Lista de Exercícios 4 Cálculo I

Tamanho: px
Começar a partir da página:

Download "Lista de Exercícios 4 Cálculo I"

Transcrição

1 Lista d Ercícis 4 Cálcul I Ercíci 5 página : Dtrmin as assínttas vrticais hrizntais (s istirm) intrprt s rsultads ncntrads rlacinand-s cm cmprtamnt da funçã: + a) f ( ) = Ants d cmçar a calcular s its d uma funçã cm a finalidad d ncntrar as assínttas vrticais hrizntais, é imprtant calcular dmíni Dda funçã, pis ist ns dará infrmaçõs imprtants sbr as assínttas vrticais. Encntrand dmíni D da funçã f (): O dnminadr da fraçã + dv sr difrnt d zr, lg tms: 0 Nã istm mais rstriçõs as valrs qu pd assumir cndicinads a istência d f (), lg dmíni D da funçã f () srá: { : } D= R. Sabnd qu= nã prtnc a dmíni da funçã, pdms calcular it da funçã f () quand s aprima d cm a finalidad d vrificar s ist uma assíntta vrtical nst pnt. Calculand it btms f ( ) =, prém nã sabms s é psitiv u ngativ. Para iss prcisams calcular s its latrais: + + =, pis < 0 quand pla dirita + =+, pis > 0 quand pla squrda. Cm cnsqüência, tms qu a rta = é uma assíntta vrtical da funçã f (). Agra para tntar ncntrar assínttas hrizntas dvms calcular it da funçã f () quand tnd a Utilizand a rgra para cálcul d its d divisã d plinômis quand tnd a tms:

2 + + + = = = Lg ist uma assíntta hrizntal d quaçã y =. Prtant as assínttas sã = y =. b) f ( ) = + 4 Dtrminand dmíni D da funçã f (): Sabms qu dnminadr da fraçã dv sr difrnt d 0, prém + 4 > 0 para td. Lg, D=R. Cm nã há rstriçõs para s valrs d para a funçã f (), nã tms assínttas vrticais. Para ncntrar assínttas hrizntais (s istirm) basta calcular it da funçã f () quand tnd a : + 4 Usand a rgra para s cálculs d its d plinômis quand tnd à tms: f ( ) = Prtant ist uma assíntta hrizntal d quaçã y = c) g( ) = 4 Encntrand dmíni da funçã g () : Sabms qu dnminadr da fraçã tm qu sr difrnt d 0, lg tms: Prtant dmínid da funçã () f : D= { R } Agra vams prcurar as assínttas vrticais hrizntais:

3 Calculand it d g () quand tnd a ( ) tms: g( ) = = 4 Lg ist uma assíntta vrtical d quaçã =. Calculand it d g () quand tnd a tms: =. 4 Lg ist uma assíntta vrtical d quaçã=. Encntrand as assínttas hrizntais d g () : = 0 4 Lg ist uma assíntta hrizntal d quaçã y = 0. Esta assíntta hrizntal ns diz qu para valrs muit grands d, a funçã g() s aprima d valr. As assínttas vrticais ns dizm qu a funçã crsc u dcrsc muit rapidamnt quand s aprima d u quand s aprima d -. d) y= Para nã cnfundirms a funçã y= y = y() para a funçã. cm uma quaçã, utilizarms a ntaçã Primiramnt, ncntrarms dmíni D da funçã y (): Sabms qu dnminadr da fraçã dv sr difrnt d 0, lg tms: Prtant dmíni D da funçã () 0 ( ) 0 0 u y é: D= { : 0 u } R. Cm = 0 = nã pdm sr utilizads pla funçã y (), tntarms dscbrir qu acntc cm a funçã y () quand s aprima d 0 quand s aprima d.

4 Calculand it d y () quand tnd a 0: 0 = y( ) =. 0 Lg, ist uma assíntta vrtical d quaçã = 0. Calculand it d y () quand tnd a pla dirita: = = ( ) y( ) = Lg ist assíntta vrtical d quaçã =. Para ncntrar assínttas hrizntais, basta calcular it d y () quand tnd a. Calculand it d y () quand tnd a + : = 0 y( ) = 0 Lg ist uma assíntta hrizntal d quaçã y= 0. A assíntta hrizntal ns diz qu quand aumnta u diminui muit a funçã y () s aprima d 0. As assínttas vrticais ns dizm qu quand s aprima d 0 d, a funçã y () crsc u diminui muit, dpndnd d lad pl qual crr a aprimaçã d = d = 0. ) f ( ) = Nvamnt, ncntrarms dmíni da funçã f (): Sabms qu dnminadr da fraçã Lg dmínid da funçã () 0 f é: D= { R } dv sr difrnt d 0, lg tms: Irms calcular it d f () quand tnd a. S ss it fr igual a trms uma assíntta vrtical: = = 0 f ( ) =. 4

5 Lg tms uma assíntta vrtical d quaçã =. Para ncntrar assínttas hrizntais, basta calcular it d f () quand tnd a : Para calcular st it, pdms utilizar a rgra para cálculs d its cm divisã d plinômis tndnd a : f ( ) = Lg nã ist assíntta hrizntal para sta funçã. Cm rlaçã a assíntta vrtical d f (), pdms dizr qu quand s aprima d, a funçã f () aumnta muit u diminui muit, dpndnd s ns aprimarms d pla squrda u pla dirita. f) y= ( ) Para nã cnfundir a funçã y= ( ) cm uma quaçã, scrvri y( ). Encntrand dmíni da funçã y (): Sabms qu dnminadr da fraçã ( ) dv sr difrnt d 0, lg tms: ( ) 0. Lg = nã faz part d dmíni da funçã y (), ntã irms calcular it da funçã y () quand s aprima d para vr qu crr cm a funçã. Cas a funçã s aprim d, = srá assíntta vrtical. Calculand it d y () quand s aprima d pla dirita: = = ( ) 0 y( ) = Prtant tms uma assíntta vrtical d quaçã =. Para ncntrar assínttas hrizntais, basta calcular it d y () quand tnd a : 5

