Nos capítulos anteriores vimos como estimar um parâmetro desconhecido a partir de uma amostra (obtendo estimativas pontuais e intervalos de confiança para

Leia mais

Estudo das hipóteses não paramétricas χ² de Pearson aplicado ao número de acidentes envolvendo motos na cidade de Campina Grande Paraíba.

Estudo das hipóteses não paramétricas χ² de Pearson aplicado ao número de acidentes envolvendo motos na cidade de Campina Grande Paraíba. Estudo das hipóteses não paramétricas χ² de Pearson aplicado ao número de acidentes envolvendo motos na cidade de Campina Grande Paraíba. 1 Introdução Erivaldo de Araújo Silva Edwirde Luiz Silva Os testes

Leia mais

SUMÁRIO. Prefácio, Espaço amostrai, Definição de probabilidade, Probabilidades finitas dos espaços amostrais fin itos, 20

SUMÁRIO. Prefácio, Espaço amostrai, Definição de probabilidade, Probabilidades finitas dos espaços amostrais fin itos, 20 SUMÁRIO Prefácio, 1 3 1 CÁLCULO DAS PROBABILIDADES, 15 1.1 Introdução, 15 1.2 Caracterização de um experimento aleatório, 15 1.3 Espaço amostrai, 16 1.4 Evento, 17 1.5 Eventos mutuamente exclusivos, 17

Leia mais

Análise da Regressão. Prof. Dr. Alberto Franke (48)

Análise da Regressão. Prof. Dr. Alberto Franke (48) Análise da Regressão Prof. Dr. Alberto Franke (48) 91471041 O que é Análise da Regressão? Análise da regressão é uma metodologia estatística que utiliza a relação entre duas ou mais variáveis quantitativas

Leia mais

A importância da Educação para a Saúde

A importância da Educação para a Saúde Educação para a Saúde: conceitos, práticas e necessidades de formação 8 A alínea do questionário Actividade que tem em conta as necessidades dos indivíduos foi seleccionada pelos inquiridos como primeira

Leia mais

INFERÊNCIA ESTATÍSTICA. ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p

INFERÊNCIA ESTATÍSTICA. ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p INFERÊNCIA ESTATÍSTICA ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir

Leia mais

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real.

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real. Distribuições derivadas da distribuição Normal Distribuição Normal Uma variável aleatória X tem distribuição normal com parâmetros µ e σ, quando sua densidade de probabilidade é f ( x) π σ e ( x µ ) σ,

Leia mais

NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional

NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional Métodos Estatísticos Métodos Estatísticos Estatística Descritiva Inferência Estatística Estimação Teste de Hipóteses TESTE

Leia mais

CE008 Introducão à Bioestatística

CE008 Introducão à Bioestatística CE008 Introducão à Bioestatística Silvia Shimakura silvia.shimakura@ufpr.br Laboratório de Estatística e Geoinformação Objetivo da disciplina Conhecer metodologias estatísticas para produção, descrição

Leia mais

Inferência Estatística

Inferência Estatística Inferência Estatística Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Núcleo de Estatística e Informática HUUFMA email: alcione.miranda@terra.com.br Inferência Estatística Inferências

Leia mais

4-Teste de Hipóteses. Teste de Hipóteses

4-Teste de Hipóteses. Teste de Hipóteses Teste de Procedimentos Gerais Teste de média Z para 1 amostra Teste de média t para 1 amostra Teste de variância para 2 amostras A Distribuição de Fisher Teste de média t para 2 amostras Teste de média

Leia mais

1 Introdução aos Métodos Estatísticos para Geografia 1

1 Introdução aos Métodos Estatísticos para Geografia 1 1 Introdução aos Métodos Estatísticos para Geografia 1 1.1 Introdução 1 1.2 O método científico 2 1.3 Abordagens exploratória e confirmatória na geografia 4 1.4 Probabilidade e estatística 4 1.4.1 Probabilidade

Leia mais

Teste Chi-Quadrado de Independência. Prof. David Prata Novembro de 2016

Teste Chi-Quadrado de Independência. Prof. David Prata Novembro de 2016 Teste Chi-Quadrado de Independência Prof. David Prata Novembro de 2016 Duas Variáveis Categóricas Análise de variância envolve o exame da relação entre uma variável categórica explicativa e uma variável

Leia mais

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47 CAPÍTULO 1 Conceitos preliminares 1 Introdução........................................................1 O que é estatística?.................................................. 4 Papel dos microcomputadores.........................................

