Inferência Bayesiana Aplicada ao Desenvolvimento de Modelos Neurais para Tratamento de Alarmes em Subestações

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Inferência Bayesiana Aplicada ao Desenvolvimento de Modelos Neurais para Tratamento de Alarmes em Subestações"

Transcrição

1 Inferênca Bayesana Aplcada ao Desenvolvmeno de Modelos Neuras para Traameno de Alarmes em Subesações Vor Huo Ferrera, Julo esar Saccn de Souza e Mlon Brown Do ouo Flo Absrac-- Ts wor nvesaes e applcaon of bayesan nference for e developmen of mullayer percepron neural newors devoed o alarm processn and denfcaon of fauled componens n power dsrbuon subsaons. Te concep of ypcal subsaon s explored o deal w e problem dmenson and o allow a e consruced neural model be vald for every subsaon a presens e same proecon plosopy. Dfferen sraees usn neural newors are proposed for e danoss of e subsaon componens sauses. Te proposed neural models and sraees are esed usn daa from a real subsaon and compared. omparsons w resuls repored n e ecncal leraure, obaned w Mul-Layer Perceprons (MLPs) raned usn e convenonal Bacpropaaon alorm, are also provded. Index Terms-- Neural Newors, Bayesan Inference, Paern Reconon, Faul Locaon, Alarm Processn. A I. INTRODUÇÃO ualmene, é necessáro que as concessonáras de enera elérca possuam cenros operavos capazes de aender a demanda dos consumdores com o máxmo de connudade e qualdade, de forma economcamene usfcada, respeando resrções elércas e ambenas. A maora dos cenros operavos modernos dspõe de uma rande quandade de nformações para os operadores, obdas por meo dos ssemas de supervsão e conrole. Frequenemene os operadores devem omar decsões em curo espaço de empo, quando submedos a um rande volume de nformações que ceam sob a forma de alarmes. Tas alarmes podem esar assocados a ocorrênca de defeos, manobras, auação de dsposvos de proeção, ec. Nesas suações, a quase smulanedade dos aconecmenos, mesmo consderando a separação dos evenos e alarmes em caeoras de prordade dferenes, mpede que o operador analse os referdos alarmes e evenos adequadamene, no empo devdo, de forma a produzr um Ese rabalo fo fnancado pelo NPq, pela FAPERJ (processo E- 6/03.04/0) e pelo INERGE (Insuo Naconal de Enera Elérca). V.H. Ferrera aua no Deparameno de Enenara Elérca da Unversdade Federal Flumnense (UFF), R. Passo da Pára, 56, Bl. D, sala 509, São Domnos, Neró, RJ, (e-mal: J.. Saccn de Souza é Professor Assocado do Deparameno de Enenara Elérca da UFF, auando ambém no Prorama de Pós-Graduação em ompuação da UFF. (e-mal: M.B. Do ouo Flo é Professor Tular do Insuo de ompuação da UFF. (e-mal: danósco e mplemenar as ações necessáras ao rápdo resabelecmeno da enera aos consumdores. Em adção ao rande volume de nformações, problemas como falas no ssema de proeção, falas de comuncação, ocorrênca de dados corrompdos, denre ouros, podem ornar a arefa de danósco basane complcada. O processameno de alarmes e a obenção de danóscos consuem um mporane problema a ser resolvdo no ambene de empo real. Muas aplcações de écncas nelenes para o processameno de alarmes e danósco de defeos foram proposas na leraura []. Muas delas empream ssemas especalsas [], nos quas um conuno de padrões de alarme é empreado para a consrução da base de conecmeno. O conecmeno e experênca de especalsas umanos são explorados de forma a consrur um conuno de reras que compõem o mecansmo de nferênca responsável por produzr danóscos em empo real. Enreano, sabe-se que ssemas especalsas apresenam desempeno sasfaóro apenas para suações que foram prevamene consderadas no desenvolvmeno da base de conecmeno. Na ocorrênca de padrões de alarme nédos ou corrompdos o desempeno do ssema especalsa será compromedo. Alernavamene, de forma a ldar com as suações, méodos baseados na aplcação de lóca fuzzy [3], [4] e redes neuras arfcas [5]- [9] foram ambém proposos. Nese rabalo, a aplcação de redes neuras auônomas ao processameno de alarmes em subesações de dsrbução de enera elérca é nvesada. O conceo de uma subesação ípca é explorado de forma a resrnr a dmensão dos veores de enrada e ambém permr que o modelo neural consruído sea aplcável a ouras subesações que empreuem a mesma flosofa para o ssema de proeção. Teses são realzados ulzando-se dados de uma subesação real. Os resulados obdos são comparados com aqueles enconrados em [8] e os benefícos com o empreo da écnca proposa são dscudos. II. PROESSAMENTO DE ALARMES EM SUBESTAÇÕES Os ssemas de proeção são proeados para solar componenes falosos quando da ocorrênca de defeos, suações em que os componenes defeuosos devem ser rerados de operação rapdamene, de forma a evar danos físcos aos dsposvos e equpamenos elércos. Além dsso, deve-se er em mene que a nerrupção do fornecmeno de

2 enera deve ser mnmzada. Loo, os dsposvos de proeção devem operar de forma coordenada, buscando aranr que somene os componenes defeuosos seam desenerzados. aso o dsposvo de proeção responsável por solar um componene defeuoso não opere correamene, ouros dsposvos de proeção devem operar de forma a fornecer proeção de reauarda e aranr a elmnação do defeo. Neses casos, a desconexão de um conuno maor de componenes em eral ocorre, o que ende a ornar mas dfícl o processo de denfcação do componene defeuoso. Em subesações de dsrbução de enera elérca alarmes são erados quando da ocorrênca de defeos ou operações de caveameno envolvendo um ou mas componenes da subesação. O ssema de aqusção de dados (SADA) é enão responsável por colear e envar nformações sobre os alarmes erados ao cenro de conrole, onde os operadores devem realzar análses, rar conclusões e omar decsões. Nese rabalo, consdera-se que os alarmes causados por evenos envolvendo componenes de uma subesação, os quas devem ser processados no cenro de conrole, podem ser assocados à operação dos seunes dsposvos [0]: dsunores; caves secconadoras; relés de sobrecorrene; relés de sobreensão; relés de proeção conra falas para a erra; relés de proeção dferencal; relés de proeção conra fala de dsunor; reladores; relés de ás; e relés auxlares. A rande quandade de nformações a serem raadas e a possível ocorrênca de ouros problemas, as como falas no ssema de proeção ou a ausênca de nformação sobre um ou mas alarmes, podem razer rande dfculdade para o processo de análse e omada de decsão [], parcularmene em suações nas quas decsões e ações em empo real são necessáras. Tas caraceríscas ornam araene a aplcação de redes neuras arfcas (RNAs) como a proposa nese rabalo. III. INFERÊNIA BAYESIANA APLIADA AO DESENVOLVIMENTO DE MLPS Sea o problema de classfcação de padrões enre classes muuamene exclusvas defndo pelo conuno de padrões enrada-saída X, D, X x,..., x N, D d,..., d N, x n,,..., x x x n e d 0,, onde para padrões perencenes à classe e d, d, d 0,,,...,,. Em ouras palavras, a codfcação de é ulzada para represenar a classe de cada padrão x. O obevo do renameno da RNA sob o pono de vsa da nferênca bayesana resde na esmação dos parâmeros w M que maxmzam a probabldade a poseror, p X, D w pw pd X, w pw p X, D pd X Na equação (), pd X, p w X, D dada pela rera de Bayes: p w X D p D X w p w dw é um faor de normalzação. Porano, para o cálculo de () p w X, D, é necessáro o conecmeno da probabldade a pror pw, como ambém da função de verossmlança pd X, w relaconada à probabldade dos padrões perencerem a cada classe. Vso que modelos apresenando componenes de w com pequena manude reproduzem mapeamenos suaves [], sea o número de conunos nos quas os pesos e bas são M arupados, w, w... w w M, o veor conendo os M elemenos do -ésmo rupo, e o perparâmero assocado. A probabldade a pror pw assocada ao conuno de pesos represenado pelo veor dada por: pw e M w w é onsderando ndependênca enre os rupos, pw, w M, w w w... w, dada por: p w p w e p w e Z W w M () M M, passa a ser w Defnda a dsrbução pw, resa aora especfcar a probabldade dos padrões perencerem a cada uma das classes, ou sea, defnr pd X, w. Para defnção desa probabldade, sea a saída do -ésmo neurôno de saída do Percepron de Múlplas amadas (MLP): m n sada ocula x b b Na equação (4) m (3) (4),... m, represena os pesos que lam os neurônos da camada ocula ao -ésmo neurôno de saída, n,... n, consuído pelos pesos que lam as enradas ao -ésmo neurôno da camada escondda, b o bas dese neurôno, b o bas do -ésmo neurôno de saída, ocula : a função smodal (nese rabalo, anene perbólca) de avação dos neurônos da camada ocula e : sada a função de avação dos neurônos da camada de saída (nese rabalo z sada z e ). Assm, o veor w M, w s b b b

