MATEMÁTICA MÓDULO 7 FUNÇÃO EXPONENCIAL 1. DEFINIÇÃO 2. GRÁFICO. como sendo. Sendo a 0, a. a. Tal função é dita

Tamanho: px
Começar a partir da página:

Download "MATEMÁTICA MÓDULO 7 FUNÇÃO EXPONENCIAL 1. DEFINIÇÃO 2. GRÁFICO. como sendo. Sendo a 0, a. a. Tal função é dita"

Transcrição

1 FUNÇÃO EXPONENCIAL. DEFINIÇÃO Sendo a 0, a, um número real, definimos a função função eponencial de base a. * f: f como sendo a. Tal função é dita. GRÁFICO (BASE > )

2 (BASE < ) 3. EQUAÇÕES EXPONENCIAIS Quando chegarmos a situações como a y, onde a 0 a e a, podemos retirar a base e obter y. Em geral, o mais difícil em um problema de equação eponencial é fazer os artifícios algébricos até que y cheguemos em uma situação como a a. 4. INEQUAÇÕES EXPONENCIAIS Aqui devemos atentar para a diferença eistente entre os casos de BASE > e BASE <. Vejamos: CASO : a : Se a y a, então y ( retiramos a base mantendo o sinal da desigualdade) CASO : 0 a : Agora, se a y a, então y ( retiramos a base invertendo o sinal da desigualdade) Vejamos dois eercícios resolvidos antes de partimos para os eercícios de combate: EXERCÍCIO RESOLVIDO : 34 Resolva a equação 4.

3 SOLUÇÃO: 3 4 A ideia nesse tipo de problema é igualar as bases: 6.. Daí, temos 3 4, logo EXERCÍCIO RESOLVIDO : Resolva a inequação SOLUÇÃO: Fazendo 5 t ( t 0), temos t 3t As raízes da epressão quadrática são 5 e - e, como a concavidade é voltada para cima, tem-se que t 5. No entanto, repare que t é positivo (pois é potência de positivo), logo, 0 t 5. Voltando à variável original, temos , o que nos dá. 3

4 EXERCÍCIOS DE COMBATE. (AFA 00) Se é real e a) /3 b) /9 c) /7 d) / , então 3 7 é igual a. (EFOMM 04) O valor de para resolver a equação a) 0 b) c) d) 3 e) é 3. (EN 006) No universo U, o conjunto solução da inequação a) 0,,4 b), 4, c), 0 d),4 0 0,,4 e) 9 4 é (EN 004) Dadas as funções reais f e g, pode-se afirmar que g f 90 a) 0 b) 3 c) é igual a d) 3 e) 3 0 4

5 3 5. A diferença entre a maior e a menor raiz da equação 5 0,00 0 a) 4 b) 5 c ) 6 d) 7 e) 8 é : y y 6. Os inteiros e y satisfazem a 3 3. Então yé igual a : a) b) c) 3 d) 4 e) A soma de todos os números reais tais que é igual a : a) 3 b) c) 5 d) 3 e) 7 8. O produto das raízes da equação a) 0 b) 4 c) 6 d) 7 e) é igual a : 9. A soma das raízes da equação a) é igual a : 5

6 b) c) 0 d) e) 0. O número de raízes reais da equação a) b) c) 3 d) 4 e) = 6 é igual a :. O conjunto solução da inequação a) b) (0, ) c) (, 0) d) r e) (, ) (0, + ) 5, é igual a :. Supondo real tal que > 0 e, a inequação a) 0 < < 3 b) < c) > d) > 3 e) < < tem como solução : 3 3. O conjunto solução da inequação a) 0< < b) < < c) 0< < d) < 0 e) > 0,75. é 6

7 4. Um acidente de carro foi presenciado por /65 da população de Votuporanga (SP). O número de pessoas que souberam do acontecimento t horas após é dado por: f t B Ce onde B é a população da cidade. Sabendo-se que /9 da população soube do acidente 3 horas após, então o tempo que passou até que /5 da população soubesse da notícia foi de: a) 4 horas b) 5 horas c) 6 horas d) 5 horas e 4 min e) 5 horas e 30 min kt 5. Considere a equação t 4 0. Qual das opções representa o conjunto de todos os valores de t para os quais a equação admite raízes reais distintas? a) t> 4 b) t< -4 c) t> 4 ou t< -4 d) t = 5 e) t = 6 6. (UNESP 003) Num período prolongado de seca, a variação da quantidade de água de certo reservatório é ( 0,) t dada pela função q(t) q 0 sendo q 0 a quantidade inicial de água no reservatório e q(t) a quantidade de água no reservatório após t meses. Em quantos meses a quantidade de água no reservatório se reduzirá à metade do que era no início? a) 5 b) 7 c) 8 d) 9 e) 0 t 7. (UNICAMP 003) O processo de resfriamento de um determinado corpo é descrito por: T(t) T A 3, onde T(t) é a temperatura do corpo, em graus Celsius, no instante t, dado em minutos, T A é a temperatura ambiente, suposta constante, e e são constantes. O referido corpo foi colocado em um congelador com temperatura de 8ºC. Um termômetro no corpo indicou que ele atingiu 0ºC após 90 minutos e chegou a 6ºC após 70 minutos. a) Encontre os valores numéricos das constantes e. 7

8 b) Determine o valor de t para o qual a temperatura do corpo no congelador é apenas temperatura ambiente. o 3 C superior à 8. (ITA 000) A soma das raízes positivas da equação a) b) vale c) d) e) 3 9. (EN 005) O conjunto-solução da inequação 4 ( ) 3, onde é uma variável real é: () 3 a) ], 3 [ ], [ b) ], 3 [ ], [ c) ], [ ], 3 [ d) ],[ ] 3, [ e) ] 3,[ ], [ 0. (IME 997) Resolva o sistema y y y a onde a e a > 0. 8

9 GABARITO RESPOSTA: C. Dividindo a equação toda por 4, obtemos: Finalmente, fazendo t, segue que: e então t ou t t 0 t Como t deve ser positivo, obtemos que Se e > 4 Se e 0 0 S ]0, [ ],4[ 4. Inicialmente, veja que = 0 satisfaz a inequação e = não satisfaz! Dividiremos em dois casos agora: CASO : 0 < < : Neste caso, reescrevemos 94 0 e como a base está entre 0 e, retiramos a base, invertendo o sinal: 9

