Sumário. Decisões óptimas em jogos (minimax) Cortes α-β Decisões imperfeitas em tempo real

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Sumário. Decisões óptimas em jogos (minimax) Cortes α-β Decisões imperfeitas em tempo real"

Transcrição

1 Jogos Capítulo 6

2 Sumário Decisões óptimas em jogos (minimax) Cortes α-β Decisões imperfeitas em tempo real

3 Jogos vs. Problemas de Procura Adversário imprevisível" necessidade de tomar em consideração todas os movimentos que podem ser tomados pelo adversário Pontuação com sinais opostos O que é bom para um jogador (vitória=+1) é mau para o outro (derrota=-1) Limitação temporal tipicamente não é encontrado um objectivo mas antes uma aproximação

4 Procura com Cortes Jogos são muito mais difíceis do que os problemas de procura (capítulos 3 e 4) Factor de ramificação muito elevado - e.g. xadrez factor de ramificação jogadas/jogador nós (destes apenas são nós distintos) Cortes permitem eliminar partes da árvore de procura que são irrelevantes para o resultado final

5 Caracterização de um Jogo Estado inicial Configuração inicial + ordem de jogada Função sucessores Para cada estado devolve uma lista de pares <acção,estado> Teste terminal Identifica estados terminais Função de utilidade Atribui um valor numérico aos estados terminais

6 Árvore para Jogos (2 jogadores, determinístico, alternado)

7 Minimax Estratégia mais adequada para jogos determinísticos Ideia: escolher jogada para o estado com o maior valor minimax melhor valor para a função de utilidade contra as melhores jogadas do adversário Valor-minimax(n) = Função-utilidade(n) max s sucessores(n) Valor-minimax(s) se n é terminal se n é nó MAX min s sucessores(n) Valor-minimax(s) se n é nó MIN

8 Minimax: 2 jogadores Formato dos nós em função do tipo de nó (MIN/MAX) Valores dos estados terminais correspondem à função de utilidade para MAX Valores para os restantes estados obtidos a partir dos valores para os nós terminais Resultado do algoritmo: próxima jogada!

9 Algoritmo Minimax Função Minimax (estado) devolve acção v ValorMax(estado) devolve acção em sucessores(estado) com valor v Função ValorMax(estado) devolve valor de utilidade se TesteTerminal(estado) então devolve Utilidade(estado) v - para a,s em sucessores(estado) v MAX(v,ValorMin(s)) devolve v Função ValorMin(estado) devolve valor de utilidade se TesteTerminal(estado) então devolve Utilidade(estado) v + para a,s em sucessores(estado) v MIN(v,ValorMax(s)) devolve v

10 Minimax: mais de 2 jogadores Função de utilidade devolve vector de valores com utilidade do estado do ponto de vista de cada jogador Cada jogador procura maximizar a sua utilidade

11 Propriedades do algoritmo minimax Completo? Sim (se a árvore de procura é finita) Óptimo? Sim (contra um adversário óptimo) Tempo? O(r m ) Espaço? O(rm) (procura em profundidade primeiro) (m: máxima profundidade do espaço de estados) Para xadrez, r 35, m 100 para um jogo padrão impossível determinar a solução exacta

12 Cortes α-β Minimax: número de estados examinados é exponencial em função do número de jogadas Não é possível eliminar o factor exponencial, mas podemos reduzir o número de estados analisados para metade! É possível calcular a decisão resultante do algoritmo minimax sem ter de analisar todos os estados

13 Cortes α-β: exemplo

14 Cortes α-β: exemplo

15 Cortes α-β: exemplo

16 Cortes α-β: exemplo

17 Cortes α-β: exemplo Os nós sucessores do primeiro nó a ser expandido em cada nível de profundidade nunca podem ser cortados

18 Propriedades de α-β Cortes não afectam resultado final Eficiência dos cortes depende da ordenação dos sucessores Com uma ordenação perfeita" a complexidade temporal fica reduzida a O(r m/2 ) duplica profundidade da procura

19 Porquê o nome α-β? α é o valor da melhor escolha (i.e., valor mais elevado) encontrada até ao momento em qualquer ponto de procura ao longo do caminho para max Se v é pior do que α, max irá evitar escolher v ramo com v é cortado Definir β para min de forma análoga

20 Algoritmo α-β Função AlfaBeta (estado) devolve acção v ValorMax(estado, -, + ) devolve acção em sucessores(estado) com valor v Função ValorMax(estado,, ) devolve valor de utilidade se TesteTerminal(estado) então devolve Utilidade(estado) v - para a,s em sucessores(estado) v MAX(v,ValorMin(s,, )) se v então devolve v MAX(,v) devolve v

21 Algoritmo α-β Função ValorMin(estado,, ) devolve valor de utilidade se TesteTerminal(estado) então devolve Utilidade(estado) v + para a,s em sucessores(estado) v MIN(v,ValorMax(s,, )) se v então devolve v MIN(,v) devolve v

22 Exercício Qual a melhor ordenação de modo a optimizar os cortes α-β? Nós MIN: ordem decrescente Nós MAX: ordem crescente

23 Exercício (exemplo) Ordenação original Ordenação óptima

24 Decisões imperfeitas em tempo real Decisões têm que ser tomadas em tempo real não é possível analisar toda a árvore de procura Função de avaliação (Eval) devolve uma estimativa da utilidade do estado Idealmente a ordenação resultante da função de avaliação é igual à da função de utilidade Teste terminal é substituído por um teste de limite

25 Funções de Avaliação Tipicamente soma linear de características do jogo, associadas a diferentes pesos Eval(s) = w 1 f 1 (s) + w 2 f 2 (s) + + w n f n (s) e.g., xadrez w 1 = 9 com f 1 (s) = (número de rainhas brancas) (número de rainhas pretas), etc.