3 3 apresena um oal de M m n parâmeros lvres, onde represena o número de saídas do MLP. Para que odas as saídas represenem uma medda de probabldade, (5) y f x, w px x onde y é a -ésma saída do MLP represenando a probabldade do padrão x perencer à classe. omo as classes são muuamene excludenes,, p d x w a probabldade a poseror da ocorrênca de um veor d dado um padrão x e um veor de parâmeros w é dada por []: d (6) pd x, w f x, w Supondo que os padrões de saída são ndependenes e dencamene dsrbuídos, a probabldade de ocorrênca do conuno de padrões de saída D dado o conuno de padrões X e parâmeros w, pd X, w, pode ser escra da manera que seue: N,, p D X w f x w d De posse das expressões (3) e (7), é possível calcular p w X, D descra na equação (), resulando na seune expressão: p w X D e d w Z w e, Sw e S w S w N M S w d ln f x, w w S w ED w E w O funconal Sw apresena duas parcelas. A prmera parcela, E w, é dada pelo rsco empírco, que represena o D ause do modelo aos dados dsponíves. Se odos os padrões forem correamene classfcados, E w 0. A seunda parcela, relaconada com a nserção de conecmeno prévo, na eora da reularzação represena um funconal reularzador, E f x w conecdo como decameno dos pesos, do nlês we decay, aplcado a cada rupo de pesos w. Vso que w não é a únca varável desconecda, p w X, D deve ser obda aravés da neração da probabldade a poseror de odas as varáves desconecdas p w, X, D sobre odo o espaço de perparâmeros. Para al, nese rabalo será ulzada a abordaem conecda como aproxmação da evdênca proposa por Macay [3]. Esa meodoloa dá orem a um alormo analíco para esmação dos perparâmeros ao lono do processo de S D (7) (8) renameno, sem a necessdade de um conuno de valdação. Deales sobre ese alormo podem ser enconrados em []. A. Deermnação Auomáca de Relevânca (DAR) A parr de um arupameno específco dos parâmeros que defnem o MLP, a relação enre e a manude de w pode ser ulzada para mensuração da relevânca de cada enrada. onecdo como deermnação auomáca de relevânca, ese méodo de seleção de enradas dvde o veor de parâmeros w em nm rupos. Os n prmeros rupos represenam os pesos que lam cada uma das enradas à camada ocula (n rupos com cada rupo conendo m pesos). Os conunos resanes dzem respeo aos pesos que lam cada neurôno da camada ocula à camada de saída (m rupos com cada rupo conendo pesos), um rupo com os bas dos neurônos da camada ocula (m componenes) e um úlmo rupo com os bas dos neurônos da camada de saída ( componenes). Esa escola específca de arupameno dos pesos perme ponderar a relevânca de cada snal aravés da análse dos n perparâmeros. Enradas com valores elevados para ao fnal do processo de renameno são ladas ao modelo aravés de pesos com pequena manude, conrbundo menos para o cálculo da saída. Porano, quano maor, menor a mporânca da respecva enrada no cálculo da saída. Ulzando ese arupameno específco de pesos, a análse dos perparâmeros obdos fornece uma meodoloa para mensuração da relevânca de cada enrada. Mesmo sendo capaz de ordenar esas varáves seundo a mporânca de cada uma no cálculo da saída, ese méodo não apresena ferramenas para deecção de enradas rrelevanes, sendo necessára a defnção de um lmar de relevânca 0 para deecção de varáves rrelevanes. O méodo baseado na nserção de varáves aleaóras de prova [4], [5] é ulzado para defnção empírca do lmar de relevânca 0. B. Seleção Bayesana de Modelos A nferênca bayesana ambém pode ser ulzada para seleção da melor esruura em uma sére de póeses H, H,..., H. Pela rera de Bayes, a dsrbução de K probabldade a poseror ph Y da póese por: p H Y ph py p Y H H é dada Vso que py é um faor de normalzação e admndo que odas as póeses (9) H são equprováves a pror, a evdênca py H pode ser ulzada para avalação de modelos. onsderando MLPs com uma únca camada ocula conendo m neurônos e ulzando uma aproxmação aussana em orno de ln p Y H :, é obda a seune expressão para

4 4 ln p Y H S w A w M ln ln m ln m! ln Na expressão acma, Sw e a marz para w e (0) Aw são avalados, sendo ambém ulzados os respecvos números efevos de parâmeros esmados. Ulzando DAR, o número de rupos é ual a nm. Nese rabalo a evdênca para os modelos será ulzada para deermnação do número de neurônos na camada ocula de MLPs aravés da escola do modelo que apresenar maor ln p Y H, ou sea, aquele mas provável à luz dos dados. IV. TRATAMENTO DE ALARMES VIA MLPS DESENVOLVIDOS OM INFERÊNIA BAYESIANA Nese rabalo foram nvesadas duas esraéas vsando a classfcação dos alarmes de uma subesação de enera elérca va redes neuras. A prmera fo a de se consrur uma rede neural únca, responsável por ober danóscos sobre odos os equpamenos ípcos de uma subesação: lna de ransmssão, barrameno de ala ensão, ransformador, barrameno de baxa ensão, banco de capacores e almenadores. A seunda esraéa consdera uma rede neural específca para classfcar a ocorrênca de defeos em cada po de equpameno da subesação, ou sea, cada equpameno possu uma RNA dedcada apenas ao danósco de sua condção operava. Em ambos os casos as RNAs são proeadas para denfcar o po de equpameno que apresena defeo e não dreamene o componene defeuoso. Iso perme a redução da complexdade e da dmensão do problema aravés da redução do número de varáves de enrada e saída da rede. Uma vez denfcado o po de componene que apresena defeo, a denfcação do componene em s pode ser faclmene obda com base na nformação presene no ssema SADA, conforme proposo em [9]. A. Subesação ípca Em ambas as esraéas nvesadas nese rabalo, a classfcação realzada por uma RNA busca deecar a ocorrênca de defeos envolvendo componenes de uma subesação ípca, como a lusrada na Fura. No modelo de subesação apresenado, em-se apenas um represenane de cada po de componene, aqu denomnados de componenes ípcos da subesação. Nese caso, ndependene da quandade de almenadores de uma subesação, somene um almenador é consderado para fns de classfcação no modelo da Fura. O mesmo racocíno se esende aos demas componenes. No presene rabalo, a defnção dos equpamenos ípcos fo baseada no arrano de uma subesação real, cuos deales podem ser enconrados em [9]. A consderação de apenas um represenane para cada po de componene se usfca pelo fao de que, em uma subesação, os mesmos esquemas de proeção são eralmene empreados para proeer um mesmo po de componene. Iso snfca que defeos envolvendo, por exemplo, almenadores de uma subesação, resularão em padrões de alarme smlares. O mesmo ocorre para defeos envolvendo ouros componenes. Loo, RNAs são renadas para classfcar padrões de alarme assocados aos componenes ípcos represenados na Fura e os seus canas de enrada receberão snas de alarmes provenenes da operação de dsposvos de proeção assocados à proeção de as componenes. Nese caso, na ocorrênca de um defeo envolvendo, por exemplo, um cero almenador da subesação, os alarmes assocados a operação de seus dsposvos de proeção serão dreconados para canas de enrada específcos da RNA, os quas serão os mesmos canas de enrada ulzados quando o defeo envolver qualquer ouro almenador. O mesmo racocíno é váldo quando da ocorrênca de defeos em ouros componenes. Fura Subesação Típca B. onsrução dos classfcadores neuras Duas esraéas são consderadas nese rabalo para a consrução de classfcadores, sendo em ambas ulzadas RNAs para classfcar os componenes ípcos da Fura. Aspecos das duas esraéas proposas são descros a seur. Esraéa : Empreo de uma únca RNA Na prmera esraéa, uma únca RNA é responsável por ober classfcações para odos os componenes. Os elemenos que compõem os padrões de enrada são bnáros e cada um deles ndca o recebmeno ou não de um alarme específco. Deve-se desacar que o empreo do conceo de subesação ípca faz com que a dmensão do veor de enrada sea reduzda e orna ese ndependene do pore da subesação. ada neurôno de saída esá assocado a um deermnado componene da subesação e a correspondene saída deseada ndca a aceação ou reeção de defeo envolvendo o componene monorado. No caso da RNA empreada nese rabalo as saídas deseadas serão bnáras, ndcando a

