Matemática 2 Módulo 9

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Matemática 2 Módulo 9"

Transcrição

1 Matemática Módulo 9 GEOMETRIA ANALÍTICA VI COMENTÁRIOS ATIVIDADES PARA SALA. Se duas circunferências são concêntricas, então os seus centros são coincidentes. Temos a circunferência λ : x + y 4x y + = 0. Completando o quadrados, temos: x 4x y y + = (x ) + (y ) = Assim temos: C (, ) e r = Seja λ a circunferência concêntrica a λ e de raio r =. Assim, pela equação (x x 0 ) + (y y 0 ) = r, em que (x 0 ; y 0 ) é o centro e r o raio, temos: C = C = (; ); r = (x ) + (y ) = x 4x y y + = 0 x + y 4x y 0 = 0. Lembrando... Sabemos que a área de um círculo é dada pela relação A = πr, em que r é o raio. 4. Lembrando... Se duas retas r e s são paralelas, então m s = m r. A equação de uma reta pode ser dada pela expressão y y 0 = m(x x 0 ), em que (x 0 ; y 0 ) é um ponto dado e m é o coeficiente angular. I. Da equação λ: x + y 8x 6y + 4 = 0, temos: x + y 4x 8y + = 0 x 4x +4 +y 8y +6 = = (x ) + (y 4) = 8; C( ; 4) e r = 8 r = II. Considere a reta r: 8x + y = 0 r: 4x + y = 0, A mr = = 4. Como r // s, então ms = 4 B III. A reta s passa pelo ponto (; 4) e tem coeficiente angular m s = 4. Assim, (y y 0 ) = m(x x 0 ) y 4 = 4(x ) y 4 = 4x 8 y = 4x 4 4 x y = ( ). Lembrando... Se A, B e C são pontos colineares, então Det(m) = 0. I. λ: x + y + 4x 6y = 0 x + 4x y 6y + 9 = (x + ) + (y ) = ; C( ; ) e r = II. Temos os pontos O(0; 0), B(P; ) e C(; ). Como são colineares, então: I. Seja a circunferência λ: x + y 8x + 6y + = 0. Descobrindo o valor do raio, temos: x 8x y + 6y + 9 = ( ) ( ) ( ) x 4 + y+ = ; C 4; e r = r = II. A = πr A = π ( ) A = π Resposta correta: A. Considere a circunferência abaixo: Det(m) = 0 P = 0 Resposta correta: + + P = COMENTÁRIOS ATIVIDADES PROPOSTAS. Temos a equação λ: x + y + 4x + 0y + 8 = 0. Assim: x + 4x +4 +y + 0y + = (x + ) + (y + ) = ; C( ; ) e r = Localizando no plano temos: Como C é o centro da circunferência, temos que C é ponto médio de AB. Assim: xc = = yc = = 0 C(; 0) 0 A distância de C ao A ou ao B é o raio, então: B,C ( ) ( ) d = = + d = r = Sendo r = e C(; 0), então a equação é: (x ) + (y 0) = 4 (x ) + y = 4 B,C Resposta correta: E PRÉ-VESTIBULAR VOLUME MATEMÁTICA