26 Teste Limite MinimaxLimite é idêntico ao MinimaxValue excepto Terminal? é substituído por Limite? Utilidade é substituído por Eval Limite? Recebe estado e profundidade e devolve verdadeiro caso o limite actual exceda o limite fixado Devolve também verdadeiro para estados terminais

27 Teste Limite Problema da aquiescência Função de avaliação deve aplicar-se apenas a estados cujo valor não possa ser radicalmente alterado num futuro próximo Estados nestas condições devem ser expandidos até que sejam gerados estados sem este problema Problema do efeito de horizonte Procura com limite coloca eventuais problemas futuros para além do horizonte

28 Elemento Sorte Árvore com nós sorte MIN e MAX para além dos nós A cada ramo da árvore está associada uma probabilidade Se for possível estabelecer limites para a função de avaliação então podem aplicar-se cortes Expectiminimax(n) = Função-utilidade(n) se n é terminal max s sucessores(n) Expectiminimax(s) se n é nó MAX min s sucessores(n) s sucessores(n) Expectiminimax(s) se n é nó MIN P(s) Expectiminimax(s) se n é nó SORTE

29 Elemento Sorte: exemplo Alteração de valores das folhas mantendo a mesma ordem relativa resulta em decisões diferentes

30 Estado da Arte Damas: Chinook derrotou o campeão do mundo (durante 40 anos) Marion Tinsley in Uso de uma base de dados pré-processada que define uma jogada perfeita para todas as posições envolvendo no máximo 8 peças, num total de 444 biliões de posições. Xadrez: Deep Blue derrotou campeão do mundo Garry Kasparov em O Deep Blue procura 200 milhões de nós por segundo, usa uma função de avaliação muito sofisticada. Othello: campeões humanos recusam-se a competir com computadores, que são muito bons. Go: campeões humanos recusam-se a competir com computadores, que são muito fracos. Neste jogo, r > 300. Logo, a maioria dos programas existentes usa padrões de conhecimento para sugerir jogadas hipotéticas.

Jogos vs. Problemas de Procura

Jogos vs. Problemas de Procura Jogos Capítulo 6 Jogos vs. Problemas de Procura Adversário imprevisível" necessidade de tomar em consideração todas os movimentos que podem ser tomados pelo adversário Pontuação com sinais opostos O que

Leia mais

Técnicas para Implementação de Jogos

Técnicas para Implementação de Jogos Técnicas para Implementação de Jogos Solange O. Rezende Thiago A. S. Pardo Considerações gerais Aplicações atrativas para métodos de IA Formulação simples do problema (ações bem definidas) Ambiente acessível

Leia mais

Introdução à Inteligência Artificial. Procura em contextos competitivos jogos (cont.)

Introdução à Inteligência Artificial. Procura em contextos competitivos jogos (cont.) Introdução à Inteligência Artificial Procura em contextos competitivos jogos (cont.) Sumário n Vimos Jogos de 2 jogadores n Determinísticos, soma nula, informação perfeita Estratégia óptima minimax Algoritmos

Leia mais

Busca competitiva. Inteligência Artificial. Profª. Solange O. Rezende

Busca competitiva. Inteligência Artificial. Profª. Solange O. Rezende Profª. Solange O. Rezende 1 O que vimos até agora... Busca não informada Baseada somente na organização de estados e a sucessão entre eles Busca informada Utiliza, também, informações a respeito do domínio

Leia mais

Árvore de Jogos Minimax e Poda Alfa-Beta

Árvore de Jogos Minimax e Poda Alfa-Beta Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Árvore de Jogos Minimax e Poda Alfa-Beta Inteligência Artificial Site: http://jeiks.net E-mail: jacsonrcsilva@gmail.com

Leia mais

Introdução à Inteligência Artificial 2007/08

Introdução à Inteligência Artificial 2007/08 Introdução à Inteligência rtificial 2007/08 Procura em contextos competitivos jogos Contexto Um agente vs multiagente mbiente cooperativo vs competitivo Teoria dos jogos (ramo da Economia) Sistema multiagente

Leia mais

Jogos e Busca. Silvio Lago

Jogos e Busca. Silvio Lago 1 Jogos e Busca Silvio Lago slago@ime.usp.br 2 Sumário Jogos adversariais Algoritmo MINIMAX Algoritmo de poda α-β Função de avaliação e corte Jogos de sorte 3 Jogos Ambientes competitivos, em que as metas

Leia mais

Ex. 1) Considere que a árvore seguinte corresponde a uma parte do espaço de estados de um jogo de dois agentes: f=7 f=7 f=1 f=2

Ex. 1) Considere que a árvore seguinte corresponde a uma parte do espaço de estados de um jogo de dois agentes: f=7 f=7 f=1 f=2 LERCI/LEIC Tagus 2005/06 Inteligência Artificial Exercícios sobre Minimax: Ex. 1) Considere que a árvore seguinte corresponde a uma parte do espaço de estados de um jogo de dois agentes: Max Min f=4 f=7

Leia mais

Teoria de Jogos. Algoritmo Minimax e Alfa-Beta AED - 2002

Teoria de Jogos. Algoritmo Minimax e Alfa-Beta AED - 2002 Teoria de Jogos Algoritmo Minimax e Alfa-Beta AED - 2002 Conceptualização do Problema Jogar pode ser visto como uma generalização do problema de procura em espaço de estados, em que existem agentes hostis

