CÁLCULO I Aula 03: Funções Logarítmicas, Exponenciais e

Tamanho: px
Começar a partir da página:

Download "CÁLCULO I Aula 03: Funções Logarítmicas, Exponenciais e"

Transcrição

1 CÁLCULO I Aula 03: s, e. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará

2

3 A Seja x > 0. Denimos a função logarítmica natural como sendo a função dada pela medida da área abaixo da hipérbole y = 1 t, entre t = 1 e t = x. Gracamente, essa área é dada como abaixo:

4 A Seja x > 0. Denimos a função logarítmica natural como sendo a função dada pela medida da área abaixo da hipérbole y = 1 t, entre t = 1 e t = x. Gracamente, essa área é dada como abaixo:

5 Então podemos escrever que f : R + R x f (x) = ln x = Área abaixo da função g(t) = 1 t entre as retas t = 1 e t = x

6 Durante nosso estudo, deniremos mais precisamente como calcular essa área, contudo a ideia que deve car presente em nossas mentes é que a relação que acabamos de denir é uma função, pois a cada x tomado, temos uma região correspondente a esse x; e a essa região temos um único número real que corresponde a sua área.

7 Por exemplo, para x = 2, temos que o valor de ln 2 é o valor da área da região

8 Para x = 1 2,

9 Observação Essa função está bem denida, pois a hipérbole existe em todos os pontos t = x, com x > 0.

10 Observação Essa função está bem denida, pois a hipérbole existe em todos os pontos t = x, com x > 0. Observação A princípio, deniremos que se x > 1 então f (x) > 0 e se 0 < x < 1 então f (x) < 0, contudo essa armação será provada nas aulas seguintes.

11 Observação Essa função está bem denida, pois a hipérbole existe em todos os pontos t = x, com x > 0. Observação A princípio, deniremos que se x > 1 então f (x) > 0 e se 0 < x < 1 então f (x) < 0, contudo essa armação será provada nas aulas seguintes. Denição Denimos o número e como sendo o número tal que f (e) = ln e = 1.

12 Proposição Sejam a, b > 0, então

13 Proposição Sejam a, b > 0, então (i) ln(a.b) = ln a + ln b;

14 Proposição Sejam a, b > 0, então (i) ln(a.b) = ln a + ln b; ( a ) = ln a ln b; b (ii) ln

15 Proposição Sejam a, b > 0, então (i) ln(a.b) = ln a + ln b; ( a ) = ln a ln b; b (ii) ln (iii) ln(a c ) = c ln a, c R

16 O Gráco de f (x) = ln x é:

17 A Observando o gráco de f (x) = ln x, podemos notar que f é injetora, uma vez que verica o teste da reta horizontal; e também é sobrejetora, pois Im f = R. Logo, a função logarítmica natural é bijetora e portanto, inversível. modo, podemos denir uma função g : R R +, denotada por tal que g(x) = f 1 (x). g(x) = exp(x) Desse

18 Utilizando as propriedades de função inversa e função composta, temos que f (g(x)) = x, x R e g(f (x)) = x, x R +

19 Utilizando as propriedades de função inversa e função composta, temos que f (g(x)) = x, x R e g(f (x)) = x, x R + Logo, exp(1) = exp(ln e) = e exp(0) = exp(ln 1) = 1

20 Se x for qualquer número real, então a propriedade do logaritmo da potência nos dá: ln(e x ) = x ln(e) = x.

21 Se x for qualquer número real, então a propriedade do logaritmo da potência nos dá: Portanto, ln(e x ) = x ln(e) = x. exp(x) = e x.

22 Se x for qualquer número real, então a propriedade do logaritmo da potência nos dá: Portanto, Logo, ln(e x ) = x ln(e) = x. exp(x) = e x. e x = exp(x)

23 Se x for qualquer número real, então a propriedade do logaritmo da potência nos dá: Portanto, Logo, ln(e x ) = x ln(e) = x. exp(x) = e x. e x = exp(x) Em outras palavras, denimos e x como a função inversa de ln x: e x = y ln y = x. (1)

24 Supondo que as propriedades dos logaritmos são verdadeiras, podemos mostrar o seguinte teorema

25 Supondo que as propriedades dos logaritmos são verdadeiras, podemos mostrar o seguinte teorema Teorema Se x e y forem números reais, então 1 e x+y = e x.e y

26 Supondo que as propriedades dos logaritmos são verdadeiras, podemos mostrar o seguinte teorema Teorema Se x e y forem números reais, então 1 e x+y = e x.e y 2 e x y = ex e y

27 Supondo que as propriedades dos logaritmos são verdadeiras, podemos mostrar o seguinte teorema Teorema Se x e y forem números reais, então 1 e x+y = e x.e y 2 e x y = ex e y 3 (e x ) y = e xy

28 Agora, utilizando a propriedade gráca da função inversa, obtemos que o gráco da função exponencial natural é

29 Agora, utilizando a propriedade gráca da função inversa, obtemos que o gráco da função exponencial natural é

30 Denição Se a > 0 e x são números reais, então: a x = (e ln a ) x = e x ln a.

31 Denição Se a > 0 e x são números reais, então: a x = (e ln a ) x = e x ln a. Portanto, denimos a x = e x ln a (2)

32 A função f (x) = a x é chamada função exponencial com base a. Observe que a x é positivo para todo x, pois e x é positivo para todo x.

33 A função f (x) = a x é chamada função exponencial com base a. Observe que a x é positivo para todo x, pois e x é positivo para todo x. A Denição 3.1 nos permite estender uma das propriedades de logaritmos. Já sabemos que ln(a x ) = x. ln a, logo: ln a x = ln(e x ln a ) = x. ln a x R

34 Teorema Se x e y forem números reais e a, b > 0, então: 1 a x+y = a x.a y

35 Teorema Se x e y forem números reais e a, b > 0, então: 1 a x+y = a x.a y 2 a x y = ax a y

36 Teorema Se x e y forem números reais e a, b > 0, então: 1 a x+y = a x.a y 2 a x y = ax a y 3 (a x ) y = a xy

37 Teorema Se x e y forem números reais e a, b > 0, então: 1 a x+y = a x.a y 2 a x y = ax a y 3 (a x ) y = a xy 4 (ab) x = a x.b y

38 Observação Se a > 1, então ln a > 0, logo a x. ln a > 0, o que mostra que y = a x é crescente. Analogamente, se 0 < a < 1, então ln a < 0 e, portanto, y = a x é decrescente.