2 . Sabemos que k + > 0, pois não pode ser negativo e nem zero, pois é a medida do raio, então k > k <. Como queremos o maior inteiro, temos k =. Assim temos: (x + 4) + (y ) = 6 x + 8x y 6y = 0 x + y + 8x 6y + 9 = 0 Resposta correta: E. Se P(; k) é o centro da circunferência de raio r =, então (x ) + (y k) = ( ) (x ) + (y k) =. Como o ponto Q (; ), pertence à circunferência, temos: x y ( ) + ( k) = + 4 4k + k = k 4k + = 0 Para a equação temos k' = + e k'' =. Como k >, então k = +. Se k = +, então ( + ) 6 = = = 4 4. Dada a equação λ: x + y 4x 6y = 0, temos: x 4x +4 + y 6y +9 = (x ) + (y ) = 6; C(; ); r = 6 r = 4 Observando a figura temos que CF = r, assim: CF =. 4 = 8 Resposta correta: E x =.cosa. Do sistema, temos: y = a + sena x =.cosa x = 4.cos a + y 9 sena = ( y 9) = 4sen a x + y 9 = 4 sen a+ cos a ( ) ( ) ( ) ( ) x + y 9 = 4; C 0;9 ;r = 4 r = 6. Da equação x + y + 4x 6y + k = 0, podemos completar quadrados, veja: x + 4x +4 + y 6y +9 = k (x + ) + (y ) = k +, assim C( ; ) e r = k + 46 r = k+. 7. I. Como o centro da circunferência está na reta x =, então as coordenadas do centro são C(; 6). II. Assim ficamos com a equação (x ) + (y b) = r. Como a circunferência passa pelos pontos A(0; ) e B(; 4), temos: III. Para A(0; ), temos (0 ) + ( b) = r b = r b IV Para B(; 4), temos ( ) + (4 b) = r 7. 8b = r b V. Igualando (III) e (IV), temos b = 7 8b b = VI. Fazendo b = e substituindo em (III) ou (IV), temos () = r () = r 4 r = VII. Como C(; b) = (; ) e r =, temos a equação: (x ) + (y ) = Resposta correta: (x ) + (y ) = 8. Lembrando. A equação do º grau Ax + By + Cxy + Dx + Ey + F = 0, só representará uma circunferência se: A = B 0 C = 0 D + E 4AF > 0 Observando a equação: mx + y + nxy + 4x + 6y + k = 0, temos: A B C D E F I. A = B 0 m= II. C = 0 n = 0 n= 0 III. D + E 4AF > k > 0 4k > k < Resposta correta: m = ; n = 0; k < 9. I. A = B 0 a = II. C = 0 b = 0 III. Se a = e b = 0, temos a equação: x + y + 6x + 8y + c = 0 x + 6x +9 + y + 8y +6 = C (x + ) + (y + 4) = C+ IV. Como r = 6 r = 6, assim C + = 6 C = + C = V. Assim a + b + c = + 0 = 0 Resposta correta: 0 r PRÉ-VESTIBULAR VOLUME MATEMÁTICA

3 0. Observe a figura: * ** d = d = 6. d d = 8 d = 6 8 d c = c = c c = c = 6 c D ; 6 C( ; 4) e r = s, temos (x + ) + (y 4) = x + 6x +9 + y 8y +6 = x + y + 6x 8y = 0. Considere o triângulo abaixo: Resposta correta: 8 ;4 e ;6 Módulo 0 GEOMETRIA ANALÍTICA VII COMENTÁRIOS ATIVIDADES PARA SALA. Como a corda está sobre a reta x + y 7 = 0, então os extremos dessa corda são as interseções da reta com a circunferência. Observe a figura: da,c = ( 0 ) + ( y) da,c = + ( y) da,b = ( 7 ) + ( 4 ) da,b = da,b = 40 db,c = ( 0 7) + ( y 4) db,c = 49+ ( y 4) Como (d B, C ) = (d A, B ) + (d A, C ), então: ( 49 (y 4) ) ( 40 ) ( ( y) ) + = y 8y + 6 = y + y 8y + 6 = 4y + 4 4y = 0 y = Como C(0; y) e y =, então C( 0; ) Resposta correta: (0; ). O segmento AB abaixo foi dividido em três partes iguais, assim AC = CD = CB. Veja: λ: x + y = 0 x+ y = 7 Resolvendo o sistema, temos: x + y = x = 7 y (7 y) + y = y 7y + = 0 Para y = 4 x = ; A(; 4). Para y = x = 4; B(4; ). ( ) ( ) d = = A,B Resposta correta: A y = 4 y = AC xc xa yc ya P = = = = CB xb xc yb yc P a 8 * = a = 6 a a = 6 a ** b = b 4 = 8 b b = 4 8 b AD y y x x P = = = DB y y x x P D A D A B D B D = 8 C ; 4. A equação x + y 4 representa um círculo de centro (0, 0) e raio. Enquanto a equação (x ) + y representa os pontos pertencentes e externos a uma circunferência de centro (,0) e raio. Representando no plano cartesiano: A = πr πr A = π. - π. A = π Resposta correta: π PRÉ-VESTIBULAR VOLUME MATEMÁTICA