5 5 probabldade de cada componene perencer à classe de componenes defeuosos, sendo ual a quando o componene esá defeuoso e ual a 0 em caso conráro. Quando se ulza uma únca RNA, cnco neurônos de saída são consderados, cada um responsável por esmar a probabldade de defeo em um componene específco, denre os seunes: barrameno de ala ensão, ransformador, barrameno de méda ensão, almenador e banco de capacor. Esraéa : Empreo de RNAs dedcadas Ao se ulzar RNAs ndependenes, são necessáras cnco redes dsnas, cada uma delas responsável por esmar a probabldade de um componene específco perencer à classe dos componenes defeuosos ou não defeuosos. Nese caso, nenuma aleração é necessára no veor de enrada em relação à RNA anerormene descra. Porém, apenas dos neurônos de saída são ulzados, o prmero represenando a probabldade do componene monorado esar com defeo e o ouro represenando a probabldade do componene não esar com defeo. Porano, a mesma base de renameno é empreada quando se ulza uma únca RNA ou váras RNAs (cada uma delas dedcada ao danósco de um componene específco). A fase de renameno das RNAs é realzada offlne e uma únca vez. Os exemplares que compõem a base de renameno devem corresponder a padrões de alarme assocados a dferenes defeos, em dferenes componenes, consderando ambém suações nas quas a auação do ssema de proeção fo normal e ouras em que ouve a auação da proeção de reauarda. Tas exemplares podem ser obdos com o auxílo de especalsas e/ou exraídas dreamene da base de dados sórcos de uma empresa, onde esão resrados os alarmes erados quando da ocorrênca de evenos envolvendo componenes da subesação.. Obenção de danóscos Quando a esraéa adoada for a ulzação de uma únca RNA, os seunes passos são necessáros para a obenção de danóscos: () Apresenar o padrão de enrada à RNA e ober nos neurônos de saída as esmavas das probabldades de cada componene da subesação perencer à classe dos componenes defeuosos; () Danoscar como defeuoso aquele componene que apresenar a maor probabldade. No caso do empreo de RNAs dedcadas aos componenes, os seunes passos são adoados: () Apresenar o padrão de enrada a cada RNA e ober nos respecvos neurônos de saída as esmavas das probabldades do componene monorado perencer a cada uma das duas classes (componenes defeuosos e componenes não defeuosos); () Se, para uma dada RNA, a probabldade de um componene perencer a classe de componenes defeuosos for maor do que a probabldade dele não perencer a al classe, classfcar o esado do componene como defeuoso; () Idenfcar como defeuosos os componenes assm classfcados no passo (). Nese rabalo, a ocorrênca de defeos smulâneos não é consderada. No enano, a ocorrênca de as evenos, quando correlaconados, pode ser faclmene consderada, basando para al nclur na base de renameno os padrões de alarme correspondenes a as suações. V. RESULTADOS Os modelos neuras proposos nese rabalo foram renados ulzando a mesma base de renameno empreada em [8,9], a qual coném padrões de alarme correspondenes a dferenes suações de defeo envolvendo componenes de uma subesação real. Os resulados obdos são comparados com os resrados em [8] (onde se ulzou uma RNA MLP renada com o alormo Bacpropaaon) e apresenados nas Tabelas e. Para os modelos proposos nese rabalo, os quas ulzam nferênca bayesana, foram esadas esruuras com número de neurônos oculos varando enre e 0 neurônos, sendo escoldo para realzação do danósco o modelo que apresenou maor evdênca (Equação (0)). A Tabela apresena as axas de acero no danósco do componene defeuoso para os padrões condos na base de renameno. Ambas as esraéas esadas, RNA únca e RNAs dedcadas, obveram 00% de acero no danósco dos componenes defeuosos. O mesmo resulado ava sdo obdo em [8]. De modo a verfcar a robusez e capacdade de eneralzação dos modelos esados, a Tabela apresena resulados quando se consderou aleaoramene a ausênca de um snal de enrada, ou sea, a não capura de um snal de alarme assocado ao eveno ocorrdo. As respecvas marzes de confusão são apresenadas nas Tabelas 3 e 4. Esa mesma smulação fo realzada em [8]. Pode-se perceber nese caso que os modelos proposos nese rabalo apresenaram desempeno snfcavamene superor. TABELA TAXAS DE AERTO PARA O ONJUNTO DE TREINAMENTO RNA RNAs RNA de Modelo Únca Dedcadas [8] Taxa de Aceros 00% 00% 00% TABELA TAXAS DE AERTO PARA O ONJUNTO DE VALIDAÇÃO (UM ALARME FALTANTE) Modelo Taxa de Aceros RNA Únca RNAs Dedcadas RNA de [8] 9,47% 9,5% 73,08% A dferença de desempeno observada na Tabela pode ser explcada pelo fao de que o empreo da nferênca bayesana perme que as RNAs empreadas nas esraéas proposas seam capazes de esmar em suas saídas as probabldades de cada componene perencer à classe de componenes defeuosos. Por ouro lado, a RNA MLP de [8] é renada para

6 6 TABELA 3 MATRIZ DE ONFUSÃO PARA O ONJUNTO DE VALIDAÇÃO - RNA DEDIADA lasse lasse lasse 3 lasse 4 lasse 5 lasse lasse lasse lasse lasse TABELA 4 MATRIZ DE ONFUSÃO PARA O ONJUNTO DE VALIDAÇÃO - RNA ÚNIA lasse lasse lasse 3 lasse 4 lasse 5 lasse lasse lasse lasse lasse produzr apenas saídas bnáras. Nos casos em que padrões de alarme corrompdos esão presenes, o seu reconecmeno se orna mas dfícl, o que se reflee nos valores obdos nas saídas das RNAs, os quas endem a apresenar maor afasameno dos valores deseados ( e 0). Enquano a RNA de [8] apresena dfculdade de nerprear valores nermedáros (enre 0 e ) obdos na saída da rede, o mesmo não ocorre com as RNAs que empream a nferênca bayesana, uma vez que a saída é dreamene nerpreada como um valor de probabldade. Anda com relação às esraéas proposas, vale ambém desacar que a esraéa que ulza RNAs dedcadas por componene á conempla dreamene o raameno de erros smulâneos, envolvendo componenes de dferenes pos. Iso ocorre porque cada RNA esma a probabldade de aceação ou reeção de um defeo envolvendo o componene monorado, enquano na esraéa que emprea uma únca RNA são esmadas smulaneamene as probabldades de cada componene esar defeuoso. Uma vez que uma das premssas do modelo empreado é a de que as classes seam muuamene excludenes, são necessáras alerações na formulação da RNA únca para o raameno de defeos smulâneos em componenes de dferenes pos. Ese ópco, assm como o raameno de defeos smulâneos (correlaconados) será alvo de nvesação fuura. Os resulados obdos revelam os possíves benefícos com a aplcação de nferênca bayesana no desenvolvmeno de RNAs para raar o problema aqu abordado e o seu poencal para empreo como mecansmo de nferênca (em subsução a uma MLP renada pelo alormo Bacpropaaon) em um modelo íbrdo como o descro em [9]. VI. ONLUSÕES Ese rabalo nvesou a aplcação de RNAs desenvolvdas ulzando nferênca bayesana ao problema de processameno de alarmes em subesações. O conceo de subesação ípca fo empreado, onde componenes de um mesmo po êm um únco represenane no modelo reduzdo da subesação. Duas dferenes esraéas foram apresenadas para a consrução de classfcadores: o empreo de uma únca RNA para classfcar odos os componenes ípcos da subesação e o empreo de RNAs dedcadas a componenes específcos, sendo cada uma delas responsável apenas por classfcar o esado do componene monorado. As RNAs foram renadas ulzando padrões de alarme correspondenes a ocorrênca de dferenes defeos. Uma vez renadas, as RNAs foram empreadas para realzar classfcações sobre os esados de componenes da subesação quando submedas a padrões de alarme nédos e corrompdos. Resulados comparavos mosraram o poencal das RNAs proposas para auxílo à arefa de danósco, endo sdo possível ober elevadas axas de aceros. É mporane noar que, ao se ulzar o conceo de subesação ípca, defeos smulâneos em componenes do mesmo po podem ser auomacamene raados. VII. REFERÊNIAS BIBLIOGRÁFIAS [] M. Kezunovc, Inellen Sysems n Proecon Enneern, n Proceedns of e In. onf. Power Sys. Tec. (Poweron), v., (000), pp [] Y.M. Par, G.-W. Km and J.-M. Son, A Loc Based Exper Sysem (LBES) for Faul Danoss of Power Sysems, IEEE Transacons on Power Sysems, v., pp , Feb [3] J.. Saccn de Souza, E.B.M. Meza, M.T. Sclln and M.B. Do ouo Flo, Alarm Processn n Elecrcal Power Sysems rou a Neuro-Fuzzy, IEEE Transacons on Power Delvery, v. 9, n., pp , Apr [4] B. Das, Fuzzy Loc-Based Faul-Type Idenfcaon n Unbalanced Radal Power Dsrbuon Sysem, IEEE Transacons on Power Delvery, v., n., pp , Jan [5] A.G. Joneper,, H.E. D and L. van der Slus, Neural newors appled o alarm processn, n Proc. Trd Symp. Exp. Sys. Applc. Power Sys., Toyo-Kobe, Japan (99), pp [6] J.. Saccn de Souza, M.A.P. Rodrues, M.T. Sclln and M.B. Do ouo Flo, Faul Locaon n Elecrcal Power Sysems Usn Inellen Sysems Tecnques, IEEE Transacons on Power Delvery, v. 6, n., pp , Jan. 00. [7] M. Nenevsy and V. Pavlovsy, Neural Newors Approac o Onlne Idenfcaon of Mulple Falures of Proecon Sysems, IEEE Transacons on Power Delvery, v. 0, n., pp , Apr [8] R. S. Freund, J.. Saccn de Souza; E. B. M. Meza; H. R. O. Roca; M. B. Do ouo Flo;. Sensrasser, Ferramena ompuaconal Inelene para o Danósco de Falas em Subesações, n X Smpóso de Especalsas em Planeameno da Operação e Expansão Elérca, Floranópols (006), pp. -6. [9] J.. Saccn de Souza, M. B. Do ouo Flo, R. S. Freund, A Hybrd Inellen Sysem for Alarm Processn n Power Dsrbuon Subsaons, Inernaonal Journal of Hybrd Inellen Sysems, v. 7, pp. 5-36, Apr. 00. [0] A.G. Pade and J. S. Torp, ompuer relayn for power sysems, Researc Sudes Press Ld., Somerse, Enland, 998. [] n-la Hor, and Peer A. rossley, Exracn Knowlede From Subsaons for Decson Suppor, IEEE Transacons on Power Delvery, v. 0, n., pp , Apr [].M. Bsop, Neural Newors for Paern Reconon, Oxford, New Yor, Oxford Unversy Press, 995. [3] D.J.. Macay, Bayesan Meods for Adapve Models, P.D. dsseraon, alforna Insue of Tecnoloy, Pasadena, alforna, USA, 99. [4] V.H. Ferrera, A.P. Alves da Slva, Toward Esman Auonomous Neural Newor Based Elecrc Load Forecasers, IEEE Transacons on Power Sysems, v., n.4, , Nov [5] V.H. Ferrera, A. Lazzare, H.V. Neo, R. Rella, J. Omor, lassfcação de Evenos em Redes de Dsrbução de Enera ulzando Transformada Wavele e Modelos Neuras Auônomos, Learnn and Nonlnear Models Journal of e Brazlan Socey on Neural Newors, v.8, n., 93-99, 00

CAPÍTULO 1 REPRESENTAÇÃO E CLASSIFICAÇÃO DE SISTEMAS. Sistema monovariável SISO = Single Input Single Output. s 1 s 2. ... s n

CAPÍTULO 1 REPRESENTAÇÃO E CLASSIFICAÇÃO DE SISTEMAS. Sistema monovariável SISO = Single Input Single Output. s 1 s 2. ... s n 1 CAPÍTULO 1 REPREENTAÇÃO E CLAIFICAÇÃO DE ITEMA 1.1. Represenação de ssemas 1.1.1. semas com uma enrada e uma saída (IO) e sema monovarável IO = ngle Inpu ngle Oupu s e = enrada s = saída = ssema 1.1..

