Resoluções das atividades

Tamanho: px
Começar a partir da página:

Download "Resoluções das atividades"

Transcrição

1 tividades uplementares íngua Geometria ortuguesa esoluções das atividades apítulo 6 erpendicularidade apítulo 7 Quadriláteros I 1 a + 15º b omo é bissetriz, + 15º = 5º = 0º = 0º 1 + ( º) + (6 º) + ( + 0º) = 60º 1 º = 60º 1 = 0º = 0º a) 6 = ( + 15) + (5 ) + ( + 5) + (6 + ) = 6 15= 50 = b) aior lado = 6 + = cm = 56 = 56 = 5,6 ogo, = = 5,6 cm, e Q = Q =, cm. m º º 1º 1º º m = 1º ugestão de resposta: v Q u m a) ão, pois 1º + º + 56º + 167º = 70º > 60º b) 67º + 11º + 115º + = 60º º + = 60º = 66º º + 56º + 1º + = 60º º + = 60º = 6º 5 a) erímetro = = = = cm b) + = + 7 = 15 cm + = 5 + = 1 cm 6 I. a) onveo. b) ôncavo. c) onveo. d) ôncavo. II. a) c) J I 5 cm 6 a) uas retas que formam entre si um ângulo de 0º. b) eta que passa pelo ponto médio do segmento e, com ele, forma um ângulo de 0º. b) d) F Q º + = 0º 5 = 0º = 16º G o ano nsino Fundamental ivro 1

2 Geometria tividades uplementares 7 a) = 60º 1 = 60º = 0º ogo: = 0º; = 60º; = º; 5 = 150º. b) = 60º 1 = 60º = 0º ogo: = 0º; = 0º; 5 = 150º; 5 = 150º. a) osango: 1 omo as diagonais se encontram no ponto médio: Q = = 11, 5 Q = Q + = cm = 17 = = 5, cm 11,5 Q b) etângulo: 1 omo é bissetriz, =, mas + =10º. + 71º = 10º = º = º = 5, 5º c) Quadrado: Quadrado. a) + 7 = 10º = 10º = 1º b) omo a figura é um paralelogramo: + 1º = 17º = 5º = 5º 7 = 70º = º a) omo são paralelogramos, os lados opostos são iguais: = 6 = 6 = = 5 = = 7 (6) 6 = 1 = 0 6 = = = 1 b) s ângulos opostos devem ser iguais: 1º = + º = 6º = 6º = º + 1º = 10º + 61º = 10º = 11º 11 s diagonais se cruzam no ponto médio, então: = 5 = 5 + = + 1 = = 5 = 7 = = 1 = + 5 = 1 = = 6 + = 10º = 56º + = 6 = 11º = 6º 15 é diagonal e bissetriz. ogo: 5 = 5º = 70º = º = 5º 16 a) omo o é retângulo: + º = 0 º + 0º + + º = 0 + º º = 0º + º = 10º = 1º = º b) + º+ = 0º º + º + = 0º + 5º = 0º = 6º 17 a) eja o ponto de interseção de e é equilátero ângulo agudo = 60º. b) elo item, o ângulo obtuso equivale a º. 1 Vanda: Igor: o ano nsino Fundamental ivro

3 tividades uplementares Geometria omo as figuras de Igor são quadrados: = = elo enunciado: + = 6 cm + + = = = 6 1 = 6 1 = = 1 1 = = = 1 esposta: s dimensões da folha são 1 cm 1 cm. 1 erímetro = + = 1 5 = 5 = = = + 1 = 1 16 = 1 16 = 576 = = = = 60 0 a) ( F ) s quatro lados do losango são congruentes, mas suas diagonais, não. b) ( V ) c) ( V ) d) ( F ) s diagonais de um retângulo não formam um ângulo reto. esafio = = + = = cm esposta: área total do retângulo é = = 1, 75 cm. 1 riângulos. apítulo Quadriláteros II 1 a) + 0º + 0º + 15º = 60º = 5º b) + + 0º + 0º = 60º + 00º = 60º = 160º = 0º c) + + 0º + 0º = 60º + 10º = 60º = 10º = 5º 0º 50º + = 10º = º + = 10º = 0º abe-se que + = 10º = 60º = 60º e = º + = 10º = 10º = 5º = 5º e = 15º. Figura Figura o tangram, há dois triângulos maiores de área 1 do quadrado, ou seja, cm ; um triângulo, um quadrado e um paralelogramo de área 1 do quadrado, ou seja, cm e 1 dois triângulos da área 16 do quadrado, ou seja, 1 cm. 16 a figura, o retângulo é formado pelas peças do tangram e mais quatro quadrados de área cm e seis triângulos de 1 área cm, em uma área total de: 16 a) b) 5º 5º Ângulos colaterais são suplementares, logo: 5º + = 10º = 75º 15º 15º = 50º (dois ângulos obtusos) = 15º, assim: + = 10º = 10º 15º = 55º o ano nsino Fundamental ivro

4 Geometria tividades uplementares 5 a) ( V ) b) ( F ) trapézio retângulo pode ser isósceles ou escaleno. c) ( V ) d) ( F ) plica-se aqui o mesmo raciocínio utilizado na eplicação do item. e) ( F ) Um losango é um polígono de lados, mas não necessariamente possui ângulos iguais, como o quadrado. 11 0º 0º 70º 0º 0º 0º 0º 70º 0º 0º 0º 0º 6 a) + 0º = + 5º = 5º b) + 1º = 0º = º = 16º c) + + 0º + 0º = 60º = 10º = 60º 7 a) ( V ) b) ( F ) Ângulos adjacentes a uma mesma base são congruentes apenas no trapézio isósceles. c) ( V ) om base no enunciado, tem-se a seguinte figura: e são ângulos agudos. ogo: + = 0º + = 0º = 0º = 50 = 0º 50º = 0º abendo que + =10º, tem-se que = º. ssim como + =10º, tem-se que = 150º. ogo, o menor e o maior ângulo desse trapézio são, respectivamente, 0º e 150º. p = 0 cm b + + l = 0 l + l + l = 0 5l = 0 l = 16 cm; b = 16 cm; = cm. omo é isósceles, tem-se: omo é bissetriz de, = =α. endo //, (ângulos alternos internos). ntão, o é isósceles, com =. ogo, a base menor tem medida igual à dos lados oblíquos. + = 10º 70º + = 10º = 1º, isósceles = 70º = = 0º. ssim, os ângulos entre as diagonais são 0º, 0º, 0º e 0º. 1 Usando a base média do trapézio, tem-se: = 6 = = 1 = + + = = 0 = 7 1 omo é base média: = = 6 = 7 = 1 7 = 1 = = 5 1 = 5 1 = 15 1 = = + = + = 6 + = 1 = = = = = 15 70º é isósceles = 70º = 0º = =0º omo é isósceles = = 70º, pois + =10º. 16 (a + 0º) + (a + 0º) + (a + 0º) + (a + 0º) = 60º a + 0º = 60º a = º a = 15º = a + 0º = 15º + 0º = 0º + 0º = 70º o ano nsino Fundamental ivro