4 . A bissetriz dos quadrantes pares é y = x, para encontrar o centro, que é o ponto de interseção das duas retas, resolveremos o sistema formado por suas equações: y = x x y 6 = 0 x ( x) 6 = 0 x 6 = 0 x = y = COMENTÁRIOS ATIVIDADES PROPOSTAS. Tomemos a primeira desigualdade x + y 9. Representando no plano cartesiano: Temos a segunda desigualdade: y x O centro da circunferência é (, ) e o raio é, portanto sua equação é: (x ) + (y + ) = x 4x y + 4y + 4 = 4 x + y 4x + 4y + 4 = 0 4. Como y = x, então x + y = 6 fica x + x = 6 x = 6 x = 8 x = ± + x y 9 Para resolvermos o sistema, temos que y x pegar a interseção das figuras, o que representa um semi-círculo. Para x = y = e x = y = (; ) ( ; ). Encontrando o centro e o raio da circunferência. x + y + 8x + 4y + 49 = 0 x + 8x + y + 4y + 49 = 0 (x + 8x + 6)(y + 7) = (x + 4) + (y + 7) = 6 Centro ( 4, 7) e R = 4 Calculando a distância entre P(4, 7) e o centro ( 4, 7). d = ( 4 4) + ( 7 7) d= d= 60 Como d > R, então o ponto é exterior à circunferência. Resposta correta: A. Lembrando πr π. 9π A = = = Para que um ponto P(x, y) seja externo a uma circunferência (λ) de raio "R" e centro "C" temos: d P, C > R º Modo Identificar o raio λ: x 4x y y + = m λ: (x ) + (y ) = m + Da equação temos C(; ) e R = m + R = m+ m + > 0 m > m < C, P C, P d = (4 ) + ( ) d = 8 4 PRÉ-VESTIBULAR VOLUME MATEMÁTICA

5 d C, P > R 8 > m+, como já consideramos m + > 0, então ( 8) > ( m+ ) 8 > m+ m> º Modo Como A(4; ), então f(4; ) > 0. Assim: (4) + () 4 (4) () + m > 0 m > Pela condição D + E 4AF > 0 e sendo D = 4, E =, A = e F = m, temos: ( 4) + ( ) 4()(m) > 0 0 4m > 0 4m < 0 m < Como m > ou m <, então: {m R / < m < } Resposta correta: {m R / < m < }. Da equação λ: x + y x 4y + = 0 λ:x x+ + y 4y + 4 = + (x ) + (y ) = 4 Observe a figura:. Como o ponto P(a; b) é o ponto da interseção das circunferências, então podemos: I) (a ) + b = 8 a a + + b = 8 a + b a = 7 II) (a ) + (b ) = a 4a b b + = a + b 4a b = Fazendo (I) e (II), temos: + a a + b b a = 7 + 4a b = a + b = 0 ( ) a+ b = 6. Da equação da circunferência λ: x + y 4x 6 = 0, temos: λ: x + y x 8 = 0 λ: x x + + y = 8 + λ: (x ) + y = 9, assim C(; 0) e R = () + (0) d c,r : d c,r =. dc,r = + 7. Observe a figura: * d C, r = () 4() + C + C = = + C = 0 + (4) + C = 0 C = 0 C = C = 0 C = Considerando C = e C =, temos as equações r: x 4y + = 0 e s: x 4y = 0 4. Da equação λ : (x 6) + (y ) = 9, temos C (6; ) e R =. Temos C (6; ) e O(; ) os centros das circunferências C,O C,O d = (6 ) + (+ ) = 6+ 9 d = Sabemos que existem duas hipóteses para a tangência de circunferências: Tangentes exteriormentes: dc,o= r + r' = + r' r' = Assim temos a circunfêrencia λ' = (x ) + (y + ) = 4 Tangentes interiormentes: d = r r" = r" C,O r" = r" = r" = (F) r" = r" = 8 Assim ficarmos com a equação λ": (x ) + (y + ) = 64 Resposta correta: λ': (x ) + (y + ) = 4 λ": (x ) + (y + ) = 64 Temos a equação λ: x + y 6x + 0y + 9 = 0 x 6x y + 0y + = (x ) + (y + ) = C(; ) R = Temos que a reta "s" passa por dois pontos "A" e "C". Assim: s: x + y = 0 A ms = ms = B Pela figura temos r s, então m r. m s =. Assim, se m s =, então mr =. PRÉ-VESTIBULAR VOLUME MATEMÁTICA

