Produto de Matrizes. Márcio Nascimento

Tamanho: px
Começar a partir da página:

Download "Produto de Matrizes. Márcio Nascimento"

Transcrição

1 Produto de Matrizes Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial de dezembro de / 40

2 Sumário 1 Funções Lineares 2 Produto Interno 3 Composição de Funções Lineares 4 Produto de Matrizes 5 Equação Matricial de um Sistema 6 Propriedades do Produto 7 Potências de uma matriz 8 Transpostas e Conjugadas Transpostas 2 / 40

3 Sumário 1 Funções Lineares 2 Produto Interno 3 Composição de Funções Lineares 4 Produto de Matrizes 5 Equação Matricial de um Sistema 6 Propriedades do Produto 7 Potências de uma matriz 8 Transpostas e Conjugadas Transpostas 3 / 40

4 Sejam A, B conjuntos nos quais estão definidas a soma e o produto por escalar. Uma função é dita função linear quando f (X + Y ) = f (X ) + f (Y ) f : A B f (c.x ) = c.f (X ) para X, Y A 4 / 40

5 Exemplo: Considere f : R 2 R definida por f (x, y) = x y. f (X + Y ) = f (X ) + f (Y )? f (α.x ) = α.f (X )? 5 / 40

6 Considere o sistema S { 2x + 3y + 4z = 3 3x 2y + 2z = 1 Matrizes: A = [ ] 2 3 4, X = Função Linear: f : R 3 R 2 x ( ) f y 2x + 3y + 4z = 3x 2y + 2z z 1 Ex: f 4 = 2 ( ) [ ] = [ ] x y, B = z ( ) 22 1 [ ] / 40

7 Verifiquemos que f é uma Função Linear. f (u + v) = f (u) + f (v)? f (α.u) = α.f (u)? u 1 v 1 u 1 + v 1 f (u + v) = f u 2 + v 2 = f u 2 + v 2 = u 3 v 3 u 3 + v ( ) 3 2(u1 + v 1 ) + 3(u 2 + v 2 ) + 4(u 3 + v 3 ) 3(u 1 + v 1 ) 2(u 2 + v 2 ) + 2(u 3 + v 3 ) ( ) (2u1 + 3u = 2 + 4u 3 ) + (2v 1 + 3v 2 + 4v 3 ) = (3u 1 2u 2 + 2u 3 ) + (3v 1 2v 2 + 2v 3 ) ( ) ( ) 2u1 + 3u 2 + 4u 3 2v1 + 3v v 3 3u 1 2u 2 + 2u 3 3v 1 2v 2 + 2v 3 u 1 v 1 = f u 2 + f v 2 = f (u) + f (v) u 3 v 3 7 / 40

8 Por fim, u 1 f (α.u) = f α u 2 u 3 α.u 1 ( ) = f α.u 2 2(α.u1 ) + 3(α.u = 2 ) + 4(α.u 3 ) 3(α.u α.u 1 ) 2(α.u 2 ) + 2(α.u 3 ) 3 ( ) α.(2u1 + 3u = 2 + 4u 3 ) α.(3u 1 2u 2 + 2u 3 ) ( ) u 2u1 + 3u = α 2 + 4u 1 3 = α.f u 3u 1 2u 2 + 2u 2 = α.f (u) 3 u 3 8 / 40

9 Generalizando, Sistema: Matrizes: A, X e B a 11 x 1 + a 12 x a 1m x m = b 1 a 21 x 1 + a 22 x a 2m x m = b 2. a n1 x 1 + a n2 x a nm x m = b n Função linear f : R m R n definda por x 1 a 11 x 1 + a 12 x a 1m x m x 2 f. = a 21 x 1 + a 22 x a 2m x m. x m a n1 x 1 + a n2 x a nm x m n 1 9 / 40

10 Sumário 1 Funções Lineares 2 Produto Interno 3 Composição de Funções Lineares 4 Produto de Matrizes 5 Equação Matricial de um Sistema 6 Propriedades do Produto 7 Potências de uma matriz 8 Transpostas e Conjugadas Transpostas 10 / 40

11 Considere uma matriz linha (L) e uma matriz coluna (C) ambas com n entradas c 1 c 2 L = [l 1 l 2... l n ], C =. c n Produto interno entre L e C: L.C := l 1.c 1 + l 2.c l n.c n Observe que L C 1 n, C C n 1 e L.C C, isto é C 1 n C n 1 C (L, C) L.C 11 / 40

12 Exemplos (2 + i) L = [(2 i) 3 1] C = 3 1 = L.C = (2 i).(2 + i) ( 1)( 1) = A = 4 3 2, B = = A 2 B 2 = = / 40

13 Sumário 1 Funções Lineares 2 Produto Interno 3 Composição de Funções Lineares 4 Produto de Matrizes 5 Equação Matricial de um Sistema 6 Propriedades do Produto 7 Potências de uma matriz 8 Transpostas e Conjugadas Transpostas 13 / 40

14 Por volta de 1855 Arthur Cayley ficou interessado em composição de funções lineares, mais precisamente as funções lineares relacionadas a sistemas, como vimos anteriormente. Considere os sistemas S 1 { Ax + By = U Px + Qy = V, S 2 { ax + by + cz = u px + qy + rz = v As matrizes dos coeficientes são, respectivamente [ ] [ ] A B a b c M 1 =, M P Q 2 = p q r As funções lineares f ( ) x = y ( ) Ax + By Px + Qy e x g y = z ( ) ax + by + cz px + qy + rz 14 / 40

15 f ( ) x = y ( ) Ax + By Px + Qy A composta das funções lineares: e x g y = z h(u) = (f g)(u) = f (g(u)) x ( ) = f g y ax + by + cz = f px + qy + rz z ( ) A(ax + by + cz) + B(px + qy + rz) = P(ax + by + cz) + Q(px + qy + rz) ( ) (Aa + Bp)x + (Ab + Bq)y + (Ac + Br)z = (Pa + Qp)x + (Pb + Qq)y + (Pc + Qr)z ( ) ax + by + cz px + qy + rz 15 / 40