39 Observação Se a > 1, então ln a > 0, logo a x. ln a > 0, o que mostra que y = a x é crescente. Analogamente, se 0 < a < 1, então ln a < 0 e, portanto, y = a x é decrescente. Deniremos agora a função logarítmica geral.

40 Observação Se a > 1, então ln a > 0, logo a x. ln a > 0, o que mostra que y = a x é crescente. Analogamente, se 0 < a < 1, então ln a < 0 e, portanto, y = a x é decrescente. Deniremos agora a função logarítmica geral. Se a > 0 e a 1, então f (x) = a x é uma função injetora. Sua função inversa é chamada função logarítmica de base a e é denotada por f (x) = log a x. Logo: log a x = y a y = x (3)

41 Observação Se a > 1, então ln a > 0, logo a x. ln a > 0, o que mostra que y = a x é crescente. Analogamente, se 0 < a < 1, então ln a < 0 e, portanto, y = a x é decrescente. Deniremos agora a função logarítmica geral. Se a > 0 e a 1, então f (x) = a x é uma função injetora. Sua função inversa é chamada função logarítmica de base a e é denotada por f (x) = log a x. Logo: log a x = y a y = x (3) Em particular: log e x = ln x.

42 Nessa seção apresentaremos as funções hiperbólicas, que são funções obtidas por combinação das funções e x e e x. Elas são:

43 Seno Hiperbólico. O seu gráco 2 é é a função f : R R dada por f (x) = senh (x) = ex e x

44 Seno Hiperbólico. O seu gráco 2 é é a função f : R R dada por f (x) = senh (x) = ex e x

45 Cosseno Hiperbólico, e seu gráco 2 é: é a função g : R R +, dada por g(x) = cosh(x) = ex + e x

46 Cosseno Hiperbólico, e seu gráco 2 é: é a função g : R R +, dada por g(x) = cosh(x) = ex + e x

47 Tangente Hiperbólica é a função f : R ( 1, 1) dada por f (x) = tgh (x) = senh x cosh x = ex e x e x + e x, o seu gráco é o seguinte:

48 Tangente Hiperbólica é a função f : R ( 1, 1) dada por f (x) = tgh (x) = senh x cosh x = ex e x e x + e x, o seu gráco é o seguinte:

49 Secante Hiperbólica é a função g(x) = 1 e cujo gráco é: cosh(x)

50 Secante Hiperbólica é a função g(x) = 1 cosh(x) e cujo gráco é: Figura: Gráco da f (x) = sech x

51 Cossecante Hiperbólica é a função f (x) = 1 e cujo gráco é: senh(x)

52 Cossecante Hiperbólica é a função f (x) = 1 senh(x) e cujo gráco é: Figura: Gráco da f (x) = cossech x

53 Cotangente Hiperbólica é a função g(x) = 1 tgh(x) = cosh(x) senh x e cujo gráco é:

54 Cotangente Hiperbólica é a função g(x) = 1 tgh(x) = cosh(x) senh x e cujo gráco é: Figura: Gráco da f (x) = cotgh x

55 Exemplo Calcule o valor de

56 Exemplo Calcule o valor de (a) senh 0

57 Exemplo Calcule o valor de (a) senh 0 (b) cosh 0

58 Exemplo Calcule o valor de (a) senh 0 (b) cosh 0 (c) tgh 1

59 Exemplo Calcule o valor de (a) senh 0 (b) cosh 0 (c) tgh 1 (d) senh (ln 2)

60 Exemplo Calcule o valor de (a) senh 0 (b) cosh 0 (c) tgh 1 (d) senh (ln 2) (e) sech 0

61 Exemplo Calcule o valor de (a) senh 0 (b) cosh 0 (c) tgh 1 (d) senh (ln 2) (e) sech 0 (f) cotgh (ln 3)

62 Exemplo Calcule o valor de (a) senh 0 (b) cosh 0 (c) tgh 1 (d) senh (ln 2) (e) sech 0 (f) cotgh (ln 3) (g) cossech (ln 2)

63 A utilização das funções hiperbólicas na ciência e na engenharia ocorre sempre que uma entidade com a luz, a velocidade, a eletricidade ou a radioatividade, é gradualmente absorvida ou extinta, sendo esse decaimento representado por esse tipo de função. Uma outra aplicação é o uso do cosseno hiperbólico para descrever a forma de um o dependurado entre duas hastes, como por exemplo o o elétrico entre dois postes. Em geral, esse o assume a forma ). de uma catenária, que é uma curva cuja equação é y = c + a cosh ( x a

64 Também podemos utilizar as funções hiperbólicas na descrição das ondas do mar. A velocidade de uma onda aquática com comprimento L se movimentando por uma massa de água com profundidade d é modelada pela função: v = gl 2π tgh onde g é a aceleração da gravidade. ( ) 2πd L

65 Proposição Sejam x, R. Então:

66 Proposição Sejam x, R. Então: (i) senh ( x) = senh x

67 Proposição Sejam x, R. Então: (i) senh ( x) = senh x (ii) cosh( x) = cosh x

68 Proposição Sejam x, R. Então: (i) senh ( x) = senh x (ii) cosh( x) = cosh x (iii) cosh 2 x senh 2 x = 1

69 Proposição Sejam x, R. Então: (i) senh ( x) = senh x (ii) cosh( x) = cosh x (iii) cosh 2 x senh 2 x = 1 (iv) 1 tgh 2 x = sech 2 x