Leia mais

Exemplo de aprendizagem máquina

Exemplo de aprendizagem máquina (Primeiro exemplo) Jogo de damas c/ aprendizagem Tom Mitchell, Machine Learning, McGraw-Hill, 1997 chapter 1 17-Jul-13 http://w3.ualg.pt/~jvo/ml 12 1 Exemplo de aprendizagem máquina 1. Descrição do problema

Leia mais

a) Defina em Prolog iguais/1, um predicado que recebe um estado do jogo e que verifica que todas as pilhas têm o mesmo número de peças.

a) Defina em Prolog iguais/1, um predicado que recebe um estado do jogo e que verifica que todas as pilhas têm o mesmo número de peças. Introdução à Inteligência Artificial 2ª Época 29 Janeiro 2015 Nº Aluno: Nome Completo: Exame com consulta. Responda às perguntas nesta própria folha, nos espaços indicados. (I) O jogo do Nim (também chamado

Leia mais

Busca com Adversários: Jogos. Maria Carolina Monard

Busca com Adversários: Jogos. Maria Carolina Monard Busca com Adversários: Jogos Thiago A. S. Pardo Maria Carolina Monard Busca com Adversários Diferentemente da busca tradicional vista até agora, na qual a situação não troca durante a busca, a busca com

Leia mais

Algoritmo MiniMax. Minimax

Algoritmo MiniMax. Minimax Algoritmo MiniMax Luís Carlos Calado 050509043 João Carlos Sousa 050509027 José Carlos Campos 060509007 Rodolfo Sousa Silva 050509069 1 Minimax Minimax (ou minmax) é um método usado na Teoria da Decisão,

Leia mais

SOLUÇÕES HEURÍSTICAS PARA O JOGO DE DAMAS

SOLUÇÕES HEURÍSTICAS PARA O JOGO DE DAMAS Universidade Federal do Tocantins SOLUÇÕES HEURÍSTICAS PARA O JOGO DE DAMAS Diogo Rigo de Brito Guimarães Alexandre Tadeu Rossini da Silva Objetivo Implementar soluções heurísticas para o Jogo de Damas

Leia mais

J2 Velha. Uma Implementação Java do Jogo da Velha Utilizando o Algoritmo MiniMax. Universidade Federal do ABC ufabc. André Filipe de Moraes Batista

J2 Velha. Uma Implementação Java do Jogo da Velha Utilizando o Algoritmo MiniMax. Universidade Federal do ABC ufabc. André Filipe de Moraes Batista Universidade Federal do ABC ufabc J2 Velha Uma Implementação Java do Jogo da Velha Utilizando o Algoritmo MiniMax André Filipe de Moraes Batista andre.batista@ufabc.edu.br Luis Fernando de Oliveira Jacintho

Leia mais

Sistemas Baseados em Conhecimento

Sistemas Baseados em Conhecimento Departamento de Informática Faculdade de Ciências Universidade de Lisboa Sistemas Baseados em Conhecimento Primeiro Teste 24 de Abril de 2008 Nome Completo: Nº Aluno: Licenciatura: com consulta 1 hora

Leia mais

Jogo King Relatório da Melhoria do Trabalho Inteligência Artificial. Tiago Fonseca, ei02100

Jogo King Relatório da Melhoria do Trabalho Inteligência Artificial. Tiago Fonseca, ei02100 Jogo King Relatório da Melhoria do Trabalho Inteligência Artificial Tiago Fonseca, ei02100 19 de Julho de 2005 Resumo Conteúdo 1 Introdução 3 1.1 Objectivo................................... 3 1.2 Motivação...................................

Leia mais

Investigação Operacional

Investigação Operacional Métodos de Programação Linear: Gráfica, (Mestrado) Engenharia Industrial http://dps.uminho.pt/pessoais/zan - Escola de Engenharia Departamento de Produção e Sistemas 1 Representação Gráfica Considere o

Leia mais

Agrupamento de Escolas do Fundão

Agrupamento de Escolas do Fundão Agrupamento de Escolas do Fundão MATEMÁTICA P GPI 13 12º Ano CURRÍCULO DA DISCIPLINA E Nº DE AULAS PREVISTAS Período PLANIFICAÇÃO ANUAL Módulos a leccionar + Conteúdos Programáticos Módulo A6- Taxa de

Leia mais

JOGOS JOGOS. Exemplo: xadrez. Vários tipos de jogos. Uma árvore de jogo. Raciocínio em jogo de xadrez?

JOGOS JOGOS. Exemplo: xadrez. Vários tipos de jogos. Uma árvore de jogo. Raciocínio em jogo de xadrez? JOGOS JOGOS entre os primeiros domínios de aplicação razões - problema de definição fácil (regras do jogo) - constituem uma tarefa estruturada em que é fácil medir o sucesso ou fracasso Vários tipos de

Leia mais

IA: Busca Competitiva. Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br

IA: Busca Competitiva. Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br IA: Busca Competitiva Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br Sumário Introdução Árvores de Jogos Minimax Antecipação Limitada Poda Alfa-beta Introdução Jogos têm sido continuamente uma importante

Leia mais

Projecto de Algoritmos e Estruturas de Dados

Projecto de Algoritmos e Estruturas de Dados Projecto de Algoritmos e Estruturas de Dados Licenciatura em Engenharia Electrotécnica e de Computadores Licenciatura em Engenharia Electrónica 1 o ano, 2 o Semestre, 2005/2006 Instituto Superior Técnico

Leia mais

Conjuntos disjuntos. Relações de equivalência

Conjuntos disjuntos. Relações de equivalência Conjuntos disjuntos Objectivo resolver eficientemente o problema da equivalência estrutura de dados simples (vector) implementação rápida análise complicada Uso problemas de grafos equivalência de tipos

