Resolução 2 o Trabalho de Análise Matemática I ETI/LEI (02 de Dezembro de 2010)

Tamanho: px
Começar a partir da página:

Download "Resolução 2 o Trabalho de Análise Matemática I ETI/LEI (02 de Dezembro de 2010)"

Transcrição

1 Resolução o Trabalho de Análise Matemática I ETI/LEI ( de Dezembro de ) Diana A. Mendes a). Z ( + e ) d Z Z µ () d + (e ) d +(e ) µ + e e +e +e b). µ Z d Z µ d Z µ +( +) d (arctan ( +)) arctan arctan c). Z µ d + Z Z Z µ d ( + ) µ Z µ d + d + µ d Z µ + (ln ) µ ln + ln ln ln 5 + ln ln ln 5 d

2 C.A. (função racional própria) ( + ) A + B + C A + A + B + C + ( + ) (A + B)+C + A ( + ) A + B C A B C A Portanto temos a seguinte decomposição em fracções simples d). Z 9 4 C.A. ( + ) + + µ d + +ln ln 4 4 ln7+ln P {z } Substituição: t t t P t t P t t t P t + P t t t +P t (t ) (t +) P +P P (t +)+P t t t t +t +ln t t +t +ln t + +ln

3 Z 4/ /4 Subst: e). µ d ln + + 4/ + /4 r ln r ln ln ln 4 C.A. P {z + } tant cos t t arctan f). Z π/ µ P tan t + P cos t r sin t cos t + cos t P r µ cos t P P cos cos t t cos t cos t ln cos t +tant ln + tan (arctan ) cos (arctan ) ln + + ( cos ) d ( sin +cos) π/ π sin π +cosπ sin cos π/ C.A. Pcos {z } sin P sin sin +cos ½ ½ u partes cos u sin v v

4 a). Z d (t +)dt + ( + ) + d b). d d Z sin cos e t dt e sin cos (e cos )( sin ) e sin cos + e cos sin a). + y 5 Representação gráfica: y +(recta que passa em,y e,y ) y 5 (parábola que em ± 5 e yy em y 5) Pontos de intersecção entre os dois gráficos: e - 5 y + y y 5 4

5 Cálculo da área: A Z µ 5 ( +) Z d + d + Ã µ + ( ) ( )! +( ) 9 b). y, y Representação gráfica: y (eio dos ) y (cúbica que em e ± e yy em y ) y y Cálculo da área: A Z Z d + d µ 4 4 µ µ 4 µ

6 4a). Z π/ cos sin d {z } integral impróprio em π/ lim ε π/ Z ε Z ε cos sin d lim cos ( sin ) / d ε π/ Ã ( sin ε! ³ )/ lim lim sin ε ε π/ / ε π/ ³ lim sin ε + sin ε π/ ³ lim sin ε + (pois sin (π/) ) ε π/ Integral impróprio convergente 4b). Z + + d {z } integral de limite infinito ± Z lim ε lim ε Z + + d + + d Z d + lim + ε ε + arctan ε + lim Z ε + d ε + (arctan ε ) lim (arctan arctan ε)+ lim (arctan ε arctan ) ε ε + lim ( arctan ε)+ lim (arctan ε ) ε ε + π/+π/ π Integral de limite infinito convergente 6

7 5a). y ln, Comprimento de linha: Z q Z s L +(y ) µ Z r + d + d d Z Ã d +ln! µ +ln ³ +ln '.9785 Subst: C.A. + P {z } tant cos t t arctan P Ã tan t + tan t! cos t P cos t tan t cos P t P sin t +cos t sin t cos t P sin t cos t + P cos t sin t cos t P sin t sin t cos t + P cos P t cos t sin t cos t sin t cos t sin t P sin t (cos t) + P sin t (cos t) +ln sin t cot t cos t +ln sin t cot t cos (arctan ) +ln cot (arctan ) sin (arctan ) + + +ln 7

8 L 5b). Comprimento de linha: Z Z q +(y ) d Ãr! + d {z } integral impróprio em y, s µ + d Z Ãr! + lim d ε ε Z Z Ãr! + d µ µ lim ln ++ ε + p ( + +) ε Ã lim + ε ln +! µ ε ++ ε ln + p ε (ε +) ε + ε {z } {z } Ã + ln +! '.956 Portanto o integral impróprio é convergente e o comprimento de linha é.956 8

9 Subst: C.A. r + P {z } r + t t t (t ) µ Pt t t (t ) P (t ) µ /4 P t + /4 (t ) + /4 t + + /4 (t +) µ P /4 t + P /4 (t ) + P /4 t + + P /4 (t +) µ 4 P t + 4 P (t ) 4 P t + + P (t +) 4 µ 4 ln t 4(t ) 4 ln t + 4(t +) r + ln + Ãr! r + ln + + Ãr! + + µ ln ++ + p ( +) + C.A.: função racional própria 9

10 t (t ) t (t ) (t +) A t + B (t ) + C t + + D (t +) A (t ) (t +) + B (t +) + C (t +)(t ) + D (t ) (t ) (t +) t (A + C)+t (A + B C + D)+t ( A +B C D) +(B A + C + D) (t ) (t +) A + C A + B C + D A B + C +D A + B + C + D A /4 B /4 C /4 D /4 portanto temos a seguinte decomposição em fracções simples t (t ) (t +) /4 t + /4 (t ) + /4 t + + /4 (t +) (fim C.A.) (fim C.A.) 6a). d dy + y equação diferencial ( a ordem) de variáveis separadas d dy + y + d Z Z y dy + d y dy ln y ln + + c, c R (solução geral) 6b). + y (+y) + dy d (+y) + dy (+y) d equação diferencial ( a ordem) de variáveis separadas

11 ( + y) 6c). Z Z ( + y) dy ( + ) d ( + y) dy Z ( + y) dy arctan + c, c R arctan + c, c R (solução geral) y y 4 cos y y cos ( + ) d (dividimos por ) e temos uma equação diferencial linear de a ordem Substituição: y uv Derivada: dy d du d v + udv d Obtem-se: du d v + udv d uv cos Pôr u em evidência: µ du dv d v + u d v cos dv d v du d v cos ( ) equações dif. de variáveis separadas. Resolvemos a primeira: dv d v dv d v v dv d Z Z v dv d ln v ln ln v ln v

12 Resolvemos a segunda equação dif. du d v cos du d cos du d cos du cos d Z Z du cos d u Z cos d {z } Pa cos asin a u sin ( )+c Portanto a solução geral é µ y uv sin + c, c R 6d). (cos cos y) dy d siny + y sin (cos cos y) dy (siny + y sin ) d (sin y + y sin ) d +( cos + cos y) dy {z } {z } M(,y) N(,y) Verificar se é uma equação diferencial eacta (total) M y N M y (siny + y sin ) y cosy +sin N ( cos + cos y) sin +cosy como M y N, conclui-se que a equação dada é eacta. Procuramos uma solução geral de forma F (, y) c, c R onde F M (, y) siny + y sin () F N (, y) cos + cos y () y