6 A reta "r" passa pelo ponto A(; ) e tem coeficiente angular m r =. Assim pela relação y y o = m(x x o ), temos: r: y ( ) = (x ) r: y + = x x y 8 = 0 8. r: x y = 0 y = x λ: x + y + x 7y =, como y = x, então: x + (x ) + x 7(x ) = 0 x + 4x 4x + + x 4x + 7 = 0 x x + 6 = 0 Δ = b 4ac Δ = ( ) 4()(6) Δ = 69 0 = x' = = x' = x" = = = x" =. 0 Para x = y =. () y = ; (; ) 6 Para x = y =. y = = ; ; Observe a figura: tgθ = + tgθ = 9 6 tgθ= tg θ=, assim θ= 60 A 0. r: x y = 0; mr = = mr = B Como r s, temos ms = A reta "s" passa pelo ponto M(; ) e tem m s =, então y = (x ) y = x + x + y = ( ) x y x y + = s: + =. Como s: x + y =, então p q 9 p = e q =, assim p+ q = + = o. Temos que "r" passa pelo ponto P(; 0) e Q( ; ). Assim: A, B da, B = + d d 7 4 = = d = A, B A, B 7. 7 da, B = d A, B = r: x + y + = 0 ( ) r: x + y + = 0 A mr = = B Observe o plano cartesiano abaixo: A + 9. r: y x = r: x + y = 0 mr = = mr = B s: y + ( )x = s: ( )x+ y = 0 A + ms = = ms = + B mr ms tgθ= tgθ= + + m.m + ( ).(+ ) r s (+ ) tgθ = tg θ =. (+ ) 6 PRÉ-VESTIBULAR VOLUME MATEMÁTICA

7 * Como r s, então, m r. m s = m s = * "s" passa (; ) e tem m s =, então s: y y o = m s (x x o ) s: y = (x ) s: x + y = 0 Considere o ponto "P" como o ponto de encontro das x+ y = retas "r" e "s", ;x = ey =. x + y = Considere o ponto R o ponto simétrico de N em relação à r. Assim P é ponto médio de NR. Assim: xn + xr + a xp = = a = R(; 0) yn + yr + b yp = = b = 0 PRÉ-VESTIBULAR VOLUME MATEMÁTICA 7

Professor Mascena Cordeiro

Professor Mascena Cordeiro www.mascenacordeiro.com Professor Mascena Cordeiro º Ano Ensino Médio M A T E M Á T I C A. Determine os valores de m pertencentes ao conjunto dos números reais, tal que os pontos (0, -), (, m) e (-, -)

Leia mais

Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de 3 pontos.

Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de 3 pontos. Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de pontos. 1. (Ufpr 014) A figura abaixo apresenta o gráfico da reta r: y x + = 0 no plano

Leia mais

Geometria Analítica - Aula

Geometria Analítica - Aula Geometria Analítica - Aula 19 246 IM-UFF K. Frensel - J. Delgado Aula 20 Vamos analisar a equação Ax 2 + Cy 2 + Dx + Ey + F = 0 nos casos em que exatamente um dos coeficientes A ou C é nulo. 1. Parábola

Leia mais

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA - 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0),

Leia mais

Retas Tangentes à Circunferência

Retas Tangentes à Circunferência Retas Tangentes à Circunferência 1. (Fuvest 01) São dados, no plano cartesiano, o ponto P de coordenadas (,6) e a circunferência C de equação um ponto Q. Então a distância de P a Q é a) 15 b) 17 c) 18

Leia mais

Matemática 3 Módulo 3

Matemática 3 Módulo 3 Matemática Módulo COMENTÁRIOS ATIVIDADES PARA SALA 1. Lembrando... Se duas figuras são semelhantes, temos: 1 A = k; 1 = k, em que R 1 e R são medidas lineares A e A 1 e A são as áreas. Círculo I IV. =

Leia mais

Matemática Régis Cortes GEOMETRIA ANALÍTICA

Matemática Régis Cortes GEOMETRIA ANALÍTICA GEOMETRI NLÍTIC 1 GEOMETRI NLÍTIC Foi com o francês René Descartes, filósofo e matemático que surgiu a geometria analítica. issetriz dos quadrantes pares º QUDRNTE ( -, + ) Y ( eio das ORDENDS ) 1º QUDRNTE