Leia mais

ESCOLA SECUNDÁRIA DE LOUSADA

ESCOLA SECUNDÁRIA DE LOUSADA ESCOLA SECUNDÁRIA DE LOUSADA 2012 2013 PLANIFICAÇÃO DA DISCIPLINA DE MATEMÁTICA Curso Profissional de Técnico de Multimédia ELENCO MODULAR A7 Probabilidades 28 A6 Taxa de variação 36 A9 Funções de crescimento

Leia mais

Jogos - aula 2. Xadrez chinês. Exemplo de função de avaliação:

Jogos - aula 2. Xadrez chinês. Exemplo de função de avaliação: Exemplo de jogo: Xadrez chinês Jogos - aula 2 Função de avaliação? Prof. Luis Otavio Alvares 1 2 Xadrez chinês Ligue 4 Exemplo de função de avaliação: o valor das peças é de acordo com a sua posição: 12

Leia mais

Investigação Operacional

Investigação Operacional Ano lectivo: 0/06 Universidade da Beira Interior - Departamento de Matemática Investigação Operacional Ficha de exercícios n o Algoritmo Simplex Cursos: Gestão e Economia. Considere o seguinte conjunto

Leia mais

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº3: Dualidade. Interpretação Económica.

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº3: Dualidade. Interpretação Económica. Ano lectivo: 2008/2009; Universidade da Beira Interior Departamento de Matemática INVESTIGAÇÃO OPERACIONAL Ficha de exercícios nº3: Dualidade. Interpretação Económica. Cursos: Economia 1. Formule o problema

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão. AULA 1.3 Jogos na Forma Extensiva informação num jogo

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão. AULA 1.3 Jogos na Forma Extensiva informação num jogo Microeconomia II Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 1.3 Jogos na Forma Extensiva informação num jogo Isabel Mendes 2007-2008 Na aula 1.1 falou-se ainda dos jogos sequenciais

Leia mais

7. Introdução à Complexidade de Algoritmos

7. Introdução à Complexidade de Algoritmos 7. Introdução à Complexidade de Algoritmos Fernando Silva DCC-FCUP Estruturas de Dados Fernando Silva (DCC-FCUP) 7. Introdução à Complexidade de Algoritmos Estruturas de Dados 1 / 1 Análise de Algoritmos

Leia mais

Romildo Martins da S Bezerra Julho 2001

Romildo Martins da S Bezerra Julho 2001 Algoritmo do Kalah Romildo Martins da S Bezerra Julho 2001 Índice 1. O Jogo...3 2. Mudanças para Implementação...3 3. O Algoritmo...4 3.1 MINIMAX...4 3.2 Poda Alpha-Beta...4 3.3 Estrutura Utilizada...5

Leia mais

Resolução de Problemas Com Procura. Capítulo 3

Resolução de Problemas Com Procura. Capítulo 3 Resolução de Problemas Com Procura Capítulo 3 Sumário Agentes que resolvem problemas Tipos de problemas Formulação de problemas Exemplos de problemas Algoritmos de procura básicos Eliminação de estados

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência Artificial Estratégias de Resolução de Problemas Considerando Adversários (Jogos) Parte Agenda Introdução à procura adversária Algoritmo Mini-Max Poda Alpha-Beta Parte 2 Decisões imperfeitas

Leia mais

Movimento Dulce Godinho

Movimento Dulce Godinho Forças e Movimento 02-20092009 1 Forças na Nossa Vida Inúmeras situações devidas à existência de forças: Forças Gravíticas São sempre atractivas Forças Eléctricas Atractivas ou repulsivas Forças Magnéticas

Leia mais

Análise e Síntese de Algoritmos. Programação Linear CLRS, Cap. 29

Análise e Síntese de Algoritmos. Programação Linear CLRS, Cap. 29 Análise e Síntese de Algoritmos Programação Linear CLRS, Cap. 29 Conteto Algoritmos em Grafos (CLRS, Cap. 22-26)... Fluos máimos em grafos (CLRS, Cap. 26) Programação Linear (CLRS, Cap. 29) Programação

Leia mais

Anatomia do motor de um programa de xadrez. Hugo Vinicius M. D. Santana Orientador: José Coelho de Pina

Anatomia do motor de um programa de xadrez. Hugo Vinicius M. D. Santana Orientador: José Coelho de Pina Anatomia do motor de um programa de xadrez Hugo Vinicius M. D. Santana Orientador: José Coelho de Pina Conteúdo Objetivo O que é um motor de xadrez? Arquitetura Entrada e saída Representação do tabuleiro

Leia mais

Resolução de problemas por meio de busca. Prof. Pedro Luiz Santos Serra

Resolução de problemas por meio de busca. Prof. Pedro Luiz Santos Serra Resolução de problemas por meio de busca Prof. Pedro Luiz Santos Serra Agentes de resolução de problemas Agente: É um elemento qualquer capaz de perceber seu ambiente por meio de sensores e de agir sobre

Leia mais

ADAPTAÇÃO PEGA VARETAS (Números Inteiros Negativos)

ADAPTAÇÃO PEGA VARETAS (Números Inteiros Negativos) 1 ADAPTAÇÃO PEGA VARETAS (Números Inteiros Negativos) Objetivos Introduzir o conceito de números inteiros negativos; Desenvolvimento O professor confeccionará o jogo com os alunos ou distribuirá os jogos

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial INF 1771 Inteligência Artificial Aula 01 Resolução de problemas por meio de Busca Edirlei Soares de Lima Introdução Agentes Autônomos: Entidades autônomas capazes de observar o ambiente