5 tividades uplementares Geometria 17 a) omo Q é isósceles: = 10º 6º = 7º = Q = 6º; = = 7º b) =10º (7º 7º) = 10º 7º = 10º 5º = 16º 1 a) b) im, pois F. c) = + 15 = 1 d) = F = + 15 = 1 = 1 + = 1 = F = 1 = F= 15 1 = 1 Quando se traça =, obtém-se = 5º e, completando-se a figura, fica-se com um quadrado º 5º s quatro lados do quadrado têm a mesma medida. ssim: = = cm apítulo riângulos III ontos notáveis 1 a) egmento de reta que liga o vértice ao ponto médio do lado oposto. b) egmento que, partindo do vértice, divide o ângulo em duas partes iguais. a) = = = = + = = + = = = 6 b) esafio + = 5, = 5, =,6 = F r 0 10º esafio 10º + = 170º + = 0º = 00º = 0º = 70º Ângulos: = 70º; = 0º; 10º = 1º; 10º = 0º. G F segmento de reta F é paralelo ao lado, e os ângulos alternos internos formados pela transversal F são iguais, ou seja, F = F. or outro lado, como F é bissetriz, tem-se F = F e, assim, F = F, no qual o triângulo F é isósceles de base F. ortanto, F = =. e forma análoga, o triângulo é isósceles de base e = = 1. ssim, F = + F = 1 + =. 6º raçando a diagonal do quadrado e sabendo que e G formam um ângulo de 5º em relação à reta, tem-se, então, que e G são paralelas. endo um ponto qualquer sobre, verifica-se que os triângulos G e G possuem a mesma área, pois ambos apresentam a mesma base G e a mesma altura que equivale à distância entre as retas paralelas e G. omando =, conclui-se que a área do triângulo G é igual à área do G, ou seja, = = 7 cm. 7º + + = 10º = 10º 1º = 70º omo é bissetriz: = =5º. o, veja que: + + = 10º 5º + + 6º = 10º = 10º º = º o ano nsino Fundamental ivro 5

6 Geometria tividades uplementares omo é mediana = + = 7 = + 5 = 1 = + = 15 = + + = + 1 = = + º = 0º = 5º + = 0º 5º + = 0º = º 5 I III II IV, º 5 6 Incentro 5 6 a) endo: Q = Q =º, tem-se: a+ b= 10º Q = 10º º = 50º b) a + b = 50º a + b = 0º 60º 50º omo = 60º = 0º omo = 50º = 0º = + é bissetriz 0º + = ubstituindo, tem-se: 0º = + (0º + ) = º = 5º 7 º apítulo c) omo e são bissetrizes: = a e = b. 10º = + + = a + b + = 10º ( a+ b) = 10º 0º = 0º riângulos IV ontos notáveis 0º 0º = 10º = 10º 0º 0º = 60º = 0º 0º = º = 0º 0º = 50º º + = + = 50º + º + = 50º = 0º = 0º 1 a) b) c) d) r 1. I. I I. I Z a) III b) I c) IV d) II Â I G U U + º = 0º = 66º + º = 0º = º.. I Ó 6 o ano nsino Fundamental ivro

7 tividades uplementares Geometria esafio 5 endo a soma dos ângulos internos de um triângulo 10º, tem-se: = 10º = 60º ( + ) = 10º = 60º (60º 5) = 60º 60º + 5 = 5 omo o ângulo = 5, tem-se que é isósceles. ntão, = = e, assim, como o é isósceles,. o, tem-se: Â = 10º = 10º 1 = 10º = 15º o ano nsino Fundamental ivro 7

EMENTA ESCOLAR III Trimestre Ano 2014

EMENTA ESCOLAR III Trimestre Ano 2014 EMENTA ESCOLAR III Trimestre Ano 2014 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 8 ano do Ensino Fundamental II Data 16/setembro 18/setembro 19/setembro 23/setembro 25/setembro 26/setembro

Leia mais

Triângulos classificação

Triângulos classificação Triângulos classificação Quanto aos ângulos Acutângulo: possui três ângulos agudos. Quanto aos lados Equilátero: três lados de mesma medida. Obs.: os três ângulos internos têm medidas de 60º. Retângulo:

Leia mais

Aula 21 - Baiano GEOMETRIA PLANA

Aula 21 - Baiano GEOMETRIA PLANA Aula 21 - Baiano GEOMETRIA PLANA Definição: Polígono de quatro lados formado por quatro vértices não colineares dois a dois. A D S i = 180º (n 2)= 180º (4 2)= 360º S e = 360º B C d = n. (n - 3) 2 = 4.