10 9 4 0, o que nos dá ou 4. 0 Intersectando com 0, ficamos com. CASO : : Neste caso, reescrevemos 9 4 0, o que nos dá 94 0 e como a base é maior do que, retiramos a base, mantendo o sinal: 4. Intersectando com, obtemos 4. Desta forma, o conjunto solução será 0,, , nulada 6. y y 3 3 y e y RESPOSTA: D Fazendo 4 a e 4 b, temos que a b a b 3. Utilizando produtos notáveis, segue que a b 3 a 3 b 3 3aba b Com isso, cancelando 3 a e 3 b, temos que aba b

11 Assim, temos três casos a considerar: CASO : a CASO : b CASO 3: ab Fazendo y, chegamos a y y 6 e como y é positivo, temos que y. Assim,. Portanto, a soma das soluções reais é RESPOSTA: E ou 6 0 ou = y e 6y 3 0 6y 3y y y 3 y ou y ou - 3

12 Veja que. 4 5 y Fazendo então Assim, devemos ter 4 5 y., segue que y y y y y Com isso, Desta forma, Temos portanto raízes reais. RESPOSTA: B. y ou ou , 0 Como <0 S={}. 3 Se - 3 Se 0-3 não há solução no intervalo Portanto. RESPOSTA: E 3. 0, RESPOSTA: D

13 4. Como /65 da população presenciou o acidente, temos que B B C 64 C 65 B f 0 : 65 Como /9 da população soube do acidente 3 horas após, temos que B B 64 8 e k e 3 k 3k 64e 9 B f 3 : 9 Queremos agora determinar t tal que B B kt e kt 64e 5 6 B f t : 5 k Como e, temos que t t t 4 0 t e t t q(t) q0 q0 t = 0 meses RESPOSTA: E ( 0,) t ( 0,) t 0,t = 7. a) = 54 e = /90 b) 360 minutos 3

14 RESPOSTA: C y y y a º) = 0 y = 0 Como 0 0 não é definido, essa solução não convém. º) = y = a a = a a =. Como a, essa solução também não convém. 3º) y = = a a a = a =. Novamente como a, a solução não convém. a 4º), y > 0 e, y a a (a) a a ( ) (a) a a a a e y a a a 4

MATEMÁTICA MÓDULO 9 FUNÇÃO MODULAR 1. DEFINIÇÃO OBSERVAÇÃO 2. PROPRIEDADES 3. EQUAÇÕES E INEQUAÇÕES MODULARES. x,se x 0 x,se x 0

MATEMÁTICA MÓDULO 9 FUNÇÃO MODULAR 1. DEFINIÇÃO OBSERVAÇÃO 2. PROPRIEDADES 3. EQUAÇÕES E INEQUAÇÕES MODULARES. x,se x 0 x,se x 0 FUNÇÃO MODULAR 1. DEFINIÇÃO A função modular (ou valor absoluto) é tal que f,se 0,se 0.A notação utilizada é f. OBSERVAÇÃO Veja que f 0 para todo real.. PROPRIEDADES I) II) III) IV) (Esta propriedade é

Leia mais

Inequações Exponenciais. 1 ano E.M. Professores Cleber Assis e Tiago Miranda

Inequações Exponenciais. 1 ano E.M. Professores Cleber Assis e Tiago Miranda Função Exponencial Inequações Exponenciais 1 ano E.M. Professores Cleber Assis e Tiago Miranda Função Exponencial Inequações Exponenciais 1 Exercícios Introdutórios Exercício 1. a) x > 16. b) 5 x 15. c)

Leia mais

Inequação Logarítmica

Inequação Logarítmica Inequação Logarítmica. (Fuvest 05) Resolva as inequações: 3 a) 6 0; 3 b) log 6.. (Uerj 05) Ao digitar corretamente a epressão log 0( ) em uma calculadora, o retorno obtido no visor corresponde a uma mensagem

Leia mais

Lista de exercícios: Polinômios e Equações Algébricas Problemas Gerais Prof ºFernandinho. Questões:

Lista de exercícios: Polinômios e Equações Algébricas Problemas Gerais Prof ºFernandinho. Questões: Lista de eercícios: Polinômios e Equações Algébricas Problemas Gerais Prof ºFernandinho Questões: 0.(GV) Num polinômio P() do terceiro grau, o coeficiente de P() = 0, calcule o valor de P( ). é. Sabendo-se

Leia mais

Função Exponencial e Propriedades. 1 ano E.M. Professores Cleber Assis e Tiago Miranda

Função Exponencial e Propriedades. 1 ano E.M. Professores Cleber Assis e Tiago Miranda Função Exponencial Função Exponencial e Propriedades 1 ano EM Professores Cleber Assis e Tiago Miranda Função Exponencial Função Exponencial e Propriedades 1 Exercícios Introdutórios Exercício 1 a) 11

Leia mais

Hewlett-Packard FUNÇÃO EXPONENCIAL. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard FUNÇÃO EXPONENCIAL. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Packard FUNÇÃO EXPONENCIAL Aulas 01 a 06 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário Equação Exponencial... 1 Equação Exponencial... 1 Exemplo 1... 1 Método da redução à base comum...

Leia mais

FUNÇÕES EXPONENCIAIS

FUNÇÕES EXPONENCIAIS FUNÇÕES EXPONENCIAIS ) Uma possível lei para a função eponencial do gráfico é (a) = 0,7. (b) =. 0,7 (c) = -. 0,7 (d) = -.,7 (e) = - 0,7. ) Os gráficos de = e = - (a) têm dois pontos em comum. (b) são coincidentes.

Leia mais

Hewlett-Packard FUNÇÃO EXPONENCIAL. Aulas 01 e 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard FUNÇÃO EXPONENCIAL. Aulas 01 e 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Packard FUNÇÃO EXPONENCIAL Aulas 01 e 06 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ano: 2015 Sumário Equação Exponencial 1 Equação Exponencial 1 Exemplo 1 1 Método da redução à base comum

Leia mais

Exercícios de Aprofundamento Matemática Equações e Inequações Modulares e Quadráticas 1

Exercícios de Aprofundamento Matemática Equações e Inequações Modulares e Quadráticas 1 Eercícios de Aprofundamento Matemática Equações e Inequações 1. (Mackenzie 013) A função f() a) S / 3 ou 1 3 b) S / 3 ou 1 3 c) S / 3 ou 1 3 d) S / 1 ou 1 3 e) S / 1 ou 1 3 9 tem como domínio o conjunto

Leia mais

Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma:

Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma: EQUAÇÕES POLINOMIAIS. EQUAÇÃO POLINOMIAL OU ALGÉBRICA Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma: p(x) = a n x n + a n x n +a n x n +... + a x + a 0 = 0 onde