Leia mais

Jogos - aula 2. Prof. Luis Otavio Alvares II / UFRGS

Jogos - aula 2. Prof. Luis Otavio Alvares II / UFRGS Jogos - aula 2 Prof. Luis Otavio Alvares II / UFRGS 1 Função de avaliação: Xadrez chines 2 Xadrez chinês Exemplo de função de avaliação: o valor das peças é de acordo com a sua posição: 12 para a última

Leia mais

Inteligência Artificial Projecto 1

Inteligência Artificial Projecto 1 Bantumi ESPECIFICAÇÕES O projecto destina-se a resolver um conjunto de problemas do jogo Bantumi utilizando métodos de procura em espaço de estados. Bantumi é um jogo derivado do jogo Mancala de origem

Leia mais

Métodos de Busca. Estratégias de Busca Cega

Métodos de Busca. Estratégias de Busca Cega Métodos de Busca Métodos de Busca Estratégias de Busca Cega encontram soluções para problemas pela geração sistemática de novos estados, que são comparados ao objetivo; são ineficientes na maioria dos

Leia mais

Teorema da superposição

Teorema da superposição Teorema da superposição Esse teorema é mais uma ferramenta para encontrar solução de problemas que envolvam mais de uma fonte que não estejam em paralelo ou em série. A maior vantagem desse método é a

Leia mais

QuickSort. Algoritmos e Estruturas de Dados Verão Cátia Vaz 1

QuickSort. Algoritmos e Estruturas de Dados Verão Cátia Vaz 1 QuickSort Algoritmos e Estruturas de Dados Verão 2012 1 QuickSort Algoritmo do tipo dividir para conquistar Ideia do algoritmo: efectuar partição dos dados e ordenar as várias partes independentemente

Leia mais

* O que originou a designação Operational Research no Reino Unido, A origem da Investigação Operacional (IO)?

* O que originou a designação Operational Research no Reino Unido, A origem da Investigação Operacional (IO)? A origem da Investigação Operacional (IO)? A IO surgiu no final da II Guerra Mundial quando os Aliados se viram confrontados com problemas (relativamente aos recursos logísticos e às operações* das forças

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Primeira Lista de Exercícios de junho de 0 Quantos códigos de quatro letras podem ser construídos usando-se as letras a, b, c, d, e, f se: a nenhuma letra puder ser repetida? b qualquer

Leia mais

Aula 5. Apontamentos Teórico-Práticos de Algoritmia Avançada LEI/ISEP Métodos de Pesquisa Carlos Ramos 60

Aula 5. Apontamentos Teórico-Práticos de Algoritmia Avançada LEI/ISEP Métodos de Pesquisa Carlos Ramos 60 Aula 5 60 O método Minimax é o método mais conhecido para lidar com jogos. Admite-se que existe um gerador de estados e uma função que avalia a vantagem ou desvantagem de um dado estado. Vamos considerar

Leia mais

EQUAÇÕES RECURSIVAS. A2) Equação: x n = x n 1 + n b (n > 0) Fixado o termo x 0, de ordem n = 0, a equação admite uma única n

EQUAÇÕES RECURSIVAS. A2) Equação: x n = x n 1 + n b (n > 0) Fixado o termo x 0, de ordem n = 0, a equação admite uma única n EQUAÇÕES RECURSIVAS Chama-se equação recursiva a uma relação usada para definir recursivamente uma sucessão, onde o termo de ordem n é expresso em função de termos de ordem anterior. As equações A), A1),

Leia mais

método de solução aproximada

método de solução aproximada método de solução aproximada Definir - Representação - Objectivo - Função de avaliação 73 Representação do problema - Definição das variáveis de decisão do modelo escolhido para o problema real. Importante

Leia mais

Planificação a médio e longo prazo. Matemática B. 11º Ano de escolaridade. Total de aulas previstas: 193. Ano letivo 2015/2016

Planificação a médio e longo prazo. Matemática B. 11º Ano de escolaridade. Total de aulas previstas: 193. Ano letivo 2015/2016 Planificação a médio e longo prazo Matemática B 11º Ano de escolaridade. Total de aulas previstas: 193 Ano letivo 2015/2016 Professor responsável: Paulo Sousa I O programa Matemática B do 11º Ano - Página

Leia mais

O Manual do Kiriki. Albert Astals Cid Eugene Trounev Tradução: José Pires

O Manual do Kiriki. Albert Astals Cid Eugene Trounev Tradução: José Pires Albert Astals Cid Eugene Trounev Tradução: José Pires 2 Conteúdo 1 Introdução 5 2 Como Jogar 6 3 Regras do Jogo, Estratégias e Sugestões 8 3.1 Regras do Jogo........................................ 8 4

Leia mais

Pesquisa Operacional. Evanivaldo Castro Silva Júnior

Pesquisa Operacional. Evanivaldo Castro Silva Júnior Evanivaldo Castro Silva Júnior Conteúdo Fundamentos da Pesquisa Operacional. Modelos Lineares. Métodos de solução gráfica e algoritmo simplex. Aplicações de Programação Linear. Análise de Sensibilidade.