13 Integrar () em relação a variável Z Z F d (sin y + y sin ) d F (, y) sin y y cos + h (y) () Derivar () em ordem a variável y F y F y {z} N(,y) ( sin y y cos + h (y)) y cos y cos + dh dy N (, y) cos y cos + dh dy cos + cos y cos y cos + dh dy dh dy Como dh h (y) c, c R (determinamos a epressão da função dy h(y)). Logo a solução geral é de forma (substituindo h (y) em ()): 6e). F (, y) sin y y cos + c sin y y cos c, c R ( +) dy d y 4 + dy d y dy d y + ( +) + dy d y + equação diferencial linear de primeira ordem Substituição: y uv

14 Derivada: Obtem-se: Pôr u em evidência: dy d du d v + udv d du d v + udv d uv + µ du dv d v + u d v + dv d v + du d v equações dif. de variáveis separadas. Resolvemos a primeira: dv d v + dv d v + v dv Z Z + d v dv ln v ln + v + + d Resolvemos a segunda equação dif. du d v du d ( +) du d Z Z du + d du + d Z u d u + {z } racional imprópria (dividir) + Z µ + + d u + ln + + c Portanto a solução geral é y uv µ + ln + + c ( +), c R 4

15 6f). µy + y d + 4 y dy µy + y d +4 ydy 4 (y) dy µy + y d equação diferencial de variáveis separáveis y y + dy µ y 4 d y 4 + y Z µ y Z dy y d Z 8 dy 4 d 8y Z y 4 + dy 4 d 8 ln y 4 + ln + c, c R (solução geral) 4 6g). + dy + y + + d y + + d + + dy {z } {z } M(,y) N(,y) como Verificar se é uma equação diferencial eacta (total) M y N M y (y + + ) y N (+ ) M y 6 N, conclui-se que a equação dada não é eacta. Verificar a eistência de um factor integrante de tipo μ μ (), isto é M y N N (, y) + + 5

16 como a epressão calculada só depende de, temos confirmada a eistência de um factor integrante de tipo μ μ (). Determinar a epressão do factor integrante: M dμ d μ y N N (, y) dμ d μ µ + µ Z Z µ μ dμ d + μ dμ d + ln μ ln + μ + (factor integrante) Multiplicar a equação diferencial dada pelo factor integrante: y + + d + + dy {z } {z } M(,y) N(,y) µ µ y d + dy + + {z } {z } M (,y) N (,y) Verificar se a nova equação é eacta M y N M y N µ y y + µ Como a nova equação diferencial é eacta, procuramos uma solução geral de forma F (, y) c, c R onde F M (, y) y + + () + F y N (, y) + () 6

17 Integrar () em relação a variável Z Z µ F y + d + d + Z µ Z µ y Z µ F (, y) d + d + d + h (y) F (, y) y Z µ + + d h (y) + {z } C.A. F (, y) y h (y) F (, y) y h (y) () C.A. µ P + {z } Subst: tan t, sec t P µ tan t +tan t sin t P cos t cos t cos t P sin t cos 4 t P sin t sin t P sin t ( cos t) cos 4 t cos 4 t P sin t sin t cos t cos 4 t P sin t cos 4 t P sin t cos t cos 4 t cos t P sin t cos 4 t P sin t cos t P sin t (cos t) 4 P sin t (cos t) (cos t) (cos t) + cos t cos t cos (arctan ) cos (arctan )

18 Derivar () em ordem a variável y F y F y {z} N(,y) µ y h (y) y + + dh dy N (, y) + + dh dy dh dy dh dy Como dh h (y) c, c R (determinamos a epressão da função dy h(y)). Substituindo h(y) em () obtem-se a solução geral da eq. dif., isto é F (, y) y h (y) F (, y) y c y c, c R 7a). ½ y + y e y() Problema com valores iniciais, onde y + y e y + y e é uma equação diferencial linear de a ordem. Substituição: y uv 8

19 Derivada: Obtem-se: Pôr u em evidência: dy d du d v + udv d du d v + udv d + uv e µ du dv d v + u d + v e dv d + v du d v e equações dif. de variáveis separadas. Resolvemos a primeira: dv d + v dv d v v dv d Z Z v dv d ln v ln ln v ln v Resolvemos a segunda equação dif. du d v e du µ e d du d e Z Z du e d du e d u e + c u e + c Portanto a solução geral é y uv (e + c) µ, c R Solução particular para a condição inicial: y(), isto é, substituir na solução geral: y e ou seja µ y (e + c) e + c c e 9

20 logo obtem-se a seguinte solução particular: µ y (e e) 7b). ½ y y (y 4 +)cos y() Problema com valores iniciais onde y y y 4 + cos y dy d y 4 + cos é uma equação diferencial de variáveis separadas Z y y Z dy cosd y 4 + y 4 + dy cos d Z 4y Z 4 y 4 + dy cos d 4 ln y 4 + sin + c (solução geral) Para obter a solução particular fazemos y e, isto é 4 ln y 4 + sin + c 4 ln 4 + sin+c c, logo temos a solução particular 4 ln y 4 + sin 8a). y 4y +4y equação diferencial (de segunda ordem) linear, de coeficientes constantes e homogénea Equação característica: k 4k +4

21 Raizes da equação característica: k raiz real dupla (duas raizes reais iguais) Então y () e k e e y () e k e eportantoasolução geral é dada por y () c y ()+c y () c e + c e, c,c R 8b). y 6y +8y equação diferencial (de segunda ordem) linear, de coeficientes constantes e não-homogénea. Equação homogénea associada Equação característica: y 6y +8y k 6k +8 Raizes da equação característica: k,k 4 ( raizes reais diferentes). Então y () e k e e y () e k e 4 eportantoasolução geral da eq. homogénea é dada por y GH () c y ()+c y () c e + c e 4, c,c R A solução geral da eq. não-homogénea é de forma y () y GH ()+y P () onde ainda falta determinar a solução particular y P () c () e + c () e 4 (onde c () e c () vão ser determinados pelo método de variação das constantes)

22 Formar o sistema c () y ()+c () y () c () y ()+c () y () c () c () e c ()e + c ()4e 4 c () e + c () e 4 c ()e + c ()4e 4 c () c () e c () e 4 ( c () e c () e 4 Para obter c () e c () temos que primitivar c () e c () c () Pc () P µ e Pe 4 P e 4 e c () Pc () P e 4 Pe 4 8 P 4e 4 8 e 4 Logo a solução geral da equação não-homogénea é dada por y () y GH ()+y P () µ µ c e + c e e e + 8 e 4 {z } {z } c () c () c e + c e c e + c e e 4 8c). y y y sin() equação diferencial (de segunda ordem) linear, de coeficientes constantes e não-homogénea.