Leia mais

FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA

FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA Equações Eponenciais: FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA Chamamos de equações eponenciais toda equação na qual a incógnita aparece em epoente. Para resolver equações eponenciais, devemos realizar

Leia mais

MÓDULO 29. Trigonometria I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Fórmulas do arco duplo: 1) sen (2a) = 2) cos (2a) =

MÓDULO 29. Trigonometria I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Fórmulas do arco duplo: 1) sen (2a) = 2) cos (2a) = Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 9 Trigonometria I Resumo das principais fórmulas da trigonometria Arcos Notáveis: Fórmulas do arco duplo: ) sen (a) ) cos (a) ) tg

Leia mais

Observe o gráfico da função f(x) = Bx+2. O valor da ordenada do ponto de abscissa igual a B é igual a:

Observe o gráfico da função f(x) = Bx+2. O valor da ordenada do ponto de abscissa igual a B é igual a: Observe o gráfico da função f(x) = Bx+2. O valor da ordenada do ponto de A abscissa igual a B é igual a: 2A (a) 2 (b) (c) 2 (d) 4 Pelo gráfico, temos 2 pontos conhecidos da função f. Esses pontos são (-4,32)

Leia mais

Inequações Exponenciais e Logarítmicas. Inequações Exponenciais e Logarítmicas. Exemplos:

Inequações Exponenciais e Logarítmicas. Inequações Exponenciais e Logarítmicas. Exemplos: UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Inequações Eponenciais e

Leia mais

Matemática. Resolução das atividades complementares. M6 Função Modular ( ) ( ) 1 De acordo com a definição, calcule:

Matemática. Resolução das atividades complementares. M6 Função Modular ( ) ( ) 1 De acordo com a definição, calcule: Resolução das atividades complementares Matemática M6 Função Modular p. 89 De acordo com a definição, calcule: a) b) c) 8 d) 6 7 a) b) c) 8 8 d) 6 6 7 Aplicando a definição, determine o valor numérico

Leia mais

1 Axiomatização das teorias matemáticas 30 2 Paralelismo e perpendicularidade de retas e planos 35 3 Medida 47

1 Axiomatização das teorias matemáticas 30 2 Paralelismo e perpendicularidade de retas e planos 35 3 Medida 47 ÍNDICE Números e operações Geometria e medida Relação de ordem em R 4 Intervalos de números reais 8 Valores aproimados de resultados de operações Eercícios resolvidos 6 Eercícios propostos 0 Eercícios

Leia mais

Função Logarítmica e Propriedades. 1 ano E.M. Professores Cleber Assis e Tiago Miranda

Função Logarítmica e Propriedades. 1 ano E.M. Professores Cleber Assis e Tiago Miranda Função Logarítmica Função Logarítmica e Propriedades ano E.M. Professores Cleber Assis e Tiago Miranda Função Logarítmica Função Logarítmica e Propriedades Exercícios Introdutórios Exercício. 4. b) log

Leia mais

NÚMEROS COMPLEXOS

NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS - 016 1. (EFOMM 016) O número complexo, z z (cos θ i sen θ), sendo i a unidade imaginária e 0 θ π, que satisfaz a inequação z i e que possui o menor argumento θ, é a) b) c) d) 5 5 z i

Leia mais

5. EQUAÇÕES E INEQUAÇÕES EXPONENCIAIS E LOGARÍTMICAS

5. EQUAÇÕES E INEQUAÇÕES EXPONENCIAIS E LOGARÍTMICAS 57 5. EQUAÇÕES E INEQUAÇÕES EXPONENCIAIS E LOGARÍTMICAS 5.. EQUAÇÕES EXPONENCIAIS Equações que envolvem termos em que a incógnita aparece no epoente são chamadas de equações eponenciais. Por eemplo, =

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web Lista ita eponencial e modulo Carlos Peioto. (Ita 07) Esboce o gráfico da função f: dada por f().. (Ita 07) Sejam S {(, y) : y } e área da região S S é S {(, y) : (y ) 5}. A a) 5. 4 π b) 5. 4 π c) 5. 4

Leia mais

Equações Exponenciais. 1 ano E.M. Professores Cleber Assis e Tiago Miranda

Equações Exponenciais. 1 ano E.M. Professores Cleber Assis e Tiago Miranda Função Exponencial Equações Exponenciais 1 ano E.M. Professores Cleber Assis e Tiago Miranda Função Exponencial Equações Exponenciais d) R Q. Exercício 8. Quantas raízes reais possui a equação 1 Exercícios

Leia mais

Matemática A Extensivo V. 6

Matemática A Extensivo V. 6 Etensivo V. 6 Eercícios ) C A função que descreve o custo com a primeira locadora é dada por: f () =, + em que é a quantidade de quilômetro rodado. Função que descreve o custo com a segunda locadora: f

Leia mais

MATEMÁTICA 9.º ANO TERCEIRO CICLO BRUNO SILVA CRISTINA SERRA ISABEL OLIVEIRA RAQUEL OLIVEIRA

MATEMÁTICA 9.º ANO TERCEIRO CICLO BRUNO SILVA CRISTINA SERRA ISABEL OLIVEIRA RAQUEL OLIVEIRA MATEMÁTICA 9.º ANO TERCEIRO CICLO BRUNO SILVA CRISTINA SERRA ISABEL OLIVEIRA RAQUEL OLIVEIRA ÍNDICE Números e operações Geometria e medida 1 Relação de ordem em R 4 2 Intervalos de números reais 8 3 Valores

Leia mais

Pelo gráfico, temos: f(x) 5 0 x 5 23 ou x 5 21 f(x). 0 x, 23 ou x. 21. f(x) Pelo gráfico, temos: Pelo gráfico, temos: f(x) 5 0 x 5 22

Pelo gráfico, temos: f(x) 5 0 x 5 23 ou x 5 21 f(x). 0 x, 23 ou x. 21. f(x) Pelo gráfico, temos: Pelo gráfico, temos: f(x) 5 0 x 5 22 Resolução das atividades complementares Matemática M7 Função do o grau p. 0 Estude os sinais da função quadrática ƒ dada por: a) 5 x 8x c) 5 x 4x 4 b) 5 x x d) x x a) zeros de f: x 8x 5 0 x 4x 5 0 (x )?