Leia mais

Artifical (utilizando o Jogo da Velha)

Artifical (utilizando o Jogo da Velha) Ensinando Técnicas de Inteligência Artifical (utilizando o Jogo da Velha) Prof. Dr. Luciano Antonio Digiampietri Escola de Artes, Ciências e Humanidades da USP Roteiro Contexto Educativo Descrição do Jogo

Leia mais

3 Aprendizado por reforço

3 Aprendizado por reforço 3 Aprendizado por reforço Aprendizado por reforço é um ramo estudado em estatística, psicologia, neurociência e ciência da computação. Atraiu o interesse de pesquisadores ligados a aprendizado de máquina

Leia mais

Quantidade de memória necessária

Quantidade de memória necessária Tempo de processamento Um algoritmo que realiza uma tarefa em 10 horas é melhor que outro que realiza em 10 dias Quantidade de memória necessária Um algoritmo que usa 1MB de memória RAM é melhor que outro

Leia mais

Aprendizado por Árvores de Decisão

Aprendizado por Árvores de Decisão Universidade Federal de Santa Maria Departamento de Eletrônica e Computação Prof. Cesar Tadeu Pozzer Disciplina de Programação de Jogos 3D E-mail: pozzer@inf.ufsm.br Período: 2006/01 Aprendizado por Árvores

Leia mais

Instituto de Matemática e Estatística, UFF Março de 2011

Instituto de Matemática e Estatística, UFF Março de 2011 ,,,,, Instituto de Matemática e Estatística, UFF Março de 2011 ,, Sumário,,. finitos,. conjunto: por lista, por propriedade.. Igualdade,. Propriedades básicas.. ,, Christos Papadimitriou, Autor dos livros

Leia mais

Satisfação de Restrições. Capítulo 5 (disponível online)

Satisfação de Restrições. Capítulo 5 (disponível online) Satisfação de Restrições Capítulo 5 (disponível online) Sumário Problemas de Satisfação de Restrições (CSPs, do Inglês Constraint Satisfaction Problems ) Procura com Retrocesso para CSPs Procura Local

Leia mais

Inteligência Artificial (SI 214) Aula 5 Problemas de Satisfação de Restrições

Inteligência Artificial (SI 214) Aula 5 Problemas de Satisfação de Restrições Inteligência Artificial (SI 214) Aula 5 Problemas de Satisfação de Restrições Prof. Josenildo Silva jcsilva@ifma.edu.br 2012 2012 Josenildo Silva (jcsilva@ifma.edu.br) Este material é derivado dos slides

Leia mais

O Amplificador Operacional 741. p. 2/2

O Amplificador Operacional 741. p. 2/2 p. 1/2 Resumo O Amplificador Operacional 741 Circuito de Polarização e circuito de protecção contra curto-circuito O andar de Entrada O Segundo andar e andar de Saída Polarização do 741 Análise de pequeno

Leia mais

Resolução de Problemas

Resolução de Problemas Resolução de Problemas 1 Agente de Resolução de Problemas (1/2) 2 O agente reativo Escolhe suas ações com base apenas nas percepções atuais não pode pensar no futuro, não sabe aonde vai 4 5 8 1 6 7 2 3?

Leia mais

Gestão. Investigação Operacional. Teste / Exame 3.º ano / 1.º Semestre 2009 / 2010

Gestão. Investigação Operacional. Teste / Exame 3.º ano / 1.º Semestre 2009 / 2010 Gestão Investigação Operacional Teste / Exame 3.º ano / 1.º Semestre 2009 / 2010 Data: Segunda-feira, 4 de Janeiro de 2010 Duração: 1h30m + 30m./ 2h30 m + 30m. Nome: Instruções: 1 Responda a todas as questões

Leia mais

CAPÍTULO 2 Visão Geral da Abordagem de Modelagem da Pesquisa Operacional 7

CAPÍTULO 2 Visão Geral da Abordagem de Modelagem da Pesquisa Operacional 7 SUMÁRIO CAPÍTULO 1 Introdução 1 1.1 A origem da pesquisa operacional 1 1.2 A natureza da pesquisa operacional 2 1.3 O impacto da pesquisa operacional 3 1.4 Algoritmos e/ou courseware 3 Referências selecionadas

Leia mais

INSTITUTO SUPERIOR TÉCNICO Análise e Síntese de Algoritmos. RESOLUÇÃO DO 2 o TESTE

INSTITUTO SUPERIOR TÉCNICO Análise e Síntese de Algoritmos. RESOLUÇÃO DO 2 o TESTE INSTITUTO SUPERIOR TÉCNICO Análise e Síntese de Algoritmos Ano Lectivo de 2006/2007 2 o Semestre RESOLUÇÃO DO 2 o TESTE I. (2,0+2,0+2,0 = 6,0 val.) 1) Calcule o valor óptimo da função objectivo e o respectivo

Leia mais

Método das Malhas. Abordagem Geral

Método das Malhas. Abordagem Geral Método das Malhas Abordagem Geral Método das Malhas 1. Associe uma corrente no sentido horário a cada malha fechada e independente do circuito. Não é necessário escolher o sentido horário para todas as

Leia mais

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse:

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br ELETRÔNICA, princípios e aplicações 2 Capítulo 8 Amplificador de Sinais Sumário do capítulo: 8.1

Leia mais

50 Anos Jogos Juvenis do Barreiro TORNEIO BASQUETEBOL 3 X 3

50 Anos Jogos Juvenis do Barreiro TORNEIO BASQUETEBOL 3 X 3 REGULAMENTO 1 Introdução 50 Anos Jogos Juvenis do Barreiro TORNEIO BASQUETEBOL 3 X 3 2014 O 3x3 (pronunciado 3 por 3), e anteriormente conhecido como FIBA 33, é uma versão formalizada do basquetebol de

Leia mais

CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES

CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES Vamos estudar alguns métodos numéricos para resolver: Equações algébricas (polinómios não lineares; Equações transcendentais equações que envolvem funções

Leia mais

ANÁLISE DE ALGORITMOS: PARTE 3

ANÁLISE DE ALGORITMOS: PARTE 3 ANÁLISE DE ALGORITMOS: PARTE 3 Prof. André Backes 2 A notação grande-o é a forma mais conhecida e utilizada de análise Complexidade do nosso algoritmo no pior caso Seja de tempo ou de espaço É o caso mais