23 Equação homogénea associada Equação característica: y y y k k Raizes da equação característica: k,k ( raizes reais diferentes). Então y () e k e e y () e k e e portanto a solução geral da eq. homogénea é dada por y GH () c y ()+c y () c e + c e, c,c R A solução geral da eq. não-homogénea é de forma y () y GH ()+y P () onde ainda falta determinar a solução particular y P () c () e + c () e (onde c () e c () vão ser determinados pelo método de variação das constantes) Formar o sistema ( c () y ()+c () y () c () y ()+c () y () sin() ( c () e + c () e c ()e c () e sin() ( c () c () e c ()e c () e sin() ( c () c () e c () e sin () ( c () e sin () c () e sin ()

24 Para obter c () e c () temos que primitivar c () e c () c () Pc () P e sin () Pe sin () resolver Pe sin () ½ u e Partes: v sin() Pe sin () e sin () P ½ u e v cos() µ e cos() e sin ()+ + P e cos () {z } ½ ½ u e u Partes: e v cos() v sin() e sin () e cos () P µµ e ( sin()) e sin () e cos () P e sin () fechar o ciclo Pe sin () e sin () e cos () P e sin () Pe sin () e sin () e cos () Pe sin () 4 e sin () 4 e cos () portanto c () Pe sin () µ 4 e sin () 4 e cos () 6 e sin () 6 e cos () 4

25 µ c () Pc () P e sin () Pe sin () ½ ½ u Partes: e u e v sin() v cos() Pe sin () e sin () P (e cos()) e sin () P (e cos ()) Partes: ½ u e v cos() {z ½ } u e v sin() e sin () e cos () P (e ( sin())) e sin () e cos ()+4P (e sin ()) fechar o ciclo Pe sin () e sin () e cos ()+4P (e sin ()) Pe sin () e sin () e cos () Pe sin () (e sin () e cos ()) portanto c () Pe sin () µ (e sin () e cos ()) 9 (e sin () e cos ()) Logo a solução geral da equação não-homogénea é dada por y () y GH ()+y P () µ c e + c e + 6 e sin () 6 e cos () e + {z } c () µ + 9 (e sin () e cos ()) {z } c () c e + c e 6 sin () 6 cos ()+ 9 sin () 4 cos () 9 c e + c e 8 cos ()+ sin () 8 5 e

26 9a). y +y +y, y () y () Aplicar a transformada de Laplace a equação diferencial dada: L [y +y +y] L [] L [y ]+L [y ]+L [y] L [] s L [y] sy () {z} y () {z } s F (s)+sf (s)+f (s) s F (s) s (s +s +) F (s) /4 + / s s + s + + /4 s + +sl [y] y () +F (s) {z} s Aplicar Transformada Inversa para a última epressão /4 y () L + / s s + s + + /4 s + /4 / /4 y () L + L + L + L s s s + s + y () 4 e + e + e 4 e portanto temos a seguinte solução particular y () e 4 e C.A. Método dos coeficientes indeterminados (para a decomposição em 6

27 fracções simples) logo s (s +s +) s (s +s +) s (s +)(s +) A s + B s + C s + + D s + s (A + C + D)+s (A + B +C + D)+ +s (A +B)+B /4 s s (s +)(s +) A + C + D A + B +C + D A +B B + / s + s + + /4 s +. A /4 B / C D /4 9b). y + y sin, y () Aplicar a transformada de Laplace a equação diferencial dada: L [y + y] L [sin ] L [y ]+L[y] L [sin ] sl [y] y () + F (s) {z} +s sf (s)+f (s) F (s)(s +) +s +s F (s) (s +)(s +) F (s) s + + s + s + 7

28 Aplicar Transformada Inversa para a última epressão y () L s + + s + s + y () L + L s + s + s + y () e cos + sin portanto temos a seguinte solução particular y () e cos + sin 8

FEUP - MIEEC - Análise Matemática 1

FEUP - MIEEC - Análise Matemática 1 FEUP - MIEEC - Análise Matemática Resolução da a Chamada - de Janeiro de 9 Respostas a perguntas diferentes em folhas diferentes Justifique cuidadosamente todas as respostas. Não é permitida a utilização

Leia mais

Matemática 2 Engenharia Eletrotécnica e de Computadores

Matemática 2 Engenharia Eletrotécnica e de Computadores Matemática Engenharia Eletrotécnica e de Computadores Eercícios Compilados por: Alzira Faria Ana Cristina Meira Ana Júlia Viamonte Carla Pinto Jorge Mendonça Teórico-prática. Indique o domínio das funções:

Leia mais

Matemática. Lic. em Enologia, 2009/2010

Matemática. Lic. em Enologia, 2009/2010 Universidade de Trás-os-Montes e Alto Douro Matemática Lic. em Enologia, 009/00 a Parte: Álgebra Linear Vectores em R n e em C n. Sejam u = (, 7,, v = ( 3, 0, 4 e w = (0, 5, 8. Calcule: a 3u 4v b u + 3v

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Prof. Guilherme Jahnecke Wemar AULA 03 Equações diferenciais de primeira ordem Equações separáveis Fonte: Material Daniela Buske, Boce, Bronson, Zill, diversos internet

Leia mais

d [xy] = x cos x. dx y = sin x + cos x + C, x

d [xy] = x cos x. dx y = sin x + cos x + C, x Instituto de Matemática e Estatística da USP MAT2455 - Cálculo Diferencial e Integral IV para Engenharia 3a. Prova - 2o. Semestre 2011-21/11/2011 Turma A Questão 1. a) (1,0 ponto) Determine a solução geral

Leia mais

Universidade Federal do Espírito Santo Terceira Prova de Cálculo I Data: 06/11/2012 Prof. Lúcio Fassarella DMA/CEUNES/UFES.

Universidade Federal do Espírito Santo Terceira Prova de Cálculo I Data: 06/11/2012 Prof. Lúcio Fassarella DMA/CEUNES/UFES. Universidade Federal do Espírito Santo Terceira Prova de Cálculo I Data: 6// Prof. Lúcio Fassarella DMA/CEUNES/UFES Aluno: Matrícula Nota: : :. (3 pontos) Calcule as integrais inde nidas (i) + d (ii) +

Leia mais

Notas sobre primitivas

Notas sobre primitivas Análise Matemática I - Engenharia Topográ ca - 9/- Notas sobre primitivas Notas sobre primitivas Seja f uma função real de variável real de nida num intervalo real I: Chama-se primitiva de f no intervalo

Leia mais

Universidade de Trás-os-Montes e Alto Douro. Biomatemática/ Matemática I FOLHAS PRÁTICAS

Universidade de Trás-os-Montes e Alto Douro. Biomatemática/ Matemática I FOLHAS PRÁTICAS Universidade de Trás-os-Montes e Alto Douro Biomatemática/ Matemática I FOLHAS PRÁTICAS Licenciaturas em Arquitectura Paisagista, Biologia e Geologia (ensino) e Biologia (cientíco) Ano lectivo 004/005

Leia mais

Secção 2. Equações diferenciais de primeira ordem

Secção 2. Equações diferenciais de primeira ordem . Equações diferenciais de primeira ordem Secção. Equações diferenciais de primeira ordem (Farlow: Sec..,.) Vamos nesta secção analisar como podem ser resolvidos diferentes tipos de EDOs de primeira ordem.