6 ( ) + Para calcular st it, basta usar a rgra d cálculs d its cm plinômis quand tnd à : y( ) = Prtant a quaçã y = rprsnta uma assíntta hrizntal. Ercíci 6 página : O stud da dissciaçã d ttróid d dinitrgêni m dióid d nitrgêni N 0 4 (g) N0 (g) Cnduz à sguint cnstant d quilíbri : nd α é grau d dissciaçã d ttróid n quilíbri P é a prssã ttal d sistma. Calcul s its d grau d dissciaçã quand a prssã tnd a zr a infinit intrprt s rsultads btids. Dica: f ( ) = f ( ) a a 4α P = α Primiramnt, dvms sabr d qual funçã vams calcular s its pdids n rcíci. Sgund nunciad, α é a nssa funçã a prssã P é a variávl indpndnt, lg dvms ncntrar a funçã α (P). Para ncntrar a funçã α (P), dvms rarranjar a prssã dada: 4α P = α ( α ) = 4α P α = 4α P = α + 4α P = α ( + P) =α ( + P) =α( P) ( + P) Agra calculand it da funçã α (P) quand P tnd a 0: P 0 ( + P ) P 0 ( + 0) P 0 ( + 0) α ( P) = P 0 Ist significa qu a baias prssõs, grau d dissciaçã s aprima d, u sja, à baias prssõs, dióid d nitrgêni é prdminant n quilíbri. 6

7 Agra, vams calcular it da funçã α (P) quand a prssã tnd a infinit. P ( + P ) P ( + P ) P ( + ) α ( P) = 0 P Quand a prssã tnd a infinit, a funçã α ε (P) tnd a 0 cm cnsquência imdiata, tms qu praticamnt nã crr dissciaçã ttróid d dinitrgêni prdmina. Ercíci 7 página : A partir da Mcânica Estatística, mstra-s qu a nrgia d ml d sciladrs harmônics m quilíbri térmic à tmpratura T é dada pr ET ( ) = N hν nd N é númr d Avgadr, K é a cnstant d Bltzmann, h é a cnstant d Planck υé a frquência vibracinal. Dtrmin it d E quand T 0 intrprt rsultad btid. hν kt Calculand it da funçã E (T ) quand T 0: N hν hν kt N hν hν 0k Nhν ET ( ) = 0 Quand a tmpratura s aprima d 0, tms qu a nrgia ds sciladrs harmônics s aprima d 0. Dica para qum tm curisidad: Prcurm sabr qu é um sciladr anarmônic, cas façam, pnsm s rsultad btid n cálcul d it faria sntid para ml d sciladrs anârmnics. 7

1) Determine o domínio das funções abaixo e represente-o graficamente: 1 1

1) Determine o domínio das funções abaixo e represente-o graficamente: 1 1 ) Dtrmin dmíni das funçõs abai rprsnt- graficamnt: z + z 4.ln( ) z ln z z arccs( ) f) z g) z ln + h) z ( ) ) Dtrmin dmíni, trac as curvas d nívl sbc gráfic das funçõs: f (, ) 9 + 4 f (, ) 6 f (, ) 6 f

Leia mais

NOTA SOBRE INDETERMINAÇÕES

NOTA SOBRE INDETERMINAÇÕES NOTA SOBRE INDETERMINAÇÕES HÉLIO BERNARDO LOPES Rsumo. Em domínios divrsos da Matmática, como por igual nas suas aplicaçõs, surgm com alguma frquência indtrminaçõs, d tipos divrsos, no cálculo d its, sja

Leia mais

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T. Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos

Leia mais

Limite Escola Naval. Solução:

Limite Escola Naval. Solução: Limit Escola Naval (EN (A 0 (B (C (D (E é igal a: ( 0 In dt r min ação, do tipo divisão por zro, log o não ist R par q pod sr tão grand qanto qisrmos, pois, M > 0, δ > 0 tal q 0 < < δ > M M A última ha

Leia mais

SISTEMA DE PONTO FLUTUANTE

SISTEMA DE PONTO FLUTUANTE Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,

Leia mais

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita: Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários

Leia mais

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é:

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é: nrgia no MHS Para studar a nrgia mcânica do oscilador harmônico vamos tomar, como xmplo, o sistma corpo-mola. A nrgia cinética do sistma stá no corpo d massa m. A mola não tm nrgia cinética porqu é uma

Leia mais

Propagação de sinais senoidais em um cabo coaxial

Propagação de sinais senoidais em um cabo coaxial Disipina: Ondas Prpaaçã Prf.: Dr. Airtn Rams Univrsidad d Estad d Santa Catarina Cntr d Ciênias Tnóias CCT Dpartamnt d Ennharia Eétria Labratóri d Etrmantism E-3 Prpaaçã d sinais snidais m um ab axia O

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

Módulo II Resistores, Capacitores e Circuitos

Módulo II Resistores, Capacitores e Circuitos Módulo laudia gina ampos d arvalho Módulo sistors, apacitors ircuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. omo o rsistor é um condutor d létrons, xistm

Leia mais

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4 UFJF ICE Dpartamnto d Matmática Cálculo I Trcira Avaliação 0/1/011 FILA A Aluno (a): Matrícula: Turma: Instruçõs Grais: 1- A prova pod sr fita a lápis, cto o quadro d rspostas das qustõs d múltipla scolha,

Leia mais

Função do 2 o Grau. Uma aplicação f der emr

Função do 2 o Grau. Uma aplicação f der emr UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Dfinição Uma aplicação f

Leia mais

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120 Prparar o Eam 0 07 Matmática A Página 0. Como g é uma função contínua stritamnt crscnt no su domínio. Logo, o su contradomínio é g, g, ou sja, 8,, porqu: 8 g 8 g 8 8. D : 0, f Rsposta: C Cálculo Auiliar:

Leia mais

DISCIPLINA: Matemática. MACEDO, Luiz Roberto de, CASTANHEIRA, Nelson Pereira, ROCHA, Alex. Tópicos de matemática aplicada. Curitiba: Ibpex, 2006.