Leia mais

1/ 36. Computação 1 - Python Aula 1 - Teórica: Introdução

1/ 36. Computação 1 - Python Aula 1 - Teórica: Introdução 1/ 36 Computação 1 - Python Aula 1 - Teórica: Introdução Conhecendo a turma Experiência com programação e uso do computador Quantos já programaram antes? Quais linguagens? Quantos tem computador em casa

Leia mais

Vectores. Figura Vector PQ

Vectores. Figura Vector PQ Vectores 1 Introdução Neste tutorial vou falar sobre vectores. Os vectores são muito importantes em muitas ciências quer para a matemática, quer para alguns tipos de programação (especialmente programação

Leia mais

Optimização em Redes e Não Linear

Optimização em Redes e Não Linear Departamento de Matemática da Universidade de Aveiro Optimização em Redes e Não Linear Ano Lectivo 005/006, o semestre Folha - Optimização em Redes - Árvores de Suporte. Suponha que uma dada companhia

Leia mais

Teoria dos Jogos Parte 1

Teoria dos Jogos Parte 1 Teoria dos Jogos Parte 1 GST0190 - MÉTODOS QUANTITATIVOS PARA TOMADA DE DECISÃO 3 de novembro de 2016 Slide 1 de 20 Teoria dos Jogos - Definição é o estudo de decisões interativas, no sentido de que os

Leia mais

4. O algoritmo LMS e variantes

4. O algoritmo LMS e variantes Apontamentos de Processamento Adaptativo de Sinais 4. O algoritmo LMS e variantes Família de algoritmos do gradiente Na prática usam-se estimativas do gradiente, ˆ (n), em vez do verdadeiro gradiente (n),

Leia mais

Resolução de problemas por meio de busca. Inteligência Artificial

Resolução de problemas por meio de busca. Inteligência Artificial 1 Resolução de problemas por meio de busca (Capítulo 3 - Russell) Inteligência Artificial Professor: Rosalvo Ferreira de Oliveira Neto 2 Estrutura 1. Agente de resolução de problema 2. Tipos de problema

Leia mais

12 = JL (DE UMA A TRÊS CASAS EM QUALQUER DIREÇÃO, INCLUSIVE R1 PARA OS PEÕES)

12 = JL (DE UMA A TRÊS CASAS EM QUALQUER DIREÇÃO, INCLUSIVE R1 PARA OS PEÕES) XADREZ DA SORTE MATERIAL UM TABULEIRO COMUM DE 64 CASAS. DOIS DADOS COMUNS. AS 32 PEÇAS DO JOGO DE XADREZ. PONTUAÇÃO DOS DADOS A PONTUAÇÃO PARA MOVIMENTAÇÃO É A SEGUINTE: 2 = R1 (RETORNA UMA CASA) 3 =

Leia mais

UNIVERSIDADE FEDERAL DE ALFENAS PROGRAMA DE ENSINO DE DISCIPLINA

UNIVERSIDADE FEDERAL DE ALFENAS PROGRAMA DE ENSINO DE DISCIPLINA Curso: Biotecnologia (13) Ano: 2014 Semestre: 1 Período: 1 Disciplina / Unid. Curricular / Módulo: Cálculo Diferencial e Integral I Código: DCE32 (Differential and Integral Calculus I) Carga Horária Total:

Leia mais

PLANO CURRICULAR DISCIPLINAR. MATEMÁTICA 9º Ano

PLANO CURRICULAR DISCIPLINAR. MATEMÁTICA 9º Ano PLANO CURRICULAR DISCIPLINAR MATEMÁTICA 9º Ano OBJETIVOS ESPECÍFICOS TÓPICOS SUBTÓPICOS METAS DE APRENDIZAGEM 1º Período - Identificar e dar exemplos de fenómenos aleatórios e deterministas, usando o vocabulário

Leia mais

O mais leve e o mais pesado Algoritmos de Ordenação

O mais leve e o mais pesado Algoritmos de Ordenação Atividade 7 O mais leve e o mais pesado Algoritmos de Ordenação Sumário Os computadores são muitas vezes utilizados para colocar listas em algum tipo de ordem, por exemplo, nomes em ordem alfabética, compromissos

Leia mais

Resolução de Problemas. Hugo Barros

Resolução de Problemas. Hugo Barros Resolução de Problemas Hugo Barros Resolução de Problemas Tópicos Conceitos Básicos Espaço de Estados Resolução de Problemas Dedica-se ao estudo e elaboração de algoritmos, capazes de resolver, por exemplo,

Leia mais

Jogos de soma zero com dois jogadores

Jogos de soma zero com dois jogadores Jogos de soma zero com dois jogadores Problema: Dada uma matriz A m n, encontrar um equilíbrio de Nash (de estratégias mistas). Jogador 1 quer encontrar p que maximize v sujeito a i p i = 1 sujeito a (pa)

Leia mais

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial Resumo Sinais e Sistemas Transformada de aplace uís Caldas de Oliveira lco@istutlpt Instituto Superior Técnico Definição da transformada de aplace Região de convergência Propriedades da transformada de

Leia mais

Regulamento do Torneio de Matraquilhos

Regulamento do Torneio de Matraquilhos Regulamento do Torneio de Matraquilhos O Plano de Atividades e Orçamento da Associação de Estudantes do Externato Frei Luís de Sousa para o mandato 2013/2014 prevê a organização de um Torneio de Damas.