Leia mais

A UTILIZAÇÃO DE MÉTODOS ESTATÍSTICOS NO PLANEJAMENTO E ANÁLISE DE ESTUDOS EXPERIMENTAIS EM ENGENHARIA DE SOFTWARE (FONTE:

A UTILIZAÇÃO DE MÉTODOS ESTATÍSTICOS NO PLANEJAMENTO E ANÁLISE DE ESTUDOS EXPERIMENTAIS EM ENGENHARIA DE SOFTWARE (FONTE: A UTILIZAÇÃO DE MÉTODOS ESTATÍSTICOS NO PLANEJAMENTO E ANÁLISE DE ESTUDOS EXPERIMENTAIS EM ENGENHARIA DE SOFTWARE (FONTE: ESELAW 09 MARCOS ANTÔNIO P. & GUILHERME H. TRAVASSOS) 1 Aluna: Luana Peixoto Annibal

Leia mais

AULA 11 Experimentos Multinomiais e Tabelas de Contingência

AULA 11 Experimentos Multinomiais e Tabelas de Contingência 1 AULA 11 Experimentos Multinomiais e Tabelas de Contingência Ernesto F. L. Amaral 24 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG)

Leia mais

AULA 02 Distribuição de Probabilidade Normal

AULA 02 Distribuição de Probabilidade Normal 1 AULA 02 Distribuição de Probabilidade Normal Ernesto F. L. Amaral 20 de agosto de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario

Leia mais

= < 5. O segundo menor valor esperado estimado corresponde à célula (3,3), com Ê33 = 29 30

= < 5. O segundo menor valor esperado estimado corresponde à célula (3,3), com Ê33 = 29 30 ISTITUTO SUPERIOR DE AGROOMIA ESTATÍSTICA E DELIEAMETO 2 de ovembro, 205 PRIMEIRO TESTE 205-6 Uma resolução possível I Tem-se uma tabela de contingências de dimensão 3 4. Apenas o número total de observações

Leia mais

UNIVERSIDADE DOS AÇORES Licenciatura em Sociologia. Análise de Dados

UNIVERSIDADE DOS AÇORES Licenciatura em Sociologia. Análise de Dados UNIVERSIDADE DOS AÇORES Licenciatura em Sociologia Análise de Dados Exame Data: 200 06 07 Duração: 2 horas Nota: Justifique todas as suas afirmações. Um investigador pretende saber se existem ou não diferenças

Leia mais

mat.ufrgs..ufrgs.br br/~viali/ mat.ufrgs..ufrgs.br

mat.ufrgs..ufrgs.br br/~viali/ mat.ufrgs..ufrgs.br Prof. Lorí Viali, Dr. http://www. ://www.mat mat.ufrgs..ufrgs.br br/~viali/ viali@mat mat.ufrgs..ufrgs.br Média Uma amostra Proporção Variância Dependentes Diferença de médias m Duas amostras Independentes

Leia mais

AULA 19 Análise de Variância

AULA 19 Análise de Variância 1 AULA 19 Análise de Variância Ernesto F. L. Amaral 18 de outubro de 2012 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro: LTC. Capítulo

Leia mais

Teste t de Student para o caso de uma amostra (Teste de hipóteses

Teste t de Student para o caso de uma amostra (Teste de hipóteses Teste t de Student para o caso de uma amostra (Teste de hipóteses para a média populacional) Exemplo: Quinze alunos foram inquiridos quanto ao seu grau de satisfação (numa escala de 0 a 00) em relação

Leia mais

Testes de hipóteses com duas amostras CURSO DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA. Módulo: ESTIMATIVA E TESTE DE HIPÓTESE.

Testes de hipóteses com duas amostras CURSO DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA. Módulo: ESTIMATIVA E TESTE DE HIPÓTESE. CURSO DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA Módulo: ESTIMATIVA E TESTE DE HIPÓTESE slide Testes de hipóteses com duas amostras slide Larson/Farber 4th ed Descrição - Testar a diferença entre médias

Leia mais

Análise de correspondência

Análise de correspondência Análise de correspondência rm(list=ls(all=true)) #M

Leia mais

POPULAÇÃO X AMOSTRA INTRODUÇÃO À BIOESTATÍSTICA TIPOS DE VARIÁVEIS CLASSIFICAÇÃO DAS VARIÁVEIS CLASSIFICAÇÃO DAS VARIÁVEIS 1) TIPOS DE VARIÁVEIS

POPULAÇÃO X AMOSTRA INTRODUÇÃO À BIOESTATÍSTICA TIPOS DE VARIÁVEIS CLASSIFICAÇÃO DAS VARIÁVEIS CLASSIFICAÇÃO DAS VARIÁVEIS 1) TIPOS DE VARIÁVEIS POPULAÇÃO X AMOSTRA INTRODUÇÃO À BIOESTATÍSTICA População (N) representa o conjunto de todas as unidades experimentais que apresentam características em comum Amostra (n) representa uma parte do todo.