Leia mais

LTDA APES PROF. RANILDO LOPES SITE:

LTDA APES PROF. RANILDO LOPES SITE: Matemática Aplicada - https://ranildolopes.wordpress.com/ - Prof. Ranildo Lopes - FACET 1 Faculdade de Ciências e Tecnologia de Teresina Associação Piauiense de Ensino Superior LTDA APES PROF. RANILDO

Leia mais

PROF. LUIZ CARLOS MOREIRA SANTOS. Questão 01)

PROF. LUIZ CARLOS MOREIRA SANTOS. Questão 01) Questão 0) Um recipiente com capacidade para 5 litros está completamente cheio de leite puro. Uma pessoa retira 3 litros desse leite e completa o recipiente com 3 litros de água. Em seguida, retira 3 litros

Leia mais

MATEMÁTICA MÓDULO 10 EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS 1. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS 1.1. EQUAÇÃO EM SENO. sen a arcsena 2k, k arcsena 2k, k

MATEMÁTICA MÓDULO 10 EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS 1. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS 1.1. EQUAÇÃO EM SENO. sen a arcsena 2k, k arcsena 2k, k EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS Vamos mostrar como resolver equações trigonométricas básicas, onde temos uma linha trigonométrica aplicada sobre uma função e igual

Leia mais

Matemática I Capítulo 11 Função Modular

Matemática I Capítulo 11 Função Modular Nome: Nº Curso: Mecânica Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 Matemática I Capítulo 11 Função Modular 11.1 - Módulo O módulo, ou valor absoluto, de um número real x representado

Leia mais

0, a parábola tem concavidade voltada para BAIXO.

0, a parábola tem concavidade voltada para BAIXO. FUNÇÕES QUADRÁTICAS. DEFINIÇÃO É uma função da forma f x ax bx c, com a,b,c e a 0. OBSERVAÇÃO a é dito coeficiente líder da função quadrática Exemplo: fx 4x 5x 8. GRÁFICO O gráfico de uma função quadrática

Leia mais

1 INTRODUÇÃO 3 RELAÇÕES DE GIRARD 2 SOMAS DE GIRARD. Exercício Resolvido 1. Matemática Polinômios CAPÍTULO 04 RELAÇÕES DE GIRARD

1 INTRODUÇÃO 3 RELAÇÕES DE GIRARD 2 SOMAS DE GIRARD. Exercício Resolvido 1. Matemática Polinômios CAPÍTULO 04 RELAÇÕES DE GIRARD Matemática Polinômios CAPÍTULO 04 RELAÇÕES DE GIRARD 1 INTRODUÇÃO Aprendemos, até agora, a resolver equações do primeiro e do segundo grau. Nossa meta, agora, é encontrar maneiras de resolver equações

Leia mais

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n POLINÔMIO I 1. DEFINIÇÃO Polinômios de uma variável são expressões que podem ser escritas como soma finita de monômios do tipo : a t k k onde k, a podem ser números reais ou números complexos. Exemplos:

Leia mais

Material Teórico - Inequações Produto e Quociente de Primeiro Grau. Sistemas de inequações. Primeiro Ano do Ensino Médio

Material Teórico - Inequações Produto e Quociente de Primeiro Grau. Sistemas de inequações. Primeiro Ano do Ensino Médio Material Teórico - Inequações Produto e Quociente de Primeiro Grau Sistemas de inequações Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 5

Leia mais

Exercícios de Aprofundamento Matemática Equações e Inequações Modulares e Quadráticas 2

Exercícios de Aprofundamento Matemática Equações e Inequações Modulares e Quadráticas 2 1. (Mackenzie 1996) A soma dos valores inteiros pertencentes ao domínio da função real definida por f(x) = x / x 3x a) 1. b). c) 3. d) - 1. e) -. é:. (Mackenzie 1996) Na desigualdade ser: (x 1) + x > k,

Leia mais

Acadêmico(a) Turma: Capítulo 6: Funções

Acadêmico(a) Turma: Capítulo 6: Funções 1 Acadêmico(a) Turma: Capítulo 6: Funções Toda função envolve uma relação de dependência entre elementos, números e/ou incógnitas. Em toda função existe um elemento que pode variar livremente, chamado

Leia mais

FUNÇÕES EXPONENCIAIS Leia e descubra que eu não vim do além

FUNÇÕES EXPONENCIAIS Leia e descubra que eu não vim do além FUNÇÕES EXPONENCIAIS Leia e descubra que eu não vim do além Coordenação da Matemática 1 De potência em potência Os primeiros registros de cálculos utilizando potências são encontrados em tabelas babilônicas,

Leia mais

2. Sendo f(x) = x 4 e g(x) = 4 x calcule:

2. Sendo f(x) = x 4 e g(x) = 4 x calcule: Geometria linear Dados dois pontos distintos e, o primeiro postulado de Euclides nos permite construir, com a régua, o segmento. Notação: Depois de construído o segmento, tomamos o seu comprimento como

Leia mais

AVALIAÇÃO DE MATEMÁTICA Curso Técnico Integrado em Prof. Valdex Santos Aluno:

AVALIAÇÃO DE MATEMÁTICA Curso Técnico Integrado em Prof. Valdex Santos Aluno: Curso Técnico Integrado em Prof. Valdex Santos Aluno: Unidade 4 Em / /12 1. (PUC-SP) Para definir módulo de um número real x podemos dizer que: (a) é igual ao valor de x se x é real. (b) é o maior valor

Leia mais

AO VIVO MATEMÁTICA Professor Haroldo Filho 3 de maio, 2016 EQUAÇÕES IRRACIONAIS

AO VIVO MATEMÁTICA Professor Haroldo Filho 3 de maio, 2016 EQUAÇÕES IRRACIONAIS MATEMÁTICA Professor Haroldo Filho de maio, 016 EQUAÇÕES IRRACIONAIS Na resolução das equações irracionais, onde a incógnita se encontra sob um radical de índice dois, seremos obrigados a elevar ao quadrado

Leia mais

FUNÇÃO MODULAR. Para qualquer número real m, representamos módulo de m por m, e o definimos do seguinte modo: m, se m 0 m = -m, se m < 0

FUNÇÃO MODULAR. Para qualquer número real m, representamos módulo de m por m, e o definimos do seguinte modo: m, se m 0 m = -m, se m < 0 IFSP - EAD FUNÇÃO MODULAR DEFINIÇÃO : MÓDULO DE UM NÚMERO REAL : Para qualquer número real m, representamos módulo de m por m, e o definimos do seguinte modo: m, se m 0 m = -m, se m < 0 EXEMPLOS : De acordo

Leia mais

Projeto de Recuperação Final - 1ª Série (EM)