DISCIPLINA: Matemática. MACEDO, Luiz Roberto de, CASTANHEIRA, Nelson Pereira, ROCHA, Alex. Tópicos de matemática aplicada. Curitiba: Ibpex, 2006. DISCIPLINA: Matemática 1- BIBLIOGRAFIA INDICADA Bibliteca Virtual Pearsn MACEDO, Luiz Rbert de, CASTANHEIRA, Nelsn Pereira, ROCHA, Alex. Tópics de matemática aplicada. Curitiba: Ibpex, 2006. PARKIN, Michael.

Leia mais

03-05-2015. Sumário. Campo e potencial elétrico. Energia potencial elétrica

03-05-2015. Sumário. Campo e potencial elétrico. Energia potencial elétrica Sumáio Unidad II Elticidad Magntismo 1- - Engia potncial lética. - Potncial lético. - Supfícis quipotnciais. Movimnto d cagas léticas num campo lético unifom. PS 22 Engia potncial lética potncial lético.

Leia mais

Módulo II Resistores e Circuitos

Módulo II Resistores e Circuitos Módulo Claudia gina Campos d Carvalho Módulo sistors Circuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. Como o rsistor é um condutor d létrons, xistm aquls

Leia mais

Como se tornar fluente em Inglês em todas as áreas

Como se tornar fluente em Inglês em todas as áreas Cm s trnar flunt m Inglês m tdas as áras Tds s dias rcbms muits -mails pssas rm sabr pm fazr aprnr a falar ingls bm A fórmula xist sim funcina! Qur prvar iss dand minha própria xpriência cm aprndizad da

Leia mais

Proposta de Resolução do Exame Nacional de Física e Química A 11.º ano, 2011, 1.ª fase, versão 1

Proposta de Resolução do Exame Nacional de Física e Química A 11.º ano, 2011, 1.ª fase, versão 1 Proposta d Rsolução do Exam Nacional d ísica Química A 11.º ano, 011, 1.ª fas, vrsão 1 Socidad Portugusa d ísica, Divisão d Educação, 8 d Junho d 011, http://d.spf.pt/moodl/ 1. Movimnto rctilíno uniform

Leia mais

Física 3. k = 1/4πε 0 = 9, N.m 2 /C Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação

Física 3. k = 1/4πε 0 = 9, N.m 2 /C Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação Física 3 Valors d algumas constants físicas clração da gravidad: 10 m/s 2 Dnsidad da água: 1,0 g/cm 3 Calor spcífico da água: 1,0 cal/g C Carga do létron: 1,6 x 10-19 C Vlocidad da luz no vácuo: 3,0 x

Leia mais

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M=

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M= Dtrminant. (Upg 4) Considrando as matrizs abaixo, sndo dt A = 5, dtb= dtc=, assinal o qu for orrto. x z x y x A =,B= 4 5 x+ z y C= ) x+ y+ z= 4 ) A C= 4) B C= 4 8) y = x 6) 6 4 A+ B= 6 5 T. (Uds 4) S A

Leia mais

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL)

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL) 4. Método das Aproimaçõs Sucssivas ou Método d Itração Linar MIL O método da itração linar é um procsso itrativo qu aprsnta vantagns dsvantagns m rlação ao método da bisscção. Sja uma função f contínua

Leia mais

1 - RECORDANDO 2 - INTERSEÇÃO ENTRE RETA E CIRCUNFERÊNCIA. Exercício Resolvido 1: Frente III. na última equação, tem-se:

1 - RECORDANDO 2 - INTERSEÇÃO ENTRE RETA E CIRCUNFERÊNCIA. Exercício Resolvido 1: Frente III. na última equação, tem-se: Matmática Frnt III CAPÍTULO 23 POSIÇÕES RELATIVAS ENTRE RETA E CIRCUNFERÊNCIA 1 - RECORDANDO Na aula passada, nós vimos as quaçõs da circunfrência, tanto com cntro na origm ( ) como a sua quação gral (

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Escla Básica Scdária Dr. Âgl Agst da Silva Tst d MATEMÁTIA A º A Draçã: 9 mits Març/ 3 Nm Nº T: lassificaçã O Prf. (Lís Abr) ª PARTE Para cada ma das sgits qstõs d sclha múltipla, slci a rspsta crrta d

Leia mais

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W

Leia mais

CONTINUIDADE A idéia de uma Função Contínua

CONTINUIDADE A idéia de uma Função Contínua CONTINUIDADE A idéia d uma Função Contínua Grosso modo, uma função contínua é uma função qu não aprsnta intrrupção ou sja, uma função qu tm um gráfico qu pod sr dsnhado sm tirar o lápis do papl. Assim,

Leia mais

Coordenadas polares. a = d2 r dt 2. Em coordenadas cartesianas, o vetor posição é simplesmente escrito como

Coordenadas polares. a = d2 r dt 2. Em coordenadas cartesianas, o vetor posição é simplesmente escrito como Coordnadas polars Sja o vtor posição d uma partícula d massa m rprsntado por r. S a partícula s mov, ntão su vtor posição dpnd do tmpo, isto é, r = r t), ond rprsntamos a coordnada tmporal pla variávl

Leia mais

DISCIPLINA: Matemática e Matemática Aplicada

DISCIPLINA: Matemática e Matemática Aplicada DISCIPLINA: Matemática e Matemática Aplicada 1- BIBLIOGRAFIA INDICADA Bibliteca Virtual Pearsn MACEDO, Luiz Rbert de, CASTANHEIRA, Nelsn Pereira, ROCHA, Alex. Tópics de matemática aplicada. Curitiba: Ibpex,

Leia mais

Módulo III Capacitores

Módulo III Capacitores laudia gina ampos d arvalho Módulo apacitors apacitors: Dnomina-s condnsador ou capacitor ao conjunto d condutors dilétricos arrumados d tal manira qu s consiga armaznar a máxima quantidad d cargas létricas.