Leia mais

2 Programação Matemática Princípios Básicos

2 Programação Matemática Princípios Básicos Programação Maemáca Prncípos Báscos. Consderações Geras Os objevos dese capíulo são apresenar os conceos de Programação Maemáca (PM) necessáros à compreensão do processo de omzação de dmensões e descrever

Leia mais

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc.

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc. ECONOMETRIA Prof. Parca Mara Borolon. Sc. Modelos de ados em Panel Fone: GUJARATI;. N. Economera Básca: 4ª Edção. Ro de Janero. Elsever- Campus 006 efnções Geras Nos dados em panel a mesma undade de core

Leia mais

CIRCULAR Nº 3.634, DE 4 DE MARÇO DE 2013. Padrão. Padrão. max i. I - F = fator estabelecido no art. 4º da Resolução nº 4.

CIRCULAR Nº 3.634, DE 4 DE MARÇO DE 2013. Padrão. Padrão. max i. I - F = fator estabelecido no art. 4º da Resolução nº 4. CIRCULAR Nº 3.634, DE 4 DE MARÇO DE 2013 Esabelece os procedmenos para o cálculo da parcela dos avos ponderados pelo rsco (RWA) referene às exposções sueas à varação de axas de uros prefxadas denomnadas

Leia mais

3 Planejamento da Operação Energética no Brasil

3 Planejamento da Operação Energética no Brasil 3 Planeameno da Operação Energéca no Brasl 3.1 Aspecos Geras O ssema elérco braslero é composo por dos dferenes pos de ssemas: os ssemas solados, os quas predomnam na regão Nore do Brasl e represenam cerca

Leia mais

HEURÍSTICA PARA O PROBLEMA DE ROTEIRIZAÇÃO E ESTOQUE

HEURÍSTICA PARA O PROBLEMA DE ROTEIRIZAÇÃO E ESTOQUE Pesqusa Operaconal e o Desenvolvmeno Susenável 7 a /9/5, Gramado, RS HEURÍSTICA PARA O PROBLEMA DE ROTEIRIZAÇÃO E ESTOQUE André Luís Shguemoo Faculdade de Engenhara Elérca e Compuação Unversdade Esadual

Leia mais

É a parte da mecânica que descreve os movimentos, sem se preocupar com suas causas.

É a parte da mecânica que descreve os movimentos, sem se preocupar com suas causas. 1 INTRODUÇÃO E CONCEITOS INICIAIS 1.1 Mecânca É a pare da Físca que esuda os movmenos dos corpos. 1. -Cnemáca É a pare da mecânca que descreve os movmenos, sem se preocupar com suas causas. 1.3 - Pono

Leia mais

1- Testes Acelerados. Como nível usual entende-se o nível da variável stress a que o componente ou aparelho será submetido no dia-adia.

1- Testes Acelerados. Como nível usual entende-se o nível da variável stress a que o componente ou aparelho será submetido no dia-adia. - Teses Aelerados São de rande mporâna na ndúsra espealmene na ndúsra elero-elerôna em que eses de empos de vda demandam muo empo. (os produos são muo onfáves) Inorporação de uma arável-sress adonada a

Leia mais

da rede são atualizados de acordo com a equação 2 [13]:

da rede são atualizados de acordo com a equação 2 [13]: LS-DRAUGHTS - UM SISTEMA DE ARENDIZAGEM ARA DAMAS COM GERAÇÃO AUTOMÁ- TICA DE CARACTERÍSTICAS HENRIQUE CASTRO NETO, RITA MARIA SILVA JULIA Faculdade de Compuação, Unversdade Federal de Uberlânda Av. João

Leia mais

Análise do Desempenho dos Gestores de Fundos, baseada nas Transações e nas Participações das Carteiras

Análise do Desempenho dos Gestores de Fundos, baseada nas Transações e nas Participações das Carteiras Vâna Sofa Sequera Umbelno Análse do Desempenho dos Gesores de Fundos, baseada nas Transações e nas Parcpações das Careras Dsseração de Mesrado apresenado à Faculdade de Economa da Unversdade de Combra

Leia mais

ANEXO III. Nota Técnica nº 148/2010-SRE/ANEEL Brasília, 24 de maio de 2010.

ANEXO III. Nota Técnica nº 148/2010-SRE/ANEEL Brasília, 24 de maio de 2010. ANEXO III Noa Técnca nº 148/21-SRE/ANEEL Brasíla, 24 de mao de 21. M E T O D O L O G I A E Á L U L O D O F A T O R X ANEXO II Noa Técnca n o 148/21 SRE/ANEEL Em 24 de mao de 21. Processo nº 485.269/26-61

Leia mais

DINÂMICA E PREVISÃO DE PREÇOS DE COMMODITIES AGRÍCOLAS COM O FILTRO DE KALMAN

DINÂMICA E PREVISÃO DE PREÇOS DE COMMODITIES AGRÍCOLAS COM O FILTRO DE KALMAN XXVIII ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO DINÂICA E PREVISÃO DE PREÇOS DE COODITIES AGRÍCOLAS CO O FILTRO DE KALAN Flávo Pnhero Corsn (POLI-USP) flavo.corsn@gmal.com Celma de Olvera Rbero (POLI-USP)

Leia mais

2. REVISÃO BIBLIOGRÁFICA

2. REVISÃO BIBLIOGRÁFICA MODELO DE APOIO À DECISÃO PARA UM PROBLEMA DE POSICIONAMENTO DE BASES, ALOCAÇÃO E REALOCAÇÃO DE AMBULÂNCIAS EM CENTROS URBANOS: ESTUDO DE CASO NO MUNICÍPIO DE SÃO PAULO RESUMO Ese argo apresena uma proposa

Leia mais

Otimização no Planejamento Agregado de Produção em Indústrias de Processamento de Suco Concentrado Congelado de Laranja

Otimização no Planejamento Agregado de Produção em Indústrias de Processamento de Suco Concentrado Congelado de Laranja Omzação no Planeameno Agregado de Produção em Indúsras de Processameno de Suco Concenrado Congelado de Larana José Renao Munhoz Crova Agro Indusral Lda., 15800-970, Caanduva, SP (ose.munhoz@crova.com)

Leia mais

CÁLCULO DE ÍNDICES DE CONFIABILIDADE EM SISTEMAS DE GERAÇÃO DE ENERGIA USANDO UM ALGORITMO GENÉTICO MODIFICADO

CÁLCULO DE ÍNDICES DE CONFIABILIDADE EM SISTEMAS DE GERAÇÃO DE ENERGIA USANDO UM ALGORITMO GENÉTICO MODIFICADO CÁLCULO DE ÍNDICES DE CONFIABILIDADE EM SISTEMAS DE GERAÇÃO DE ENERGIA USANDO UM ALGORITMO GENÉTICO MODIFICADO RODRIGO ALBUQUERQUE, ANSELMO RODRIGUES, MARIA G. DA SILVA. Grupo de Ssemas de Poênca, Deparameno

Leia mais

XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GRUPO - VII GRUPO DE ESTUDO DE PLANEJAMENTO DE SISTEMAS ELÉTRICOS - GPL

XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GRUPO - VII GRUPO DE ESTUDO DE PLANEJAMENTO DE SISTEMAS ELÉTRICOS - GPL XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA Versão 1.0 XXX.YY a 5 Novembro de 009 Recfe - PE GRUPO - VII GRUPO DE ESTUDO DE PLANEJAMENTO DE SISTEMAS ELÉTRICOS - GPL HIDROTERM

Leia mais

5 Apreçamento de ESOs com preço de exercício fixo

5 Apreçamento de ESOs com preço de exercício fixo 5 Apreçameno de ESOs com preço de exercíco fxo Ese capíulo rá explorar os prncpas modelos de apreçameno das ESOs ulzados hoje em da. Neses modelos a regra de decsão é esruurada em orno da maxmzação do

Leia mais

Interpolação e Extrapolação da Estrutura a Termo de Taxas de Juros para Utilização pelo Mercado Segurador Brasileiro

Interpolação e Extrapolação da Estrutura a Termo de Taxas de Juros para Utilização pelo Mercado Segurador Brasileiro Inerpolação e Exrapolação da Esruura a Termo de Taxas de Juros para Ulzação pelo Mercado Segurador Braslero Sergo Lus Frankln Jr. Thago Baraa Duare César da Rocha Neves + Eduardo Fraga L. de Melo ++ M.Sc.,

Leia mais

Índice de Preços Imobiliários para o Brasil: Estudos para Discussão

Índice de Preços Imobiliários para o Brasil: Estudos para Discussão Mnséro do Planejameno, Orçameno e Gesão Insuo Braslero de Geografa e Esaísca IBGE Dreora de Pesqusas Coordenação de Índces de Preços Ssema Naconal de Índces de Preços ao Consumdor SNIPC Índce de Preços

Leia mais

Exemplo pág. 28. Aplicação da distribuição normal. Normal reduzida Z=(900 1200)/200= 1,5. Φ( z)=1 Φ(z)

Exemplo pág. 28. Aplicação da distribuição normal. Normal reduzida Z=(900 1200)/200= 1,5. Φ( z)=1 Φ(z) Exemplo pág. 28 Aplcação da dsrbução ormal Normal reduzda Z=(9 2)/2=,5 Φ( z)= Φ(z) Subsudo valores por recurso à abela da ormal:,9332 = Φ(z) Φ(z) =,668 Φ( z)= Φ(z) Φ(z) =,33 Φ(z) =,977 z = (8 2)/2 = 2

Leia mais

ESTUDO COMPARATIVO DE SISTEMAS DE AERAÇÃO PARA A ESTAÇÃO DE TRATAMENTO DE ESGOTOS SUZANO

ESTUDO COMPARATIVO DE SISTEMAS DE AERAÇÃO PARA A ESTAÇÃO DE TRATAMENTO DE ESGOTOS SUZANO ESTUDO COMPARATIVO DE SISTEMAS DE AERAÇÃO PARA A ESTAÇÃO DE TRATAMENTO DE ESGOTOS SUZANO Roque Passos Pvel Escola Polécnca da Unversdade de São Paulo - EPUSP Pedro Alem Sobrnho Escola Polécnca da Unversdade

Leia mais

Avaliação Inter/Intra-regional de absorção e difusão tecnológica no Brasil: Uma abordagem não-paramétrica. AUTORES.