Projeto de Recuperação Final - 1ª Série (EM) Projeto de Recuperação Final - 1ª Série (EM) Matemática 1 MATÉRIA A SER ESTUDADA Nome do Fascículo Aula Ex de aula Ex da tarefa Funções Inequação do 1º grau, pág 59 2 4,5,6 Funções Inequação do 1º grau,

Leia mais

Função Modular. 1. (Eear 2017) Seja f(x) x 3 uma função. A soma dos valores de x para os quais a função assume o valor 2 é a) 3 b) 4 c) 6 d) 7

Função Modular. 1. (Eear 2017) Seja f(x) x 3 uma função. A soma dos valores de x para os quais a função assume o valor 2 é a) 3 b) 4 c) 6 d) 7 Função Modular 1. (Eear 2017) Seja f(x) x 3 uma função. A soma dos valores de x para os quais a função assume o valor 2 é a) 3 b) 4 c) 6 d) 7 2. (Pucrj 2016) Qual dos gráficos abaixo representa a função

Leia mais

Bases Matemáticas - Turma A3 1 a Avaliação (resolvida) - Prof. Armando Caputi

Bases Matemáticas - Turma A3 1 a Avaliação (resolvida) - Prof. Armando Caputi Bases Matemáticas - Turma A3 1 a Avaliação (resolvida) - Prof. Armando Caputi IMPORTANTE A resolução apresentada aqui vai além de um mero gabarito. Além de cumprir esse papel de referência para as respostas,

Leia mais

MÓDULO 13. Fatoração. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. *, é: 4. Um possível valor de a +

MÓDULO 13. Fatoração. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. *, é: 4. Um possível valor de a + ITA_Modulos 3a6 prof 03/03/0 4:9 Página I Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 3 Fatoração. Prove que se a e b são dois números reais então a + b ab a, b (a b) (a b) 0

Leia mais

MÓDULO XI. INEQUAÇÕES 2x 20

MÓDULO XI. INEQUAÇÕES 2x 20 MÓDULO XI. Inequação INEQUAÇÕES < Logo, o conjunto solução será S. Vamos supor que, na nossa escola, a média mínima para aprovação automática seja 6 e que essa média, em cada matéria, seja calculada pela

Leia mais

IGUALDADES EM IR IDENTIDADES NOTÁVEIS

IGUALDADES EM IR IDENTIDADES NOTÁVEIS IGUALDADES EM IR Uma relação muito importante definida em IR (conjunto dos números reais) é a relação de igualdade. Na igualdade A = B, A é o primeiro membro e B é o segundo membro. As igualdades entre

Leia mais

UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene

UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene - 011-1 37 Sumário III Números reais - módulo e raízes 38 3.1 Módulo valor absoluto........................................ 38 3.1.1 Definição

Leia mais

Bases Matemáticas - Turma B3 1 a Avaliação (resolvida) - Prof. Armando Caputi

Bases Matemáticas - Turma B3 1 a Avaliação (resolvida) - Prof. Armando Caputi Bases Matemáticas - Turma B3 1 a Avaliação (resolvida) - Prof. Armando Caputi IMPORTANTE A resolução apresentada aqui vai além de um mero gabarito. Além de cumprir esse papel de referência para as respostas,

Leia mais

6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES

6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES 47 6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES Na figura abaixo, seja a reta r e o ponto F de um determinado plano, tal que F não pertence a r. Consideremos as seguintes questões: Podemos obter,

Leia mais

) x LISTA DE EXERCÍCIOS FUNÇÃO EXPONENCIAL - LOGARITMO. PROFESSOR: Claudio Saldan CONTATO: 5 - (UNIFOR CE/2004/Julho)

) x LISTA DE EXERCÍCIOS FUNÇÃO EXPONENCIAL - LOGARITMO. PROFESSOR: Claudio Saldan CONTATO: 5 - (UNIFOR CE/2004/Julho) LISTA DE EXERCÍCIOS FUNÇÃO EXPONENCIAL - LOGARITMO PROFESSOR: Claudio Saldan CONTATO: saldan.mat@gmail.com - (PUC MG/006) O valor de certo tipo de automóvel decresce com o passar do t tempo de acordo com

Leia mais

2 Uma caixa d'água cúbica, de volume máximo, deve ser colocada entre o telhado e a laje de uma casa, conforme mostra a figura ao lado.

2 Uma caixa d'água cúbica, de volume máximo, deve ser colocada entre o telhado e a laje de uma casa, conforme mostra a figura ao lado. MATEMÁTICA Uma pessoa possui a quantia de R$7.560,00 para comprar um terreno, cujo preço é de R$5,00 por metro quadrado. Considerando que os custos para obter a documentação do imóvel oneram o comprador

Leia mais

Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x.

Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x. Revisão de Função. (Espcex (Aman) 05) Considere a função bijetora f :,,, definida por f(x) x x e seja (a,b) o ponto de intersecção de f com sua inversa. O valor numérico da expressão a b é a). b) 4. c)

Leia mais

POLINÔMIOS. Nível Básico

POLINÔMIOS. Nível Básico POLINÔMIOS Nível Básico. (Eear 07) Considere P(x) x bx cx, tal que P() e P() 6. Assim, os valores de b e c são, respectivamente, a) e b) e c) e d) e. (Epcar (Afa) 05) Considere o polinômio a) x 0 não é

Leia mais

1º trimestre - Matemática Data:20/04/2017. Sala de Estudo. Resposta: Resposta: números reais positivos, tais que. 1. (Ufjf-pism ) Sejam a, b, c

1º trimestre - Matemática Data:20/04/2017. Sala de Estudo. Resposta: Resposta: números reais positivos, tais que. 1. (Ufjf-pism ) Sejam a, b, c º trimestre - Matemática Data:0/04/07 Ensino Médio 3º ano classe: Profº. Maurício Sala de Estudo. e. (Ufjf-pism 07) Sejam a, b, c logb d 3. O valor da epressão a) b) c) 3 d) 4 e) 0 e d log números reais

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO QUADRÁTICA PARTE 2

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO QUADRÁTICA PARTE 2 EIXO DE SIMETRIA... COEFICIENTES a, b E c NO GRÁFICO... SINAL DA FUNÇÃO QUADRÁTICA...4 INEQUAÇÕES DO º GRAU...9 INEQUAÇÕES PRODUTO E QUOCIENTE... 4 SISTEMA DE INEQUAÇÕES DO º GRAU... 8 REFERÊNCIA BIBLIOGRÁFICA...