Leia mais

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3 01 Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b a) a = 3, b, b R b) a = 3 e b = 1 c) a = 3 e b 1 d) a 3 1 0 y = 3x + 1 m = 3 A equação que apresenta uma reta com o mesmo coeficiente angular

Leia mais

Lista de Exercícios de Geometria

Lista de Exercícios de Geometria Núcleo Básico de Engenharias Geometria - Geometria Analítica Professor Julierme Oliveira Lista de Exercícios de Geometria Primeira Parte: VETORES 1. Sejam os pontos A(0,0), B(1,0), C(0,1), D(-,3), E(4,-5)

Leia mais

Tecnologia em Construções de Edifícios

Tecnologia em Construções de Edifícios 1 Tecnologia em Construções de Edifícios Aula 9 Geometria Analítica Professor Luciano Nóbrega 2º Bimestre 2 GEOMETRIA ANALÍTICA INTRODUÇÃO A geometria avançou muito pouco desde o final da era grega até

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

Geometria Analítica - AFA

Geometria Analítica - AFA Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-

Leia mais

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P.

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P. Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Lista 2: Plano cartesiano, sistema de coordenadas: pontos e retas. 1) Represente no plano cartesiano

Leia mais

0 < c < a ; d(f 1, F 2 ) = 2c

0 < c < a ; d(f 1, F 2 ) = 2c Capítulo 14 Elipse Nosso objetivo, neste e nos próximos capítulos, é estudar a equação geral do segundo grau em duas variáveis: Ax + Bxy + Cy + Dx + Ey + F = 0, onde A 0 ou B 0 ou C 0 Para isso, deniremos,

Leia mais

Exercícios de Matemática Geometria Analítica

Exercícios de Matemática Geometria Analítica Eercícios de Matemática Geometria Analítica. (UFRGS) Considere um sistema cartesiano ortogonal e o ponto P(. ) de intersecção das duas diagonais de um losango. Se a equação da reta que contém uma das diagonais

Leia mais

Posição relativa entre retas e círculos e distâncias

Posição relativa entre retas e círculos e distâncias 4 Posição relativa entre retas e círculos e distâncias Sumário 4.1 Distância de um ponto a uma reta.......... 2 4.2 Posição relativa de uma reta e um círculo no plano 4 4.3 Distância entre duas retas no

Leia mais

a média de gols da primeira rodada, M G a média de gols das duas primeiras rodadas e x o número de gols da segunda rodada, tem-se 15 + x 15 M G

a média de gols da primeira rodada, M G a média de gols das duas primeiras rodadas e x o número de gols da segunda rodada, tem-se 15 + x 15 M G MATEMÁTICA O número de gols marcados nos 6 jogos da primeira rodada de um campeonato de futebol foi 5,,,, 0 e. Na segunda rodada, serão realizados mais 5 jogos. Qual deve ser o número total de gols marcados

Leia mais

ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) TURNO. 01. Determine a distância entre dois pontos A e B do plano cartesiano.

ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) TURNO. 01. Determine a distância entre dois pontos A e B do plano cartesiano. SÉRIE ITA/IME ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) ALUNO(A) TURMA MARCELO MENDES TURNO SEDE DATA Nº / / TC MATEMÁTICA Geometria Analítica Exercícios de Fixação Conteúdo: A reta Parte I Exercícios Tópicos

Leia mais

1 a) Quantos múltiplos de 9 há entre 100 e 1000? b) Quantos múltiplos de 9 ou 15 há entre 100 e 1000?

1 a) Quantos múltiplos de 9 há entre 100 e 1000? b) Quantos múltiplos de 9 ou 15 há entre 100 e 1000? MATEMÁTICA 1 a) Quantos múltiplos de 9 há entre 100 e 1000? b) Quantos múltiplos de 9 ou 1 há entre 100 e 1000? a) Os múltiplos inteiros de 9 compreendidos entre 100 e 1000 formam uma progressão aritmética

Leia mais

Geometria Analítica. x + y 4x 6y+ m= 0 e a circunferência C 2 tem. C 2 são tangentes exteriormente, assinale o que for

Geometria Analítica. x + y 4x 6y+ m= 0 e a circunferência C 2 tem. C 2 são tangentes exteriormente, assinale o que for Geometria Analítica 1. (Uerj 15) As baterias B 1 e B de dois aparelhos celulares apresentam em determinado instante, respectivamente, 1% e 9% da carga total. Considere as seguintes informações: - as baterias