Avaliação Inter/Intra-regional de absorção e difusão tecnológica no Brasil: Uma abordagem não-paramétrica. AUTORES. Avalação Iner/Inra-regonal de absorção e dfusão ecnológca no Brasl: Uma abordagem não-paramérca. Palavras chave: Efcênca écnca Produvdade oal Varação ecnológca AUTORES Emerson Marnho ouor em Economa pela

Leia mais

Arbitragem na Estrutura a Termo das Taxas de Juros: Uma Abordagem Bayesiana

Arbitragem na Estrutura a Termo das Taxas de Juros: Uma Abordagem Bayesiana Arbragem na Esruura a ermo das axas de Juros: Uma Abordagem Bayesana Márco Pole Laurn Armêno Das Wesn Neo Insper Workng Paper WPE: / Copyrgh Insper. odos os dreos reservados. É probda a reprodução parcal

Leia mais

PROF. DR. JACQUES FACON LIMIARIZAÇÃO POR ENTROPIA DE WULU

PROF. DR. JACQUES FACON LIMIARIZAÇÃO POR ENTROPIA DE WULU 1 PUCPR- Ponfíca Unversdade Caólca Do Paraná PPGIA- Programa de Pós-Graduação Em Informáca Aplcada PROF. DR. JACQUES FACON IMIARIZAÇÃO POR ENTROPIA DE WUU Resumo: Uma nova écnca de marzação baseada em

Leia mais

Gripe: Época de gripe; actividade gripal; cálculo da linha de base e do respectivo intervalo de confiança a 95%; e área de actividade basal.

Gripe: Época de gripe; actividade gripal; cálculo da linha de base e do respectivo intervalo de confiança a 95%; e área de actividade basal. Grpe: Época de grpe; acvdade grpal; cálculo da lnha de ase e do respecvo nervalo de confança a 95%; e área de acvdade asal. ÉPOCA DE GRPE Para maor facldade de compreensão será desgnado por época de grpe

Leia mais

A estrutura a termo de taxas de juros no Brasil: modelos, estimação, interpolação, extrapolação e testes

A estrutura a termo de taxas de juros no Brasil: modelos, estimação, interpolação, extrapolação e testes A esruura a ermo de axas de juros no Brasl: modelos, esmação, nerpolação, exrapolação e eses Sergo Lus Frankln Jr. Thago Baraa Duare César da Rocha Neves + Eduardo Fraga L. de Melo ++ M.Sc., SUSEP/CGSOA

Leia mais

INTRODUÇÃO AS EQUAÇÕES DIFERENCIAIS PARCIAIS

INTRODUÇÃO AS EQUAÇÕES DIFERENCIAIS PARCIAIS INTROUÇÃO S QUÇÕS IFRNIIS PRIIS. INTROUÇÃO Porqe esdar as qações ferencas Parcas? Smplesmene porqe a maora dos fenômenos físcos qe ocorrem na nareza são descros por eqações dferencas parcas como por eemplo:

Leia mais

Denilson Ricardo de Lucena Nunes. Gestão de suprimentos no varejo

Denilson Ricardo de Lucena Nunes. Gestão de suprimentos no varejo Denlson Rcardo de Lucena Nunes Gesão de suprmenos no varejo semas de reposção de esoques em duas camadas e análse de esquemas de monorameno da prevsão de demanda Tese de Douorado Tese apresenada ao programa

Leia mais

7. FILTROS PASSIVOS E ATIVOS

7. FILTROS PASSIVOS E ATIVOS 7. FILTROS PASSIVOS E ATIVOS São esudadas nese capíulo esruuras de crcuos capazes de mgar o problema de dsorção de correnes e/ou ensões em ssemas elércos. Inca-se com os flros passvos, verfcando alguns

Leia mais

3 Teoria de imunização

3 Teoria de imunização 33 3 Teora de munzação Como fo vso, o LM é um gerencameno conuno de avos e passvos como o nuo de dmnur ou aé elmnar os rscos enfrenados pelas nsuções fnanceras. Deses rscos, o rsco de axa de uros represena

Leia mais

Esta monografia é dedicada a Letícia e aos meus pais, João e Adelangela

Esta monografia é dedicada a Letícia e aos meus pais, João e Adelangela Esa monografa é dedcada a Leíca e aos meus pas, João e Adelangela Agradecmenos Gosara de agradecer ao Prof. Vrgílo, pelo apoo e orenação dados durane ese e ouros rabalhos. Agradeço ambém a meus colegas

Leia mais

FILTROS ATIVOS: UMA ABORDAGEM COMPARATIVA. Héctor Arango José Policarpo G. Abreu Adalberto Candido

FILTROS ATIVOS: UMA ABORDAGEM COMPARATIVA. Héctor Arango José Policarpo G. Abreu Adalberto Candido FILTROS ATIVOS: UMA ABORDAGEM COMPARATIVA Hécor Arango José Polcaro G. Abreu Adalbero Canddo Insuo de Engenhara Elérca - EFEI Av. BPS, 1303-37500-000 - Iajubá (MG) e-mal: arango@ee.efe.rmg.br Resumo -

Leia mais

Análise RFV do Cliente na Otimização de Estratégias de Marketing: Uma Abordagem por Algoritmos Genéticos

Análise RFV do Cliente na Otimização de Estratégias de Marketing: Uma Abordagem por Algoritmos Genéticos Análse RFV do Clene na Omzação de Esraégas de Markeng: Uma Abordagem por Algormos Genécos Anderson Gumarães de Pnho Ponfíca Unversdade Caólca do Ro de Janero Ro de Janero RJ Brasl agp.ne@gmal.com 1. Inrodução

Leia mais

Despacho n.º 13/06. 2. A presente resolução entra em vigor no dia seguinte ao da sua publicação. João Renato Lima Presidente do C.A.

Despacho n.º 13/06. 2. A presente resolução entra em vigor no dia seguinte ao da sua publicação. João Renato Lima Presidente do C.A. Despacho n.º 13/06 De enre as arbuções da Agênca de Regulação Económca desaca-se a compeênca de fxar as arfas e os mecansmos de reajuses a serem pracados pela oncessonára do servço públco de ranse e dsrbução

Leia mais

Análise Discriminante: classificação com 2 populações

Análise Discriminante: classificação com 2 populações Análse Dscrmnane: classcação com oulações Eemlo : Proreáros de coradores de rama oram avalados seundo duas varáves: Renda U$ ; Tamanho da roredade m. Eemlo : unção dscrmnane unvarada ~ ama4 4 3 e ~ ama8.5

Leia mais

Avaliação de Métodos de Interpolação do Sinal de Variabilidade da Freqüência Cardíaca

Avaliação de Métodos de Interpolação do Sinal de Variabilidade da Freqüência Cardíaca Avalação de Méodos de Inerolação do Snal de Varabldade da Freqüênca Cardíaca João Luz Azevedo de Carvalho, Oávo Sérgo de Araúo e Noguera, Adson Ferrera da Rocha, Francsco Asss de Olvera Nascmeno, João

Leia mais

Impacto da Educação Defasada sobre a Criminalidade no Brasil: 2001-2005

Impacto da Educação Defasada sobre a Criminalidade no Brasil: 2001-2005 1 Impaco da Educação Defasada sobre a Crmnaldade no Brasl: 2001-2005 Evandro Camargos Texera Ana Lúca Kassouf Seembro, 2011 Workng Paper 010 Todos os dreos reservados. É probda a reprodução parcal ou negral

Leia mais

CAPÍTULO 9. y(t). y Medidor. Figura 9.1: Controlador Analógico

CAPÍTULO 9. y(t). y Medidor. Figura 9.1: Controlador Analógico 146 CAPÍULO 9 Inrodução ao Conrole Discreo 9.1 Inrodução Os sisemas de conrole esudados aé ese pono envolvem conroladores analógicos, que produzem sinais de conrole conínuos no empo a parir de sinais da

Leia mais

S&P Dow Jones Indices: Metodologia da matemática dos índices

S&P Dow Jones Indices: Metodologia da matemática dos índices S&P Dow Jones Indces: Meodologa da maemáca dos índces S&P Dow Jones Indces: Meodologa do índce Ouubro 2013 Índce Inrodução 3 Dferenes varedades de índces 3 O dvsor do índce 4 Índces ponderados por capalzação

Leia mais

MARKOV SWITCHING CAPM: UMA ANÁLISE DA SENSIBILIDADE DO RETORNO DAS EMPRESAS GAÚCHAS EM RELAÇÃO AO MERCADO EM DIFERENTES AMBIENTES DE RISCO

MARKOV SWITCHING CAPM: UMA ANÁLISE DA SENSIBILIDADE DO RETORNO DAS EMPRESAS GAÚCHAS EM RELAÇÃO AO MERCADO EM DIFERENTES AMBIENTES DE RISCO MARKOV SWITCHING CAPM: UMA ANÁLISE DA SENSIBILIDADE DO RETORNO DAS EMPRESAS GAÚCHAS EM RELAÇÃO AO MERCADO EM DIFERENTES AMBIENTES DE RISCO Pedro Tonon Zuanazz 1 Marcos Vnco Wnk Junor 2 Resumo Um dos prncpas