70 Proposição Sejam x, R. Então: (i) senh ( x) = senh x (ii) cosh( x) = cosh x (iii) cosh 2 x senh 2 x = 1 (iv) 1 tgh 2 x = sech 2 x (v) senh(x + y) = senh x cosh y + senh y cosh x

71 Proposição Sejam x, R. Então: (i) senh ( x) = senh x (ii) cosh( x) = cosh x (iii) cosh 2 x senh 2 x = 1 (iv) 1 tgh 2 x = sech 2 x (v) senh(x + y) = senh x cosh y + senh y cosh x (vi) cosh(x + y) = cosh x cosh y + senh x senh y

72 Na próxima aula... Limites e Contínuas

73 Na próxima aula... Limites e Contínuas Limite e Continuidade de funções;

74 Na próxima aula... Limites e Contínuas Limite e Continuidade de funções; Propriedades dos limites.

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 03: Funções Logarítmica, Exponencial e Hiperbólicas Definir as funções logarítmica, exponencial e hiperbólicas; Enunciar

Leia mais

CÁLCULO I. 1 Funções Exponenciais e Logarítmicas

CÁLCULO I. 1 Funções Exponenciais e Logarítmicas CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 05: Funções Logarítmica, Exponencial e Hiperbólicas. Objetivos da Aula Denir as funções logarítmica, exponencial e hiperbólicas;

Leia mais

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x;

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 22: A Função Logaritmo Natural Objetivos da Aula Denir a função f(x) = ln x; Calcular limites, derivadas e integral envolvendo a função

Leia mais

Funções Hiperbólicas

Funções Hiperbólicas Funções Hiperbólicas Luiza Amalia Pinto Cantão & Renato Fernanes Cantão Campus Experimental e Sorocaba Unesp http://www.sorocaba.unesp.br/professor/luiza http://www.sorocaba.unesp.br/professor/cantao 006

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Função Exponencial, Inversa e Logarítmica Bárbara Simionatto Engenharia Civil Jaime Vinícius - Engenharia de Produção Função Exponencial Dúvida:

Leia mais

CÁLCULO I Aula 01: Funções.

CÁLCULO I Aula 01: Funções. Inversa CÁLCULO I Aula 01: Funções. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará Inversa 1 Funções e seus 2 Inversa 3 Funções Funções e seus Inversa Consideremos A e B dois

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Função Exponencial, Inversa e Logarítmica Bruno Conde Passos Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Função Exponencial Dúvida: Como

Leia mais

CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes;

CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 02: Funções Objetivos da Aula Denir e reconhecer funções; Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares,

Leia mais

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 19: Concavidade. Teste da Segunda Derivada. Denir concavidade de uma função;

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 19: Concavidade. Teste da Segunda Derivada. Denir concavidade de uma função; CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 19: Concavidade. Teste da Segunda Derivada. Objetivos da Aula Denir concavidade de uma função; Denir ponto de inexão;

Leia mais

Capítulo 1. Funções e grácos

Capítulo 1. Funções e grácos Capítulo 1 Funções e grácos Denição 1. Sejam X e Y dois subconjuntos não vazios do conjunto dos números reais. Uma função de X em Y ou simplesmente uma função é uma regra, lei ou convenção que associa

Leia mais

1. O raio de uma esfera está aumentando a uma taxa de 4 mm/s. Quão rápido o volume da esfera está aumentando quando o diâmetro for 80 mm?

1. O raio de uma esfera está aumentando a uma taxa de 4 mm/s. Quão rápido o volume da esfera está aumentando quando o diâmetro for 80 mm? MAT 001 1 ō Sem. 016 IMC UNIFEI Lista 4: Aplicações da Derivação 1. O raio de uma esfera está aumentando a uma taxa de 4 mm/s. Quão rápido o volume da esfera está aumentando quando o diâmetro for 80 mm?.

Leia mais

CÁLCULO I. 1 Derivada de Funções Elementares

CÁLCULO I. 1 Derivada de Funções Elementares CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Prof. André Almeida Aula n o : Derivada das Funções Elementares. Regras de Derivação. Objetivos da Aula Apresentar a derivada das funções elementares; Apresentar

Leia mais

CÁLCULO I. 1 Funções Crescentes e Decrescentes

CÁLCULO I. 1 Funções Crescentes e Decrescentes CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 14: Crescimento e Decrescimento. Teste da Primeira Derivada. Objetivos da Aula Denir funções crescentes e decrescentes; Determinar os intervalos

Leia mais

Propriedades das Funções Contínuas e Limites Laterais Aula 12

Propriedades das Funções Contínuas e Limites Laterais Aula 12 Propriedades das Funções Contínuas e Limites Laterais Aula 12 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 27 de Março de 2014 Primeiro Semestre de 2014 Turma 2014106 -

Leia mais

Prof. Doherty Andrade. 25 de outubro de 2005

Prof. Doherty Andrade. 25 de outubro de 2005 Funções Hiperbólicas - Resumo Prof. Doherty Andrade 5 de outubro de 005 Sumário Funções Transcendentes. Função Logaritmo Natural............................ Funções Trigonométricas Hiperbólicas.....................

Leia mais

Uma função f de domínio A e contradomínio B é usualmente indicada por f : A B (leia: f de A em B).

Uma função f de domínio A e contradomínio B é usualmente indicada por f : A B (leia: f de A em B). Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo : Funções.- Definições Sejam A e B dois conjuntos não vazios. Uma função f de

Leia mais

CÁLCULO I Aula 14: Crescimento e Decrescimento. Teste da Primeira Derivada.

CÁLCULO I Aula 14: Crescimento e Decrescimento. Teste da Primeira Derivada. CÁLCULO I Aula 14:.. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 2 3 Denição Sejam f : A B uma função e x 1, x 2 D f. Denimos que f é uma (i) função crescente se x 1

Leia mais

CÁLCULO I. 1 Funções Exponenciais Gerais. Objetivos da Aula. Aula n o 25: Funções Logarítmicas e Exponenciais Gerais. Denir f(x) = log x

CÁLCULO I. 1 Funções Exponenciais Gerais. Objetivos da Aula. Aula n o 25: Funções Logarítmicas e Exponenciais Gerais. Denir f(x) = log x CÁLCULO I Prof. Eilson Neri Júnior Prof. Anré Almeia Aula n o 25: Funções Logarítmicas e Eponenciais Gerais Objetivos a Aula Denir f() = log Denir f() = a Funções Eponenciais Gerais Denição. Se a > 0 e

Leia mais

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par.