16 Cayley teve a ideia de representar tais funções lineares a partir das matrizes dos coeficientes de cada um dos sistemas, isto é, as funções f, g e h seriam representadas pelas matrizes: [ ] [ ] A B a b c F = G = P Q p q r [ ] (Aa + Bp) (Ab + Bq) (Ac + Br) H = F G = (Pa + Qp) (Pb + Qq) (Pc + Qr) Daí, foi natural para Cayley chamar a matriz H de composição (ou produto) de F e G: [ ] [ ] [ ] A B a b c (Aa + Bp) (Ab + Bq) (Ac + Br) = P Q p q r (Pa + Qp) (Pb + Qq) (Pc + Qr) Repare, ainda, que cada entrada h ij da matriz H equivale ao produto escalar F i.g j entre a linha i de F e a coluna j de G. 16 / 40

17 Sumário 1 Funções Lineares 2 Produto Interno 3 Composição de Funções Lineares 4 Produto de Matrizes 5 Equação Matricial de um Sistema 6 Propriedades do Produto 7 Potências de uma matriz 8 Transpostas e Conjugadas Transpostas 17 / 40

18 Para realizarmos a composição f g vemos que a imagem da função g e o domínio da função f devem ter alguma interseção. No caso anterior, o contradomínio de g é o conjunto R 2 e o domínio de f também é R 2, o que viabiliza a existência de interseção. Figura: Composição das funções lineares f e g. 18 / 40

19 As funções: f : R 2 R 2, g : R 3 R 2, h = f g : R 3 R 2 Matrizes associadas: F 2 2, G 2 3, H 2 3 Generalizando f : R n R p, g : R m R n, h = f g : R m R p Matrizes associadas: F p n, G n m, H p m 19 / 40

20 Definição (Produto de Matrizes) Sejam as matrizes A = [a ij ] n m e B = [b ij ] m r. O produto A.B é definido por (A 1 B 1 ) (A 1 B 2 )... (A 1 B r ) (A 2 B 1 ) (A 2 B 2 )... (A 2 B r ) A.B = = [(A i A j )] n r... (A n B 1 ) (A n B 2 )... (A n B r ) n r isto é, cada entrada x ij da matriz A.B é o produto interno entre a linha i da matriz A e a coluna j da matriz B. 20 / 40

21 Exemplo Considerando as matrizes [ ] 4 (2 + i) 2 i 3 A =, B = i em que resulta A.B e B.A? A 2 3 B 3 2 B 3 2 = A.B terá ordem 2 2 A 2 3 = B.A terá ordem / 40

22 Exemplo A = [ 2 i ] (2 + i) B = i [ ] [ ] x11 x A.B = 12 (A1 B = 1 ) (A 1 B 2 ) x 21 x 22 (A 2 B 1 ) (A 2 B 2 ) [ ] (2.4 + i ) (2.(2 + i) + i i) A.B = ( ) (4.(2 + i) i) [ ] (17 + 5i) (4 + 14i) A.B = (34) (26 + 6i) 22 / 40

23 Exemplo 4 (2 + i) B = 5 6 A = 3 2i [ 2 i ] B.A = y 11 y 12 y 13 y 21 y 22 y 23 = (B 1 A 1 ) (B 1 A 2 ) (B 1 A 3 ) (B 2 A 1 ) (B 2 A 2 ) (B 2 A 3 ) y 31 y 32 y 33 (B 3 A 1 ) (B 3 A 2 ) (B 3 A 3 ) (4.2 + (2 + i).4) (4.i + (2 + i).3) (4.3 + (2 + i).1) B.A = ( ) (5.i + 6.3) ( ) ( i.4) (3.i + 2i.3) ( i.1) (16 + 4i) (6 + 7i) (14 + i) B.A = (34) (18 + 5i) (21) (6 + 8i) (9i) (9 + 2i) 23 / 40

24 No exemplo, vemos que A.B B.A Na verdade, se A tem ordem n m e B tem ordem m p com n p, existe A.B sem que exista B.A! 24 / 40

25 Sumário 1 Funções Lineares 2 Produto Interno 3 Composição de Funções Lineares 4 Produto de Matrizes 5 Equação Matricial de um Sistema 6 Propriedades do Produto 7 Potências de uma matriz 8 Transpostas e Conjugadas Transpostas 25 / 40

26 Considere um sistema linear com n equações e m variáveis a 11 x 1 + a 12 x a 1m x m = b 1 a 21 x 1 + a 22 x a 2m x m = b 2. a n1 x 1 + a n2 x a nm x m = b n Observe que, sendo A = [a rs ] n m a matriz dos coeficientes do sistema e X = [x i ] m 1 a matriz coluna cujas entradas são as variáveis do sistema, então o primeiro membro de cada uma das equações acima é um produto interno: 26 / 40

27 a 11 x 1 + a 12 x a 1m x m = [ a 11 a x 1 x ] 2 a 1m. = A 1 X = b 1 x m a 21 x 1 + a 22 x a 2m x m = [ a 21 a x 1 x ] 2 a 2m. = A 2 X = b 2 x m... x 1 a n1 x 1 + a n2 x a nmx m = [ a n1 a n2... x ] 2 a nm = An X = bn. x m Portanto, A.X = B é a Equação Matricial do sistema. 27 / 40

28 Dado um sistema linear com n equações e m variáveis a 11 x 1 + a 12 x a 1m x m = b 1 a 21 x 1 + a 22 x a 2m x m = b 2 a n1 x 1 + a n2 x a nm x m = b n a 11 a a 1m x 1 b 1 a 21 a a 2m.... x 2. = b 2 A.X = B. a n1 a n2... a nm x m b n. 28 / 40

29 Sumário 1 Funções Lineares 2 Produto Interno 3 Composição de Funções Lineares 4 Produto de Matrizes 5 Equação Matricial de um Sistema 6 Propriedades do Produto 7 Potências de uma matriz 8 Transpostas e Conjugadas Transpostas 29 / 40

30 No produto de matrizes não vale a lei do cancelamento A = [ 2 1 ], B = [ 1 0 ] [ ] 1, C = 1 A.C = B.C com C 0 A B 30 / 40

31 Também não vale a comutatividade [ ] [ ] Considere A = e B = [ ] 2 8 A.B = 3 12 [ ] 14 0 B.A = 13 0 Portanto, AB BA 31 / 40

32 Propriedades válidas: Distributividade à Esquerda: Sejam as matrizes A n m, B m p, C m p. Então A(B + C) = AB + AC Distributividade à Direita: Sejam as matrizes D n m, E n m, F m p. Então (D + E).F = DF + EF Associatividade: Sejam A n m, B m p, C p k. Então A.(B.C) = (A.B).C Elemento Neutro: A n m.i m = A e I n.a n m = A 32 / 40