Leia mais

6. Medidas de associação entre variáveis categóricas em tabelas de dupla entrada

6. Medidas de associação entre variáveis categóricas em tabelas de dupla entrada 6. Medidas de associação entre variáveis categóricas em tabelas de dupla entrada Quiquadrado de Pearson: mede a associação de tabelas de dupla entrada, sendo definida por: c (e e ij n ij ij ), em que é

Leia mais

Teste Anova. Prof. David Prata Novembro de 2016

Teste Anova. Prof. David Prata Novembro de 2016 Teste Anova Prof. David Prata Novembro de 2016 Tipo de Variável Introduzimos o processo geral de teste de hipótese. É hora de aprender a testar a sua própria hipótese. Você sempre terá que interpretar

Leia mais

Estatísticas de saúde. Certificados de óbito.

Estatísticas de saúde. Certificados de óbito. Estatísticas de saúde. Certificados de óbito. A maior parte da informação que obtemos sobre os óbitos vem dos certificados de óbito (ver anexo da aula prática). Por acordo internacional, os óbitos são

Leia mais

Homocedasticidade? Exemplo: consumo vs peso de automóveis

Homocedasticidade? Exemplo: consumo vs peso de automóveis REGRESSÃO Análise de resíduos Homocedasticidade? Exemplo: consumo vs peso de automóveis 60 50 Consumo (mpg) 40 30 0 10 0 1500 000 500 3000 3500 4000 4500 Peso 0 Diagrama de resíduos 15 10 Resíduos 5 0-5

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 4

MAE Introdução à Probabilidade e Estatística II Resolução Lista 4 MAE 9 - Introdução à Probabilidade e Estatística II Resolução Lista 4 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 Antes de testar se a produtividade média dos operários do período diurno

Leia mais

Estatística. Nos exercícios que se seguem, e caso seja necessário, considere que os pressupostos necessários à aplicação da ANOVA são verificados.

Estatística. Nos exercícios que se seguem, e caso seja necessário, considere que os pressupostos necessários à aplicação da ANOVA são verificados. INSTITUTO SUPERIOR POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA Ano Lectivo 007/008 Estatística Ficha n.º Nos exercícios que se seguem, e caso seja necessário, considere que os pressupostos necessários

Leia mais

X e Y independentes. n + 1 m

X e Y independentes. n + 1 m DEPARTAMENTO DE ESTATÍSTICA / CCEN / UFPA Disciplina: Inferência I Prof: Regina Tavares 5.0. TESTE DE HIPÓTESES PARA DUAS POPULAÇÕES 5.0.. Duas Populações Normais independentes : X, X 2,, X n uma a.a.

Leia mais

Medidas Estatísticas NILO FERNANDES VARELA

Medidas Estatísticas NILO FERNANDES VARELA Medidas Estatísticas NILO FERNANDES VARELA Tendência Central Medidas que orientam quanto aos valores centrais. Representam os fenômenos pelos seus valores médios, em torno dos quais tendem a se concentrar

Leia mais

Princípios de Bioestatística Teste de Hipóteses

Princípios de Bioestatística Teste de Hipóteses 1/36 Princípios de Bioestatística Teste de Hipóteses Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG Tabela 2/36 3/36 Exemplo A concentração de certa substância

Leia mais

Capítulo 11 Análise da Variância. Statistics for Managers Using Microsoft Excel, 5e 2008 Prentice-Hall, Inc. Chap 11-1

Capítulo 11 Análise da Variância. Statistics for Managers Using Microsoft Excel, 5e 2008 Prentice-Hall, Inc. Chap 11-1 Capítulo 11 Análise da Variância Statistics for Managers Using Microsoft Excel, 5e 2008 Prentice-Hall, Inc. Chap 11-1 Objetivos do Aprendizado Neste capítulo você aprenderá: Os conceitos básicos da modelagem

Leia mais

Testes t para médias

Testes t para médias Testes t para médias 1-1 Testes t para médias Os testes t aplicam-se tanto a amostras independentes como a amostras emparelhadas. Servem para testar hipóteses sobre médias de uma variável quantitativa

Leia mais