Leia mais

Capítulo 1 Números Reais

Capítulo 1 Números Reais Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 1 Números Reais Conjuntos Numéricos Conjunto dos naturais: N = {1,, 3, 4,... } Conjunto dos inteiros: Z = {..., 3,, 1, 0, 1,, 3,... } {

Leia mais

, logo, x tg t é solução da equação dada. na equação dx tx. / 2 e daí dy xy, ou seja, y e

, logo, x tg t é solução da equação dada. na equação dx tx. / 2 e daí dy xy, ou seja, y e CAPÍTULO 0 Eercícios 0.. a) Substituindo tg t e sec t na equação, obtemos ù sec t tg t para todo t no intervalo, é, logo, tg t é solução da equação ûú dada. c) Substituindo t ()4 e 0 na equação t ( ),

Leia mais

12)(UNIFESP/2008) A tabela mostra a distância s em centímetros que uma bola percorre descendo por um plano inclinado em t segundos.

12)(UNIFESP/2008) A tabela mostra a distância s em centímetros que uma bola percorre descendo por um plano inclinado em t segundos. 01)(UNESP/008)Segundo a Teoria da Relatividade de Einstein, se um astronauta viajar em uma nave espacial muito rapidamente em relação a um referencial na Terra, o tempo passará mais devagar para o astronauta

Leia mais

Lista de Módulo Extensivo Alfa Professor: Leandro (Pinda)

Lista de Módulo Extensivo Alfa Professor: Leandro (Pinda) Lista de Módulo Etensivo Alfa Professor: Leandro (Pinda). (Pucpr 08) Considere os seguintes dados. Pode-se dizer que quando duas variáveis e y são tais que a cada valor de corresponde um único valor de

Leia mais

MATEMÁTICA BÁSICA SUMÁRIO

MATEMÁTICA BÁSICA SUMÁRIO MATEMÁTICA BÁSICA SUMÁRIO 1 Operações com frações 2 Divisão de frações 3 Operações com números relativos 4 Resolução de equações do 1º grau (1º tipo) 5 Resolução de equações do 1º grau (2º tipo) 6 Resolução

Leia mais

1. (Uerj 2001) Mostre que, em 1 de outubro de 2000, a razão entre os números de eleitores de A e B era maior que 1.

1. (Uerj 2001) Mostre que, em 1 de outubro de 2000, a razão entre os números de eleitores de A e B era maior que 1. 1. (Uerj 2001) Mostre que, em 1 de outubro de 2000, a razão entre os números de eleitores de A e B era maior que 1. TEXTO PARA AS PRÓXIMAS 2 QUESTÕES. (Uerj 2001) Em um município, após uma pesquisa de

Leia mais

Equações Algébricas - Propriedades das Raízes. Teorema da Decomposição. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

Equações Algébricas - Propriedades das Raízes. Teorema da Decomposição. 3 ano E.M. Professores Cleber Assis e Tiago Miranda Equações Algébricas - Propriedades das Raízes Teorema da Decomposição 3 ano E.M. Professores Cleber Assis e Tiago Miranda Equações Algébricas - Propriedades das Raízes Teorema da Decomposição 1 Exercícios

Leia mais

Matemática A Semiextensivo V. 2

Matemática A Semiextensivo V. 2 Semietensivo V. Eercícios 0) R = {(0, ), (, ), (, ), (8, 9)} 0) B 0) D 0) B A = {0,,,, 8} e B = {,,, 9} R = {(, ) A. B/ = + } = 0 = 0 + = B = = + = B = = + = B = = + = 7 7 B = 8 = 8 + = 9 9 B Assim R =

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Prof. Lino Marcos da Silva Atividade 1 - Números Reais Objetivos De um modo geral, o objetivo dessa atividade é fomentar o estudo de conceitos relacionados aos números

Leia mais

Notas de Aulas 4 - Funções Elementares - Parte I Prof Carlos A S Soares

Notas de Aulas 4 - Funções Elementares - Parte I Prof Carlos A S Soares Notas de Aulas 4 - Funções Elementares - Parte I Prof Carlos A S Soares Neste momento do curso de Elementos de Cálculo, estamos interessados em rever algumas funções já estudadas no Ensino Médio de forma

Leia mais

2. (Ita 2002) Com base no gráfico da função polinomial y = f(x) esboçado a seguir, responda qual é o resto da divisão de f(x) por (x - 1/2) (x 1).

2. (Ita 2002) Com base no gráfico da função polinomial y = f(x) esboçado a seguir, responda qual é o resto da divisão de f(x) por (x - 1/2) (x 1). 1 Projeto Jovem Nota 10 Polinômios Lista B Professor Marco Costa 1. (Fuvest 2002) As raízes do polinômio p(x) = x - 3x + m, onde m é um número real, estão em progressão aritmética. Determine a) o valor

Leia mais

Material Teórico - Módulo de Função Logarítmica. Praticando as Propriedades. Primeiro Ano - Médio

Material Teórico - Módulo de Função Logarítmica. Praticando as Propriedades. Primeiro Ano - Médio Material Teórico - Módulo de Função Logarítmica Praticando as Propriedades Primeiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 06 de maio de 209 Nesta aula, iremos

Leia mais

b) Aumentando de uma unidade a intensidade do terremoto, por quanto fica multiplicada a energia liberada?

b) Aumentando de uma unidade a intensidade do terremoto, por quanto fica multiplicada a energia liberada? Professor Habib Lista de Matemática 1. (G1) Resolva a equação 2Ñ = 128 2. (G1) Calcule x de modo que se obtenha 10 Ñ = 1 3. (Uff) Resolva o sistema ý3ñ + 3Ò = 36 þ ÿ3ñ Ò = 243 4. (Ufsc) Determinar o valor

Leia mais

1ª Avaliação. 2) Determine o conjunto solução do sistema de inequações: = + corte o eixo Oy

1ª Avaliação. 2) Determine o conjunto solução do sistema de inequações: = + corte o eixo Oy 1ª Avaliação 1) Se = 3,666 e y = 0,777, calcule y ) Determine o conjunto solução do sistema de inequações: 7 0 1 3 0 3) Calcule m para que o gráfico de f( ) ( m 7m) no ponto de ordenada 10 = + corte o

Leia mais

Processo Seletivo Estendido 2016 LISTA FUNÇ~OES - 5

Processo Seletivo Estendido 2016 LISTA FUNÇ~OES - 5 Processo Seletivo Estendido 06 LISTA FUNÇ~OES - 5 Professor: Fernando de Ávila Silva Departamento de Matemática - UFPR Esta lista foi inicialmente elaborada pelo professor Aleandre Trovon UFPR A presente

Leia mais

POLINÕMIOS E EQUAÇÕES POLINOMIAIS 2016

POLINÕMIOS E EQUAÇÕES POLINOMIAIS 2016 POLINÕMIOS E EQUAÇÕES POLINOMIAIS 06. (Unicamp 06) Considere o polinômio cúbico p() a, onde a é um número real. a) No caso em que p() 0, determine os valores de para os quais a matriz A abaio não é invertível.