Leia mais

EXAMES DE ANÁLISE MATEMÁTICA III

EXAMES DE ANÁLISE MATEMÁTICA III EXAMES DE ANÁLISE MATEMÁTICA III Jaime E. Villate Faculdade de Engenharia Universidade do Porto 22 de Fevereiro de 1999 Resumo Estes são alguns dos exames e testes da disciplina de Análise Matemática III,

Leia mais

1. Matrizes. 1. Dê um exemplo, em cada alínea, de uma matriz A = [a ij ] m n com:

1. Matrizes. 1. Dê um exemplo, em cada alínea, de uma matriz A = [a ij ] m n com: Matemática Licenciatura em Biologia 4 / 5. Matrizes.. Dê um eemplo, em cada alínea, de uma matriz A = [a ij ] m n com: m =, n = cuja soma das entradas principais seja. (b) m = n = 4 com a a e a 4 = a 4.

Leia mais

d [xy] = x arcsin x. dx + 4x

d [xy] = x arcsin x. dx + 4x Instituto de Matemática e Estatística da USP MAT456 - Cálculo Diferencial e Integral IV para Engenharia 3a. Prova - o. Semestre 01-6/11/01 Turma A Questão 1. a (1,0 ponto Determine a solução geral da equação

Leia mais

Notas sobre primitivas

Notas sobre primitivas MTDI I - 007/08 - Notas sobre primitivas Notas sobre primitivas Seja f uma função real de variável real de nida num intervalo real I: Chama-se primitiva de f no intervalo I a uma função F cuja derivada

Leia mais

MAP2223 Introdução às Equações Diferenciais Ordinárias e Aplicações

MAP2223 Introdução às Equações Diferenciais Ordinárias e Aplicações AP3 Introdução às Equações Diferenciais Ordinárias e Aplicações Lista semestre de 017 Prof Claudio H Asano 1 Equações Diferenciais de Primeira Ordem 11 Utilize a mudança de variável y = v, dy = vd+dv para

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I LEIC 1 o Sem. 2009/10 9 a FICHA DE EXERCÍCIOS. 1) Quais dos seguintes integrais são impróprios? Porquê?

CÁLCULO DIFERENCIAL E INTEGRAL I LEIC 1 o Sem. 2009/10 9 a FICHA DE EXERCÍCIOS. 1) Quais dos seguintes integrais são impróprios? Porquê? Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise CÁLCULO DIFERENCIAL E INTEGRAL I LEIC o Sem. 9/ 9 a FICHA DE EXERCÍCIOS I. Integrais Impróprios. ) Quais dos seguintes

Leia mais

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA. MATEMÁTICA APLICADA 1 o SEMESTRE 2016/2017

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA. MATEMÁTICA APLICADA 1 o SEMESTRE 2016/2017 3 de janeiro de 7 Instruções: INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA APLICADA o SEMESTRE 6/7 Resolução do o Teste Duração: hm É obrigatória

Leia mais

EQUAÇÕES DIFERENCIAIS

EQUAÇÕES DIFERENCIAIS EQUAÇÕES DIFERENCIAIS Uma equação diferencial é aquela em que a função incógnita aparece sob a forma da sua derivada. Havendo uma só variável independente as derivadas são ordinárias e a equação é denominada

Leia mais

Cálculo Diferencial e Integral I - LEIC

Cálculo Diferencial e Integral I - LEIC INSTITUTO SUPERIOR TÉCNICO Departamento de Matemática de Janeiro de Cálculo Diferencial e Integral I - LEIC ō Teste - Versão - Resolução. Indique uma primitiva para a função definida em ], e [ pela epressão

Leia mais

x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3

x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3 Página 1 de 4 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC 118 Gabarito segunda prova - Escola Politécnica / Escola de Química - 13/06/2017 Questão 1: (2 pontos) Determinar

Leia mais

Universidade Federal do Pará Instituto de Tecnologia. Cálculo III. Campus de Belém Curso de Engenharia Mecânica

Universidade Federal do Pará Instituto de Tecnologia. Cálculo III. Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto de Tecnologia Cálculo III Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto de Tecnologia

Leia mais

Equações Diferenciais de Segunda Ordem. Copyright Cengage Learning. Todos os direitos reservados.

Equações Diferenciais de Segunda Ordem. Copyright Cengage Learning. Todos os direitos reservados. 17 Equações Diferenciais de Segunda Ordem Copyright Cengage Learning. Todos os direitos reservados. 17.2 Equações Lineares Não Homogêneas Copyright Cengage Learning. Todos os direitos reservados. Equações

Leia mais

ANÁLISE MATEMÁTICA IV EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM ESCALARES E FORMAS CANÓNICAS DE JORDAN. tet + t

ANÁLISE MATEMÁTICA IV EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM ESCALARES E FORMAS CANÓNICAS DE JORDAN. tet + t Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA 4 EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM ESCALARES E FORMAS CANÓNICAS DE JORDAN () Determine

Leia mais

1 Definição de uma equação diferencial linear de ordem n

1 Definição de uma equação diferencial linear de ordem n Equações diferenciais lineares de ordem superior 1 1 Definição de uma equação diferencial linear de ordem n Equação diferencial linear de ordem n é uma equação da forma: a n (x) dn y dx n + a n 1(x) dn

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva = 0 e = y = nos pontos onde Vamos determinar a reta tangente à curva y = nos pontos

Leia mais

Conceitos: Função. Domínio, contradomínio e imagem de uma função. Funções potência, exponencial e

Conceitos: Função. Domínio, contradomínio e imagem de uma função. Funções potência, exponencial e Matemática II 05/6 Curso: Gestão Departamento de Matemática ESTG-IPBragança Ficha Prática : Revisões: Funções, Derivadas. Primitivas -------------------------------------------------------------------------------------------------------------------

Leia mais

Faculdade de Economia Universidade Nova de Lisboa Primavera 2004/2005. Cálculo I. Caderno de Exercícios 4

Faculdade de Economia Universidade Nova de Lisboa Primavera 2004/2005. Cálculo I. Caderno de Exercícios 4 Faculdade de Economia Universidade Nova de Lisboa Primavera 2004/2005 Cálculo I Caderno de Eercícios 4 Limites, continuidade e diferenciabilidade de funções; fórmulas de Taylor e MacLaurin; estudo de funções.