Leia mais

Análise genética de escores de avaliação visual de bovinos com modelos bayesianos de limiar e linear

Análise genética de escores de avaliação visual de bovinos com modelos bayesianos de limiar e linear Análse genéca de escores de avalação vsual 835 Análse genéca de escores de avalação vsual de bovnos com modelos bayesanos de lmar e lnear Carna Ubrajara de Fara (1), Cláudo Ulhôa Magnabosco (2), Lúca Galvão

Leia mais

1. Introdução. B = S = Valor presente esperado dos superávits futuros (1) P

1. Introdução. B = S = Valor presente esperado dos superávits futuros (1) P . Inrodução A vsão radconal da deermnação do nível de preços é baseada na eora Quanava da Moeda. Segundo essa vsão o padrão de avdade real em uma economa mplca um cero nível desejado de encaxes moneáros

Leia mais

Conceitos Básicos de Circuitos Elétricos

Conceitos Básicos de Circuitos Elétricos onceos Báscos de rcuos lércos. nrodução Nesa aposla são apresenados os conceos e defnções fundamenas ulzados na análse de crcuos elércos. O correo enendmeno e nerpreação deses conceos é essencal para o

Leia mais

Instituto de Tecnologia de Massachusetts Departamento de Engenharia Elétrica e Ciência da Computação. Tarefa 5 Introdução aos Modelos Ocultos Markov

Instituto de Tecnologia de Massachusetts Departamento de Engenharia Elétrica e Ciência da Computação. Tarefa 5 Introdução aos Modelos Ocultos Markov Insiuo de Tecnologia de Massachuses Deparameno de Engenharia Elérica e Ciência da Compuação 6.345 Reconhecimeno Auomáico da Voz Primavera, 23 Publicado: 7/3/3 Devolução: 9/3/3 Tarefa 5 Inrodução aos Modelos

Leia mais

Agosto / 2014 Versão 2.16

Agosto / 2014 Versão 2.16 Agoso / 4 Versão.6 Todos os dreos reservados. Nenhuma pare dessa obra pode ser reproduzda em qualquer forma ou meo, seja elerônco, mecânco, de foocópa, ec, sem permssão do Safra, deenor do dreo auoral.

Leia mais

A IMPLANTAÇÃO DO PRINCÍPIO DO DESTINO NA COBRANÇA DO ICMS E SUAS IMPLICAÇÕES DINÂMICAS SOBRE OS ESTADOS

A IMPLANTAÇÃO DO PRINCÍPIO DO DESTINO NA COBRANÇA DO ICMS E SUAS IMPLICAÇÕES DINÂMICAS SOBRE OS ESTADOS A IMPLANTAÇÃO DO PRINCÍPIO DO DESTINO NA COBRANÇA DO ICMS E SUAS IMPLICAÇÕES DINÂMICAS SOBRE OS ESTADOS Nelson Leão Paes PIMES/UFPE Resumo Nese argo, ulzou-se um modelo de equlíbro geral dnâmco para esmar

Leia mais

Tráfego em Redes de Comutação de Circuitos

Tráfego em Redes de Comutação de Circuitos Caracerzação do ráfego nálse de ssemas de esados nálse de ráfego em ssemas de erda nálse de ráfego em ssemas de araso Bloqueo em ssemas de andares múllos Máro Jorge Leão Inenconalmene em branco Caracerzação

Leia mais

Sistemas não-lineares de 2ª ordem Plano de Fase

Sistemas não-lineares de 2ª ordem Plano de Fase EA93 - Pro. Von Zuben Sisemas não-lineares de ª ordem Plano de Fase Inrodução o esudo de sisemas dinâmicos não-lineares de a ordem baseia-se principalmene na deerminação de rajeórias no plano de esados,

Leia mais

1 { COPPE{EE/UFRJ, Caixa Postal 68504, Rio de Janeiro, RJ, Brasil, e-mail: vmcosta@embratel.net.br

1 { COPPE{EE/UFRJ, Caixa Postal 68504, Rio de Janeiro, RJ, Brasil, e-mail: vmcosta@embratel.net.br MODELAGEM DE DISPOSITIOS DE CONTROLE NUMA FORMULAC ~AO AUMENTADA PARA FLUXO DE POT^ENCIA ander Menengoy da Cosa 1; Jose Luz R. Perera Nelson Marns 1 { COPPE{EE/UFRJ, Caxa Posal 6854, Ro de Janero, RJ,

Leia mais

Desconcentração e interiorização da economia fluminense na última década

Desconcentração e interiorização da economia fluminense na última década DSCONCNTRAÇÃO INTRIORIZAÇÃO DA CONOMIA FLUMINNS NA ÚLTIMA DÉCADA PAULO MARCLO SOUZA; NIRALDO JOSÉ PONCIANO; MARLON GOMS NY; HNRIQU TOMÉ MATA; UNIVRSIDAD FDRAL DA BAHIA SALVADOR - BA - BRASIL pmsouza@uenf.br

Leia mais

XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GRUPO IX GRUPO DE ESTUDO DE OPERAÇÃO DE SISTEMAS ELÉTRICOS - GOP

XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GRUPO IX GRUPO DE ESTUDO DE OPERAÇÃO DE SISTEMAS ELÉTRICOS - GOP XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA Versão 1.0 22 a 25 Novembro de 2009 Recfe - PE GRUPO IX GRUPO DE ESTUDO DE OPERAÇÃO DE SISTEMAS ELÉTRICOS - GOP OTIMIZAÇÃO DA

Leia mais

Renda Básica da Cidadania versus Imposto de Renda Negativo: O Papel dos Custos de Focalização

Renda Básica da Cidadania versus Imposto de Renda Negativo: O Papel dos Custos de Focalização Renda Básca da Cdadana versus Imposo de Renda Negavo: O Papel dos Cusos de Focalzação Nelson Leão Paes Marcelo Leer Squera Re s u m o O presene argo procura comparar duas polícas socas alernavas de combae

Leia mais

BBR - Brazilian Business Review E-ISSN: 1807-734X bbronline@bbronline.com.br FUCAPE Business School Brasil

BBR - Brazilian Business Review E-ISSN: 1807-734X bbronline@bbronline.com.br FUCAPE Business School Brasil BBR - Brazlan Busness Revew E-ISSN: 1807-734X bbronlne@bbronlne.com.br FUCAPE Busness School Brasl Fausno Maos, Paulo Rogéro; Texera da Rocha, José Alan Ações e Fundos de Invesmeno em Ações: Faores de

Leia mais

ANÁLISE CONDICIONADA DA DEMANDA COM CORREÇÃO DE HETEROCEDASTICIDADE

ANÁLISE CONDICIONADA DA DEMANDA COM CORREÇÃO DE HETEROCEDASTICIDADE ANÁLISE CONDICIONADA DA DEMANDA COM CORREÇÃO DE HETEROCEDASTICIDADE Angela Crsna Morera da Slva UFRJ/COPPE - Unversdade Federal do Ro de Janero, Cenro de Tecnologa, Bloco F, sala 114, Cdade Unversára Ro

Leia mais

A Concorrência entre o Brasil. uma Aplicação do Modelo Constant-Market-Share*

A Concorrência entre o Brasil. uma Aplicação do Modelo Constant-Market-Share* A Concorrênca enre o Brasl e a Chna no ercado Sul-afrcano: uma Aplcação do odelo Consan-arke-Share* Arane Danelle Baraúna da Slva Álvaro Barranes Hdalgo 2 RESUO: O fore crescmeno da economa chnesa nos

Leia mais

UNIVERSIDADE FEDERAL DE ITAJUBÁ INVESTIMENTOS EM DISTRIBUIÇÃO DE ENERGIA ELÉTRICA SOB INCERTEZA REGULATÓRIA UTILIZANDO OPÇÕES REAIS

UNIVERSIDADE FEDERAL DE ITAJUBÁ INVESTIMENTOS EM DISTRIBUIÇÃO DE ENERGIA ELÉTRICA SOB INCERTEZA REGULATÓRIA UTILIZANDO OPÇÕES REAIS UNIRSIDAD FDRAL D ITAJUBÁ TS D DOUTORADO INSTIMNTOS M DISTRIBUIÇÃO D NRGIA LÉTRICA SOB INCRTZA RGULATÓRIA UTILIZANDO OPÇÕS RAIS JULIA CRISTINA CAMINHA NORONHA Tese apresenada ao Programa de Pós-Graduação

Leia mais

Análise comparativa e teste empírico da validade dos modelos CAPM tradicional e condicional: o caso das ações da Petrobrás

Análise comparativa e teste empírico da validade dos modelos CAPM tradicional e condicional: o caso das ações da Petrobrás Análse comparava e ese empírco da valdade dos modelos capm radconal e condconal: o caso das ações da Perobrás Análse comparava e ese empírco da valdade dos modelos CAPM radconal e condconal: o caso das

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO PIMES PROGRAMA DE PÓS-GRADUAÇÃO EM ECONOMIA DOUTORADO EM ECONOMIA MARCOS ROBERTO GOIS DE OLIVEIRA

UNIVERSIDADE FEDERAL DE PERNAMBUCO PIMES PROGRAMA DE PÓS-GRADUAÇÃO EM ECONOMIA DOUTORADO EM ECONOMIA MARCOS ROBERTO GOIS DE OLIVEIRA UNIVERSIDADE FEDERAL DE PERNAMBUCO PIMES PROGRAMA DE PÓS-GRADUAÇÃO EM ECONOMIA DOUTORADO EM ECONOMIA MARCOS ROBERTO GOIS DE OLIVEIRA GERENCIAMENTO DO RISCO DE MERCADO BASEADO NO VALUE AT RISK ESTÁTICO

Leia mais

Módulo 2: Métodos Numéricos. (problemas de valores iniciais e problemas de condições-fronteira)

Módulo 2: Métodos Numéricos. (problemas de valores iniciais e problemas de condições-fronteira) Módulo : Méodos Numércos Equações dferencas ordnáras problemas de valores ncas e problemas de condções-fronera Modelação Compuaconal de Maeras -5. Equações dferencas ordnáras - Inrodução Uma equação algébrca

Leia mais

EEL-001 CIRCUITOS ELÉTRICOS ENGENHARIA DA COMPUTAÇÃO

EEL-001 CIRCUITOS ELÉTRICOS ENGENHARIA DA COMPUTAÇÃO L IRUITOS LÉTRIOS 8 UNIFI,VFS, Re. BDB PRT L IRUITOS LÉTRIOS NGNHRI D OMPUTÇÃO PÍTULO 5 PITORS INDUTORS: omporameno com Snas onínuos e com Snas lernaos 5. INTRODUÇÃO Ressor elemeno que sspa poênca. 5.