Leia mais

LISTA DE EXERCÍCIOS FUNÇÃO EXPONENCIAL - LOGARITMO PROFESSOR: Claudio Saldan CONTATO: PARTE 1 - TRABALHO 4º BIMESTRE 3 9 =

LISTA DE EXERCÍCIOS FUNÇÃO EXPONENCIAL - LOGARITMO PROFESSOR: Claudio Saldan CONTATO: PARTE 1 - TRABALHO 4º BIMESTRE 3 9 = LISTA DE EXERCÍCIOS FUNÇÃO EXPONENCIAL - LOGARITMO PROFESSOR: Claudio Saldan CONTATO: saldan.mat@gmail.com PARTE - TRABALHO 4º BIMESTRE - (UEPG PR) + Dada a função f () =, assinale o que for correto. 0.

Leia mais

FUNÇÃO MODULAR. pcdamatematica. f : definida por. x, se x. Função definida por mais de uma sentença Ex01: Seja f : uma função definida por.

FUNÇÃO MODULAR. pcdamatematica. f : definida por. x, se x. Função definida por mais de uma sentença Ex01: Seja f : uma função definida por. Função definida por mais de uma sentença Ex01: Seja f : uma função definida por Calcule: a) f ( 3), f (0) e f ( 3). x, se x f ( x) x 3, se x 1. x 5, se x 1 e) f ( 1. 3) f) f ( 1). f ( 3) Ex03: Em um encarte

Leia mais

Inequação do Primeiro e Segundo Grau

Inequação do Primeiro e Segundo Grau CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2018.1 Inequação do Primeiro e Segundo Grau Leandro Marinho 8º período - Engenharia Civil Introdução As inequações representam uma desigualdade matemática.

Leia mais

PROFESSOR: ALEXSANDRO DE SOUSA

PROFESSOR: ALEXSANDRO DE SOUSA E.E. Dona Antônia Valadares MATEMÁTICA ENSINO MÉDIO - 1º ANO Função Quadrática PROFESSOR: ALEXSANDRO DE SOUSA http://donaantoniavaladares.comunidades.net FUNÇÃO QUADRÁTICA Seja a, b e c números reais

Leia mais

4(u v) 5. u(u 1) v e) u + v. (10000) é igual a. ax b LISTA EXATAMENTE LOGARÍTMOS

4(u v) 5. u(u 1) v e) u + v. (10000) é igual a. ax b LISTA EXATAMENTE LOGARÍTMOS LISTA EXATAMENTE LOGARÍTMOS 1. (Cesgranrio) O valor de log x (x x ) é: a) 3 4. b) 4 3. c) 3. d) 3. e) 4.. (Cesgranrio) Se log 10 (x - ) = 0, então x vale: a). b) 4. c) 3. d) 7/3. e) /. 3. (Fei) Se log

Leia mais

Logarítmos básicos. 3 x x 2 vale:

Logarítmos básicos. 3 x x 2 vale: Logarítmos básicos. (Pucrj 05) Se log 3, então 3 vale: a) 34 b) 6 c) 8 d) 50 e) 66. (Unesp 05) No artigo Desmatamento na Amazônia Brasileira: com que intensidade vem ocorrendo?, o pesquisador Philip M.

Leia mais

Capítulo 4: INEQUAÇÕES. Uma equação é uma igualdade, logo usa-se o sinal de =.

Capítulo 4: INEQUAÇÕES. Uma equação é uma igualdade, logo usa-se o sinal de =. 1 Capítulo 4: INEQUAÇÕES Uma equação é uma igualdade, logo usa-se o sinal de =. Por outro lado, uma inequação é uma desigualdade, então, em vez de um sinal de igual, usam-se sinais de: > Maior que < Menor

Leia mais

III Números reais - módulo e raízes Módulo ou valor absoluto Definição e exemplos... 17

III Números reais - módulo e raízes Módulo ou valor absoluto Definição e exemplos... 17 UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene - 010-16 Sumário III Números reais - módulo e raízes 17 3.1 Módulo valor absoluto...................................... 17 3.1.1 Definição

Leia mais

Matemática Caderno 5

Matemática Caderno 5 FUNÇÃO LOGARÍTMICA: Dado um número real a positivo e diferente de um (a > 0 e a 1), denominados função logarítmica de base a à função f() = log a definida para todo real positivo. D (f) = IR * + Im (f)

Leia mais

Vejamos na seguinte tabela como se comportam os valores x(n) quando n aumenta. n

Vejamos na seguinte tabela como se comportam os valores x(n) quando n aumenta. n QUESTÕES-AULA 32 1. Considere a sequência de termo geral x : N R; x(n) = x n = 2n+1 1 2 n π Considerando valores cada vez maiores para a variável independente n, pode-se observar que os valores x(n) ficam

Leia mais

Exponenciais e Logaritmos - Notas de Aulas 3(2016) Prof Carlos Alberto S Soares

Exponenciais e Logaritmos - Notas de Aulas 3(2016) Prof Carlos Alberto S Soares Exponenciais e Logaritmos - Notas de Aulas 3(206) Prof Carlos Alberto S Soares Função Logarítmica Iniciamos estas propondo um exercício que evidenciará a relação entre uma função e sua inversa quanto ao

Leia mais

( ) Novo Espaço Matemática A, 10.º ano Proposta de teste de avaliação [maio 2019] π 2 > < 0

( ) Novo Espaço Matemática A, 10.º ano Proposta de teste de avaliação [maio 2019] π 2 > < 0 Proposta de teste de avaliação [maio 019] Nome: Ano / Turma: N.º: Data: - - Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado. As cotações dos itens encontram-se

Leia mais

Alunos(as): ITANA; DIEGO; BRUNO CAMILO; FABIANA; ADAILTON e DARA. ATIVIDADE EM GRUPO Valor: 5,0 pontos. Processo de resfriamento de corpos