33 Sumário 1 Funções Lineares 2 Produto Interno 3 Composição de Funções Lineares 4 Produto de Matrizes 5 Equação Matricial de um Sistema 6 Propriedades do Produto 7 Potências de uma matriz 8 Transpostas e Conjugadas Transpostas 33 / 40

34 Para matrizes quadradas, podemos usar uma notação análoga a usada para escalares (reais ou complexos). Se A C n n então A 0 = I n A 2 = A.A, A 3 = A.A.A,..., A n = A.A. }{{.A} com n Z + n vezes Daí, é correto escrever: A r.a s = A r+s, r, s Z + (A r ) s = A r.s, r, s Z + 34 / 40

35 Sumário 1 Funções Lineares 2 Produto Interno 3 Composição de Funções Lineares 4 Produto de Matrizes 5 Equação Matricial de um Sistema 6 Propriedades do Produto 7 Potências de uma matriz 8 Transpostas e Conjugadas Transpostas 35 / 40

36 Sejam A, B matrizes compatíveis para o produto A.B. Então (AB) T = B T.A T (AB) = B A 36 / 40

37 Exemplo Seja A uma matriz de ordem n m. Mostrar que A T.A é simétrica. Com efeito, se A tem ordem n m então A T é uma matriz de ordem m n. Portanto, o produto A T.A existe e terá ordem m m. Sendo essa uma matriz quadrada, mostrar que ela é simétrica significa mostrar que ela e sua transposta são iguais. Isto é: (A T.A) T = A T.A Partindo do primeiro membro, temos: (A T.A) T = A T.(A T ) T = A T.A 37 / 40

38 Exemplo Seja A uma matriz de ordem n m. A.A T é simétrica? E A.A? E A.A? 38 / 40

39 Exemplo Considere o seguinte sistema de equações: 2x 1 + x 2 + x 3 = 3 4x 1 + 2x 3 = 10 2x 1 + 2x 2 = 2 (a) Escreva a equação matricial do sistema (AX = B). (b) Escreva a solução S do sistema na forma coluna e verifique, usando multiplicação de matrizes, que S satisfaz a equação AX = B. (c) Escreva B como uma combinação das colunas de A. 39 / 40

40 Exemplo Seja e j a j-ésima coluna unitária, isto é, a j-ésima coluna de uma matriz identidade de ordem n. Para uma matriz arbitrária A n n descreva os seguintes produtos: (a) A.e j (b) e T i.a (c) e T i.ae j 40 / 40

Inversão de Matrizes

Inversão de Matrizes Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2014.2 13 de

Leia mais

Matrizes e Sistemas Lineares. Professor: Juliano de Bem Francisco. Departamento de Matemática Universidade Federal de Santa Catarina.

Matrizes e Sistemas Lineares. Professor: Juliano de Bem Francisco. Departamento de Matemática Universidade Federal de Santa Catarina. e Aula Zero - Álgebra Linear Professor: Juliano de Bem Francisco Departamento de Matemática Universidade Federal de Santa Catarina agosto de 2011 Outline e e Part I - Definição: e Consideremos o conjunto

Leia mais

Matrizes Reais conceitos básicos

Matrizes Reais conceitos básicos Cálculo Numérico Matrizes Reais conceitos básicos Wagner de Souza Borges FCBEE, Universidade Presbiteriana Mackenzie wborges@mackenzie.com.br Resumo O conceito de matriz tem origem no estudo de sistemas

Leia mais

Exercícios e questões de Álgebra Linear

Exercícios e questões de Álgebra Linear CEFET/MG Exercícios e questões de Álgebra Linear Versão 1.2 Prof. J. G. Peixoto de Faria Departamento de Física e Matemática 25 de outubro de 2012 Digitado em L A TEX (estilo RevTEX). 2 I. À GUISA DE NOTAÇÃO

Leia mais

1. Mostre que o conjunto R 2 = {(x, y)/x, y R} é um espaço vetorial real, com as operações usuais de adição de elementos e multiplicação por escalar.

1. Mostre que o conjunto R 2 = {(x, y)/x, y R} é um espaço vetorial real, com as operações usuais de adição de elementos e multiplicação por escalar. Fundação Universidade Federal do Vale do São Francisco - UNIVASF Colegiado de Engenharia de Produção - CPROD Prof. Felipe Wergete a Lista de Exercícios de Álgebra Linear - 202.. Mostre que o conjunto R

Leia mais

Disciplina: Álgebra Linear - Engenharias ], C = Basta adicionar elemento a elemento de A e B que ocupam a mesma posição na matriz.

Disciplina: Álgebra Linear - Engenharias ], C = Basta adicionar elemento a elemento de A e B que ocupam a mesma posição na matriz. Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Álgebra Linear - Engenharias Professor: André Luiz Galdino Gabarito da 1 a Lista de Exercícios 1. Sejam Encontre: [ 1

Leia mais

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas.

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas. Definição Uma matriz do tipo m n (lê-se m por n), com m e n, sendo m e n números inteiros, é uma tabela formada por m n elementos dispostos em m linhas e n colunas. Estes elementos podem estar entre parênteses

Leia mais

ALGA - Eng.Civil - ISE - 2009/2010 - Matrizes 1. Matrizes

ALGA - Eng.Civil - ISE - 2009/2010 - Matrizes 1. Matrizes ALGA - Eng.Civil - ISE - 00/010 - Matrizes 1 Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n (m vezes n ou m por n) a uma aplicação A : f1; ; :::; mg f1; ; :::; ng R:

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Matrizes; Matrizes Especiais; Operações com Matrizes; Operações Elementares

Leia mais

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013 Álgebra Linear Mauri C. Nascimento Departamento de Matemática UNESP/Bauru 19 de fevereiro de 2013 Sumário 1 Matrizes e Determinantes 3 1.1 Matrizes............................................ 3 1.2 Determinante

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE. Aula 03 Inversão de matrizes

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE. Aula 03 Inversão de matrizes UNIVERSIDDE FEDERL DO RIO GRNDE DO NORTE Prof. Hector Carrion S. Álgebra Linear ula Inversão de matrizes Resumo Matriz inversa Inversa de matriz elementar Matriz adjunta Inversão de matrizes Uma matriz