Leia mais

d AB y a x b x a x a

d AB y a x b x a x a Introdução A Geometria Analítica é uma parte da Matemática, que através de processos particulares, estabelece as relações existentes entre a Álgebra e a Geometria. Desse modo, uma reta, uma circunferência

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta

Leia mais

84 x a + b = 26. x + 2 x

84 x a + b = 26. x + 2 x Para a fabricação de bicicletas, uma empresa comprou unidades do produto A, pagando R$ 96,00, e unidades do produto B, pagando R$ 84,00. Sabendo-se que o total de unidades compradas foi de 6 e que o preço

Leia mais

A 1. Na figura abaixo, a reta r tem equação y = 2 2 x + 1 no plano cartesiano Oxy. Além disso, os pontos B 0. estão na reta r, sendo B 0

A 1. Na figura abaixo, a reta r tem equação y = 2 2 x + 1 no plano cartesiano Oxy. Além disso, os pontos B 0. estão na reta r, sendo B 0 MATEMÁTICA FUVEST Na figura abaixo, a reta r tem equação y = x + no plano cartesiano Oxy. Além disso, os pontos B 0, B, B, B 3 estão na reta r, sendo B 0 = (0,). Os pontos A 0, A, A, A 3 estão no eixo

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros

Leia mais

Equações da reta no plano

Equações da reta no plano 3 Equações da reta no plano Sumário 3.1 Introdução....................... 2 3.2 Equação paramétrica da reta............. 2 3.3 Equação cartesiana da reta.............. 7 3.4 Equação am ou reduzida da reta..........

Leia mais

IME º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

IME º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR IME - 2003 1º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, em que n é um número inteiro positivo.

Leia mais

a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3

a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3 Matemática a. série do Ensino Médio Frentes e Eercícios propostos AULA FRENTE Num triângulo ABC em que AB = 5, B^ = º e C^ = 5º, a medida do lado AC é: a) 5 b) 5 c) 5 d) 5 e) 5 Sabendo-se que um dos lados

Leia mais

Prova Vestibular ITA 1995

Prova Vestibular ITA 1995 Prova Vestibular ITA 1995 Versão 1.0 ITA - 1995 01) (ITA-95) Seja A = n ( 1) n!. π + sen ; n ℵ n! 6 a) (- 1) n n. b) n. c) (- 1) n n. d) (- 1) n+1 n. e) (- 1) n+1 n. Qual conjunto abaixo é tal que sua

Leia mais

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira: Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto

Leia mais

matemática geometria analítica pontos, baricentro do triângulo, coeficiente angular e equações da reta Exercícios de distância entre dois pontos

matemática geometria analítica pontos, baricentro do triângulo, coeficiente angular e equações da reta Exercícios de distância entre dois pontos Exercícios de distância entre dois pontos 1. (FUVEST 1ª fase) Sejam A = (1, ) e B = (3, ) dois pontos do plano cartesiano. Nesse plano, o segmento AC é obtido do segmento AB por uma rotação de 60º, no

Leia mais

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão)

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão) R é ordenado: Se a, b, c R i) a < b se e somente se b a > 0 (a diferença do maior com o menor será positiva) ii) se a > 0 e b > 0 então a + b > 0 (a soma de dois números positivos é positiva) iii) se a

Leia mais

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que Capítulo 11 1. Equações da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que AP = t AB Fig. 1: Reta r passando por A e B. Como o ponto

Leia mais

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica?

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica? X GEOMETRIA ANALÍTICA Por que aprender Geometria Analítica?... A Geometria Analítica estabelece relações entre a álgebra e a geometria por meio de equações e inequações. Isso permite transformar questões

Leia mais

2º trimestre Lista de exercícios Ensino Médio 2º ano classe: Prof. Maurício Nome: nº

2º trimestre Lista de exercícios Ensino Médio 2º ano classe: Prof. Maurício Nome: nº º trimestre Lista de exercícios Ensino Médio º ano classe: Prof. Maurício Nome: nº --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Leia mais

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos NOTAÇÕES R : conjunto dos números reais C : conjunto dos números complexos i : unidade imaginária: i = 1 z : módulo do número z C Re(z) : parte real do número z C Im(z) : parte imaginária do número z C