Leia mais

Equilátero Isósceles Escaleno

Equilátero Isósceles Escaleno TRIÂNGULOS Triângulo são polígonos formados por três lados. Os polígonos, por sua vez, são figuras geométricas formadas por segmentos de reta que, dois a dois, tocam-se em seus pontos extremos, mas que

Leia mais

Ângulos, Triângulos e Quadriláteros. Prof Carlos

Ângulos, Triângulos e Quadriláteros. Prof Carlos Ângulos, Triângulos e Quadriláteros. Prof Carlos RECORDANDO... Ângulos formados por duas retas paralelas cortadas por uma transversal 2 1 3 4 6 5 7 8 Correspondentes: 1 e 5, 2 e 6, 3 e 7, 4 e 8. Alternos

Leia mais

COLÉGIO MARQUES RODRIGUES - SIMULADO

COLÉGIO MARQUES RODRIGUES - SIMULADO COLÉGIO MRQUES RODRIGUES - SIMULDO PROFESSOR HENRIQUE LEL DISCIPLIN MTEMÁTIC SIMULDO: P5 Estrada da Água Branca, 2551 Realengo RJ Tel: (21) 3462-7520 www.colegiomr.com.br LUNO TURM 801 Questão 1 Qual dos

Leia mais

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br

Leia mais

Geometria 8 Ano A/B/C/D Prof. Israel Lopes

Geometria 8 Ano A/B/C/D Prof. Israel Lopes Geometria 8 Ano A/B/C/D Prof. Israel Lopes QUADRILÁTEROS (Cap. 18) A presença da forma dos quadriláteros é muito frequente em situações do dia a dia, como em caixas, malas, casas, edifícios etc. Vejamos!

Leia mais

Geometria Plana - Aula 05

Geometria Plana - Aula 05 Geometria Plana - Aula 05 Elaine Pimentel Universidade Federal de Minas Gerais, Departamento de Matemática Geometria Plana Especialização 2008 - p. 1 Esquema da aula Quadrilátero - definição e. Quadriláteros

Leia mais

Matemática. Nesta aula iremos aprender as. 1 Ponto, reta e plano. 2 Posições relativas de duas retas

Matemática. Nesta aula iremos aprender as. 1 Ponto, reta e plano. 2 Posições relativas de duas retas Matemática Aula 5 Geometria Plana Alexandre Alborghetti Londero Nesta aula iremos aprender as noções básicas de Geometria Plana. 1 Ponto, reta e plano Estes elementos primitivos da geometria euclidiana

Leia mais

RETAS PARALELAS INTERCEPTADAS POR UMA TRANSVERSAL

RETAS PARALELAS INTERCEPTADAS POR UMA TRANSVERSAL GEOMETRIA PLANA MEDIDAS DE ÂNGULOS: Raso, se é igual a 180º; Nulo, se, é igual a 0º; Reto:é igual a 90 ; Agudo: é maior que 0 e menor que 90 ; Obtuso: é maior que 90 e menor que 180. IMPORTANTE: se a soma

Leia mais

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br

Leia mais

MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira. MÓDULO 5 Quadriláteros

MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira. MÓDULO 5 Quadriláteros MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira MÓDULO 5 Quadriláteros Os dois dias mais importantes da sua vida são o dia em que você nasceu e o dia em que você descobre o porquê. (Mark Twain) SUMÁRIO

Leia mais

Triângulos DEFINIÇÃO ELEMENTOS

Triângulos DEFINIÇÃO ELEMENTOS Triângulos DEFINIÇÃO Do latim - triangulu, é um polígono de três lados e três ângulos. Os três ângulos de um triângulo são designados por três letras maiúsculas, B e C e os lados opostos a eles, pelas

Leia mais

POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS

POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS 7º ANO POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS Algumas propriedades dos quadriláteros Nuno Marreiros Antes de começar Não te esqueças que o retângulo, o losango e o quadrado são membros da família dos paralelogramos.

Leia mais

ATIVIDADES COM GEOTIRAS

ATIVIDADES COM GEOTIRAS ATIVIDADES COM GEOTIRAS 1. Material: Geotiras i. Represente varias retas paralelas. ii. Represente duas retas concorrentes em um ponto. 2. Material: Geotiras Represente as seguintes poligonais: i. Poligonal

Leia mais

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir:

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir: GEOMETRIA PLANA TEOREMA DE TALES O Teorema de Tales pode ser determinado pela seguinte lei de correspondência: Se duas retas transversais são cortadas por um feixe de retas paralelas, então a razão entre

Leia mais

PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC TRIÂNGULOS

PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC TRIÂNGULOS TRIÂNGULOS Conceito: Triângulo é um polígono de três lados. PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC CLASSIFICAÇÃO DOS TRIÂNGULOS Quanto

Leia mais

Paralelismo. MA13 - Unidade 3. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria.

Paralelismo. MA13 - Unidade 3. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Paralelismo M13 - Unidade 3 Resumo elaborado por Eduardo Wagner baseado no texto:. Caminha M. Neto. Geometria. Coleção PROFMT Nomes tradicionais reta t corta as retas r e s. Dizemos que a reta t é uma

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Professor: João Carmo DEFINIÇÃO Triângulo ou trilátero é um polígono de três lados. Observações: a) O triângulo não possui diagonais;

Leia mais

Geometria Plana. Exterior do ângulo Ô:

Geometria Plana. Exterior do ângulo Ô: Geometria Plana Ângulo é a união de duas semiretas de mesma origem, não sendo colineares. Interior do ângulo Ô: Exterior do ângulo Ô: Dois ângulos são consecutivos se, e somente se, apresentarem um lado

Leia mais

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho MATEMÁTICA Professor Haroldo Filho MÓDULO 16 CONE E CILINDRO 1. CILINDRO CIRCULAR Considere dois planos paralelos, α e β, seja R um círculo no plano α, seja s uma reta secante aos dois planos que não intersecta

Leia mais

TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO. PROPRIEDADES DOS QUADRILÁTEROS Prof. Rogério Rodrigues NOME :... NÚMERO :... TURMA :...

TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO. PROPRIEDADES DOS QUADRILÁTEROS Prof. Rogério Rodrigues NOME :... NÚMERO :... TURMA :... 1 TRIR SÉRI NSINO MÉIO INTGRO PROPRIS OS QURILÁTROS Prof. Rogério Rodrigues NOM :... NÚMRO :... TURM :... 2 IV - QURILÁTROS IV. 1) Quadriláteros Notáveis - lassificação : hamamos de Quadrilátero todo polígono

Leia mais

NOME: ANO: 3º Nº: PROFESSOR(A):

NOME: ANO: 3º Nº: PROFESSOR(A): NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições Triângulos: REVISÃO Lista 06 Triângulos e Quadriláteros Classificação quanto aos lados: Escaleno (todos os lados diferentes), Isósceles

Leia mais

SOLUCÃO DAS ATIVIDADES COM VARETAS

SOLUCÃO DAS ATIVIDADES COM VARETAS SOLUCÃO DAS ATIVIDADES COM VARETAS Em todas as atividades é usado o Material: Varetas. Nos casos específicos onde o trabalho é realizado com varetas congruentes será especificado como Material: varetas

Leia mais

Polígonos PROFESSOR RANILDO LOPES 11.1

Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono

Leia mais

Desenho Geométrico - 9ano

Desenho Geométrico - 9ano esenho Geométrico - 9ano lunos dos 9º anos espero que todos estejam bem e com muita disposição para volta às aulas baixo estão as instruções para que vocês possam retornar às aulas mais interados com a

Leia mais

GABARITO. Matemática D 11) B. Como β = C C = 3β.