Leia mais

Equações Diferenciais Noções Básicas

Equações Diferenciais Noções Básicas Equações Diferenciais Noções Básicas Definição: Chama-se equação diferencial a uma equação em que a incógnita é uma função (variável dependente) de uma ou mais variáveis (independentes), envolvendo derivadas

Leia mais

Resolução de Questões das Listas de Cálculo de Uma Variável:

Resolução de Questões das Listas de Cálculo de Uma Variável: Eercícios resolvidos: Cálculo I -A- Cálculo Diferencial e Integral Aplicado I Cálculo Aplicado I Lista Questão Lista Questão 20 20 6 6 40 40 4 4 2 2 4 6 4 6 4 24 4 24 5 8 5 8 8 8 9 9 9 4 9 4 2 0 2 0 7

Leia mais

Análise Complexa e Equações Diferenciais 2 o Semestre 2014/2015

Análise Complexa e Equações Diferenciais 2 o Semestre 2014/2015 Análise Complexa e Equações Diferenciais 2 o Semestre 2014/2015 (Cursos: 2 o Teste, versão A LEAN, LEGM, LMAC, MEBiom, MEC, MEFT, MEMec) 30 de Maio de 2015, 9h Duração: 1h 30m INSTRUÇÕES Não é permitida

Leia mais

Integrais indefinidas

Integrais indefinidas Integrais indefinidas que: Sendo f() e F() definidas em um intervalo I R, para todo I, dizemos F é uma antiderivada ou uma primitiva de f, em I, se F () = f() F() = é uma antiderivada (primitiv de f()

Leia mais

Transformadas de Laplace Engenharia Mecânica - FAENG. Prof. Josemar dos Santos

Transformadas de Laplace Engenharia Mecânica - FAENG. Prof. Josemar dos Santos Engenharia Mecânica - FAENG SISTEMAS DE CONTROLE Prof. Josemar dos Santos Sumário Transformadas de Laplace Teorema do Valor Final; Teorema do Valor Inicial; Transformada Inversa de Laplace; Expansão em

Leia mais

7 Equações Diferenciais. 7.1 Classificação As equações são classificadas de acordo como tipo, a ordem e a linearidade.

7 Equações Diferenciais. 7.1 Classificação As equações são classificadas de acordo como tipo, a ordem e a linearidade. 7 Equações Diferenciais Definição: Uma equação diferencial é uma equação em que as incógnitas são funções e a equação envolve derivadas dessas funções. : = 5x + 3 4 d3 3 + (sen x) d2 2 + 5x = 0 2 t 2 4

Leia mais

depende apenas da variável y então a função ṽ(y) = e R R(y) dy

depende apenas da variável y então a função ṽ(y) = e R R(y) dy Formulario Equações Diferenciais Ordinárias de 1 a Ordem Equações Exactas. Factor Integrante. Dada uma equação diferencial não exacta M(x, y) dx + N(x, y) dy = 0. ( ) 1. Se R = 1 M N y N x depende apenas

Leia mais

ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em

ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualiação: //003 ANÁLISE MATEMÁTICA IV LEEC RESOLUÇÃO DA FICHA 3 SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTES DE RECUPERAÇÃO A - 6 DE JUNHO DE 9 - DAS H ÀS :3H Teste Apresente e justifique

Leia mais

Notas sobre primitivas

Notas sobre primitivas Matemática - 8/9 - Notas sobre primitivas 57 Notas sobre primitivas Seja f uma função real de variável real de nida num intervalo real I: Chama-se primitiva de f no intervalo I a uma função F cuja derivada

Leia mais

Nome: Gabarito Data: 28/10/2015. Questão 01. Calcule a derivada da função f(x) = sen x pela definição e confirme o resultado

Nome: Gabarito Data: 28/10/2015. Questão 01. Calcule a derivada da função f(x) = sen x pela definição e confirme o resultado Fundação Universidade Federal de Pelotas Departamento de Matemática e Estatística Curso de Licenciatura em Matemática - Diurno Segunda Prova de Cálculo I Prof. Dr. Maurício Zan Nome: Gabarito Data: 8/0/05.

Leia mais

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS LINEARES

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS LINEARES EQUAÇÕES DIFERENCIAIS ORDINÁRIAS LINEARES Na disciplina de Análise Matemática, logo ao início de certos cursos de licenciatura, é usual tratar, entre outros temas, o das equações diferenciais, sejam ordinárias

Leia mais

Exercício- teste 1. Matemática II 2 o Semestre de 2009/2010. a) Provar que n (2i 1) = n 2

Exercício- teste 1. Matemática II 2 o Semestre de 2009/2010. a) Provar que n (2i 1) = n 2 o Semestre de 009/00 Eercício- teste a) Provar que n (i ) = n i= Usamos indução em n para provar que a fórmula acima é correcta n= n = Claramente temos que (i ) = () = = Hipótese Indutiva j N, onde j n,

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari amanda@fcav.unesp.br CONSIDERAÇÕES INICIAIS Considere a função f x : R R tal que y = f(x). Então: Derivada: Mede a taxa de variação de

Leia mais

Análise Matemática II - 1 o Semestre 2001/ o Exame - 25 de Janeiro de h

Análise Matemática II - 1 o Semestre 2001/ o Exame - 25 de Janeiro de h Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Análise Matemática II - 1 o Semestre 2001/2002 2 o Exame - 25 de Janeiro de 2001-9 h Todos os cursos excepto Eng. Civil,

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 3. Determine a solução geral da seguinte equação diferencial: dy. dt + et y = 0 ẏ

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 3. Determine a solução geral da seguinte equação diferencial: dy. dt + et y = 0 ẏ Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 3 EQUAÇÕES DIFERENCIAIS ESCALARES DE PRIMEIRA ORDEM Equações Lineares Homogéneas

Leia mais

Capítulo 5 Integrais Múltiplas

Capítulo 5 Integrais Múltiplas Capítulo 5 Integrais Múltiplas 1. Revisão de Integral de Funções a uma Variável 1.1. Integral Indefinida Definição: Uma função será chamada de antiderivada ou primitiva de uma função num intervalo I se

Leia mais

Exercício 7. Usar as rectas tangentes às curvas nos pontos x 1 indicados, para obter estimativas dos valores das funções nos pontos x 2.