Leia mais

Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos

Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos º Ano No plano Mediatriz de um segmento de reta [AB] Sendo M o ponto

Leia mais

Distância entre duas retas. Regiões no plano

Distância entre duas retas. Regiões no plano Capítulo 4 Distância entre duas retas. Regiões no plano Nesta aula, veremos primeiro como podemos determinar a distância entre duas retas paralelas no plano. Para isso, lembramos que, na aula anterior,

Leia mais

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLHA A ÚNICA ALTERNATIVA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLHA A ÚNICA ALTERNATIVA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DECEx DEPA COLÉGIO MILITAR DO RIO DE JANEIRO (Casa de Thomaz Coelho/1889 9º Ano SubSeção de Matemática 1 a PARTE Múltipla Escolha Álgebra e Geometria ESCOLHA A

Leia mais

( ) Questão 41. Questão 43. Questão 42. alternativa E. alternativa E. alternativa D

( ) Questão 41. Questão 43. Questão 42. alternativa E. alternativa E. alternativa D Questão Os vértices de um triângulo ABC, no plano cartesiano, são: A (, 0), B (0, ) e C 0,. Então, o ângulo BAC mede: ( ) a) 60 o b) 5 o c) 0 o d) 8 o e) 5 o alternativa E alternativa E De acordo com a

Leia mais

; b) ; c) Observação: Desconsidere o gabarito dado para esta questão no Caderno de Exercícios e considere a resposta acima.

; b) ; c) Observação: Desconsidere o gabarito dado para esta questão no Caderno de Exercícios e considere a resposta acima. 01 a) A = (a ij ) 2x2, com a ij = i + j A = a 11 a12 a21 a22 a 11 = 1 + 1 = 2 a 12 = 1 + 2 = 3 a 21 = 2 + 1 = 3 a 22 = 2 + 2 = 4 Assim: A = 2 3 3 4 b) A = (a ij ) 2x2, com a ij = i j A = a 11 a12 a21 a22

Leia mais

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE

Leia mais

Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013

Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1) A área do triângulo, cujos vértices são (1, 2),

Leia mais

ÍNDICE: Relações Métricas num Triângulo Retângulo página: 2. Triângulo Retângulo página: 4. Áreas de Polígonos página: 5

ÍNDICE: Relações Métricas num Triângulo Retângulo página: 2. Triângulo Retângulo página: 4. Áreas de Polígonos página: 5 ÍNDICE: Relações Métricas num Triângulo Retângulo página: Triângulo Retângulo página: 4 Áreas de Polígonos página: 5 Área do Círculo e suas partes página: 11 Razão entre áreas de figuras planas semelhantes

Leia mais

Matemática B Extensivo v. 8

Matemática B Extensivo v. 8 Matemática B Etensivo v. 8 Eercícios y = Eio real = a = a = C = A + B ( = ( + B B = a y b = D C y = y = 6 9 Daí, a = 6 e b = 9 c = a + b c = 9 + 6 c = c = c = Portanto, a distância focal é dada por: c

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa C. alternativa E. alternativa B.

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa C. alternativa E. alternativa B. Questão TIPO DE PROVA: A Se um número natural n é múltiplo de 9ede, então, certamente, n é: a) múltiplo de 7 b) múltiplo de 0 c) divisível por d) divisível por 90 e) múltiplo de Se n é múltiplo de 9 e

Leia mais

Matemática (Prof. Lara) Lista de exercícios recuperação 2 semestre (2Ano) Fazer todos os exercícios e entregar no dia da prova (1 ponto)

Matemática (Prof. Lara) Lista de exercícios recuperação 2 semestre (2Ano) Fazer todos os exercícios e entregar no dia da prova (1 ponto) Matemática (Prof. Lara) Lista de exercícios recuperação semestre (Ano) Fazer todos os exercícios e entregar no dia da prova (1 ponto) 1-)(MACK) Se A é uma matriz 3 x 4 e B uma matriz n x m, então: a) existe

Leia mais

Proposta de Teste Intermédio Matemática A 11.º ano

Proposta de Teste Intermédio Matemática A 11.º ano GRUPO I. Vamos calcular o valor da função objetivo, L, em cada um dos vértices da região admissível. Vértice L O 0 0 L = 0 + 0 = 0 0 L = + 0 = L = + = C L = + = D 0 L = 0 + = função objetivo atinge o máimo,