GABARITO. Matemática D 11) B. Como β = C C = 3β. GRITO Matemática Semietensivo V. ercícios 0) Logo, = 0 + 0 + 0 = 70 Observe a figura: 9 6 0 X 0 gora considerando os dois relógios: 0) O relógio é uma circunferência, o ponteiro dos minutos leva ora para

Leia mais

SOLUCÃO DAS ATIVIDADES COM GEOTIRAS

SOLUCÃO DAS ATIVIDADES COM GEOTIRAS SOLUCÃO DAS ATIVIDADES COM GEOTIRAS 1. Representação de retas nas seguintes posições: i. Retas paralelas ii. Retas concorrentes 2. Representação de poligonais: i. Aberta simples ii. Aberta não simples

Leia mais

Revisional 3 Bim - MARCELO

Revisional 3 Bim - MARCELO 6º Ano Revisional 3 Bim - MARCELO 1) Represente no papel quatro pontos distintos e, por eles, determine dois segmentos de reta distintos. 2) Observe os segmentos de reta na figura. Escreva quantos são

Leia mais

ATIVIDADES COM GEOPLANO ISOMÉTRICO

ATIVIDADES COM GEOPLANO ISOMÉTRICO ATIVIDADES COM GEOPLANO ISOMÉTRICO Observações. Os pinos ou pregos do geoplano isométrico são chamados de pontos. A menor distância entre dois pontos consecutivos é estabelecida como a unidade de comprimento

Leia mais

Aula 1: Relembrando Polígonos

Aula 1: Relembrando Polígonos 1 Aula 1: Relembrando Polígonos Definição (Lados): Cada um dos segmentos de reta que une vértices consecutivos. A palavra Polígono é oriunda do grego e significa: Poli (muitos) + gono (ângulos). Polígonos

Leia mais

Aluno (a): LISTA 08. Unidade Barra. Leandro Figueira Freitas. Instruções:

Aluno (a): LISTA 08. Unidade Barra. Leandro Figueira Freitas. Instruções: EXERCÍCIOS DE REVISÃO: Quadriláteros Aluno (a): LISTA 08 Nº: Ano: 8º Unidade Barra Leandro Figueira Freitas Instruções: VOCÊ PODERÁ FAZER ESTAS QUESTÕES DIRETAMENTE NO CADERNO, OU, IMPRIMIR ESTAS FOLHAS

Leia mais

1. Posição de retas 11 Construindo retas paralelas com régua e compasso 13

1. Posição de retas 11 Construindo retas paralelas com régua e compasso 13 Sumário CAPÍTULO 1 Construindo retas e ângulos 1. Posição de retas 11 Construindo retas paralelas com régua e compasso 13 2. Partes da reta 14 Construindo segmentos congruentes com régua e compasso 15

Leia mais

GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.

GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas. PARTE 01 GEOMETRIA PLANA Introdução A Geometria está apoiada sobre alguns postulados, axiomas, definições e teoremas, sendo que essas definições e postulados são usados para demonstrar a validade de cada

Leia mais

GEOMETRIA PLANA. Prof. Fabiano

GEOMETRIA PLANA. Prof. Fabiano GEOMETRIA PLANA Prof. Fabiano POLÍGONOS REGULARES R.. a. O O O a R a R R = Raio - raio da circunf. circunscrita - distância do centro a um vértice a = Apótema - Raio da circunferência inscrita - distância

Leia mais

FIGURAS GEOMÉTRICAS. MEDIDA

FIGURAS GEOMÉTRICAS. MEDIDA 7º ANO FIGURAS GEOMÉTRICAS. MEDIDA Propriedades dos trapézios, paralelogramos e papagaios Nuno Marreiros Antes de começar Não te esqueças que o retângulo, o losango e o quadrado são membros da família

Leia mais

A respeito da soma dos ângulos internos e da soma dos ângulos externos de um quadrilátero, temos os seguintes resultados:

A respeito da soma dos ângulos internos e da soma dos ângulos externos de um quadrilátero, temos os seguintes resultados: Quadriláteros Nesta aula vamos estudar os quadriláteros e os seus elementos: lados, ângulos internos, ângulos externos, diagonais, etc. Além disso, vamos definir e observar algumas propriedades importantes

Leia mais

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede GEOMETRI PLN 1) (UFRGS) Na figura abaixo, o vértice do retângulo O está a 6 cm do vértice. O raio do círculo mede O (a) 5 cm (b) 6 cm (c) 8 cm (d) 9 cm (e) 10 cm ) (UFRGS) Na figura abaixo, é o centro

Leia mais

CURSO DE GEOMETRIA LISTA

CURSO DE GEOMETRIA LISTA GEOMETRI Ângulos Obs.: Dois ângulos são congruentes quando têm a mesma abertura. Exemplos: Ângulos complementares Soma (medida) 90º Ângulos suplementares Soma (medida) 180º issetriz bissetriz de um ângulo

Leia mais

Exercícios Propostos. Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir.

Exercícios Propostos. Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir. Exercícios Propostos Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir. Exercício 2: As bissetrizes de dois ângulos adjacentes AÔB e BÔC são,

Leia mais

MA13 Geometria I Avaliação

MA13 Geometria I Avaliação 13 Geometria I valiação 1 2012 SOLUÇÕS Questão 1. (pontuação: 2) O ponto pertence ao lado do triângulo. Sabe-se que = = e que o ângulo mede 21 o. etermine a medida do ângulo. 21 o omo =, seja = =. O ângulo

Leia mais

Aula 6 Polígonos. Objetivos. Introduzir o conceito de polígono. Estabelecer alguns resultados sobre paralelogramos.