Leia mais

Renda Básica da Cidadania ou Imposto de Renda Negativo: Qual o Mais Eficiente no Combate a Pobreza?

Renda Básica da Cidadania ou Imposto de Renda Negativo: Qual o Mais Eficiente no Combate a Pobreza? Renda Básca da Cdadana ou Imposo de Renda Negavo: Qual o Mas Efcene no Combae a Pobreza? Auores Nelson Leão Paes Marcelo Leer Squera Ensao Sobre Pobreza Nº 12 Feverero de 2008 CAEN - UFC 1 Renda Básca

Leia mais

ipea COEFICIENTES DE IMPORTAÇÃO E EXPORTAÇÃO NA INDÚSTRIA

ipea COEFICIENTES DE IMPORTAÇÃO E EXPORTAÇÃO NA INDÚSTRIA COEFICIENTES DE IMPORTAÇÃO E EXPORTAÇÃO NA INDÚSTRIA Paulo Mansur Levy Mara Isabel Fernans Serra Esa noa em como objevo dvulgar resulados relavos ao comporameno das exporações e mporações produos ndusras

Leia mais

Controle Cinemático de Robôs Manipuladores

Controle Cinemático de Robôs Manipuladores Conrole Cnemáco de Robôs Manpuladores Funconameno Básco pos de rajeóra rajeóras Pono a Pono rajeóras Coordenadas ou Isócronas rajeóras Conínuas Geração de rajeóras Caresanas Inerpolação de rajeóras Inerpoladores

Leia mais

Gestão de uma Carteira de Activos de Produção de Energia Eléctrica

Gestão de uma Carteira de Activos de Produção de Energia Eléctrica Gesão de uma Carera de Acvos de Produção de Energa Elécrca Invesmeno na ópca da Teora da Carera Mara Margarda D Ávla Duro de Sousa e Slva Dsseração para a obenção do Grau de Mesre em Engenhara e Gesão

Leia mais

Autoria: Josilmar Cordenonssi Cia

Autoria: Josilmar Cordenonssi Cia Uma Possível Solução para o Equy Premum Puzzle (EPP Auora: Joslmar Cordenonss Ca Resumo MEHRA e PRESCO (985 levanaram uma quesão que aé hoje não fo respondda de forma sasfaóra: o prêmo de rsco das ações

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

FUNDAÇÃO GETULIO VARGAS ESCOLA DE ECONOMIA DE SÃO PAULO THIAGO CAIUBY GUIMARÃES TESTES EMPÍRICOS DA EFICIÊNCIA DO MERCADO ACIONÁRIO BRASILEIRO

FUNDAÇÃO GETULIO VARGAS ESCOLA DE ECONOMIA DE SÃO PAULO THIAGO CAIUBY GUIMARÃES TESTES EMPÍRICOS DA EFICIÊNCIA DO MERCADO ACIONÁRIO BRASILEIRO FUNDAÇÃO GETULIO VARGAS ESCOLA DE ECONOMIA DE SÃO AULO THIAGO CAIUBY GUIMARÃES TESTES EMÍRICOS DA EFICIÊNCIA DO MERCADO ACIONÁRIO BRASILEIRO SÃO AULO 28 THIAGO CAIUBY GUIMARÃES TESTES EMÍRICOS DA EFICIÊNCIA

Leia mais

Ricardo Ratner Rochman FGV-EAESP. William Eid Junior FGV-EAESP

Ricardo Ratner Rochman FGV-EAESP. William Eid Junior FGV-EAESP INSIDERS CONSEGUEM RETORNOS ANORMAIS?: ESTUDOS DE EVENTOS SOBRE AS OPERAÇÕES DE INSIDERS DAS EMPRESAS DE GOVERNANÇA CORPORATIVA DIFERENCIADA DA BOVESPA Rcardo Raner Rochman FGV-EAESP Wllam Ed Junor FGV-EAESP

Leia mais

ANÁLISE DO CUSTO DE CAPITAL PRÓPRIO NO BRASIL POR MEIO DOS MODELOS CAPM NÃO-CONDICIONAL E CAPM CONDICIONAL

ANÁLISE DO CUSTO DE CAPITAL PRÓPRIO NO BRASIL POR MEIO DOS MODELOS CAPM NÃO-CONDICIONAL E CAPM CONDICIONAL ANÁLISE DO CUSTO DE CAPITAL PRÓPRIO NO BRASIL POR EIO DOS ODELOS CAP NÃO-CONDICIONAL E CAP CONDICIONAL (Cos of equy analyss n Brazl: Non-Condonal CAP and Condonal CAP) Lumla Souza Grol 1 1 Unversdade Federal

Leia mais

TOMADA DE DECISÃO EM FUTUROS AGROPECUÁRIOS COM MODELOS DE PREVISÃO DE SÉRIES TEMPORAIS

TOMADA DE DECISÃO EM FUTUROS AGROPECUÁRIOS COM MODELOS DE PREVISÃO DE SÉRIES TEMPORAIS ARTIGO: TOMADA DE DECISÃO EM FUTUROS AGROPECUÁRIOS COM MODELOS DE PREVISÃO DE SÉRIES TEMPORAIS REVISTA: RAE-elerônica Revisa de Adminisração de Empresas FGV EASP/SP, v. 3, n. 1, Ar. 9, jan./jun. 2004 1

Leia mais

Convergência e Formação de Clubes no Brasil sob a Hipótese de Heterogeneidade no Desenvolvimento Tecnológico

Convergência e Formação de Clubes no Brasil sob a Hipótese de Heterogeneidade no Desenvolvimento Tecnológico Convergênca e Formação de Clubes no Brasl sob a Hpóese de Heerogenedade no Desenvolvmeno Tecnológco Chrsano Penna Fabríco Lnhares RESUMO: Esse argo examna a exsênca de endêncas de crescmeno comuns e formação

Leia mais

CAPÍTULO 4. Vamos partir da formulação diferencial da lei de Newton

CAPÍTULO 4. Vamos partir da formulação diferencial da lei de Newton 9 CPÍTUL 4 DINÂMIC D PRTÍCUL: IMPULS E QUNTIDDE DE MVIMENT Nese capíulo será analsada a le de Newon na forma de negral no domíno do empo, aplcada ao momeno de parículas. Defne-se o conceo de mpulso e quandade

Leia mais

Nota Técnica sobre a Circular nº 2.972, de 23 de março de 2000

Nota Técnica sobre a Circular nº 2.972, de 23 de março de 2000 Noa Técnca sobre a rcular nº 2.972, de 23 de março de 2000 Meodologa ulzada no processo de apuração do valor da volaldade padrão e do mulplcador para o da, dvulgados daramene pelo Banco enral do Brasl.

Leia mais

Universidade Federal de Lavras

Universidade Federal de Lavras Universidade Federal de Lavras Deparameno de Ciências Exaas Prof. Daniel Furado Ferreira 8 a Lisa de Exercícios Disribuição de Amosragem 1) O empo de vida de uma lâmpada possui disribuição normal com média

Leia mais

12 Integral Indefinida

12 Integral Indefinida Inegral Indefinida Em muios problemas, a derivada de uma função é conhecida e o objeivo é enconrar a própria função. Por eemplo, se a aa de crescimeno de uma deerminada população é conhecida, pode-se desejar

Leia mais

2 Sistemas de Reconhecimento de Voz

2 Sistemas de Reconhecimento de Voz 2 Ssemas de Reconhecmeno de Voz O desenvolvmeno de nerfaces homem-máquna conroladas pela voz vsa subsur, em ceras aplcações, as nerfaces radconas as como eclados, panés e dsposvos smlares. Nese cenáro

Leia mais

EFEITOS DA MIGRAÇÃO PARA OS NÍVEIS DE GOVERNANÇA DA BOVESPA

EFEITOS DA MIGRAÇÃO PARA OS NÍVEIS DE GOVERNANÇA DA BOVESPA EFEITOS DA MIGRAÇÃO PARA OS NÍVEIS DE GOVERNANÇA DA BOVESPA TRABALHO PREPARADO PARA A BOVESPA Anono Gledson de Carvalho (esa versão: Janero/23) RESUMO Muo em-se ressalado sobre a mporânca de uma boa governança

Leia mais

MODELAGEM DO PLANEJAMENTO AGREGADO DA PRODUÇÃO DE UMA USINA SUCROALCOOLEIRA

MODELAGEM DO PLANEJAMENTO AGREGADO DA PRODUÇÃO DE UMA USINA SUCROALCOOLEIRA UNIVERSIDADE FEDERAL DE ITAJUBÁ Anerson Francsco da Slva MODELAGEM DO PLANEJAMENTO AGREGADO DA PRODUÇÃO DE UMA USINA SUCROALCOOLEIRA Dsseração submeda ao Programa de Pós-Graduação em Engenhara de Produção

Leia mais

Capítulo 1 Introdução

Capítulo 1 Introdução Capíulo Inrodução No mercado braslero de prevdênca complemenar abera e de seguro, regulado e fscalzado pela Supernendênca de Seguros Prvados SUSEP, os planos de prevdênca e de seguro de vda que possuam