Exercício 7. Usar as rectas tangentes às curvas nos pontos x 1 indicados, para obter estimativas dos valores das funções nos pontos x 2. Capítulo. Cálculo Integral Cálculo I - EC, EEC, EM 28/9 [Complementos de derivadas] Optimização. Aproimação linear. Derivação implícita. Derivada da função inversa. Regra de l'hôpital. Derivadas de ordem

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE NOVEMBRO DE dt + a 0(t)y = 0

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE NOVEMBRO DE dt + a 0(t)y = 0 ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 24 16 DE NOVEMBRO DE 2016 EQUAÇÕES LINEARES HOMOGÉNEAS DE ORDEM SUPERIOR A DOIS São da forma a n (t) dn y dt n + a n 1(t) dn 1 y dt n 1 + + a 1(t)

Leia mais

Exercícios. de Equações Diferenciais Ordinárias. Tatiana Tchemisova Cordeiro Vera Kharlamova Adelaide Valente Freitas

Exercícios. de Equações Diferenciais Ordinárias. Tatiana Tchemisova Cordeiro Vera Kharlamova Adelaide Valente Freitas Exercícios de Equações Diferenciais Ordinárias Tatiana Tchemisova Cordeiro Vera Kharlamova Adelaide Valente Freitas Departamento de Matemática UNIVERSIDADE DE AVEIRO 2 Prefácio A presente publicação tem

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia IV

MAT Cálculo Diferencial e Integral para Engenharia IV MAT456 - Cálculo Diferencial e Integral para Engenharia IV Parte A: Equações Diferenciais de 1 a Ordem o Semestre de 018-3 a Lista de exercícios 1) Os gráficos de duas soluções de y = x + y podem se cruzar

Leia mais

Como, neste caso, temos f(x) = 1, obviamente a primitiva é F(x) = x, pois F (x) = x = 1 = f(x).

Como, neste caso, temos f(x) = 1, obviamente a primitiva é F(x) = x, pois F (x) = x = 1 = f(x). 4. INTEGRAIS 4.1 INTEGRAL INDEFINIDA A integral indefinida da função f(x), denotada por f x dx, é toda expressão da forma F(x) + C, em que F (x) = f(x) num dado intervalo [a,b] e C é uma constante arbitrária.

Leia mais

Exercícios de Cálculo p. Informática, Ex 1-1 Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar

Exercícios de Cálculo p. Informática, Ex 1-1 Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar Eercícios de Cálculo p. Informática, 2006-07 Números Reais. E - Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar o número dado: 7 a) b) 6 7 c) 2.(3) = 2.33 d) 2 3 e)

Leia mais

Curso de Verão Exemplos para o curso de

Curso de Verão Exemplos para o curso de Curso de Verão 006 Programa de Pós-Graduação em Matemática Aplicada DCCE - Departamento de Ciência da Computação e Estatística Universidade Estadual Paulista - UNESP Instituto de Biociências, Letras e

Leia mais

OUTRAS TÉCNICAS DE INTEGRAÇÃO

OUTRAS TÉCNICAS DE INTEGRAÇÃO 8 OUTRAS TÉCNICAS DE INTEGRAÇÃO Gil da Costa Marques 8. Integração por partes 8. Integrais de funções trigonométricas 8.3 Uso de funções trigonométricas 8.4 Integração de Quociente de Polinômios 8.5 Alguns

Leia mais

Equações Diferenciais Noções Básicas

Equações Diferenciais Noções Básicas Equações Diferenciais Noções Básicas Definição: Chama-se equação diferencial a uma equação em que a incógnita é uma função (variável dependente) de uma ou mais variáveis (variáveis independentes), envolvendo

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-45 Cálculo Diferencial e Integral I (Escola Politécnica) Terceira Lista de Eercícios - Professor: Equipe de Professores. APLICAÇÕES DE

Leia mais

Sistemas de EDOs: Respostas, Soluções e Dicas para os Problemas

Sistemas de EDOs: Respostas, Soluções e Dicas para os Problemas Sistemas de EDOs: Respostas, Soluções e Dicas para os Problemas ) a) (t) = e t (t) = e t b) c) (t) = e t ( cos t + sin t) (t) = e t cos t (t) = + 9t (t) = 6t ) Substitua (t) e (t) na equação e resolva

Leia mais

1 [30] A figura ao lado mostra o zoom da discretização de uma função

1 [30] A figura ao lado mostra o zoom da discretização de uma função TT9 Matemática Aplicada I Curso de Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR P, 3 mar 22 Prof. Nelson Luís Dias NOME: GABARITO Assinatura: 3] A figura ao lado mostra o zoom da discretização

Leia mais

ANÁLISE MATEMÁTICA 3 PARTE B

ANÁLISE MATEMÁTICA 3 PARTE B ANÁLISE MATEMÁTICA 3 PARTE B EQUAÇÕES DIFERENCIAIS Maria do Rosário de Pinho e Maria Margarida Ferreira Agosto 004 Faculdade de Engenharia da Universidade do Porto Licenciatura em Engenharia Electrotécnica

Leia mais

Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas.

Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas. Capítulo 6 Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas. Definição (6.2): Seja e uma função real incógnita definida num intervalo aberto.

Leia mais

Cálculo de primitivas ou de antiderivadas

Cálculo de primitivas ou de antiderivadas Aula 0 Cálculo de primitivas ou de antiderivadas Objetivos Calcular primitivas de funções usando regras elementares de primitivação. Calcular primitivas de funções pelo método da substituição. Calcular

Leia mais

ANÁLISE MATEMÁTICA IV FICHA 3 TEOREMA DOS RESÍDUOS EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM

ANÁLISE MATEMÁTICA IV FICHA 3 TEOREMA DOS RESÍDUOS EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV E FICHA 3 TEOREMA DOS RESÍDUOS EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM ( Seja f a função definida

Leia mais

Seção 10: Redução de ordem de EDOLH s de 2 a ordem se for conhecida uma solução não trivial

Seção 10: Redução de ordem de EDOLH s de 2 a ordem se for conhecida uma solução não trivial Seção 0: Redução de ordem de EDOLH s de a ordem se for conhecida uma solução não trivial Método de D Alembert Se for conhecida uma solução não trivial de uma EDOLH de a ordem, empregando o método de D

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A ESCOLA SECUNDÁRIA COM º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Trigonometria e Números Compleos TPC nº. Seja f = + ln (entregar até 7/0/009).. Determine f ( ), usando a definição

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE ABRIL DE 2016

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE ABRIL DE 2016 ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 25 27 DE ABRIL DE 2016 Aniquiladores A tabela seguinte mostra aniquiladores para diversas funções elementares. e αt D α (α R) t e αt (D α) 2 (α R)

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Eame - Parte I - de Julho de 8 LERC, LEGI, LEE, LEIC-T Número: Nome: valores a) valores b) valores 3 4 valores 4 valores 5 a) 3 valores 5 b) 3 valores 6 valores páginas

Leia mais

Primitivação de funções reais de variável real

Primitivação de funções reais de variável real Capítulo 3 Sugere-se a seguinte bibliografia adicional que completa o estudo a efectuar nas aulas teóricas e nas aulas práticas: Maria Aldina C. Silva e M. dos Anjos F. Saraiva. Primitivação. Edições Asa,

Leia mais

21 de Junho de 2010, 9h00

21 de Junho de 2010, 9h00 Análise Complexa e Equações Diferenciais ō Semestre 009/00 ō Teste \ ō Exame - Versão A (Cursos: Todos) de Junho de 00, 9h00 Duração: Teste - h 30m, Exame - 3h INSTRUÇÕES Não é permitida a utilização de

Leia mais

CÁLCULO III - MAT Encontre as soluções das seguintes equações com condições iniciais:

CÁLCULO III - MAT Encontre as soluções das seguintes equações com condições iniciais: UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO III - MAT0021 7 a Lista de exercícios

Leia mais

Funções de Uma Variável - 1 a Avaliação - Turma B3 31 de outubro de Prof. Armando Caputi

Funções de Uma Variável - 1 a Avaliação - Turma B3 31 de outubro de Prof. Armando Caputi Funções de Uma Variável - 1 a Avaliação - Turma B 1 de outubro de 017 - Prof. Armando Caputi 1 Determine o domínio da função f(x) = arctan x x + 1 (justifique) e a equação da reta tangente ao seu gráfico

Leia mais

Capítulo 5 Integral. Definição Uma função será chamada de antiderivada ou de primitiva de uma função num intervalo I se: ( )= ( ), para todo I.