Aula 6 Polígonos. Objetivos. Introduzir o conceito de polígono. Estabelecer alguns resultados sobre paralelogramos. MÓULO 1 - UL 6 ula 6 Polígonos Objetivos Introduzir o conceito de polígono. Estabelecer alguns resultados sobre paralelogramos. Introdução efinição 14 hamamos de polígono uma figura plana formada por um

Leia mais

MATEMÁTICA - 1 o ANO MÓDULO 52 POLÍGONOS E QUADRILÁTEROS

MATEMÁTICA - 1 o ANO MÓDULO 52 POLÍGONOS E QUADRILÁTEROS MTEMÁTI - 1 o NO MÓULO 52 POLÍGONOS E QURILÁTEROS B b a c d B E B E B β X γ Y W α Z θ B B B B B B B B B M N B M N Fixação 1) Qual o polígono convexo que tem 90 diagonais? Fixação F 2) diferença entre

Leia mais

Aula 9 Triângulos Semelhantes

Aula 9 Triângulos Semelhantes MUL 1 - UL 9 ula 9 Triângulos Semelhantes efinição: ois triângulos são semelhantes se os três ângulos são ordenadamente congruentes e se os lados homólogos são proporcionais. figura mostra dois triângulos

Leia mais

ATIVIDADES COM VARETAS

ATIVIDADES COM VARETAS ATIVIDADES COM VARETAS Em todas as atividades é usado o Material: Varetas. Nos casos específicos onde o trabalho é realizado com varetas congruentes será especificado como Material: varetas do mesmo comprimento.

Leia mais

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4 TEOREMA DE TALES 1. Na figura abaixo as retas r, s e t são (A) 0 (B) 6 (C) 00 (E) 0. Três retas paralelas são cortadas por duas Se AB = cm; BC = 6 cm e XY = 10 cm a medida, em cm, de XZ é: (A) 0 (B) 10

Leia mais

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem.

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem. ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO 1ª Ficha Informativa MATEMÁTICA - A 10º Ano 2012/2013 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem. Definição:

Leia mais

MATEMÁTICA 2 Ângulos PROFESSOR: TÚLIO 1. b) 52º10 25 d) 127º12 15

MATEMÁTICA 2 Ângulos PROFESSOR: TÚLIO 1. b) 52º10 25 d) 127º12 15 Ângulos 01 O ângulo de 2º 8 25 equivale a: a) 9180 b) 2825 c) 625 d) 7705 02 25347 corresponde a: a) 8º 9 54 b) 9º 25 42 c) 2º 53 47 d) 5º 12 35 e) 7º 2 27 03 (ESA/2000) A transformação de 9º em segundos

Leia mais

Matemática GEOMETRIA PLANA. Professor Dudan

Matemática GEOMETRIA PLANA. Professor Dudan Matemática GEOMETRIA PLANA Professor Dudan Ângulos Geometria Plana Ângulo é a região de um plano concebida pelo encontro de duas semirretas que possuem uma origem em comum, chamada vértice do ângulo. A

Leia mais

01- Quais são as medidas dos ângulos de um quadrilátero cujas medidas são expressas por X , 3X, X e 2X ? R.: x + 30º x + y R.

01- Quais são as medidas dos ângulos de um quadrilátero cujas medidas são expressas por X , 3X, X e 2X ? R.: x + 30º x + y R. PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - GEOMETRIA - 8º ANO - ENSINO FUNDAMENTAL ============================================================================ 01- Quais são as medidas dos ângulos

Leia mais

APOSTILA DE Geometria Plana MATEMÁTICA

APOSTILA DE Geometria Plana MATEMÁTICA 1 RESUO E TETI https://uehelenacarvalhowordpresscom/ PROF RNILO LOPES POSTIL E GEOETRI - RESUO PROF RNILO LOPES POSTIL E Geometria Plana TEÁTI Visite nosso site https://uehelenacarvalhowordpresscom/ Nele

Leia mais

TRIÂNGULOS. Condição de existência de um triângulo

TRIÂNGULOS. Condição de existência de um triângulo TRIÂNGULOS Condição de existência de um triângulo Em todo triângulo, a soma das medidas de dois lados sempre tem que ser maior que a medida do terceiro lado. EXERCÍCIO 1º Será que conseguiríamos desenhar

Leia mais

Agrupamento de Escolas de Diogo Cão, Vila Real

Agrupamento de Escolas de Diogo Cão, Vila Real grupamento de scolas de iogo ão, Vila Real 2015/2016 MTMÁTI FIH TRLHO Nº 8 º PRÍOO MIO Nome: Nº Turma: 7º ata: 1 Observa o polígono da figura 2. fig. 2 1. 1) Indica o número de ângulos internos. 1. 2)

Leia mais

DESENHO TÉCNICO ( AULA 02)

DESENHO TÉCNICO ( AULA 02) DESENHO TÉCNICO ( AULA 02) Posições da reta e do plano no espaço A geometria, ramo da Matemática que estuda as figuras geométricas, preocupa-se também com a posição que os objetos ocupam no espaço. A reta

Leia mais

GEOMETRIA: REVISÃO PARA O TSE Marque, com um X, as propriedades que possuem cada um dos quadriláteros indicados:

GEOMETRIA: REVISÃO PARA O TSE Marque, com um X, as propriedades que possuem cada um dos quadriláteros indicados: Atividade: Quadriláteros (ECA: Atividade REMARCADA para 15/06/2015) Série: 1ª Série do Ensino Médio Etapa: 2ª Etapa 2015 Professor: Cadu Pimentel GEOMETRIA: REVISÃO PARA O TSE 05 01. Marque, com um X,

Leia mais

Questões da 1ª avaliação de MA 13 Geometria, 2016

Questões da 1ª avaliação de MA 13 Geometria, 2016 uestões da 1ª avaliação de M 13 Geometria, 26 1. região na figura abaixo representa um lago. Descreva um processo pelo qual será possível medir a distância entre os pontos e (só medição fora do lago é

Leia mais

NOÇÕES DE GEOMETRIA PLANA

NOÇÕES DE GEOMETRIA PLANA NOÇÕES DE GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. Altura de um triângulo é o segmento de

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 04 TRIÂNGULOS Triângulo é um polígono de três lados. É o polígono que possui o menor número de lados. Talvez seja o polígono mais importante

Leia mais

Unidade 6 Geometria: quadriláteros

Unidade 6 Geometria: quadriláteros Sugestões de atividades Unidade 6 Geometria: quadriláteros 8 MTEMÁTI 1 Matemática 1. onsidere o retângulo representado a seguir. Indique o valor da medida do ângulo correspondente a α 1 β. 40 β 4. onsidere

Leia mais

GEOMETRIA. Esse quadradinho no ângulo O significa que é um ângulo reto e sua medida equivale a 90 graus.