Leia mais

MOMENTO ÓTIMO PARA INVESTIR EM PROJETOS DE MINERAÇÃO: UMA ANÁLISE POR OPÇÕES REAIS E TEORIA DOS JOGOS

MOMENTO ÓTIMO PARA INVESTIR EM PROJETOS DE MINERAÇÃO: UMA ANÁLISE POR OPÇÕES REAIS E TEORIA DOS JOGOS UNIVERSIDADE FEDERAL DE MINAS GERAIS ALEXANDRE DE CÁSSIO RODRIGUES MOMENTO ÓTIMO PARA INVESTIR EM PROJETOS DE MINERAÇÃO: UMA ANÁLISE POR OPÇÕES REAIS E TEORIA DOS JOGOS Belo Horzone MG 202 UNIVERSIDADE

Leia mais

Estratégia Ótima de Oferta de Preços no Mercado de Curto Prazo em Sistemas com Predominância Hidrelétrica

Estratégia Ótima de Oferta de Preços no Mercado de Curto Prazo em Sistemas com Predominância Hidrelétrica Armando Maos de Olvera Esraéga Óma de Ofera de Preços no Mercado de Curo Prazo em Ssemas com Predomnânca Hdrelérca Tese de Douorado Tese apresenada ao Deparameno de Engenara Elérca da Ponfíca Unversdade

Leia mais

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado)

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado) 5 Aplcação Neste capítulo será apresentada a parte empírca do estudo no qual serão avalados os prncpas regressores, um Modelo de Índce de Dfusão com o resultado dos melhores regressores (aqu chamado de

Leia mais

Erro! Indicador não definido. Erro! Indicador não definido. Erro! Indicador não definido. Erro! Indicador não definido.

Erro! Indicador não definido. Erro! Indicador não definido. Erro! Indicador não definido. Erro! Indicador não definido. A Prevsão com o Modelo de Regressão.... Inrodução ao Modelo de Regressão.... Exemplos de Modelos Lneares... 3. Dervação dos Mínmos Quadrados no Modelo de Regressão... 6 4. A Naureza Probablísca do Modelo

Leia mais

O Fluxo de Caixa Livre para a Empresa e o Fluxo de Caixa Livre para os Sócios

O Fluxo de Caixa Livre para a Empresa e o Fluxo de Caixa Livre para os Sócios O Fluxo de Caixa Livre para a Empresa e o Fluxo de Caixa Livre para os Sócios! Principais diferenças! Como uilizar! Vanagens e desvanagens Francisco Cavalcane (francisco@fcavalcane.com.br) Sócio-Direor

Leia mais

KEE WORDS: Exchange Rates, Parity, Purchasing Power, Gstav Cassel

KEE WORDS: Exchange Rates, Parity, Purchasing Power, Gstav Cassel [VIANNA, PEDRO JORGE; PARIDADE DO PODER DE COPRA: TEORIA OU ETODOLOGIA?]. Recfe. V Enconro de Economsas da Língua Poruguesa, 5-7 de novembro de 2003. TÍTULO: PARIDADE DO PODER DE COPRA: TEORIA OU ETODOLOGIA?

Leia mais

defi departamento de física

defi departamento de física def deparameno de físca Laboraóros de Físca www.def.sep.pp.p Equações de Fresnel Insuo Superor de Engenhara do Poro Deparameno de Físca Rua Dr. Anóno Bernardno de Almeda, 431 400-07 Poro. Tel. 8 340 500.

Leia mais

2. Referencial Teórico

2. Referencial Teórico 15 2. Referencial Teórico Se os mercados fossem eficienes e não houvesse imperfeições, iso é, se os mercados fossem eficienes na hora de difundir informações novas e fossem livres de impedimenos, índices

Leia mais

directa: Simulação de

directa: Simulação de Deparameno de Engenhara Elecroécnca Comuncação sem fos 007 / 008 Mesrado Inegrado em Engenhara Elecroécnca e Compuadores 4º ano 7º semesre Ssemas de espalhameno especral por sequênca dreca: Smulação de

Leia mais

A economia política dos fluxos de capitais brasileiros pós-plano Real. Title: The Political Economy of Brazilian Capital Flows after the Real Plan

A economia política dos fluxos de capitais brasileiros pós-plano Real. Title: The Political Economy of Brazilian Capital Flows after the Real Plan A economa políca dos fluxos de capas brasleros pós-plano Real Dvanldo Trches * Soraa Sanos da Slva ** Tle: The Polcal Economy of Brazlan Capal Flows afer he Real Plan RESUMO O presene esudo em como objevo

Leia mais

Projeto de Inversores e Conversores CC-CC

Projeto de Inversores e Conversores CC-CC eparameno de Engenhara Elérca Aula. onversor Buck Prof. João Amérco lela Bblografa BAB, vo. & MANS enzar ruz. onversores - Báscos Não-solados. ª edção, UFS,. MOHAN Ned; UNEAN ore M.; OBBNS Wllam P. Power

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Introdução Aprendzagem de Máquna Alessandro L. Koerch Redes Bayesanas A suposção Naïve Bayes da ndependênca condconal (a 1,...a n são condconalmente ndependentes dado o valor alvo v): Reduz a complexdade

Leia mais

3 Análise de Demanda Condicionada

3 Análise de Demanda Condicionada 3 Análse de Demanda Condconada 3.1 Inrodução A análse Condconada da Demanda é uma écnca que quebra o consumo resdencal em pares, cada uma assocada a um uso fnal ou a um deermnado equpameno em parcular.

Leia mais

Introdução à Computação Gráfica

Introdução à Computação Gráfica Inrodução à Compuação Gráfca Desenho de Consrução Naval Manuel Venura Insuo Superor Técnco Secção Auónoma de Engenhara Naval Sumáro Represenação maemáca de curvas Curvas polnomas e curvas paramércas Curvas

Leia mais

AVALIAÇÃO DOS EFEITOS DA LEI KANDIR SOBRE A ARRECADAÇÃO DE ICMS NO ESTADO DO CEARÁ

AVALIAÇÃO DOS EFEITOS DA LEI KANDIR SOBRE A ARRECADAÇÃO DE ICMS NO ESTADO DO CEARÁ AVALIAÇÃO DOS EFEITOS DA LEI KANDIR SOBRE A ARRECADAÇÃO DE ICMS NO ESTADO DO CEARÁ Alejandro Magno Lma Leão Mesre em economa pelo CAEN Audor Fscal da Recea do Esado do Ceará Fabríco Carnero Lnhares Phd

Leia mais

MECÂNICA CLÁSSICA. AULA N o 3. Lagrangeano Princípio da Mínima Ação Exemplos

MECÂNICA CLÁSSICA. AULA N o 3. Lagrangeano Princípio da Mínima Ação Exemplos MECÂNICA CÁSSICA AUA N o 3 agrangeano Prncípo da Mínma Ação Exemplos Todas as les da Físca êm uma esruura em comum: as les de uma parícula em movmeno sob a ação da gravdade, o movmeno dado pela equação

Leia mais

MODELOS PARA A PREVISÃO DE EVAPORAÇÃO EM RESERVATÓRIOS DE ÁGUA

MODELOS PARA A PREVISÃO DE EVAPORAÇÃO EM RESERVATÓRIOS DE ÁGUA MODELOS PARA A PREVISÃO DE EVAPORAÇÃO EM RESERVATÓRIOS DE ÁGUA André Luz Emdo de Abreu Cenro Unversáro Francscano FAE; Programa de Pós-Graduação em Méodos Numércos em Engenhara - UFPR FAE Rua 4 de mao

Leia mais

CONVERSORES CC-CC Aplicações: Controlo de motores de CC-CC Fontes de alimentação comutadas Carga de baterias bateria

CONVERSORES CC-CC Aplicações: Controlo de motores de CC-CC Fontes de alimentação comutadas Carga de baterias bateria CÓNCA PÊNCA Aplcações: CN CC-CC CN CC-CC Crolo de moores de CC-CC Fes de almenação comuadas Carga de baeras ensão cínua de enrada moor de correne cínua crolo e comando baera ede CA ecfcador não crolado

Leia mais

PREVISIBILIDADE NO MERCADO DE COMMODITIES: UM ESTUDO APLICADO AO PREÇO DA SOJA NO BRASIL

PREVISIBILIDADE NO MERCADO DE COMMODITIES: UM ESTUDO APLICADO AO PREÇO DA SOJA NO BRASIL Salvador, BA, Brasl, 08 a de ouubro de 03. PREVISIBILIDADE O MERCADO DE COMMODITIES: UM ESTUDO APLICADO AO PREÇO DA SOJA O BRASIL Everon Anger Cavalhero (UFPEL ) ecavalhero@cvsm.com.br Kelmara Mendes Vera

Leia mais

Belém Pará (Março de 2012)

Belém Pará (Março de 2012) Pardade Descobera da Taxa de Juros da Economa Braslera num Ambene de Crse Fnancera Mundal: Teora e Evdênca Empírca Davd Ferrera Carvalho(*) Resumo O argo em como propóso avalar o efeo da recene políca

Leia mais

OTIMIZAÇÃO ENERGÉTICA NA CETREL: DIAGNÓSTICO, IMPLEMENTAÇÃO E AVALIAÇÃO DE GANHOS

OTIMIZAÇÃO ENERGÉTICA NA CETREL: DIAGNÓSTICO, IMPLEMENTAÇÃO E AVALIAÇÃO DE GANHOS STC/ 08 17 à 22 de ouubro de 1999 Foz do Iguaçu Paraná - Brasil SESSÃO TÉCNICA ESPECIAL CONSERVAÇÃO DE ENERGIA ELÉTRICA (STC) OTIMIZAÇÃO ENERGÉTICA NA CETREL: DIAGNÓSTICO, IMPLEMENTAÇÃO E AVALIAÇÃO DE

Leia mais