Leia mais

10. EXERCÍCIOS (ITA-1969 a ITA-2001)

10. EXERCÍCIOS (ITA-1969 a ITA-2001) . EXERCÍCIOS (ITA-969 a ITA-) - (ITA - 969) Sjam f() = + g() = duas funçõs rais d variávl ral. Então (gof)(y ) é igual a: a) y y + b) (y ) + c) y + y d) y y + ) y - (ITA -97) Sjam A um conjunto finito

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem PSI-2432: Projto Implmntação d Filtros Digitais Projto Proposto: Convrsor d taxas d amostragm Migul Arjona Ramírz 3 d novmbro d 2005 Est projto consist m implmntar no MATLAB um sistma para troca d taxa

Leia mais

CURSO de ENGENHARIA (MECÂNICA) VOLTA REDONDA - Gabarito

CURSO de ENGENHARIA (MECÂNICA) VOLTA REDONDA - Gabarito UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA o smstr ltivo d 8 o smstr ltivo d 9 CURSO d ENGENHARIA MECÂNICA VOLTA REDONDA - Gabarito INSTRUÇÕES AO CANDIDATO Vriiqu s st cadrno contém: PROVA DE CONHECIMENTOS

Leia mais

1.1. Área do triângulo em função de um lado e da altura. 1.1. Área do triângulo em função de um lado e da altura

1.1. Área do triângulo em função de um lado e da altura. 1.1. Área do triângulo em função de um lado e da altura UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA A área de um triângul é dada

Leia mais

Vamos analisar o seguinte circuito trifásico: Esta aula:! Sistemas Trifásicos equilibrados com Transformador ideal

Vamos analisar o seguinte circuito trifásico: Esta aula:! Sistemas Trifásicos equilibrados com Transformador ideal EA6 Circuits FEEC UNCAMP Aul 6 Est ul:! Sistms Trifásics quilibrds cm Trnsfrmdr idl Nst ul nlisrms um sistm trifásic quilibrd cm trnsfrmdr Cm sistm é quilibrd, pdms nlisr circuit trifásic trtnd pns d um

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

PRODUÇÃO INDUSTRIAL DO AMONÍACO

PRODUÇÃO INDUSTRIAL DO AMONÍACO PRODUÇÃO INDUSTRIAL DO AMONÍACO A ração d sínts do amoníao é uma ração rvrsívl. As quaçõs químias das raçõs das raçõs rvrsívis ontêm duas stas d sntidos opostos a sparar ragnts produtos d ração. Ragnts

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos da físca 3 Undad C Capítulo 15 Indução ltromagnétca soluçõs dos xrcícos propostos 1 P.368 D L v, vm: 0,5 0, 1 5 2 V P.369 D L v, vm: 15 6 1 20 3 4 V P.370 a) L v 1,5 0,40 2 1,2 V b) 1,2 2 0,6 Pla rgra

Leia mais

, onde F n é uma força de tracção e d o alongamento correspondente. F n [N] -1000 -2000

, onde F n é uma força de tracção e d o alongamento correspondente. F n [N] -1000 -2000 º Tst d CONTROLO DE SISTEMS (TP E PRO) Licciatura m Eg.ª Mcâica Prof. Rsposávl: Pdro Maul Goçalvs Lourti d bril d 00 º Smstr Duração: hora miutos. Tst com cosulta. Rsolução. Cosidr o sistma rprstado a

Leia mais

CAPÍTULO 06 ESTUDOS DE FILAS EM INTERSEÇÕES NÃO SEMAFORIZADAS

CAPÍTULO 06 ESTUDOS DE FILAS EM INTERSEÇÕES NÃO SEMAFORIZADAS APÍTULO 06 ESTUDOS DE FILAS EM INTERSEÇÕES NÃO SEMAFORIZADAS As filas m intrsçõs não smaforizadas ocorrm dvido aos movimntos não prioritários. O tmpo ncssário para ralização da manobra dpnd d inúmros fators,

Leia mais

ANÁLISE CUSTO - VOLUME - RESULTADOS

ANÁLISE CUSTO - VOLUME - RESULTADOS ANÁLISE CUSTO - VOLUME - RESULTADOS 1 Introdução ao tma Exist todo o intrss na abordagm dst tma, pois prmit a rsolução d um conjunto d situaçõs qu s aprsntam rgularmnt na vida das organizaçõs. Estas qustõs

Leia mais

ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS.

ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS. ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS. Carlos Albrto d Almida Villa Univrsidad Estadual d Campinas - UNICAMP

Leia mais

INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO:

INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO: INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO: LISTA Ciclo trigonométrico, rdução d arcos, quaçõs trigonométricas - (UFJF MG) Escrvndo os númros rais x, y, w, z y, x,

Leia mais

Lista 9: Integrais: Indefinidas e Definidas e Suas Aplicações

Lista 9: Integrais: Indefinidas e Definidas e Suas Aplicações GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA MATEMÁTICA APLICADA À ADM 5. Lista 9: Intgrais:

Leia mais

O que são dados categóricos?