GEOMETRIA. Esse quadradinho no ângulo O significa que é um ângulo reto e sua medida equivale a 90 graus. GEOMETRIA Ângulos É a abertura existente entre duas semi-retas que tem a mesma origem. Ângulo reto é formado por duas semi-retas perpendiculares, ou seja, uma horizontal e uma vertical sendo o ponto de

Leia mais

Resoluções NÍVEL 3. Classe

Resoluções NÍVEL 3. Classe 00 www.cursoanglo.com.br Treinamento para Olimpíadas de atemática NÍVL 3 Resoluções ULS 4 6 m lasse. as paralelas traçadas aos bastões pelos pontos,,, e (ver figura) e da propriedade dos ângulos alternos

Leia mais

BANCO DE QUESTÕES - GEOMETRIA - 8º ANO - ENSINO FUNDAMENTAL

BANCO DE QUESTÕES - GEOMETRIA - 8º ANO - ENSINO FUNDAMENTAL PROFESSOR: EQUIPE E TEÁTI O E QUESTÕES - GEOETRI - 8º O - ESIO FUETL ============================================================================ 01- Um polígono de 4 lados chama-se: () quadrado. () paralelogramo.

Leia mais

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são

Leia mais

Soma das amplitudes dos ângulos internos de um quadrilátero

Soma das amplitudes dos ângulos internos de um quadrilátero Escola Básica de Santa Marinha Matemática 2009/2010 7.º Ano Síntese de conteúdos Quadriláteros Soma das amplitudes dos ângulos internos de um quadrilátero Na figura seguinte encontra-se representado o

Leia mais

Ângulos nos triângulos Teorema angular de Tales: a soma dos ângulos internos de qualquer triângulo é igual a 180º. a a + b + c = 180º

Ângulos nos triângulos Teorema angular de Tales: a soma dos ângulos internos de qualquer triângulo é igual a 180º. a a + b + c = 180º RANILDO LOPES Ângulos nos triângulos Teorema angular de Tales: a soma dos ângulos internos de qualquer triângulo é igual a 180º. b a c a + b + c = 180º Teorema do ângulo externo: em qualquer triângulo,

Leia mais

CM127 - Lista 3. Axioma da Paralelas e Quadriláteros Notáveis. 1. Faça todos os exercícios dados em aula.

CM127 - Lista 3. Axioma da Paralelas e Quadriláteros Notáveis. 1. Faça todos os exercícios dados em aula. CM127 - Lista 3 Axioma da Paralelas e Quadriláteros Notáveis 1. Faça todos os exercícios dados em aula. 2. Determine as medidas x e y dos ângulos dos triângulos nos itens abaixo 3. Dizemos que um triângulo

Leia mais

Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 03 de abril de º Olímpico Matemática I

Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 03 de abril de º Olímpico Matemática I 6º Olímpico Matemática I Sistema de numeração romano. Situações problema com as seis operações com números naturais (adição, subtração, multiplicação, divisão, potenciação e radiciação). Expressões numéricas

Leia mais

Material Teórico - Módulo Elementos básicos de geometria plana - Parte 3. Quadriláteros. Oitavo ano do Ensino Fundamental

Material Teórico - Módulo Elementos básicos de geometria plana - Parte 3. Quadriláteros. Oitavo ano do Ensino Fundamental Material Teórico - Módulo Elementos básicos de geometria plana - arte 3 Quadriláteros Oitavo ano do Ensino Fundamental utor: rof. Jocelino Sato Revisor: rof. ntonio aminha M. Neto ortal da OME 1 Quadriláteros

Leia mais

TRABALHO SOBRE ÂNGULOS E POLÍGONOS - 8º ANO- ENSINO FUNDAMENTAL VALOR: 4,0 PONTOS INSTRUÇÕES - LEIA COM MUITA ATENÇÃO

TRABALHO SOBRE ÂNGULOS E POLÍGONOS - 8º ANO- ENSINO FUNDAMENTAL VALOR: 4,0 PONTOS INSTRUÇÕES - LEIA COM MUITA ATENÇÃO TRABALHO SOBRE ÂNGULOS E POLÍGONOS - 8º ANO- ENSINO FUNDAMENTAL - 2014 - VALOR: 4,0 PONTOS INSTRUÇÕES - LEIA COM MUITA ATENÇÃO - O envio das respostas será aceito até: 16/04/2014, às 23h59min. Faça seu

Leia mais

O que aprendi neste capítulo 3 POLÍGONOS: TRIÂNGULOS E PARALELOGRAMOS

O que aprendi neste capítulo 3 POLÍGONOS: TRIÂNGULOS E PARALELOGRAMOS O que aprendi neste capítulo 3 POLÍGONOS: TRIÂNGULOS E PARALELOGRAMOS POLÍGONOS: PROPRIEDADES E CLASSIFICAÇÃO se prolongarmos os lados de um polígono obtêm-se os ângulos externos; Num polígono: os ângulos

Leia mais

DESENHO GEOMÉTRICO Matemática - Unioeste Definição 1. Poligonal é uma figura formada por uma sequência de pontos (vértices)

DESENHO GEOMÉTRICO Matemática - Unioeste Definição 1. Poligonal é uma figura formada por uma sequência de pontos (vértices) DESENHO GEOMÉTRICO Matemática - Unioeste - 2010 1 Polígonos Definição 1. Poligonal é uma figura formada por uma sequência de pontos (vértices) A 1, A 2,..., A n e pelos segmentos (lados) A 1 A 2, A 2 A

Leia mais

Áreas de Figuras Planas: Exercícios da OBMEP. Nono Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Neto