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par. Funções Elementares Sadao Massago Maio de 0. Apresentação Neste teto, trataremos rapidamente sobre funções elementares. O teto não é material completo do assunto, mas é somente uma nota adicional para

Leia mais

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0 FUNÇÕES As principais definições, teorias e propriedades sobre funções podem ser encontradas em seu livro-teto (Guidorizzi, vol1, Stewart vol1...); Assim, não vamos aqui nos alongar na teoria que pode

Leia mais

Funções. Para começarmos, precisamos de algumas definições: Dessa forma, já temos conteúdo suficiente para definirmos o assunto principal:

Funções. Para começarmos, precisamos de algumas definições: Dessa forma, já temos conteúdo suficiente para definirmos o assunto principal: Funções 1 Introdução Para começarmos, precisamos de algumas definições: Par ordenado: conjunto de dois números reais em que a ordem dos elementos importa, ou seja, (1, 2) (2, 1). Utilizaremos essa definição

Leia mais

A derivada (continuação) Aula 17

A derivada (continuação) Aula 17 A derivada (continuação) Aula 17 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 08 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica Teorema

Leia mais

O logarítmo e aplicações da integral Aula 31

O logarítmo e aplicações da integral Aula 31 O logarítmo e aplicações da integral Aula 31 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 27 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica

Leia mais

Análise Matemática I. f m f f m+1. f f. a f f. f senh f. f coshf. f tgh f. f cotghf. f sech 2 f. f cosech 2 f. f sechf tgh f. f cosechf cotghf.

Análise Matemática I. f m f f m+1. f f. a f f. f senh f. f coshf. f tgh f. f cotghf. f sech 2 f. f cosech 2 f. f sechf tgh f. f cosechf cotghf. Departamento de Matemática da Universidade de Coimbra Análise Matemática I Tabela de Primitivas PRIMITIVAS IMEDIATAS Na lista de primitivas que se segue considera-se uma função f : I IR diferenciável em

Leia mais

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência.

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria II Prof.: Rogério

Leia mais

Aula n o 29:Técnicas de Integração: Integrais Trigonométricas - Substituição Trigonométrica

Aula n o 29:Técnicas de Integração: Integrais Trigonométricas - Substituição Trigonométrica CÁLCULO I Aula n o 29:Técnicas de Integração: Integrais Trigonométricas - Substituição Trigonométrica Prof. Edilson Neri Júnior Prof. André Almeida 1 Integrais Trigonométricas Iniciaremos com o seguinte

Leia mais

2 - f: R R: y = x 2 Classicação: Nem injetora, nem sobrejetora.

2 - f: R R: y = x 2 Classicação: Nem injetora, nem sobrejetora. Apostila de Métodos Quantitativos - UERJ Professor: Pedro Hemsley Funções: f: X Y : Associa a cada elemento do conjunto X um único elemento do conjunto Y. Existem tres tipos especícos de funções: Sobrejetora,

Leia mais

Aula 2: Funções. Margarete Oliveira Domingues PGMET/INPE. Aula 2 p.1/57

Aula 2: Funções. Margarete Oliveira Domingues PGMET/INPE. Aula 2 p.1/57 Aula 2 p.1/57 Aula 2: Funções. Margarete Oliveira Domingues PGMET/INPE Definição e representação Aula 2 p.2/57 Aula 2 p.3/57 Função Definição: Uma função de um conjunto em um conjunto, é uma correspondência

Leia mais

CÁLCULO I Aula 17: Grácos.

CÁLCULO I Aula 17: Grácos. CÁLCULO I Aula 17: Grácos. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 Grácos (1) Domínio - vericar sempre em que pontos a função está denida ou não está denida; (1) Domínio

Leia mais

CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas. Denir taxa de variação;

CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas. Denir taxa de variação; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas Objetivos da Aula Denir taxa de variação; Usar as regras de derivação

Leia mais

DERIVADA. A Reta Tangente

DERIVADA. A Reta Tangente DERIVADA A Reta Tangente Seja f uma função definida numa vizinança de a. Para definir a reta tangente de uma curva = f() num ponto P(a, f(a)), consideramos um ponto vizino Q(,), em que a e traçamos a S,

Leia mais

MAT001 Cálculo Diferencial e Integral I

MAT001 Cálculo Diferencial e Integral I 1 MAT001 Cálculo Diferencial e Integral I GEOMETRIA ANALÍTICA Coordenadas de pontos no plano cartesiano Distâncias entre pontos Sejam e dois pontos no plano cartesiano A distância entre e é dada pela expressão

Leia mais

Capítulo 1. Limites nitos. 1.1 Limite nito num ponto

Capítulo 1. Limites nitos. 1.1 Limite nito num ponto Capítulo 1 Limites nitos 1.1 Limite nito num ponto Denição 1. Seja uma função f : D f R R, x y = f(x, e p R tal que p D f ou p é um ponto da extremidade de D f. Dizemos que a função f possui ite nito no

Leia mais

Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite.

Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite. Derivadas 1 DEFINIÇÃO A partir das noções de limite, é possível chegarmos a uma definição importantíssima para o Cálculo, esta é a derivada. Por definição: A derivada é a inclinação da reta tangente a

Leia mais

4.1 Funções Deriváveis

4.1 Funções Deriváveis 4. Funções Deriváveis 4.A Em cada caso, encontre a derivada da função y = f (), usando a de nição. (a) y = + (b) y = 3 (c) y = 5 (d) y = 3 (e) y = +

Leia mais

Notas de Aula Disciplina Matemática Tópico 09 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 09 Licenciatura em Matemática Osasco -2010 . Logaritmos Definição: O logaritmo de um número real x na base n, denotado por log n x, é definido como o expoente ao qual devemos elevar o número n para obtermos como resultado o número x, ou seja log

Leia mais

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *.