O que são dados categóricos? Objtivos: Dscrição d dados catgóricos por tablas gráficos Tst qui-quadrado d adrência Tst qui-quadrado d indpndência Tst qui-quadrado d homognidad O qu são dados catgóricos? São dados dcorrnts da obsrvação

Leia mais

66 (5,99%) 103 (9,35%) Análise Combinatória 35 (3,18%)

66 (5,99%) 103 (9,35%) Análise Combinatória 35 (3,18%) Distribuição das 0 Qustõs do I T A 9 (8,6%) 66 (,99%) Equaçõs Irracionais 09 (0,8%) Equaçõs Exponnciais (,09%) Conjuntos 9 (,6%) Binômio d Nwton (,9%) 0 (9,%) Anális Combinatória (,8%) Go. Analítica Funçõs

Leia mais

RI406 - Análise Macroeconômica

RI406 - Análise Macroeconômica Fdral Univrsity of Roraima, Brazil From th SlctdWorks of Elói Martins Snhoras Fall Novmbr 18, 2008 RI406 - Anális Macroconômica Eloi Martins Snhoras Availabl at: http://works.bprss.com/loi/54/ Anális Macroconômica

Leia mais

Representação de Números no Computador e Erros

Representação de Números no Computador e Erros Rprsntação d Númros no Computador Erros Anális Numérica Patrícia Ribiro Artur igul Cruz Escola Suprior d Tcnologia Instituto Politécnico d Stúbal 2015/2016 1 1 vrsão 23 d Fvriro d 2017 Contúdo 1 Introdução...................................

Leia mais

Diagramas líquido-vapor

Diagramas líquido-vapor Diagramas líquid-vapr ara uma sluçã líquida cntend 2 cmpnentes vláteis que bedecem (pel mens em primeira aprximaçã) a lei de Rault, e prtant cnsiderada cm uma sluçã ideal, a pressã de vapr () em equilíbri

Leia mais

CUIDADOS COM SEU CAMINHÃO:

CUIDADOS COM SEU CAMINHÃO: CUIDADOS COM SEU CAMINHÃO: cnmizand através d cuidad cm pnus! O pnu é indiscutivlmnt um ds itns mais imprtants d caminhã. Além sr um rspnsávl dirt pls custs d transprt rdviári nas planilhas ds carrtirs,

Leia mais

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2 Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )

Leia mais

Como Z constitui-se claramente a hipotenusa de um triângulo retângulo, tem-se

Como Z constitui-se claramente a hipotenusa de um triângulo retângulo, tem-se UNIVERSIDADE FEDERAL DA PARAIBA CENTRO DE TENOLOGIA DEPARTAMENTO DE TECNLOGIA MECÂNICA PROF. ANTONIO SERGIO NUMEROS COMPLEXOS Os númers cmplexs representam uma imprtante ferramenta em matemática. Um númer

Leia mais

Desse modo, sendo E a energia de ligação de um núcleo formado por Z prótons e (A Z) nêutrons, de massa M(Z,A), pode-se escrever: E 2

Desse modo, sendo E a energia de ligação de um núcleo formado por Z prótons e (A Z) nêutrons, de massa M(Z,A), pode-se escrever: E 2 Enrgia d Ligação Nuclar Dado um núclo qualqur, a nrgia librada quando da sua formação a partir dos sus prótons nêutrons sparados d uma distância infinita é o qu s chama d nrgia d ligação d tal núclo. Dito

Leia mais

Calor Específico. Q t

Calor Específico. Q t Calor Espcífico O cocint da quantidad d nrgia () forncida por calor a um corpo plo corrspondnt acréscimo d tmpratura ( t) é chamado capacidad térmica dst corpo: C t Para caractrizar não o corpo, mas a

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}. Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos

Leia mais

PROVA DE MATEMÁTICA APLICADA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia

PROVA DE MATEMÁTICA APLICADA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia PROVA DE MATEMÁTICA APLICADA VESTIBULAR 013 - FGV CURSO DE ADMINISTRAÇÃO Profa. Maria Antônia C. Gouvia 1. A Editora Progrsso dcidiu promovr o lançamnto do livro Dscobrindo o Pantanal m uma Fira Intrnacional

Leia mais

Utilizando o Calculador Etelj Velocidade do Som no Ar

Utilizando o Calculador Etelj Velocidade do Som no Ar Utilizand Calculadr telj Velcidade d Sm n Ar Hmer Sette 8 0 0 ste utilitári permite cálcul da velcidade de prpagaçã d sm n ar C, em funçã da temperatura d ar, da umidade relativa d ar e da pressã atmsférica

Leia mais

Uma característica importante dos núcleos é a razão N/Z. Para o núcleo de

Uma característica importante dos núcleos é a razão N/Z. Para o núcleo de Dsintgração Radioativa Os núclos, m sua grand maioria, são instávis, ou sja, as rspctivas combinaçõs d prótons nêutrons não originam configuraçõs nuclars stávis. Esss núclos, chamados radioativos, s transformam

Leia mais

Escola de Engenharia de Lorena USP Cinética Química Exercícios

Escola de Engenharia de Lorena USP Cinética Química Exercícios Escola d Engnharia d Lorna USP Lista 8 1 (P2 2003) - Esboc os sguints gráficos: 1) Concntração vrsus tmpo 2) Convrsão vrsus tmpo para uma ração rvrsívl com: ) Baixa convrsão no quilíbrio; B) Elvada convrsão

Leia mais

2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom.

2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom. 4 CONCLUSÕES Os Indicadors d Rndimnto avaliados nst studo, têm como objctivo a mdição d parâmtros numa situação d acsso a uma qualqur ára na Intrnt. A anális dsts indicadors, nomadamnt Vlocidads d Download

Leia mais

Definição de Termos Técnicos

Definição de Termos Técnicos Dfinição d Trmos Técnicos Eng. Adriano Luiz pada Attack do Brasil - THD - (Total Harmonic Distortion Distorção Harmônica Total) É a rlação ntr a potência da frqüência fundamntal mdida na saída d um sistma

Leia mais

Tema: Estudo do Comportamento de Funções usando Cálculo Diferencial. Seja definida em um intervalo e sejam e pontos deste intervalo.