Áreas de Figuras Planas: Exercícios da OBMEP. Nono Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Neto Material Teórico - Módulo Áreas de Figuras lanas Áreas de Figuras lanas: Exercícios da OME Nono no utor: rof. Ulisses Lima arente Revisor: rof. ntonio aminha M. Neto de dezembro de 018 1 roblemas da OME

Leia mais

1. Com base nos dados da Figua 1, qual é o maior dos segmentos AB, AE, EC, BC e ED? Figura 1: Exercício 1. Figura 2: Exercício 2

1. Com base nos dados da Figua 1, qual é o maior dos segmentos AB, AE, EC, BC e ED? Figura 1: Exercício 1. Figura 2: Exercício 2 UFF - Universidade Federal Fluminense Instituto de Matemática GGM - Departamento de Geometria Professora: Andréa 2 o semestre de 2018 Atividades IV de Geometria I 1. Com base nos dados da Figua 1, qual

Leia mais

Matemática Régis Cortes GEOMETRIA PLANA

Matemática Régis Cortes GEOMETRIA PLANA GEOMETRIA PLANA 1 GEOMETRIA PLANA Congruência: dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.  + Î = 180 graus Ê + Ô = 180 graus  + Ê + Î + Ô = 360 graus Quadrado l A = l 2 d

Leia mais

EXERCÍCIOS DE FIXAÇÃO DE RECUPERAÇÃO DE GEOMETRIA 2ª ETAPA

EXERCÍCIOS DE FIXAÇÃO DE RECUPERAÇÃO DE GEOMETRIA 2ª ETAPA 8º ANOA( ) B( )Data: / 05 / 2017. Professor(a): JUNIOR Etapa : 1ª( ) 2ª ( X ) 3ª ( ) Aluno (a): EXERCÍCIOS DE FIXAÇÃO DE RECUPERAÇÃO DE GEOMETRIA 2ª ETAPA 1. O segmento da perpendicular traçada de um vértice

Leia mais

Polos Olímpicos de Treinamento. Aula 8. Curso de Geometria - Nível 2. Quadriláteros inscritíveis. Prof. Cícero Thiago

Polos Olímpicos de Treinamento. Aula 8. Curso de Geometria - Nível 2. Quadriláteros inscritíveis. Prof. Cícero Thiago Polos Olímpicos de Treinamento urso de Geometria - Nível 2 Prof. ícero Thiago ula 8 Quadriláteros inscritíveis Teorema 1. Um quadrilátero é inscritível se, e somente se, a soma dos ângulos opostos é 180.

Leia mais

O conhecimento é a nossa propaganda.

O conhecimento é a nossa propaganda. Conhecimentos geométricos I - Ângulos Lista de Exercícios 1 Gabaritos Comentados dos Questionários 01) Calcule o valor dos ângulos suplementares A e B, sendo que, A = 3x + 40 e B = 2x + 40. a) 100 e 80.

Leia mais

QUADRILÁTEROS. Um quadrilátero é um polígono de quatro lados. Pode ser dito que é porção do plano limitada por uma poligonal fechada,

QUADRILÁTEROS. Um quadrilátero é um polígono de quatro lados. Pode ser dito que é porção do plano limitada por uma poligonal fechada, QUADRILÁTEROS Um quadrilátero é um polígono de quatro lados. Pode ser dito que é porção do plano limitada por uma poligonal fechada, A B C Lados: AB BC CD AD Vértices: A B C D Diagonais: AC BD D Algumas

Leia mais

MATEMÁTICA III. Pág 404. Prof. Eloy Machado 2015 EFMN

MATEMÁTICA III. Pág 404. Prof. Eloy Machado 2015 EFMN MATEMÁTICA III Pág 404 2015 EFMN Prof. Eloy Machado ESTRUTURAS NÃO TRIANGULARES ESTRUTURAS NÃO TRIANGULARES ESTRUTURAS NÃO TRIANGULARES TRIÂNGULOS ESTRUTURAS TRIANGULARES O QUE SÃO TRIÂNGULOS CONGRUENTES?

Leia mais

Desenho Geométrico. Desenho Geométrico. Desenho Geométrico. Desenho Geometrico

Desenho Geométrico. Desenho Geométrico. Desenho Geométrico. Desenho Geometrico UNIVERSIDADE ESTADUAL VALE DO ACARAÚ- UVA DEPARTAMENTO DE MATEMÁTICA Desenho Geométrico Desenho Geométrico Desenho Geométrico Desenho Geometrico Daniel Caetano de Figueiredo Daniel Caetano de Figueiredo

Leia mais

Duração: 90 minutos (3 valores) Sabe-se que a b. Atendendo à gura, calcule a medida do ângulo D indicado.

Duração: 90 minutos (3 valores) Sabe-se que a b. Atendendo à gura, calcule a medida do ângulo D indicado. aculdade de Ciências Departamento de Matemática e Informática Licenciatura em Informática, Diurno 1 0 Teste de undamentos de Geometria. Correcção. ariante Duração: 90 minutos 18.0.01 1. ( valores) Sabe-se

Leia mais

Polos Olímpicos de Treinamento. Aula 18. Curso de Geometria - Nível 3. Transformações geométricas II - Simetria e rotação. Prof.

Polos Olímpicos de Treinamento. Aula 18. Curso de Geometria - Nível 3. Transformações geométricas II - Simetria e rotação. Prof. olos límpicos de Treinamento urso de Geometria - Nível 3 rof. ícero Thiago ula 18 Transformações geométricas II - Simetria e rotação. 1. Simetria com relação a um ponto. Dizemos que o ponto é o simétrico

Leia mais

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 3. Paralelogramos Especiais. Oitavo ano do Ensino Fundamental

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 3. Paralelogramos Especiais. Oitavo ano do Ensino Fundamental aterial Teórico - ódulo Elementos ásicos de Geometria Plana - Parte 3 Paralelogramos Especiais Oitavo ano do Ensino Fundamental utor: Prof. Jocelino Sato Revisor: Prof. ntonio aminha. Neto Portal da OEP

Leia mais

Objetivos da aula. 1. Saber usar o ângulo externo de um polígono. 2. Saber que ângulos alternos internos têm a mesma medida.