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *. FUNÇÃO EXPONENCIAL Definição: Dado um número real a, tal que 0 < a?, chamamos função eponencial de ase a a função f de R R que associa a cada real o número a. Podemos escrever, tamém: f: R R a Eemplos

Leia mais

Sinais e Sistemas Unidade 2 Conceitos de Matemática de Variável Complexa

Sinais e Sistemas Unidade 2 Conceitos de Matemática de Variável Complexa Sinais e Sistemas Unidade 2 Conceitos de Matemática de Variável Complexa Prof. Cassiano Rech, Dr. Eng. rech.cassiano@gmail.com Prof. Rafael Concatto Beltrame, Me. Eng. rcbeltrame@gmail.com Conteúdo da

Leia mais

Lista de Férias. 6 Prove a partir da definição de limite que: a) lim. (x + 6) = 9. 1 Encontre uma expressão para a função inversa: b) lim

Lista de Férias. 6 Prove a partir da definição de limite que: a) lim. (x + 6) = 9. 1 Encontre uma expressão para a função inversa: b) lim Lista de Férias Bases Matemáticas/FUV Encontre uma epressão para a função inversa: + 3 a) 5 2 + e b) e c) 2 + 5 d) ln( + 3) 6 Prove a partir da definição de ite que: a) 3 ( + 6) = 9 b) = c) 2 = 4 2 d)

Leia mais

CÁLCULO I. 1 Número Reais. Objetivos da Aula

CÁLCULO I. 1 Número Reais. Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida EMENTA: Conceitos introdutórios de limite, limites trigonométricos, funções contínuas, derivada e aplicações. Noções introdutórias sobre a integral

Leia mais

CAPÍTULO 1 NÚMEROS REAIS

CAPÍTULO 1 NÚMEROS REAIS CAPÍTULO 1 EDITORA MAKRON Books NÚMEROS REAIS Tudo o que vamos estudar no curso de Cálculo se referirá a conjuntos de números reais. Estudaremos funções que são definidas e assumem valores nesses conjuntos.

Leia mais

UNIVERSIDADE ESTADUAL DE MATO GROSSO DO SUL UEMS SEGUNDA LICENCIATURA EM INFORMÁTICA. Função Composta e Função Inversa NOVA ANDRADINA MS

UNIVERSIDADE ESTADUAL DE MATO GROSSO DO SUL UEMS SEGUNDA LICENCIATURA EM INFORMÁTICA. Função Composta e Função Inversa NOVA ANDRADINA MS UNIVERSIDADE ESTADUAL DE MATO GROSSO DO SUL UEMS SEGUNDA LICENCIATURA EM INFORMÁTICA Função Composta e Função Inversa NOVA ANDRADINA MS UNIVERSIDADE ESTADUAL DE MATO GROSSO DO SUL UEMS SEGUNDA LICENCIATURA

Leia mais

Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R.

Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R. Capítulo 2 Funções e grácos 2.1 Funções númericas Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R. Denição

Leia mais

Derivadas das Funções Trigonométricas Inversas

Derivadas das Funções Trigonométricas Inversas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivadas das Funções

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 16/10/2016 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 1.

Leia mais

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo Cálculo I IM UFRJ Lista : Pré-Cálculo Prof. Marco Cabral Versão 7.03.05 Para o Aluno O sucesso (ou insucesso) no Cálculo depende do conhecimento de tópicos do ensino médio que chamaremos de pré-cálculo.

Leia mais

Universidade Federal de Sergipe. Programa de Mestrado Profissional em Matemática em Rede Nacional. Deybson Oliveira Melo

Universidade Federal de Sergipe. Programa de Mestrado Profissional em Matemática em Rede Nacional. Deybson Oliveira Melo Universidade Federal de Sergipe Programa de Mestrado Profissional em Matemática em Rede Nacional Funções e suas Aplicações Deybson Oliveira Melo Aracaju - SE 2015 Deybson Oliveira Melo Funções e suas Aplicações

Leia mais

Informática no Ensino da Matemática

Informática no Ensino da Matemática Informática no Ensino da Matemática Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ Lista de Exercícios 3 ATIVIDADE 1 (a) Sejam u =(a b)/(a + b), v =(b c)/(b + c) ew =(c a)/(c + a). Mostre

Leia mais

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, marina.vargas@gmail.com, http:// www.estruturas.ufpr.br 1 REVISÃO

Leia mais

a n = a.a.a...a Aula 01 _ Revisão de Potência FUNÇÃO EXPONENCIAL a n+1 = (a.a.a...a).a a n+1 = a n.a (a.a.a.a...a).(a.a...

a n = a.a.a...a Aula 01 _ Revisão de Potência FUNÇÃO EXPONENCIAL a n+1 = (a.a.a...a).a a n+1 = a n.a (a.a.a.a...a).(a.a... Aula 01 _ Revisão de Potência FUNÇÃO EXPONENCIAL 1 1) Revisão de Potência Assim: a 1 = a e a n = a.a.a.....a a n+1 = (a.a.a.....a).a 2) Propriedades das Potências P1) a m.a n = a m+n Demonstração: a m.a

Leia mais

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18 Sumário CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1 Sistema de Coordenadas Lineares 1 Intervalos Finitos 3 Intervalos Infinitos 3 Desigualdades 3 CAPÍTULO 2 Sistemas de

Leia mais

4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA

4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 43 4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 4.1. A FUNÇÃO EXPONENCIAL Vimos no capítulo anterior que dado a R +, a potência a pode ser definida para qualquer número R. Portanto, fiando a R +, podemos definir

Leia mais

Notas de aulas. André Arbex Hallack

Notas de aulas. André Arbex Hallack Cálculo I Notas de aulas André Arbex Hallack Setembro/2009 Índice 1 Números reais 1 1.1 Números reais.................................... 1 1.2 Relação de ordem em IR.............................. 3 1.3