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

MATRIZ - FORMAÇÃO E IGUALDADE

MATRIZ - FORMAÇÃO E IGUALDADE MATRIZ - FORMAÇÃO E IGUALDADE 1. Seja X = (x ij ) uma matriz quadrada de ordem 2, onde i + j para i = j ;1 - j para i > j e 1 se i < j. A soma dos seus elementos é igual a: 2. Se M = ( a ij ) 3x2 é uma

Leia mais

Matemática 2 aula 11 COMENTÁRIOS ATIVIDADES PARA SALA COMENTÁRIOS ATIVIDADES PROPOSTAS POLINÔMIOS I. P(x) = 4x (x 1) + (x 1)

Matemática 2 aula 11 COMENTÁRIOS ATIVIDADES PARA SALA COMENTÁRIOS ATIVIDADES PROPOSTAS POLINÔMIOS I. P(x) = 4x (x 1) + (x 1) Matemática aula POLINÔMIOS I. COMENTÁRIOS ATIVIDADES PARA SALA b a P() b P() + + Calculando P (), temos: b a P() b b + b + a ab b a P () b + ( ab) + b + a b Se P () P (), podemos observar que: b + ( ab)

Leia mais

ficha 3 espaços lineares

ficha 3 espaços lineares Exercícios de Álgebra Linear ficha 3 espaços lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 3 Notação Sendo

Leia mais

Universidade Federal de Goiás Campus Catalão Departamento de Matemática

Universidade Federal de Goiás Campus Catalão Departamento de Matemática Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Álgebra Linear Professor: André Luiz Galdino Aluno(a): 4 a Lista de Exercícios 1. Podemos entender transformações lineares

Leia mais

Este apêndice resume os conceitos de álgebra matricial, inclusive da álgebra de probabilidade,

Este apêndice resume os conceitos de álgebra matricial, inclusive da álgebra de probabilidade, D Resumo de Álgebra Matricial Este apêndice resume os conceitos de álgebra matricial, inclusive da álgebra de probabilidade, necessária para o estudo de modelos de regressão linear múltipla usando matrizes,

Leia mais

EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros exercícios)

EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros exercícios) UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros eercícios) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Eercícios

Leia mais

3.1. TRANSFORMAÇÕES LINEARES 79

3.1. TRANSFORMAÇÕES LINEARES 79 31 TRANSFORMAÇÕES LINEARES 79 Exemplo 317 Mostre que existe uma função T : R R satisfazendo à condição aditiva T (x + y) =T (x)+t (y), x, y R, mas não é uma transformação linear, isto é, T (x) 6= ax, paraalgumx

Leia mais

1ª Parte Questões de Múltipla Escolha

1ª Parte Questões de Múltipla Escolha MATEMÁTICA 11 a 1ª Parte Questões de Múltipla Escolha A soma dos cinco primeiros termos de uma PA vale 15 e o produto desses termos é zero. Sendo a razão da PA um número inteiro e positivo, o segundo termo

Leia mais

Exercícios de Aprofundamento Mat Polinômios e Matrizes

Exercícios de Aprofundamento Mat Polinômios e Matrizes . (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto

Leia mais

Gramáticas Livres de Contexto

Gramáticas Livres de Contexto Gramáticas Livres de Contexto 25 de novembro de 2011 Definição 1 Uma Regra (ou produção) é um elemento do conjunto V (V Σ). Sendo que V é um conjunto finito de elementos chamados de variáveis e Σ um conjunto

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática 1 a Lista - MAT 17 - Introdução à Álgebra Linear II/2004 1 Considere as matrizes A, B, C, D e E com respectivas ordens,

Leia mais

Estimativas de Arrecadação de Impostos Próprios Estaduais e Municipais, Transferências Constitucionais e os 25% Constitucionais da Educação

Estimativas de Arrecadação de Impostos Próprios Estaduais e Municipais, Transferências Constitucionais e os 25% Constitucionais da Educação 1 Estimativas de Arrecadação de Impostos Próprios Estaduais e Municipais, Transferências Constitucionais e os 25% Constitucionais da Educação Resumo O presente estudo objetivou levantar dados sobre o total

Leia mais

Notas de Aula. Álgebra Linear

Notas de Aula. Álgebra Linear Notas de Aula Álgebra Linear Rodney Josué Biezuner 1 Departamento de Matemática Instituto de Ciências Exatas (ICEx) Universidade Federal de Minas Gerais (UFMG) Notas de aula da disciplina Álgebra Linear

Leia mais

a 1 x 1 +... + a n x n = b,

a 1 x 1 +... + a n x n = b, Sistemas Lineares Equações Lineares Vários problemas nas áreas científica, tecnológica e econômica são modelados por sistemas de equações lineares e requerem a solução destes no menor tempo possível Definição

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Produtos Notáveis; Equações; Inequações; Função; Função Afim; Paridade;

Leia mais

FUNDAMENTOS DA MATEMÁTICA

FUNDAMENTOS DA MATEMÁTICA FUNDAMENTOS DA MATEMÁTICA Aula Matrizes Professor Luciano Nóbrega UNIDADE MATRIZES _ INTRODUÇÃO DEFINIÇÃO Uma matriz é uma tabela com m linhas e n colunas que contém m. n elementos. EXEMPLO: Ângulo 0º

Leia mais

Prof. José Carlos Morilla

Prof. José Carlos Morilla 1 Cálculo Vetorial e Geometria Analítica Santos 009 1 CÁLCULO VETORIAL... 4 1.1 Segmentos Orientados... 4 1. Vetores... 4 1..1 Soma de um ponto com um vetor... 5 1.. Adição de vetores... 5 1..3 Diferença

Leia mais

UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA CIVIL

UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA CIVIL Exercícios propostos: aulas 01 e 02 GOVERNO DO ESTADO DE MATO GROSSO GA - LISTA DE EXERCÍCIOS 001 1. Calcular o perímetro do triângulo ABC, sendo dado A = (2, 1), B = (-1, 3) e C = (4, -2). 2. Provar que

Leia mais

Álgebra Linear I - Aula 20

Álgebra Linear I - Aula 20 Álgebra Linear I - Aula 0 1 Matriz de Mudança de Base Bases Ortonormais 3 Matrizes Ortogonais 1 Matriz de Mudança de Base Os próximos problemas que estudaremos são os seguintes (na verdade são o mesmo