Tema: Estudo do Comportamento de Funções usando Cálculo Diferencial. Seja definida em um intervalo e sejam e pontos deste intervalo. Tema: Estud d Cmprtament de Funções usand Cálcul Diferencial Funções Crescentes, Decrescentes e Cnstantes Seja definida em um interval e sejam e pnts deste interval Entã: é crescente n interval se para

Leia mais

Enunciados equivalentes

Enunciados equivalentes Lógica para Ciência da Computação I Lógica Matmática Txto 6 Enunciados quivalnts Sumário 1 Equivalência d nunciados 2 1.1 Obsrvaçõs................................ 5 1.2 Exrcícios rsolvidos...........................

Leia mais

5. MÁXIMOS E MÍNIMOS DE FUNÇÕES DE VÁRIAS VARIÁVEIS 1

5. MÁXIMOS E MÍNIMOS DE FUNÇÕES DE VÁRIAS VARIÁVEIS 1 5 MÁXIMOS E MÍNIMOS DE FUNÇÕES DE VÁRIAS VARIÁVEIS 5 Introdução: Considrmos os sguints nunciados: Quais são as dimnsõs d uma caia rtangular sm tampa com volum v com a mnor ára d supríci possívl? A tmpratura

Leia mais

4.1 Sistema em contato com um reservatório térmico

4.1 Sistema em contato com um reservatório térmico Capítulo 4 Ensmbl Canônico 4. Sistma m contato com um rsrvatório térmico O nsmbl microcanônico dscrv sistmas isolados, i.. sistmas com N, V fixos, com nrgia total E fixa ou limitada dntro d um pquno intrvalo

Leia mais

Memorize as integrais imediatas e veja como usar a técnica de substituição.

Memorize as integrais imediatas e veja como usar a técnica de substituição. Blém, d maio d 0 aro aluno, om início das intgrais spro qu vocês não troqum as rgras com as da drivada principalmnt d sno d sno. Isso tnho dito assim qu comçamos a studar drivada, lmbra? Mmoriz as intgrais

Leia mais

J. A. M. Felippe de Souza 3 Sinais Singulares. 3 Sinais Singulares

J. A. M. Felippe de Souza 3 Sinais Singulares. 3 Sinais Singulares J. A. M. Felippe de Sza 3 Sinais Singlares 3 Sinais Singlares 3. Intrdçã as sinais singlares 3 3. Sinais singlares discrets 4 O sinal impls nitári discret ( nit-implse ) 4 Prpriedades d impls nitári discret

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍI UNIERSIDDE TÓLI DE GOIÁS DEPRTMENTO DE MTEMÁTI E FÍSI Prfessres: Edsn az e Renat Medeirs EXERÍIOS NOT DE UL II Giânia - 014 E X E R Í I OS: NOTS DE UL 1. Na figura abaix, quand um elétrn se deslca

Leia mais

Faculdade de Engenharia. Óptica de Fourier OE MIEEC 2014/2015

Faculdade de Engenharia. Óptica de Fourier OE MIEEC 2014/2015 Faculdad d Engnharia Óptica d Fourir sin OE MIEEC 4/5 Introdução à Óptica d Fourir Faculdad d Engnharia transformada d Fourir spacial D função d transfrência para a propagação m spaço livr aproimação d

Leia mais

Fenômenos de adsorção em interfaces sólido/solução. Fenômenos de adsorção em interfaces sólido/solução

Fenômenos de adsorção em interfaces sólido/solução. Fenômenos de adsorção em interfaces sólido/solução Fnômnos d adsorção m Construção modlagm d isotrmas d adsorção no quilíbrio químico Fnômnos d adsorção m Para procssos qu ocorrm no quilíbrio químico, podm-s obtr curvas d adsorção, ou isotrmas d adsorção,

Leia mais

Equilíbrio Térmico. é e o da liga é cuja relação com a escala Celsius está representada no gráfico.

Equilíbrio Térmico. é e o da liga é cuja relação com a escala Celsius está representada no gráfico. Equilíbrio Térmico 1. (Unsp 2014) Para tstar os conhcimntos d trmofísica d sus alunos, o profssor propõ um xrcício d calorimtria no qual são misturados 100 g d água líquida a 20 C com 200 g d uma liga

Leia mais

Economia Financeira Internacional

Economia Financeira Internacional Ecnmia Financeira Internacinal Curs de Ecnmia, 3º an, 2001-2002 PADEF 11/07/2002 Parte A Sem cnsulta Duraçã: 1 hra 1. Cnsidere três praças financeiras, Lndres (L), Nva Irque (NY) e Paris (P), bem cm as

Leia mais

Escola Básica Tecnopolis Matemática - PLANIFICAÇÃO ANUAL 6ºano

Escola Básica Tecnopolis Matemática - PLANIFICAÇÃO ANUAL 6ºano DGEstE Dirção-GraL dos Establcimntos Escolars DSRAI Dirção d Srviços da Rgião Algarv AGRUPAMENTO DE ESCOLAS JÚLIO DANTAS LAGOS (145415) Escola Básica Tcnopolis Matmática - PLANIFICAÇÃO ANUAL 6ºano 2013-2014

Leia mais

Eu sou feliz, tu és feliz CD Liturgia II (Caderno de partituras) Coordenação: Ir. Miria T. Kolling

Eu sou feliz, tu és feliz CD Liturgia II (Caderno de partituras) Coordenação: Ir. Miria T. Kolling Eu su iz, s iz Lirgi II (drn d prtirs) rdnçã: Ir. Miri T. King 1) Eu su iz, s iz (brr) & # #2 4. _ k.... k. 1 Eu su "Eu su iz, s iz!" ( "Lirgi II" Puus) iz, s _ iz, & # º #.. b... _ k _. Em cm Pi n cn