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Eilson Neri Júnior Prof. Anré Almeia Aula n o 08: Regra a Caeia. Derivação Implícita. Derivaa a Função Inversa. Objetivos a Aula Conhecer e aplicar a regra a caeia; Utilizar a notação e

Leia mais

Comecemos por relembrar as propriedades das potências: = a x c) a x a y = a x+y

Comecemos por relembrar as propriedades das potências: = a x c) a x a y = a x+y . Cálculo Diferencial em IR.1. Função Exponencial e Função Logarítmica.1.1. Função Exponencial Comecemos por relembrar as propriedades das potências: Propriedades das Potências: Sejam a e b números positivos:

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO Realização: Fortaleza, Fevereiro/2010 1. LIMITES 1.1. Definição Geral Se os valores de f(x) puderem

Leia mais

0.1 Função Inversa. Notas de Aula de Cálculo I do dia 07/06/ Matemática Profa. Dra. Thaís Fernanda Mendes Monis.

0.1 Função Inversa. Notas de Aula de Cálculo I do dia 07/06/ Matemática Profa. Dra. Thaís Fernanda Mendes Monis. Notas de Aula de Cálculo I do dia 07/06/03 - Matemática Profa. Dra. Thaís Fernanda Mendes Monis. 0. Função Inversa Definição. Uma função f : A C é injetiva se f(x) f(y) para todo x y, x, y A. Seja f :

Leia mais

Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D. Professora: Elisandra Bär de Figueiredo

Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D. Professora: Elisandra Bär de Figueiredo Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D Professora: Elisandra Bär de Figueiredo 1. Seja f() = 5 + + 1. Justique a armação: f tem pelo menos uma raiz no

Leia mais

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo - 01. Aula 1 Professor: Carlos Sérgio Revisão de Funções Sistema cartesiano ortogonal O Sistema de Coordenadas Cartesianas,

Leia mais

Notas de Aula de Cálculo Diferencial e Integral

Notas de Aula de Cálculo Diferencial e Integral Notas de Aula de Cálculo Diferencial e Integral Volume I Fábio Henrique de Carvalho Copright c 03 Publicado por Fundação Universidade Federal do Vale do São Francisco Univasf) www.univasf.edu.br Todos

Leia mais

FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2}

FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2} Sistemas de Informação e Tecnologia em Proc. de Dados Matemática Ms. Carlos Roberto da Silva/ Ms. Lourival Pereira Martins FUNÇÃO Definição: Dados dois conjuntos e define-se como função de em a toda relação

Leia mais

Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC238 Respostas da Prova de Final - 20/12/2013

Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC238 Respostas da Prova de Final - 20/12/2013 Página de 8 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC38 Respostas da Prova de Final - 0//03 Questão : ( pontos) (a) Dado o gráfico da função f, esboce o gráfico da função

Leia mais

CÁLCULO I. 1 Crescimento e Decaimento Exponencial

CÁLCULO I. 1 Crescimento e Decaimento Exponencial CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 27: Aplicações da Derivada: Decaimento Radioativo, Crescimento Populacional e Lei de Resfriamento de Newton Objetivos da Aula Aplicar derivada

Leia mais

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS 1 TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS Aula 8 Funções Trigonométricas Professor Luciano Nóbrega 2º Bimestre GABARITO: 1) 20 m TESTANDO OS CONHECIMENTOS 1 (UFRN) Observe a figura a seguir e determine a

Leia mais

Notas de Aula Disciplina Matemática Tópico 04 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 04 Licenciatura em Matemática Osasco -2010 1. Funções Sobrejetoras Dizemos que uma unção : é sobrejetora se, e somente se, o seu conjunto imagem or igual ao contradomínio, isto é, se Im() =. Em outras palavras, dado um elemento z qualquer no contradomínio,

Leia mais

CÁLCULO FUNÇÕES DE UMA E VÁRIAS VARIÁVEIS Pedro A. Morettin, Samuel Hazzan, Wilton de O. Bussab.

CÁLCULO FUNÇÕES DE UMA E VÁRIAS VARIÁVEIS Pedro A. Morettin, Samuel Hazzan, Wilton de O. Bussab. Introdução Função é uma forma de estabelecer uma ligação entre dois conjuntos, sujeita a algumas condições. Antes, porém, será exposta uma forma de correspondência mais geral, chamada relação. Sejam dois

Leia mais

Unidade 2 Funções Trigonométricas Inversas. Introdução Função Arco Seno Função Arco Cosseno Função Arco Tangente

Unidade 2 Funções Trigonométricas Inversas. Introdução Função Arco Seno Função Arco Cosseno Função Arco Tangente Unidade 2 Funções Trigonométricas Inversas Introdução Função Arco Seno Função Arco Cosseno Função Arco Tangente Introdução Imagine que dois barcos saiam de um mesmo porto, simultaneamente e em linha reta,

Leia mais

A origem das funções hiperbólicas

A origem das funções hiperbólicas Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit A origem das funções hiperbólicas

Leia mais

CÁLCULO I Aula 26: Área de Superfície de Revolução e Pressão

CÁLCULO I Aula 26: Área de Superfície de Revolução e Pressão CÁLCULO I Aula 26: Área de e Pressão Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 Área de 2 Uma superfície de revolução é um superfície gerada pela rotação de uma curva

Leia mais

Derivada. Capítulo Retas tangentes e normais Número derivado

Derivada. Capítulo Retas tangentes e normais Número derivado Capítulo 3 Derivada 3.1 Retas tangentes e normais Vamos considerar o problema que consiste em traçar a reta tangente e a reta normal a uma curvay= f(x) num determinado ponto (a,f(a)) da curva. Por isso

Leia mais

FUNÇÕES HIPERBÓLICAS E CABOS PENDENTES 1 HYPERBOLIC FUNCTIONS AND PENDANT CABLES

FUNÇÕES HIPERBÓLICAS E CABOS PENDENTES 1 HYPERBOLIC FUNCTIONS AND PENDANT CABLES Disc. Scientia. Série: Ciências Naturais e Tecnológicas, S. Maria, v. 5, n. 1, p. 139-16, 004. 139 ISSN 1519-065 FUNÇÕES HIPERBÓLICAS E CABOS PENDENTES 1 HYPERBOLIC FUNCTIONS AND PENDANT CABLES RESUMO