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Distribuição das 1.048 Questões do I T A 94 (8,97%) 104 (9,92%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais 23 (2, 101 (9,64%) Geo. Espacial Geo. Analítica Funções Conjuntos 31 (2,96%)

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul Resolução da Prova da Escola Naval 29. Matemática Prova Azul GABARITO D A 2 E 2 E B C 4 D 4 C 5 D 5 A 6 E 6 C 7 B 7 B 8 D 8 E 9 A 9 A C 2 B. Os 6 melhores alunos do Colégio Naval submeteram-se a uma prova

Leia mais

INDUÇÃO MATEMÁTICA. Primeiro Princípio de Indução Matemática

INDUÇÃO MATEMÁTICA. Primeiro Princípio de Indução Matemática INDUÇÃO MATEMÁTICA Indução Matemática é um método de prova matemática tipicamente usado para estabelecer que um dado enunciado é verdadeiro para todos os números naturais, ou então que é verdadeiro para

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD.

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD. Questão Se Amélia der R$,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade do

Leia mais

Obs.: São cartesianos ortogonais os sistemas de coordenadas

Obs.: São cartesianos ortogonais os sistemas de coordenadas MATEMÁTICA NOTAÇÕES : conjunto dos números complexos : conjunto dos números racionais : conjunto dos números reais : conjunto dos números inteiros = {0,,, 3,...} * = {,, 3,...} Ø: conjunto vazio A\B =

Leia mais

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp. Álgebra Linear AL Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.br Sistemas Lienares 1 Sistemas e Matrizes 2 Operações Elementares e

Leia mais

Produtos. 4.1 Produtos escalares

Produtos. 4.1 Produtos escalares Capítulo 4 Produtos 4.1 Produtos escalares Neste tópico iremos estudar um novo tipo de operação entre vetores do plano e do espaço. Vamos fazer inicialmente uma consideração geométrica, como segue. Seja

Leia mais

Exercícios de Matemática Matrizes

Exercícios de Matemática Matrizes Exercícios de Matemática Matrizes ) (Unicamp-999) Considere as matrizes: cos sen x sen cos y M=, X = z e Y = a) Calcule o determinante de M e a matriz inversa de M. b) Resolva o sistema MX = Y. ) (ITA-6)

Leia mais

Notas de Aula. Álgebra Linear I

Notas de Aula. Álgebra Linear I Notas de Aula Álgebra Linear I Rodney Josué Biezuner 1 Departamento de Matemática Instituto de Ciências Exatas (ICEx) Universidade Federal de Minas Gerais (UFMG) Notas de aula da disciplina Álgebra Linear

Leia mais

Capítulo 2: Transformação de Matrizes e Resolução de Sistemas

Capítulo 2: Transformação de Matrizes e Resolução de Sistemas 2 Livro: Introdução à Álgebra Linear Autores: Abramo Hefez Cecília de Souza Fernandez Capítulo 2: Transformação de Matrizes e Resolução de Sistemas Sumário 1 Transformação de Matrizes.............. 3 1.1

Leia mais

Álgebra Linear. André Arbex Hallack Frederico Sercio Feitosa

Álgebra Linear. André Arbex Hallack Frederico Sercio Feitosa Álgebra Linear André Arbex Hallack Frederico Sercio Feitosa Janeiro/2006 Índice 1 Sistemas Lineares 1 11 Corpos 1 12 Sistemas de Equações Lineares 3 13 Sistemas equivalentes 4 14 Operações elementares

Leia mais

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range).

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range). f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range). R é o conjunto dos reais; R n é o conjunto dos vetores n-dimensionais reais; Os vetores

Leia mais

ESCOLA BÁSICA 2,3 MARTIM DE FREITAS NÚCLEO DE ESTÁGIO DE MATEMÁTICA ANO LETIVO 2011/2012

ESCOLA BÁSICA 2,3 MARTIM DE FREITAS NÚCLEO DE ESTÁGIO DE MATEMÁTICA ANO LETIVO 2011/2012 Escola Martim de Freitas ESCOLA BÁSICA 2,3 MARTIM DE FREITAS NÚCLEO DE ESTÁGIO DE MATEMÁTICA ANO LETIVO 2011/2012 Disciplina de Matemática Tópico: Isometrias Ficha de Trabalho n.º 1 Data: 20 / 10 / 2011

Leia mais

Resolução: P(i) = 2. (i) 4 (i) 3 3(i) 2 + (i) + 5 = 2 + i + 3 + i + 5 = 10 + 2i. Resolução: Resolução:

Resolução: P(i) = 2. (i) 4 (i) 3 3(i) 2 + (i) + 5 = 2 + i + 3 + i + 5 = 10 + 2i. Resolução: Resolução: EXERCÍCIOS 01. Calcule o valor numérico de P(x) = 2x 4 x 3 3x 2 + x + 5 para x = i. P(i) = 2. (i) 4 (i) 3 3(i) 2 + (i) + 5 = 2 + i + 3 + i + 5 = 10 + 2i 02. Dado o polinômio P(x) = x 3 + kx 2 2x + 5, determine

Leia mais

Capítulo 5: Transformações Lineares

Capítulo 5: Transformações Lineares 5 Livro: Introdução à Álgebra Linear Autores: Abramo Hefez Cecília de Souza Fernandez Capítulo 5: Transformações Lineares Sumário 1 O que são as Transformações Lineares?...... 124 2 Núcleo e Imagem....................