Alunos(as): ITANA; DIEGO; BRUNO CAMILO; FABIANA; ADAILTON e DARA. ATIVIDADE EM GRUPO Valor: 5,0 pontos. Processo de resfriamento de corpos Alunos(as): ITANA; DIEGO; BRUNO CAMILO; FABIANA; ADAILTON e DARA Processo de resfriamento de corpos Situação-Problema 01: (Unicamp-SP) O processo de resfriamento de um determinado corpo é descrito por:

Leia mais

Gabarito P1 - Cálculo para FAU Prof. Jaime Angulo

Gabarito P1 - Cálculo para FAU Prof. Jaime Angulo Gabarito P1 - Cálculo para FAU Prof. Jaime Angulo 1 a Questão [1.5] Note que x quando x ou x e x < quando < x

Leia mais

Matemática E Extensivo V. 6

Matemática E Extensivo V. 6 Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. ) D a) P() = ³ + 7. ² 7. P() = +

Leia mais

Lista de exercícios: Funções do 2º Grau

Lista de exercícios: Funções do 2º Grau Lista de eercícios: Funções do º Grau 1 1. Marque quais são as funções do º grau: (R= b, c, d, e, i, j, k,l) a. e. i. b. 6 9 f. 5 10 c. g. 1 j. 5 k. 1 1 d. h. 5 1 l. 1. Quais dos pontos pertencem à parábola

Leia mais

Lista de Função Inversa, Bijeção e Paridade Extensivo Alfa Professor: Leandro (Pinda)

Lista de Função Inversa, Bijeção e Paridade Extensivo Alfa Professor: Leandro (Pinda) Lista de Função Inversa, Bijeção e Paridade Etensivo Alfa Professor: Leandro (Pinda). (Udesc 0) A função f definida por f() é uma função bijetora, se os conjuntos que representam o domínio (D(f)) e a imagem

Leia mais

Observe na imagem a seguir, a trajetória realizada por uma bola no momento em que um jogador a chutou em direção ao gol.

Observe na imagem a seguir, a trajetória realizada por uma bola no momento em que um jogador a chutou em direção ao gol. FUNÇÃO QUADRÁTICA CONTEÚDOS Função quadrática Raízes da função quadrática Gráfico de função Ponto de máximo e de mínimo de uma função AMPLIANDO SEUS CONHECIMENTOS Observe na imagem a seguir, a trajetória

Leia mais

Equações Ordinarias 1ªOrdem - Lineares

Equações Ordinarias 1ªOrdem - Lineares Nome: Nº Curso: Licenciatura em Matemática Disciplina: Equações Diferenciais Ordinárias 7ºPeríodo Prof. Leonardo Data: / /2018 Equações Ordinarias 1ªOrdem - Lineares 1. EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

Leia mais

1. (Espcex 2013) A figura geométrica formada pelos afixos das raízes complexas da equação a) 7 3 b) 6 3 c) 5 3 d) 4 3 e) 3 3

1. (Espcex 2013) A figura geométrica formada pelos afixos das raízes complexas da equação a) 7 3 b) 6 3 c) 5 3 d) 4 3 e) 3 3 Complexos 06. (Espcex 0) A figura geométrica formada pelos afixos das raízes complexas da equação a) 7 b) 6 c) 5 d) e) x 8 0 tem área igual a. (Unicamp 0) Chamamos de unidade imaginária e denotamos por

Leia mais

LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU

LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU 1. (G1-014) O gráfico representa a função real definida por f(x) = a x + b. O valor de a + b é igual a A) 0,5. B) 1,0. C) 1,5.

Leia mais

Material Teórico - Módulo de Função Exponencial. Inequações Exponenciais. Primeiro Ano - Médio

Material Teórico - Módulo de Função Exponencial. Inequações Exponenciais. Primeiro Ano - Médio Material Teórico - Módulo de Função Exponencial Inequações Exponenciais Primeiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Generalidades sobre inequações Recordemos

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 1º Ensino Médio Professor: João Ângelo Matemática Atividades para Estudos Autônomos Data: 4 / 9 / 2018 Aluno(a): Nº: Turma: Caro(a)

Leia mais

CÁLCULO DIFERENCIAL 5-1 Para cada uma das funções apresentadas determine a sua derivada formando

CÁLCULO DIFERENCIAL 5-1 Para cada uma das funções apresentadas determine a sua derivada formando 5 a Ficha de eercícios de Cálculo para Informática CÁLCULO DIFERENCIAL 5-1 Para cada uma das funções apresentadas determine a sua derivada formando o quociente f( + h) f() h e tomando o ite quando h tende

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros

Leia mais

MATEMÁTICA E RACIOCÍNIO LÓGICO

MATEMÁTICA E RACIOCÍNIO LÓGICO FUNÇÕES VALOR NUMÉRICO 1 01) Dada a função f(x) 1 x, o valor f(1,5) é x + 1 igual a a) 1,7 b) 1,8 c) 1,9 d),0 e),1 0) Na função f:r R, com f(x) x² 3x + 1, o 1 valor de f a) b) 11/4 c) 3/3 d) 15/4 FUNÇÕES

Leia mais

GABARITO S = { 1, 33; 0, 2} (VERDADEIRO) 08. 2x 5 = 8x x 2 9 x x = 3 e x = 3. x = 7 ± 3. x =

GABARITO S = { 1, 33; 0, 2} (VERDADEIRO) 08. 2x 5 = 8x x 2 9 x x = 3 e x = 3. x = 7 ± 3. x = 88 0) x 0, 5 aplicando a prop. a n m m a n : 88 5 00 x 88 5 0 x 8 5 0 x 80 5 0 x 75 0 x 75x 0 x 0 75 x 5 multiplicando toda inequação por 0: multiplicando toda inequação por x: Porém, x 0, pois x é o denominador.

Leia mais

Material Teórico - Módulo Função Quadrática. Funcão Quadrática: Exercícios. Primeiro Ano do Ensino Médio

Material Teórico - Módulo Função Quadrática. Funcão Quadrática: Exercícios. Primeiro Ano do Ensino Médio Material Teórico - Módulo Função Quadrática Funcão Quadrática: Eercícios Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 1 Eercícios f() Eemplo

Leia mais

TÓPICOS DE MATEMÁTICA II. O Curso está dividido em três unidades, temos que concluir todas.

TÓPICOS DE MATEMÁTICA II. O Curso está dividido em três unidades, temos que concluir todas. TÓPICOS DE MATEMÁTICA II Roosevelt Imperiano da Silva Palavras iniciais Caros alunos, vamos iniciar o curso da disciplina Tópicos de Matemática II. Neste curso estudaremos os conjuntos numéricos e suas

Leia mais