Leia mais

12 Qua 16 mar Coordenadas retangulares, representação Funções vetoriais paramétrica

12 Qua 16 mar Coordenadas retangulares, representação Funções vetoriais paramétrica Aula Data Aula Detalhes 1 Qua 3 fev Introdução Apresentação e avisos 2 Sex 5 fev Revisão Resumo dos pré-requisitos Qua 10 fev Feriado Carnaval 3 Sex 12 fev Soma de Riemann Área, soma superior e inferior

Leia mais

26 CAPÍTULO 4. LIMITES E ASSÍNTOTAS

26 CAPÍTULO 4. LIMITES E ASSÍNTOTAS Capítulo 4 Limites e assíntotas 4.1 Limite no ponto Considere a função f(x) = x 1 x 1. Observe que esta função não é denida em x = 1. Contudo, fazendo x sucientemente próximo de 1 (mais não igual a1),

Leia mais

MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta

MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta MÉTODOS MATEMÁTICOS Claudia Mazza Dias Sandra Mara C. Malta 1 Métodos Matemáticos Aulas: De 03/11 a 08/11-8:30 as 11:00h Ementa: 1. Funções 2. Eq. Diferenciais Ordinárias de 1 a ordem 3. Sistemas de Equações

Leia mais

Funções Elementares do Cálculo Complexos 2

Funções Elementares do Cálculo Complexos 2 Funções Elementares do Cálculo Complexos AULA 6 META: Definir mais algumas funções elementares no campo dos complexos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir mais algumas funções

Leia mais

DERIVAÇÃO de FUNÇÕES REAIS de VARIÁVEL REAL

DERIVAÇÃO de FUNÇÕES REAIS de VARIÁVEL REAL DERIVAÇÃO de FUNÇÕES REAIS de VARIÁVEL REAL Derivada de uma função num ponto. Sejam f uma função denida num intervalo A R e a um ponto de acumulação de A. Cama-se derivada de f no ponto a ao ite, caso

Leia mais

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 7 ISOMORFISMO

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 7 ISOMORFISMO INRODUÇÃO AO ESUDO DA ÁLGEBRA LINERAR CAPÍULO 7 ISOMORFISMO A pergunta inicial que se faz neste capítulo e que o motiva é: dada uma transformação linear : V W é possível definir uma transformação linear

Leia mais

Funções Elementares do Cálculo Complexos 1

Funções Elementares do Cálculo Complexos 1 Funções Elementares do Cálculo Complexos 1 META: Definir algumas funções elementares no campo dos complexos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir algumas funções elementares

Leia mais

Cálculo Diferencial e Integral I Vinícius Martins Freire

Cálculo Diferencial e Integral I Vinícius Martins Freire UNIVERSIDADE FEDERAL DE SANTA CATARINA - CAMPUS JOINVILLE CENTRO DE ENGENHARIAS DA MOBILIDADE Cálculo Diferencial e Integral I Vinícius Martins Freire MARÇO / 2015 Sumário 1. Introdução... 5 2. Conjuntos...

Leia mais

(a) Obtenha o valor de f( 1). (b) Estime o valor de f(2). (c) f(x) = 2 para quais valores de x? (d) Estime os valores de x para os quais f(x) = 0.

(a) Obtenha o valor de f( 1). (b) Estime o valor de f(2). (c) f(x) = 2 para quais valores de x? (d) Estime os valores de x para os quais f(x) = 0. Lista de Exercícios de Cálculo I para os cursos de Engenharia - Funções 1. Dado o gráfico de uma função: (a) Obtenha o valor de f( 1). (b) Estime o valor de f(). (c) f(x) = para quais valores de x? (d)

Leia mais

1 Cônicas Não Degeneradas

1 Cônicas Não Degeneradas Seções Cônicas Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi regi@mat.ufmg.br 11 de dezembro de 2001 Estudaremos as (seções) cônicas,

Leia mais

0 < c < a ; d(f 1, F 2 ) = 2c

0 < c < a ; d(f 1, F 2 ) = 2c Capítulo 14 Elipse Nosso objetivo, neste e nos próximos capítulos, é estudar a equação geral do segundo grau em duas variáveis: Ax + Bxy + Cy + Dx + Ey + F = 0, onde A 0 ou B 0 ou C 0 Para isso, deniremos,

Leia mais

f(x + h) f(x) 6. Determine as coordenadas dos pontos da curva f (x) = x 3 x 2 + 2x em que a reta tangente é paralela ao eixo x.

f(x + h) f(x) 6. Determine as coordenadas dos pontos da curva f (x) = x 3 x 2 + 2x em que a reta tangente é paralela ao eixo x. Professora: Elisandra Bär de Figueiredo Lista 4: Derivadas - Cálculo Diferencial e Integral I f( + h) f() 1. Para as funções dadas abaio calcule lim. h 0 h( (a) f() ) (b) f() (e) f() cos (c) f() 1 (f)

Leia mais

de Potências e Produtos de Funções Trigonométricas

de Potências e Produtos de Funções Trigonométricas MÓDULO - AULA 1 Aula 1 Técnicas de Integração Integração de Potências e Produtos de Funções Trigonométricas Objetivo Aprender a integrar potências e produtos de funções trigonométricas. Na aula anterior,

Leia mais

Funções reais de variável real

Funções reais de variável real Funções reais de variável real Função exponencial e função logarítmica 1. Determine a base de cada logaritmo. log a 36 = 2 (b) log a (25a) = 5 (c) log a 4 = 0.4 2. Considere x = log 10 2 e y = log 10 3.