Leia mais

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Erica Castilho Rodrigues 2 de Setembro de 2014 Erro Puro 3 Existem dois motivos pelos quais os pontos observados podem não cair na reta

Leia mais

Álgebra Linear. Bacharelado em Sistemas de Informação. Período 2016.1. Prof. da Disciplina Luiz Gonzaga Damasceno, M. Sc

Álgebra Linear. Bacharelado em Sistemas de Informação. Período 2016.1. Prof. da Disciplina Luiz Gonzaga Damasceno, M. Sc Bacharelado em Sistemas de Informação Período 26. Prof. da Disciplina Luiz Gonzaga Damasceno, M. Sc E-mails: damasceno2@hotmail.com damasceno2@uol.com.br damasceno24@yahoo.com.br Site: www.damasceno.info

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa A. alternativa E. alternativa E

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa A. alternativa E. alternativa E Questão TIPO DE PROVA: A Uma empresa entrevistou k candidatos a um determinadoempregoerejeitouumnúmerode candidatos igual a 5 vezes o número de candidatos aceitos. Um possível valor para k é: a) 56 b)

Leia mais

4.2 Produto Vetorial. Orientação sobre uma reta r

4.2 Produto Vetorial. Orientação sobre uma reta r 94 4. Produto Vetorial Dados dois vetores u e v no espaço, vamos definir um novo vetor, ortogonal a u e v, denotado por u v (ou u v, em outros textos) e denominado produto vetorial de u e v. Mas antes,

Leia mais

NOÇÕES DE ÁLGEBRA LINEAR

NOÇÕES DE ÁLGEBRA LINEAR ESPAÇO VETORIAL REAL NOÇÕES DE ÁLGEBRA LINEAR ESPAÇOS VETORIAIS Seja um conjunto V φ no qual estão definidas duas operações: adição e multiplicação por escalar, tais que u, v V, u+v V e α R, u V, αu V

Leia mais

NIVELAMENTO MATEMÁTICA 2012

NIVELAMENTO MATEMÁTICA 2012 NIVELAMENTO MATEMÁTICA 202 Monitor: Alexandre Rodrigues Loures Monitor: Alexandre Rodrigues Loures SUMÁRIO. LOGARITMOS... 3.. Mudança de base... 3.2. Propriedades dos logaritmos... 4 2. DERIVADAS... 4

Leia mais

Matemática Discreta para Ciência da Computação

Matemática Discreta para Ciência da Computação Matemática Discreta para Ciência da Computação P. Blauth Menezes blauth@inf.ufrgs.br Departamento de Informática Teórica Instituto de Informática / UFRGS Matemática Discreta para Ciência da Computação

Leia mais

Aplicações Diferentes Para Números Complexos

Aplicações Diferentes Para Números Complexos Material by: Caio Guimarães (Equipe Rumoaoita.com) Aplicações Diferentes Para Números Complexos Capítulo II Aplicação 2: Complexos na Geometria Na rápida revisão do capítulo I desse artigo mencionamos

Leia mais

Capítulo 1: Sistemas Lineares e Matrizes

Capítulo 1: Sistemas Lineares e Matrizes 1 Livro: Introdução à Álgebra Linear Autores: Abramo Hefez Cecília de Souza Fernandez Capítulo 1: Sistemas Lineares e Matrizes Sumário 1 O que é Álgebra Linear?............... 2 1.1 Corpos.........................

Leia mais

FUNÇÃO DO 1º GRAU. Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência:

FUNÇÃO DO 1º GRAU. Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência: FUNÇÃO DO 1º GRAU Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência: Correspondência: é qualquer conjunto de pares ordenados onde o primeiro elemento pertence ao primeiro

Leia mais

Matemática. Resolução das atividades complementares. M2 Matrizes [ ] 1 Construa a matriz linha A 5 (a ij

Matemática. Resolução das atividades complementares. M2 Matrizes [ ] 1 Construa a matriz linha A 5 (a ij Resolução das atividades complementares Matemática M Matrizes p. 6 Construa a matriz linha (a ij ) tal que cada elemento obedeça à lei a ij i j. (a ij ) ; a ij i j a a 6 a 9 7 a 0 a [ 7 0 ] [ ] 7 0 Determine

Leia mais

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano a série EM Geometria Analítica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano 1 Exercícios

Leia mais

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,...

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... 0) O que veremos na aula de hoje? Um fato interessante Produtos notáveis Equação do 2º grau Como fazer a questão 5 da 3ª

Leia mais

Matriz de Sensibilidade Modal

Matriz de Sensibilidade Modal Introdução ao Controle Automático de Aeronaves Matriz de Sensibilidade Modal Leonardo Tôrres torres@cpdeeufmgbr Escola de Engenharia Universidade Federal de Minas Gerais/EEUFMG Dep Eng Eletrônica EEUFMG

Leia mais

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br A Matemática no Vestibular do ITA Material Complementar: Prova 01 c 01, Sergio Lima Netto sergioln@smtufrjbr 11 Vestibular 01 Questão 01: Das afirmações: I Se x, y R Q, com y x, então x + y R Q; II Se

Leia mais

QUESTÕES COMENTADAS E RESOLVIDAS

QUESTÕES COMENTADAS E RESOLVIDAS LENIMAR NUNES DE ANDRADE INTRODUÇÃO À ÁLGEBRA: QUESTÕES COMENTADAS E RESOLVIDAS 1 a edição ISBN 978-85-917238-0-5 João Pessoa Edição do Autor 2014 Prefácio Este texto foi elaborado para a disciplina Introdução

Leia mais

Ex 4.3 O anel é construído pelos polinômios S 1 1 S 2. x S 3. x 1 S 4. x 2 S 5. x 2 1 S 6. x 2 x S 7. x 2 x 1 S 8. x 3 S 9

Ex 4.3 O anel é construído pelos polinômios S 1 1 S 2. x S 3. x 1 S 4. x 2 S 5. x 2 1 S 6. x 2 x S 7. x 2 x 1 S 8. x 3 S 9 Ex. 4.1 As palavras código são c 0 = [0 0 0 0 0 0 0], c 1 = [0 0 0 1 1 0 1], c 2 = [0 0 1 1 0 1 0], c 3 = [0 0 1 0 1 1 1], c 4 = [0 1 1 0 1 0 0], c 5 = [0 1 1 1 0 0 1], c 6 = [0 1 0 1 1 1 0], c 7 = [0

Leia mais

Determinantes. Vamos associar a cada matriz quadrada A um número a que chamaremos determinante. a11 a Uma matriz de ordem 2, A =

Determinantes. Vamos associar a cada matriz quadrada A um número a que chamaremos determinante. a11 a Uma matriz de ordem 2, A = Determinantes Vamos associar a cada matriz quadrada A um número a que chamaremos determinante de A. [ ] a11 a Uma matriz de ordem 2, A 12, é invertível se e só se a 21 a 22 a 11 a 22 a 21 a 12 0, como

Leia mais

Capítulo 4 - Valores e Vectores Próprios

Capítulo 4 - Valores e Vectores Próprios Capítulo 4 - Valores e Vectores Próprios Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 15

Leia mais

= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos.

= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos. VTB 008 ª ETAPA Solução Comentada da Prova de Matemática 0 Em uma turma de alunos que estudam Geometria, há 00 alunos Dentre estes, 30% foram aprovados por média e os demais ficaram em recuperação Dentre

Leia mais

UNIV ERSIDADE DO EST ADO DE SANT A CAT ARINA UDESC CENT RO DE CI ^ENCIAS T ECNOLOGICAS DEP ART AMENT O DE MAT EMAT ICA DMAT

UNIV ERSIDADE DO EST ADO DE SANT A CAT ARINA UDESC CENT RO DE CI ^ENCIAS T ECNOLOGICAS DEP ART AMENT O DE MAT EMAT ICA DMAT UNIV ERSIDADE DO EST ADO DE SANT A CAT ARINA UDESC CENT RO DE CI ^ENCIAS T ECNOLOGICAS CCT DEP ART AMENT O DE MAT EMAT ICA DMAT Professora Graciela Moro Exercícios sobre Matrizes, Determinantes e Sistemas

Leia mais

XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível Segunda Fase Parte A PARTE A Na parte A serão atribuídos 4 pontos para cada resposta correta e a pontuação máxima para essa

Leia mais

MATEMÁTICA II. Aula 12. 3º Bimestre. Determinantes Professor Luciano Nóbrega

MATEMÁTICA II. Aula 12. 3º Bimestre. Determinantes Professor Luciano Nóbrega 1 MATEMÁTICA II Aula 12 Determinantes Professor Luciano Nóbrega º Bimestre 2 DETERMINANTES DEFINIÇÃO A toda matriz quadrada está associado um número real ao qual damos o nome de determinante. O determinante

Leia mais

Números Inteiros AULA. 3.1 Introdução

Números Inteiros AULA. 3.1 Introdução AULA 3 META: Apresentar os números inteiros axiomaticamente através dos Números Naturais. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir números inteiros axiomaticamente. Realizar

Leia mais

Sistema de equações lineares

Sistema de equações lineares Sistema de equações lineares Sistema de m equações lineares em n incógnitas sobre um corpo ( S) a x + a x + + a x = b a x + a x + + a x = b a x + a x + + a x = b 11 1 12 2 1n n 1 21 1 22 2 2n n 2 m1 1

Leia mais

Assunto: Estudo do ponto

Assunto: Estudo do ponto Assunto: Estudo do ponto 1) Sabendo que P(m+1;-3m-4) pertence ao 3º quadrante, determine os possíveis valores de m. resp: -4/3

Leia mais

Representação de Circuitos Lógicos

Representação de Circuitos Lógicos 1 Representação de Circuitos Lógicos Formas de representação de um circuito lógico: Representação gráfica de uma rede de portas lógicas Expressão booleana Tabela verdade 3 representações são equivalentes:

Leia mais

Matrizes e Determinantes

Matrizes e Determinantes Capítulo 1 Matrizes e Determinantes 11 Generalidades Iremos usar K para designar IR conjunto dos números reais C conjunto dos números complexos Deste modo, chamaremos números ou escalares aos elementos

Leia mais

Sistemas Lineares e Escalonamento

Sistemas Lineares e Escalonamento Capítulo 1 Sistemas Lineares e Escalonamento Antes de iniciarmos nos assuntos geométricos da Geometria Analítica, vamos recordar algumas técnicas sobre escalonamento de matrizes com aplicações na solução

Leia mais

Monografia sobre R ser um Domínio de Fatoração Única implicar que R[x] é um Domínio de Fatoração Única.

Monografia sobre R ser um Domínio de Fatoração Única implicar que R[x] é um Domínio de Fatoração Única. Universidade Estadual de Campinas Instituto de Matemática, Estatística e Computação Científica Departamento de Matemática Monografia sobre R ser um Domínio de Fatoração Única implicar que R[x] é um Domínio

Leia mais

Aula 4 Ângulos em uma Circunferência

Aula 4 Ângulos em uma Circunferência MODULO 1 - AULA 4 Aula 4 Ângulos em uma Circunferência Circunferência Definição: Circunferência é o conjunto de todos os pontos de um plano cuja distância a um ponto fixo desse plano é uma constante positiva.

Leia mais

Breve referência à Teoria de Anéis. Álgebra (Curso de CC) Ano lectivo 2005/2006 191 / 204

Breve referência à Teoria de Anéis. Álgebra (Curso de CC) Ano lectivo 2005/2006 191 / 204 Breve referência à Teoria de Anéis Álgebra (Curso de CC) Ano lectivo 2005/2006 191 / 204 Anéis Há muitos conjuntos, como é o caso dos inteiros, dos inteiros módulo n ou dos números reais, que consideramos

Leia mais

Matrizes. Sumário. 1 pré-requisitos. 2 Tipos de matrizes. Sadao Massago 2011-05-05 a 2014-03-14. 1 pré-requisitos 1. 2 Tipos de matrizes.

Matrizes. Sumário. 1 pré-requisitos. 2 Tipos de matrizes. Sadao Massago 2011-05-05 a 2014-03-14. 1 pré-requisitos 1. 2 Tipos de matrizes. Matrizes Sadao Massago 20-05-05 a 204-03-4 Sumário pré-requisitos 2 Tipos de matrizes 3 Operações com matrizes 3 4 Matriz inversa e transposta 4 5 Determinante e traço 5 Neste texto, faremos uma breve

Leia mais

Determinantes. Matemática Prof. Mauricio José

Determinantes. Matemática Prof. Mauricio José Determinantes Matemática Prof. Mauricio José Determinantes Definição e Conceito Matriz de ordem 1 Dizemos que um determinante é um resultado (numérico) de operações que são realizadas em uma matriz quadrada.