Leia mais

UC: Economia da Empresa

UC: Economia da Empresa UC: Economia da Empresa 11ª Sessão Curso: Licenciatura em Gestão de Marketing Docente: Nuno J. Farinha 1 Estruturas de Mercado: Extremos Mercados imperfeitamente competitivos Mercados Perfeitamente Competitivos

Leia mais

Excel - Funções Estatísticas

Excel - Funções Estatísticas Excel - Funções Estatísticas DEPARTAMENTO DE CIÊNCIAS E TECNOLOGIAS DA INFORMAÇÃO 1 Descrição geral: Utilizar funções e fórmulas estatísticas Obtenha informações sobre como utilizar funções e fórmulas

Leia mais

Fundamentos de Teoria dos jogos

Fundamentos de Teoria dos jogos Fundamentos de Teoria dos jogos A Teoria dos Jogos é um ramo da matemática aplicada que estuda situações estratégicas em que jogadores escolhem diferentes ações na tentativa de melhorar seu retorno. Na

Leia mais

Teste Intermédio de Matemática A Matemática A Versão 1 11.º Ano de Escolaridade COTAÇÕES GRUPO I 50 pontos GRUPO II 150 pontos

Teste Intermédio de Matemática A Matemática A Versão 1 11.º Ano de Escolaridade COTAÇÕES GRUPO I 50 pontos GRUPO II 150 pontos Teste Intermédio de Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 27.01.2010 11.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março COTAÇÕES GRUPO

Leia mais

Inteligência Artificial

Inteligência Artificial https://www.pinterest.com/carlymundo/decision-tree-infographics/ Universidade Federal de Campina Grande Departamento de Sistemas e Computação Pós-Graduação em Ciência da Computação Inteligência Artificial

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial INF 1771 Inteligência Artificial Aula 03 Resolução de Problemas por Meio de Busca Edirlei Soares de Lima Introdução Agentes Autônomos: Entidades autônomas capazes de observar o ambiente

Leia mais

Resolução de sistemas de equações lineares: Fatorações de matrizes

Resolução de sistemas de equações lineares: Fatorações de matrizes Resolução de sistemas de equações lineares: Fatorações de matrizes Marina Andretta/Franklina Toledo ICMC-USP 27 de fevereiro de 2015 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina

Leia mais

Aula 27 - Álgebra II. x (m(x)), x 2 + x + (m(x)), x 2 + x (m(x)) operações deste corpo são as seguintes:

Aula 27 - Álgebra II. x (m(x)), x 2 + x + (m(x)), x 2 + x (m(x)) operações deste corpo são as seguintes: Já vimos maneiras de codificar mensagens de modo a que, no caso de ocorrerem alguns erros na sua transmissão, o receptor possa ser capaz de corrigir esses erros. Esses códigos, chamados códigos lineares

Leia mais

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e):

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Adição de probabilidades O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Dois eventos A e B são ditos mutuamente exclusivos se, e somente se, A B

Leia mais

Distorções Dinâmicas no Tempo & Pesquisa. Distorção dinâmica no tempo Pesquisa Algoritmos gráficos de pesquisa Algoritmos de programação dinâmica

Distorções Dinâmicas no Tempo & Pesquisa. Distorção dinâmica no tempo Pesquisa Algoritmos gráficos de pesquisa Algoritmos de programação dinâmica Distorções Dinâmicas no Tempo & Pesquisa Distorção dinâmica no tempo Pesquisa Algoritmos gráficos de pesquisa Algoritmos de programação dinâmica 1 Casamento de Template Baseado em Palavra Medida de Característica

Leia mais

Capítulo 1 - Erros e Aritmética Computacional

Capítulo 1 - Erros e Aritmética Computacional Capítulo 1 - Erros e Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil e Electrotécnica Carlos Balsa Métodos Numéricos 1/ 21 Sumário

Leia mais

O Método DMRG. M. H. L. de Medeiros. TQMC 2 o semestre de Instituto de Física da Universidade de São Paulo

O Método DMRG. M. H. L. de Medeiros. TQMC 2 o semestre de Instituto de Física da Universidade de São Paulo O Método DMRG M. H. L. de Medeiros Instituto de Física da Universidade de São Paulo TQMC 2 o semestre de 2015 de Medeiros (IFUSP) O Método DMRG TQMC 2015 1 / 38 Sumário 1 Introdução 2 Ideia Básica 3 Exemplo

Leia mais

Algoritmo. O algoritmo foi desenvolvido tendo em conta os 2 principais motivos para o funcionamento dos electrodomésticos:

Algoritmo. O algoritmo foi desenvolvido tendo em conta os 2 principais motivos para o funcionamento dos electrodomésticos: Algoritmo O algoritmo foi desenvolvido tendo em conta os 2 principais motivos para o funcionamento dos electrodomésticos: Horário de permanência do utilizador na casa e/ou horário com diferentes preços

Leia mais

QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE

QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE 1) Uma moeda não tendenciosa é lançada quatro vezes. A probabilidade de que sejam obtidas duas caras e duas coroas é: (A) 3/8 (B) ½ (C) 5/8 (D) 2/3

Leia mais

MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO

MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T4 FÍSICA EXPERIMENTAL I - 007/08 MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO 1. Objectivo Estudo do movimento de rotação de um corpo

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros

Leia mais

Técnicas de Programação III Análise de Algoritmos (Continuação)

Técnicas de Programação III Análise de Algoritmos (Continuação) Técnicas de Programação III Análise de Algoritmos (Continuação) Aula ministrada em: 23/08/2007 Prof. Mauro L. C. Silva 1/10 Objetivos da Aula Entender a Análise e a Complexidade de Algoritmos 2/10 Avaliação

Leia mais

Jogos de Tabuleiro e Busca Competitiva

Jogos de Tabuleiro e Busca Competitiva Jogos de Tabuleiro e Busca Competitiva Fabrício Jailson Barth Curso de Ciência da Computação Centro Universitário SENAC Maio de 2008 Sumário Características e Exemplos Histórico Árvore de busca Avaliação

Leia mais