Leia mais

A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18

A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18 A derivada da função inversa, o Teorema do Valor Médio e - Aula 18 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 10 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106

Leia mais

1. FUNÇÕES REAIS DE VARIÁVEL REAL

1. FUNÇÕES REAIS DE VARIÁVEL REAL 1 1 FUNÇÕES REAIS DE VARIÁVEL REAL 11 Funções trigonométricas inversas 111 As funções arco-seno e arco-cosseno Como as funções seno e cosseno não são injectivas em IR, só poderemos definir as suas funções

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 10 23 de maio de 2010 Aula 10 Pré-Cálculo 1 Funções injetivas Funções injetivas, sobrejetivas

Leia mais

MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DA PARAÍBA CAMPUS CAJAZEIRAS COORDENAÇÃO DO CURSO TÉCNICO EM INFORMÁTICA

MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DA PARAÍBA CAMPUS CAJAZEIRAS COORDENAÇÃO DO CURSO TÉCNICO EM INFORMÁTICA MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DA PARAÍBA CAMPUS CAJAZEIRAS COORDENAÇÃO DO CURSO TÉCNICO EM INFORMÁTICA MATEMÁTICA I Nome: MATEMÁTICA I Curso: TÉCNICO EM INFORMÁTICA

Leia mais

Matemática Básica Relações / Funções

Matemática Básica Relações / Funções Matemática Básica Relações / Funções 04 1. Relações (a) Produto cartesiano Dados dois conjuntos A e B, não vazios, denomina-se produto cartesiano de A por B ao conjunto A B cujos elementos são todos os

Leia mais

Funções exponenciais e logarítmicas

Funções exponenciais e logarítmicas Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções exponenciais e logarítmicas Parte 07 Parte 7 Matemática Básica 1 Parte 7 Matemática

Leia mais

Resolução prova de matemática UDESC

Resolução prova de matemática UDESC Resolução prova de matemática UDESC 009. Prof. Guilherme Sada Ramos Guiba 1. O enunciado da questão omite a palavra, mas quer dizer que 0% dos aprovados passaram somente na disciplina A, 50% passaram somente

Leia mais

Sendo C(a, b) o centro e P(x, y) um ponto qualquer da circunferência, a distância de C a P(dCP) é o raio dessa circunferência.

Sendo C(a, b) o centro e P(x, y) um ponto qualquer da circunferência, a distância de C a P(dCP) é o raio dessa circunferência. Prof : André Costa. Equação da circunferência; Sendo C(a, b) o centro e P(x, y) um ponto qualquer da circunferência, a distância de C a P(dCP) é o raio dessa circunferência. Então: Portanto, (x - a) 2

Leia mais

UNIVERSIDADE FEDERAL DE ITAJUBÁ Pró-Reitoria de Graduação - PRG Coordenação de Processos Seletivos COPS

UNIVERSIDADE FEDERAL DE ITAJUBÁ Pró-Reitoria de Graduação - PRG Coordenação de Processos Seletivos COPS UNIVERSIDADE FEDERAL DE ITAJUBÁ Pró-Reitoria de Graduação - PRG Coordenação de Processos Seletivos COPS PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 28/06/2015 Física

Leia mais

Lista de Exercícios de Cálculo 3 Módulo 1 - Terceira Lista - 02/2016

Lista de Exercícios de Cálculo 3 Módulo 1 - Terceira Lista - 02/2016 Lista de Exercícios de Cálculo 3 Módulo 1 - Terceira Lista - 02/2016 Parte A 1. Identifique e esboce as superfícies quádricas x 2 + 4y 2 + 9z 2 = 1 x 2 y 2 + z 2 = 1 (c) y = 2x 2 + z 2 (d) x = y 2 z 2

Leia mais

FUNÇÕES. 1.Definição e Conceitos Básicos

FUNÇÕES. 1.Definição e Conceitos Básicos FUNÇÕES 1.Definição e Conceitos Básicos 1.1. Definição: uma função f: A B consta de três partes: um conjunto A, chamado Domínio de f, D(f); um conjunto B, chamado Contradomínio de f, CD(f); e uma regra

Leia mais

(x 1) 2 (x 2) dx 42. x5 + x + 1

(x 1) 2 (x 2) dx 42. x5 + x + 1 I - Integrais Indefinidas ā Lista de Cálculo I - POLI - 00 Calcule as integrais indefinidas abaixo. Para a verificação das resposta lembre-se que f(x)dx = F (x), k IR F (x) = f(x), x D f.. x7 + x + x dx.

Leia mais

Roteiro da aula. MA091 Matemática básica. Exemplo 1. Exemplo 1. Aula 30 Função inversa. Francisco A. M. Gomes. Maio de 2016.

Roteiro da aula. MA091 Matemática básica. Exemplo 1. Exemplo 1. Aula 30 Função inversa. Francisco A. M. Gomes. Maio de 2016. Roteiro da aula MA091 Matemática básica Aula 30. 1 Francisco A. M. Gomes UNICAMP - IMECC 2 Maio de 2016 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Maio de 2016 1 / 26 Francisco A.

Leia mais

A. Funções trigonométricas directas

A. Funções trigonométricas directas A. Funções trigonométricas directas As funções seno, cosseno, tangente e cotangente são contínuas e periódicas nos respectivos domínios. Todas elas são funções não injectivas e, portanto, não possuem inversa.

Leia mais

ESCOLA DE ENSINO MÉDIO PLÁCIDO ADERALDO CASTELO. Disciplina: Matemática - Nível de Ensino: Ensino Médio - Série: 1ª Série 1º BIMESTRE

ESCOLA DE ENSINO MÉDIO PLÁCIDO ADERALDO CASTELO. Disciplina: Matemática - Nível de Ensino: Ensino Médio - Série: 1ª Série 1º BIMESTRE ESCOLA DE ENSINO MÉDIO PLÁCIDO ADERALDO CASTELO Disciplina: Matemática - Nível de Ensino: Ensino Médio - Série: 1ª Série 1º BIMESTRE COMPETÊNCIAS/HABILIDADES CONTEÚDO DETALHAMENTO DE CONTEÚDO 1. Desenvolver

Leia mais