Capítulo 5 Integral. Definição Uma função será chamada de antiderivada ou de primitiva de uma função num intervalo I se: ( )= ( ), para todo I. Capítulo 5 Integral 1. Integral Indefinida Em estudos anteriores resolvemos o problema: Dada uma função, determinar a função derivada. Desejamos agora estudar o problema inverso: Dada uma função, determinar

Leia mais

Transformada de Laplace Inversa Expansão em Frações Parciais

Transformada de Laplace Inversa Expansão em Frações Parciais Transformada de Laplace Inversa Expansão em Frações Parciais 1 Introdução Estamos interessados em determinar a transformada inversa de uma função da forma D(s) = a ms m + a m 1 s m 1 +... + a 1 s + a 0

Leia mais

CURSO DE RESOLUÇÃO DE PROVAS de MATEMÁTICA da ANPEC Tudo passo a passo com Teoria e em sequência a resolução da questão! Prof.

CURSO DE RESOLUÇÃO DE PROVAS de MATEMÁTICA da ANPEC Tudo passo a passo com Teoria e em sequência a resolução da questão! Prof. Prof. Chico Vieira MATEMÁTICA da ANPEC Tudo Passo a Passo Teoria e Questões FICHA com LIMITES, DERIVADAS, INTEGRAIS, EDO, SÉRIES Integrais Dupla e Tripla LIMITES ANPEC QUESTÕES JÁ GRAVADAS DERIVADAS ANPEC

Leia mais

EDO I. por Abílio Lemos. 16 e 18 de outubro de Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT

EDO I. por Abílio Lemos. 16 e 18 de outubro de Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT EDO I por Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147-2017 16 e 18 de outubro de 2017 Definição 1 Uma equação diferencial é qualquer relação entre uma função e suas derivadas.

Leia mais

CE065 - ELEMENTOS BÁSICOS DE ESTATÍSTICA 2ª. PARTE

CE065 - ELEMENTOS BÁSICOS DE ESTATÍSTICA 2ª. PARTE CE65 - ELEMENTOS BÁSICOS DE ESTATÍSTICA ª. PARTE. FUNÇÕES.- Sistema de Coordenadas Cartesianas ou Plano Cartesiano A localização de pontos num plano é bastante antiga na Matemática e data aproimadamente

Leia mais

3 Equacões de Bernoulli e Riccati Equação de Bernoulli Equação de Riccati Exercícios... 24

3 Equacões de Bernoulli e Riccati Equação de Bernoulli Equação de Riccati Exercícios... 24 Conteúdo 3 Equacões de Bernoulli e Riccati 18 3.1 - Equação de Bernoulli.................... 18 3.2 - Equação de Riccati..................... 20 3.3 - Exercícios.......................... 24 1 Equações

Leia mais

Integrais indefinidas

Integrais indefinidas Integrais indefinidas que: Sendo f(x) e F(x) definidas em um intervalo I R, para todo x I, dizemos F é uma antiderivada ou uma primitiva de f, em I, se F (x) = f(x) Exemplos: F(x) = x é uma antiderivada

Leia mais

xy + y = 0. (1) Portanto a solução geral de (1) é a família de hipérboles y = C x,

xy + y = 0. (1) Portanto a solução geral de (1) é a família de hipérboles y = C x, Seção 4: Equações Exatas Fator Integrante Introduzimos a idéia de equação exata, através de dois exemplos simples. Note que nesses dois exemplos, além de exata, a EDO também é separável, podendo alternativamente

Leia mais

32 a Aula AMIV LEAN, LEC Apontamentos

32 a Aula AMIV LEAN, LEC Apontamentos 32 a Aula 2429 AMIV LEAN, LEC Apontamentos (RicardoCoutinho@mathistutlpt) 32 Fórmula da variação das constantes Temos então pela fórmula dos da variação das constantes (para sistemas de equações - Teorema

Leia mais

Prova 2 - Bases Matemáticas

Prova 2 - Bases Matemáticas Prova 2 - Bases Matemáticas Resolução comentada Bases Matemáticas - Turma A3 2 a Avaliação - Resolvida Esta resolução é mais do que um mero gabarito. O objetivo é apresentar a solução de cada problema

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE MAIO DE 2017

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE MAIO DE 2017 ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 3 7 DE MAIO DE 27 A = 2 2 2 A matriz tem como valor próprio λ = 2 (triplo. Para os vectores próprios: { z = y + z = v = A matriz não é diagonalizável,

Leia mais

3. Alguns conceitos de cálculo

3. Alguns conceitos de cálculo 3. Alguns conceitos de cálculo 3. Derivada de uma função Para calcular a derivada de uma função, usa-se o comando diff. O primeiro argumento deverá ser uma função de uma ou mais variáveis, o segundo argumento

Leia mais

Instituto de Matemática - UFRJ Cálculo 1 Segunda Prova 16 de Novembro de 2017

Instituto de Matemática - UFRJ Cálculo 1 Segunda Prova 16 de Novembro de 2017 Instituto de Matemática - UFRJ Segunda Prova 6 de Novembro de 7. ( pontos) Jurema tem uma folha de cartolina retangular com dimensões cm 4 cm. Ela gostaria de fazer uma caixa sem tampa cortando quadrados

Leia mais

31/05/17. Ondas e Linhas

31/05/17. Ondas e Linhas 31/05/17 1 Guias de Onda (pags 102 a 112 do Pozar) Geometria e Condições de Contorno Solução geral para Modos TE Solução geral para Modos TM 31/05/17 2 Cabo Coaxial Vamos considerar os campos de um cabo

Leia mais

Circuitos Elétricos II

Circuitos Elétricos II Universidade Federal do ABC Eng. de Instrumentação, Automação e Robótica Circuitos Elétricos II José Azcue, Prof. Dr. Transformada de Laplace Definição da Transformada de Laplace Propriedades da Transformada

Leia mais

Análise Complexa e Equações Diferenciais 2 ō Semestre 2013/2014

Análise Complexa e Equações Diferenciais 2 ō Semestre 2013/2014 Análise Complexa e Equações Diferenciais 2 ō Semestre 213/21 Cursos: 2 ō Teste, versão A LEIC, MEEC, LEMat, MEAer, MEBiol, MEQ, MEAmbi 31 de Maio de 21, 11h3 [1,5 val. 1. Considere a equação diferencial

Leia mais

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA APLICADA. Resolução do 1 o Teste.