Leia mais

REAÇÕES DE NEUTRALIZAÇÃO TITULAÇÕES ÁCIDO-BASE SOLUÇÕES TAMPÃO

REAÇÕES DE NEUTRALIZAÇÃO TITULAÇÕES ÁCIDO-BASE SOLUÇÕES TAMPÃO REAÇÕE DE NEUTRALIZAÇÃO Uma ração d nutralização ocorr ntr um ácido uma bas qu s nutralizam mutuamnt. Esta ração obdc normalmnt ao sguint squma: Ácido + Bas al + Água O sal formado nstas raçõs dtrmina

Leia mais

CAPÍTULO 10 TRANSLAÇÃO E ROTAÇÃO DE EIXOS

CAPÍTULO 10 TRANSLAÇÃO E ROTAÇÃO DE EIXOS CAPÍTULO 0 TRANSLAÇÃO E ROTAÇÃO DE EIXOS TRANSLAÇÃO DE EIXOS NO R Sejam O e O s eis primitivs, d Sistema Cartesian de Eis Crdenads cm rigem O(0,0). Sejam O e O s nvs eis crdenads cm rigem O (h,k), depis

Leia mais

AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. azevedoglauco@unifei.edu.br

AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. azevedoglauco@unifei.edu.br AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE Glauco José Rodrigus d Azvdo 1, João Zangrandi Filho 1 Univrsidad Fdral d Itajubá/Mcânica, Av. BPS, 1303 Itajubá-MG,

Leia mais

Datas das próximas viagens da UFMG. Sondagem do solo em Lagedo e Riacho

Datas das próximas viagens da UFMG. Sondagem do solo em Lagedo e Riacho Ano 2 Lagdo, Domingo, 31 d maio d 2015 N o 12 Datas das próximas viagns da UFMG Data Casa 12 29 d maio a 31 d maio d 2015 Alcion/Paulo 13 26 d junho a 28 d junho d 2015 Gralda/Antônio 14 24 d julho a 26

Leia mais

CAPÍTULO 9 COORDENADAS POLARES

CAPÍTULO 9 COORDENADAS POLARES Luiz Frncisco d Cruz Drtmnto d Mtmátic Uns/Buru CAPÍTULO 9 COORDENADAS POLARES O lno, tmbém chmdo d R, ond R RR {(,)/, R}, ou sj, o roduto crtsino d R or R, é o conjunto d todos os rs ordndos (,), R El

Leia mais

Aula 02 Álgebra Complexa

Aula 02 Álgebra Complexa Campus I Jã Pessa Disciplina: Análise de Circuits Curs Técnic Integrad em Eletrônica Prfª: Rafaelle Felician Aula 02 Álgebra Cmplexa 1. Númers Cmplexs Intrduçã Circuits CC smas algébricas de tensões e

Leia mais

Aula 06 Análise no domínio do tempo Parte I Sistemas de 1ª ordem

Aula 06 Análise no domínio do tempo Parte I Sistemas de 1ª ordem Aula 06 Análise n dmíni d temp Parte I Sistemas de 1ª rdem input S utput Sistemas de primeira rdem Sistema de primeira rdem d tip a G(s) bs + c input a bs + c utput Sistemas de primeira rdem u seja: Y(s)

Leia mais

Prof. Antonio Carlos Santos. Aula 9: Transistor como amplificador

Prof. Antonio Carlos Santos. Aula 9: Transistor como amplificador IF-UFRJ lmntos d ltrônica Analógica Prof. Antonio Carlos Santos Mstrado Profissional m nsino d Física Aula 9: Transistor como amplificador st matrial foi basado m liros manuais xistnts na litratura (id

Leia mais

2ª série LISTA: Ensino Médio. Aluno(a): Questão 01 - (FUVEST SP)

2ª série LISTA: Ensino Médio. Aluno(a): Questão 01 - (FUVEST SP) Matmática Profssor: Marclo Honório LISTA: 04 2ª séri Ensino Médio Turma: A ( ) / B ( ) Aluno(a): Sgmnto tmático: GEOMETRIA ESPACIAL DIA: MÊS: 05 206 Pirâmids Cilindros Qustão 0 - (FUVEST SP) Três das arstas

Leia mais

PLANO DE TRABALHO DOCENTE 1º Semestre/2015. Ensino Técnico

PLANO DE TRABALHO DOCENTE 1º Semestre/2015. Ensino Técnico PLANO DE TRABALHO DOCENTE 1º Smstr/2015 Ensin Técnic Códig: 0262 ETEC ANHANGUERA Municípi: Santana d Parnaíba Cmpnnt Curricular: Gstã Emprsarial Módul: 1 Eix Tcnlógic: Sgurança C. H. Smanal: 2,5 Habilitaçã

Leia mais

a b TERMOLOGIA 1- Definição É o ramo da física que estuda os efeitos e as trocas de calor entre os corpos.

a b TERMOLOGIA 1- Definição É o ramo da física que estuda os efeitos e as trocas de calor entre os corpos. TERMOLOGI 1- Dfinição É o ramo da física qu studa os fitos as trocas d calor ntr os corpos. 2- Tmpratura É a mdida do grau d agitação d suas moléculas 8- Rlação ntr as scalas trmométricas Corpo Qunt Grand

Leia mais

Equações Diferenciais Lineares

Equações Diferenciais Lineares Equaçõs Diriais Liars Rordmos a orma gral d uma quação dirial liar d ordm a d d d d a a a, I d d m qu as uçõs a i são idpdts da variávl. S, a quação diz-s liar homogéa. Caso otrário, diz-s liar omplta.