Objetivos da aula. 1. Saber usar o ângulo externo de um polígono. 2. Saber que ângulos alternos internos têm a mesma medida. Objetivos da aula 1 Saber usar o ângulo externo de um polígono 2 Saber que ângulos alternos internos têm a mesma medida 3 Saber calcular a soma dos ângulos internos de um polígono 4 Saber a relação entre

Leia mais

Classificac a o segundo os lados. Geometria plana e analı tica. Congrue ncia de tria ngulos. Tria ngulo reta ngulo. Tria ngulos

Classificac a o segundo os lados. Geometria plana e analı tica. Congrue ncia de tria ngulos. Tria ngulo reta ngulo. Tria ngulos Classificac a o segundo os lados MA092 Francisco A. M. Gomes UNICAMP - IMECC Classificac a o Um tria ngulo e Equila tero, se tem tre s lados congruentes. Iso sceles, se tem dois lados congruentes. Escaleno,

Leia mais

MATEMÁTICA. Capítulo 2 LIVRO 1. Triângulos. Páginas: 157 à169

MATEMÁTICA. Capítulo 2 LIVRO 1. Triângulos. Páginas: 157 à169 MATEMÁTICA LIVRO 1 Capítulo 2 Triângulos Páginas: 157 à169 I. Soma dos Ângulos Internos Teorema demonstração: a soma das medidas dos ângulos internos de qualquer triângulo vale 180 x B β y r // AC A γ

Leia mais

RETAS E CIRCUNFERÊNCIAS

RETAS E CIRCUNFERÊNCIAS RETAS E CIRCUNFERÊNCIAS Diâmetro Corda que passa pelo centro da circunferência [EF] e [GH] Raio Segmento de reta que une o centro a um ponto da circunferência [OD] [AB], [IJ], [GH], são cordas - segmentos

Leia mais

1ª Aula. Introdução à Geometria Plana GEOMETRIA. 3- Ângulos Consecutivos: 1- Conceitos Primitivos: a) Ponto A. b) Reta c) Semi-reta

1ª Aula. Introdução à Geometria Plana GEOMETRIA. 3- Ângulos Consecutivos: 1- Conceitos Primitivos: a) Ponto A. b) Reta c) Semi-reta 1ª Aula 3- Ângulos Consecutivos: Introdução à Geometria Plana 1- Conceitos Primitivos: a) Ponto A Na figura, os ângulos AÔB e BÔC são consecutivos, portanto AÔC=AÔB+AÔC b) Reta c) Semi-reta d) Segmento

Leia mais

O quadrado e outros quadriláteros

O quadrado e outros quadriláteros Acesse: http://fuvestibular.com.br/ A UUL AL A O quadrado e outros quadriláteros Para pensar No mosaico acima, podemos identificar duas figuras bastante conhecidas: o quadrado, de dois tamanhos diferentes,

Leia mais

4. Saber a relação entre o número de lados e diagonais em polígonos convexos.

4. Saber a relação entre o número de lados e diagonais em polígonos convexos. Objetivos da aula 1 Saber usar o ângulo externo de um polígono 2 Saber que ângulos alternos internos têm a mesma medida 3 Saber calcular a soma dos ângulos internos de um polígono 4 Saber a relação entre

Leia mais

01- Determine a soma das medidas dos ângulos internos dos seguintes polígonos:

01- Determine a soma das medidas dos ângulos internos dos seguintes polígonos: PROFESSOR: EQUIPE E MTEMÁTI NO E QUESTÕES - GEOMETRI - 8º NO - ENSINO FUNMENTL ============================================================================ 01- etermine a soma das medidas dos ângulos internos

Leia mais

ASSUNTO: Conteúdo para Prova Oficial e Prova Geral

ASSUNTO: Conteúdo para Prova Oficial e Prova Geral DISCIPLINA: GEOMETRIA 1ª Unidade Letiva / 2016 TURMA: PROFESSORA: ROSANA CARVALHO DISPONÍVEL EM: 29/03/15 8º ANO ASSUNTO: Conteúdo para Prova Oficial e Prova Geral RETAS PARALELAS CORTADAS POR UMA TRANSVERSAL

Leia mais

Geometria Euclidiana Plana Parte I

Geometria Euclidiana Plana Parte I CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2017.1 Geometria Euclidiana Plana Parte I Eleilton Junior - Engenharia Civil O que veremos na aula de hoje? Ângulos opostos pelo vértice Propriedades dos

Leia mais

Pontos notáveis de um triângulo

Pontos notáveis de um triângulo Pontos notáveis de um triângulo Sadao Massago Maio de 2010 Sumário 1 onceitos preliminares................................. 1 2 Incentro......................................... 2 3 ircuncentro.......................................

Leia mais

Propriedades do ortocentro

Propriedades do ortocentro Programa límpico de Treinamento Curso de Geometria - Nível 3 Prof. Rodrigo ula 4 Propriedades do ortocentro ortocentro é o ponto de encontro das três alturas de um triângulo arbitrário. Se o triângulo

Leia mais

ATIVIDADES COM POLÍGONOS

ATIVIDADES COM POLÍGONOS ATIVIDADES COM POLÍGONOS Observação. Para o desenvolvimento das seguintes Atividades, levando em conta que Polígonos é uma coleção de peças com um número elevado de elementos, utilizamos as subcoleções

Leia mais

Resolução das atividades adicionais

Resolução das atividades adicionais PÍTULO 9 Resolução das atividades adicionais 65. Note que 7 + 4 5. Temos, portanto, que o triângulo é retângulo (Teorema de Pitágoras). Logo sua área é dada por 84. Então podemos dizer que a razão entre

Leia mais

Semi-Reta: é uma parte da reta limitada por apenas um ponto. É representada como mostra a figura acima.

Semi-Reta: é uma parte da reta limitada por apenas um ponto. É representada como mostra a figura acima. 01. Conceitos Primitivos: Ponto: é representado por uma letra maiúscula do nosso alfabeto. Reta: é representado por uma letra minúscula do nosso alfabeto. Plano: é representado por uma letra grega. 0.

Leia mais

Resoluções das atividades

Resoluções das atividades Resoluções das atividades ódulo Geometria spacial I 01 tividades para sala Um plano divide o espaço em dois semiespaços opostos, dos quais ele é origem. Observe os casos: I. α 17 d 17 itágoras ( 17) =

Leia mais