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA APLICADA. Resolução do 1 o Teste. . [.5] (a) Calcule a soma da série Resolução: A série INSTITUTO POLITÉCNICO DE SETÚBAL Resolução do o Teste n (n + ) ; n (n + ) + + 4 +... rapidamente se verifica que não é uma série aritmética ou geométrica.

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017

Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017 Análise Complexa e Equações Diferenciais 1 ō Semestre 016/017 ō Teste Versão A (Cursos: MEBiol, MEQ 17 de Dezembro de 016, 10h [,0 val 1 Considere a equação diferencial e t + y e t + ( 1 + ye t dy dt 0

Leia mais

Seja ( ) ( ) g ( z1z 2 ) é um número real. ( )

Seja ( ) ( ) g ( z1z 2 ) é um número real. ( ) . Seja n natural e n ³. Se S (0) é: 5000 57650 600 606700 67670 QUESTÃO ÚNICA 0,000 pontos distribuídos em 0 itens S ( n + ) = S ( n ) + n e S () =, então o valor de. A negação de A Matemática é fácil

Leia mais

= 6 lim. = lim. 2x + 2 sin(x) cos(x) 4 sin(4x) 2 x cos(x) = lim. x + ln(x) cos ) ] 3x. 3 ln. = lim x 1 x +

= 6 lim. = lim. 2x + 2 sin(x) cos(x) 4 sin(4x) 2 x cos(x) = lim. x + ln(x) cos ) ] 3x. 3 ln. = lim x 1 x + UFRGS - PAG Cálculo - MAT05-0/ Lista 5-04/05/0 - Soluções.a ln + 0 + ln = + + 0 =.b sin8 0 sin4 = 0 8 cos8 4 cos4 =.c.d + sin 0 cos4 = 0 + sin cos 4 sin4 = 0 + cos sin 6 cos4 = 4 0 + sin e cos = 0 + e

Leia mais

ANÁLISE MATEMÁTICA IV

ANÁLISE MATEMÁTICA IV Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA 6 SÉRIES DE FOURIER E MÉTODO DE SEPARAÇÃO DAS VARIÁVEIS 1 Determine o desenvolvimento em série

Leia mais

2 5 3 x 3 1. x 5 x 2

2 5 3 x 3 1. x 5 x 2 4 rimitivação 4. rimitivação Soluções. a + 4 4, b + ln, > 0, + c = + = 5 5 + = 5 +, 5 d + 4, e 4 = + = +, f e, g ln +, h, e i + ln, j 4 cosh/4, k cos, l tg, m cotg, n arctg, o arctg/, p = = 4 arcsen, q

Leia mais

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL -. EXAME FINAL Nome Legível RG CPF Respostas sem justificativas não serão aceitas. Além

Leia mais

TÉCNICAS DE DIFERENCIAÇÃO13

TÉCNICAS DE DIFERENCIAÇÃO13 TÉCNICAS DE DIFERENCIAÇÃO3 Gil da Costa Marques 3. Introdução 3. Derivada da soma ou da diferença de funções 3.3 Derivada do produto de funções 3.4 Derivada de uma função composta: a Regra da Cadeia 3.5

Leia mais

Análise Complexa e Equações Diferenciais Exame B de 30 de junho de 2014 Cursos: LEAN, LMAC, MEBiom, MEFT, MEMec

Análise Complexa e Equações Diferenciais Exame B de 30 de junho de 2014 Cursos: LEAN, LMAC, MEBiom, MEFT, MEMec Análise Complexa e Equações Diferenciais Exame B de 3 de junho de 4 Cursos: LEAN, LMAC, MEBiom, MEFT, MEMec [ val.] RESOLUÇÃO INÍCIO DA PRIMEIRO PARTE. Considere a função u(x, y) = 3xy x 3. (a) Escreva

Leia mais

Exercício 1. Exercício 2. Exercício 3. Considere a função f que para valores de x é de nida pela relação f(x) = x(sin /x).

Exercício 1. Exercício 2. Exercício 3. Considere a função f que para valores de x é de nida pela relação f(x) = x(sin /x). E Eercício 1 Considere a função f que para valores de é denida pela relação f() = (sin /). 1.1 Mostre que a função f é contínua em R\{}. 1.2 Sabendo que f é contínua no ponto = determine o valor de f().

Leia mais

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. x 1 x 1. 1 sen x 1 (x 2 1) 2 (x 2 1) 2 sen

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. x 1 x 1. 1 sen x 1 (x 2 1) 2 (x 2 1) 2 sen UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL - 07. A VERIFICAÇÃO DE APRENDIZAGEM - TURMA EL Nome Legível RG CPF Respostas sem justificativas

Leia mais

1. FUNÇÕES REAIS DE VARIÁVEL REAL

1. FUNÇÕES REAIS DE VARIÁVEL REAL 1 1 FUNÇÕES REAIS DE VARIÁVEL REAL 11 Funções trigonométricas inversas 111 As funções arco-seno e arco-cosseno Como as funções seno e cosseno não são injectivas em IR, só poderemos definir as suas funções

Leia mais

Bases Matemáticas - Turma A3

Bases Matemáticas - Turma A3 Bases Matemáticas - Turma A3 a Avaliação - Resolvida Esta resolução é mais do que um mero gabarito. O objetivo é apresentar a solução de cada problema de modo detalhado, com o propósito de ajudar na compreensão

Leia mais

CÁLCULO DIFERENCIAL 5-1 Para cada uma das funções apresentadas determine a sua derivada formando

CÁLCULO DIFERENCIAL 5-1 Para cada uma das funções apresentadas determine a sua derivada formando 5 a Ficha de eercícios de Cálculo para Informática CÁLCULO DIFERENCIAL 5-1 Para cada uma das funções apresentadas determine a sua derivada formando o quociente f( + h) f() h e tomando o ite quando h tende

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2019 CADERNO 1. e AV.

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2019 CADERNO 1. e AV. Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 1500-6 Lisboa Tel.: +51 1 716 6 90 / 1 711 0 77 Fa: +51 1 716 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

CADERNO 1. Nas condições pretendidas, o número de possibilidades é dado por 2 4! 4!, ou seja, ( ) ( ) ( )

CADERNO 1. Nas condições pretendidas, o número de possibilidades é dado por 2 4! 4!, ou seja, ( ) ( ) ( ) . Podemos ter sequências do tipo CADERNO Maq. I P I P I P I P!! ou Maq. P I P I P I P I!! Nas condições pretendidas, o número de possibilidades é dado por!!, ou seja, 5. Resposta: Opção (B) 5. Na figura

Leia mais