Leia mais

IMPORTAÇÃO DO CADASTRO DE PESSOAS

IMPORTAÇÃO DO CADASTRO DE PESSOAS IMPORTAÇÃO DO CADASTRO DE PESSOAS 1. Objetivo: 1. Esta rotina permite importar para o banco de dados do ibisoft Empresa o cadastro de pessoas gerado por outro aplicativo. 2. O cadastro de pessoas pode

Leia mais

ÁLGEBRA LINEAR ISBN 978-85-915683-0-7

ÁLGEBRA LINEAR ISBN 978-85-915683-0-7 . ÁLGEBRA LINEAR ISBN 978-85-915683-0-7 ROBERTO DE MARIA NUNES MENDES Professor do Departamento de Matemática e Estatística e do Programa de Pós-graduação em Engenharia Elétrica da PUCMINAS Belo Horizonte

Leia mais

Preço de uma lapiseira Quantidade Preço de uma agenda Quantidade R$ 10,00 100 R$ 24,00 200 R$ 15,00 80 R$ 13,50 270 R$ 20,00 60 R$ 30,00 160

Preço de uma lapiseira Quantidade Preço de uma agenda Quantidade R$ 10,00 100 R$ 24,00 200 R$ 15,00 80 R$ 13,50 270 R$ 20,00 60 R$ 30,00 160 Todos os dados necessários para resolver as dez questões, você encontra neste texto. Um funcionário do setor de planejamento de uma distribuidora de materiais escolares verifica que as lojas dos seus três

Leia mais

ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ)

ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ) P L A N O S PARALELOS AOS EIXOS E AOS PLANOS COORDENADOS Casos Particulares A equação ax + by + cz = d na qual a, b e c não são nulos, é a equação de um plano π, sendo v = ( a, b, c) um vetor normal a

Leia mais

Questão 1. Questão 3. Questão 2. alternativa B. alternativa C. alternativa D. Os trabalhadores A e B, trabalhando separadamente,

Questão 1. Questão 3. Questão 2. alternativa B. alternativa C. alternativa D. Os trabalhadores A e B, trabalhando separadamente, Questão Os trabalhadores A e B, trabalhando separadamente, levam cada um 9 e 0 horas, respectivamente, para construir um mesmo muro de tijolos Trabalhando juntos no serviço, sabe-se que eles assentam 0

Leia mais

Professores do Ensino Básico - Variante de Educação Física. Disciplina: Matemática Data: Ficha de trabalho: 3

Professores do Ensino Básico - Variante de Educação Física. Disciplina: Matemática Data: Ficha de trabalho: 3 Instituto Politécnico de Bragança Escola Superior de Educação Professores do Ensino Básico - Variante de Educação Física Disciplina: Data: Ficha de trabalho: 3 Conteúdos: números, modelos para a numeração

Leia mais

21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU

21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1 21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1. O gráfico do trinômio y = ax 2 + bx + c. Qual a afirmativa errada? a) se a > 0 a parábola possui concavidade para cima b) se b 2 4ac > 0 o trinômio possui duas

Leia mais

Aula: Equações polinomiais

Aula: Equações polinomiais Aula: Equações polinomiais Turma 1 e 2 Data: 05/09/2012-12/09/2012 Tópicos Equações polinomiais. Teorema fundamental da álgebra. Raízes reais e complexas. Fatoração e multiplicação de raízes. Relações

Leia mais

CPV especializado na ESPM ESPM Resolvida Prova E 10/novembro/2013

CPV especializado na ESPM ESPM Resolvida Prova E 10/novembro/2013 CPV especializado na ESPM ESPM Resolvida Prova E 0/novembro/03 Matemática. As soluções da equação x + 3 x = 3x + são dois números: x + 3 a) primos b) positivos c) negativos d) pares e) ímpares x + 3 x

Leia mais

SÓ ABRA QUANDO AUTORIZADO.

SÓ ABRA QUANDO AUTORIZADO. UNIVERSIDADE FEDERAL DE MINAS GERAIS FÍSICA 2 a Etapa SÓ ABRA QUANDO AUTORIZADO. Leia atentamente as instruções que se seguem. 1 - Este Caderno de Provas contém seis questões, constituídas de itens e subitens,

Leia mais

(b) Excetuando o caso trivial em que a = b = c = 0, mostre que vale a igualdade se, e somente se, existe m R tal que x = ma, y = mb e z = mc.

(b) Excetuando o caso trivial em que a = b = c = 0, mostre que vale a igualdade se, e somente se, existe m R tal que x = ma, y = mb e z = mc. Questão 1. (a) Prove que, para quaisquer x, y, z, a, b, c R, tem-se (ax + by + cz) (a + b + c )(x + y + z ). (b) Excetuando o caso trivial em que a = b = c = 0, mostre que vale a igualdade se, e somente

Leia mais

Sobre Domínios Euclidianos

Sobre Domínios Euclidianos Sobre Domínios Euclidianos Clarissa Bergo Bianca Fujita Lino Ramada João Schwarz Felipe Yukihide Setembro de 2011 Resumo Neste texto, apresentaremos formalmente o que vem a ser domínio euclidiano, alguns

Leia mais

Capítulo 2 - Determinantes

Capítulo 2 - Determinantes Capítulo 2 - Determinantes Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 19 DeMat-ESTiG Sumário

Leia mais

Lista de Exercícios 5: Soluções Teoria dos Conjuntos

Lista de Exercícios 5: Soluções Teoria dos Conjuntos UFMG/ICEx/DCC DCC Matemática Discreta Lista de Exercícios 5: Soluções Teoria dos Conjuntos Ciências Exatas & Engenharias 2 o Semestre de 206. Escreva uma negação para a seguinte afirmação: conjuntos A,

Leia mais

2. MÓDULO DE UM NÚMERO REAL

2. MÓDULO DE UM NÚMERO REAL 18 2. MÓDULO DE UM NÚMERO REAL como segue: Dado R, definimos o módulo (ou valor absoluto) de, e indicamos por,, se 0 =, se < 0. Interpretação Geométrica O valor absoluto de um número é, na reta, a distância

Leia mais

ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação

Leia mais

Resolução de Matemática da Prova Objetiva FGV Administração - 06-06-10

Resolução de Matemática da Prova Objetiva FGV Administração - 06-06-10 QUESTÃO 1 VESTIBULAR FGV 010 JUNHO/010 RESOLUÇÃO DAS 15 QUESTÕES DE MATEMÁTICA DA PROVA DA MANHÃ MÓDULO OBJETIVO PROVA TIPO A O mon i tor de um note book tem formato retangular com a di ag o nal medindo

Leia mais

Recordamos que Q M n n (R) diz-se ortogonal se Q T Q = I.

Recordamos que Q M n n (R) diz-se ortogonal se Q T Q = I. Diagonalização ortogonal de matrizes simétricas Detalhes sobre a Secção.3 dos Apontamentos das Aulas teóricas de Álgebra Linear Cursos: LMAC, MEBiom e MEFT (semestre, 0/0, Prof. Paulo Pinto) Recordamos

Leia mais