Leia mais

EQUAÇÕES DIFERENCIAIS LINEARES DE 2ª ORDEM

EQUAÇÕES DIFERENCIAIS LINEARES DE 2ª ORDEM Caítulo II EQUAÇÕES DIFERENCIAIS LINEARES DE ª ORDEM Caítulo II Equaçõs Difrnciais Linars d ª Ordm Caítulo II Até agora já conhcmos uma séri d quaçõs difrnciais linars d rimira ordm Dfinirmos considrarmos

Leia mais

PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA

PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA CONTEÚDOS EIXO TEMÁTICO COMPETÊNCIAS Sistma d Numração - Litura scrita sistma d numração indo-arábico

Leia mais

ANÁLISE DE DESEMPENHO DOS GRAFICOS DE x E R.

ANÁLISE DE DESEMPENHO DOS GRAFICOS DE x E R. ANÁLISE DE DESEMPENHO DOS GAFICOS DE E. Vims cm cnstruir e utilizar s gráfics de cntrle. Agra vams estudar sua capacidade de detectar perturbações n prcess. GÁFICO de Em um julgament, veredict final será

Leia mais

6ª LISTA DE EXERCÍCIOS - DINÂMICA

6ª LISTA DE EXERCÍCIOS - DINÂMICA UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA DEPARTAMENTO DE FÍSICA DA TERRA E DO MEIO AMBIENTE CURSO: FÍSICA GERAL E EXPERIMENTAL I E SEMESTRE: 2008.1 6ª LISTA DE EXERCÍCIOS - DINÂMICA Considr g=10

Leia mais

Física FUVEST ETAPA. Resposta QUESTÃO 1 QUESTÃO 2. b) A energia cinética (E c ) do meteoro é dada por:

Física FUVEST ETAPA. Resposta QUESTÃO 1 QUESTÃO 2. b) A energia cinética (E c ) do meteoro é dada por: Física QUSTÃO 1 Uma das hipóteses para explicar a extinçã ds dinssaurs, crrida há cerca de 6 milhões de ans, fi a clisã de um grande meter cm a Terra. stimativas indicam que meter tinha massa igual a 1

Leia mais

COLÉGIO OBJETIVO JÚNIOR

COLÉGIO OBJETIVO JÚNIOR COLÉGIO OBJETIVO JÚNIOR NOME: N. o : DATA: / /01 FOLHETO DE MATEMÁTICA (V.C. E R.V.) 6. o ANO Est folhto é um rotiro d studo para você rcuprar o contúdo trabalhado m 01. Como l vai srvir d bas para você

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo

Leia mais

III Integrais Múltiplos

III Integrais Múltiplos INTITUTO POLITÉCNICO DE TOMA Escola uprior d Tcnologia d Tomar Ára Intrdpartamntal d Matmática Anális Matmática II III Intgrais Múltiplos. Calcul o valor dos sguints intgrais: a) d d ; (ol. /) b) d d ;

Leia mais

Transformador Monofásico

Transformador Monofásico Trasformador Moofásico. Cocito O trasformador (TR) é um quipamto qu rcb rgia létrica com uma tsão uma corrt forc ssa rgia, a mos das prdas, m outra tsão outra corrt. A frqüêcia létrica s matém ialtrada.

Leia mais

AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU

AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU ANEXO II Coficint d Condutibilidad Térmica In-Situ AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU AII.1. JUSTIFICAÇÃO O conhcimnto da rsistência térmica ral dos componnts da nvolvnt do difício

Leia mais

Componente de Química

Componente de Química Disiplina d Físia Químia A 11º ano d solaridad Componnt d Químia Componnt d Químia 1.4 Produção industrial do amoníao Raçõs rvrsívis quilíbrio químio Em muitas raçõs químias os rants dão orim aos produtos

Leia mais

Questão 13. Questão 14. alternativa C

Questão 13. Questão 14. alternativa C Questã 13 O suc de laranja cncentrad da marca M cntém 20 mg de vitamina C pr 50 ml de suc cncentrad. Para ser cnsumid, deve ser diluíd cm água até que seu vlume seja 4 vezes mair que inicial. Pr utr lad,

Leia mais

MÓDULO 4 4.8.1 - PROCEDIMENTOS DE TESTES DE ESTANQUEIDADE PARA LINHAS DE ÁGUA, ESGOTO E OUTROS LÍQUIDOS

MÓDULO 4 4.8.1 - PROCEDIMENTOS DE TESTES DE ESTANQUEIDADE PARA LINHAS DE ÁGUA, ESGOTO E OUTROS LÍQUIDOS MÓDULO 4 4.8.1 - PROCEDIMENTOS DE TESTES DE ESTANQUEIDADE PARA LINHAS DE ÁGUA, ESGOTO E OUTROS LÍQUIDOS Normas Aplicávis - NBR 15.950 Sistmas para Distribuição d Água Esgoto sob prssão Tubos d politilno

Leia mais

No N r o m r a m s a?

No N r o m r a m s a? Normas? EM ALGUMA CERÂMICA... NORMAS? O qu tnho a vr com isso? VENDAS NORMAS??? O qu é isso?...um clint dixou d fchar o pdido porqu o bloco não stava dntro das NORMAS... Grnt Produção...Uma carga d Blocos

Leia mais

ISCTE. SOCIOLOGIA E SOCIOLOGIA E PLANEAMENTO Ano Lectivo 2003/2004 (2º Semestre) ESTATÍSTICA II. (Interpretação de Outputs de SPSS)

ISCTE. SOCIOLOGIA E SOCIOLOGIA E PLANEAMENTO Ano Lectivo 2003/2004 (2º Semestre) ESTATÍSTICA II. (Interpretação de Outputs de SPSS) ISCTE SOCIOLOGIA E SOCIOLOGIA E PLANEAMENTO An Lectiv 2003/2004 (2º Semestre) ESTATÍSTICA II (Interpretaçã de Outputs de SPSS) Interval de Cnfiança para a Média Ppulacinal Ensai de Hipóteses para a Média

Leia mais