Leia mais

Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner

Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner 3 - Parábolas Definição 1.1: Dados um ponto no plano F e uma reta d no plano, é denominada Parábola

Leia mais

PROFESSOR FLABER 2ª SÉRIE Circunferência

PROFESSOR FLABER 2ª SÉRIE Circunferência PROFESSOR FLABER ª SÉRIE Circunferência 01. (Fuvest SP) A reta s passa pelo ponto (0,3) e é perpendicular à reta AB onde A=(0,0) e B é o centro da circunferência x + y - x - 4y = 0. Então a equação de

Leia mais

GABARITO ITA PROVA 2015/2016 MATEMÁTICA

GABARITO ITA PROVA 2015/2016 MATEMÁTICA GABARITO ITA PROVA 0/06 MATEMÁTICA PROVA 7// : conjunto de números reais : conjunto dos números complexos i : unidade imaginária: i = z : Módulo do número z Re(z) : parte real do número z Im (z) : parte

Leia mais

x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6.

x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6. CURSO DE PRÉ CÁLCULO ONLINE - PET MATEMÁTICA / UFMG LISTA DE EXERCÍCIOS RESOLVIDOS: Exercício 1 Calcule o valor de x e y indicados na figura abaixo. Solução: No triângulo retângulo ABD, temos que AD mede

Leia mais

IME º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

IME º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR IME - 2006 1º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Sejam a 1 = 1 i, a n = r + si e a n+1 = (r s) + (r + s)i (n > 1) termos de uma sequência. DETERMINE, em função de n,

Leia mais

Resoluções de Exercícios

Resoluções de Exercícios Resoluções de Exercícios MATEMÁTICA IV Co Capítulo 04 Ângulos entre Retas; Inequações no Plano; Circunferência 0 D Analisando o gráfico, tem-se que as coordenadas dos estabelecimentos são: 01 A) 03 C Assim,

Leia mais

Matemática 41 c Resolução 42 b Resolução 43 e OBJETIVO 2001

Matemática 41 c Resolução 42 b Resolução 43 e OBJETIVO 2001 Matemática c Numa barraca de feira, uma pessoa comprou maçãs, bananas, laranjas e peras. Pelo preço normal da barraca, o valor pago pelas maçãs, bananas, laranjas e peras corresponderia a 5%, 0%, 5% e

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa D. alternativa B. alternativa E

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa D. alternativa B. alternativa E Questão TIPO DE PROVA: A Os números compreendidos entre 400 e 500, divisíveis ao mesmo tempo por 8 e 75, têm soma: a) 600 d) 700 b) 50 e) 800 c) 50 Questão Na figura, temos os esboços dos gráficos de f

Leia mais

Matemática. Ficha Extra - Temas do 2º Bim. 3 os anos Walter/Blaidi Nome: Nº: Turma:

Matemática. Ficha Extra - Temas do 2º Bim. 3 os anos Walter/Blaidi Nome: Nº: Turma: Matemática Ficha Extra - Temas do º Bim. 3 os anos Walter/Blaidi 01 Nome: Nº: Turma: 1. (PUCRS) A região plana limitada por uma semicircunferência e seu diâmetro faz uma rotação completa em torno desse

Leia mais

NÚMEROS COMPLEXOS

NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS - 016 1. (EFOMM 016) O número complexo, z z (cos θ i sen θ), sendo i a unidade imaginária e 0 θ π, que satisfaz a inequação z i e que possui o menor argumento θ, é a) b) c) d) 5 5 z i

Leia mais

PROVAS DA SEGUNDA ETAPA PS2007/UFG

PROVAS DA SEGUNDA ETAPA PS2007/UFG UFG-PS/7 PROVAS DA SEGUNDA ETAPA PS7/UFG Esta parte do relatório mostra o desempenho dos candidatos do grupo na prova de Matemática da ª etapa do PS7. Inicialmente, são apresentados os dados gerais dos

Leia mais

GABARITO CURSO DE FÉRIAS MATEMÁTICA Professor: Fabrício Maia

GABARITO CURSO DE FÉRIAS MATEMÁTICA Professor: Fabrício Maia Professor: Fabrício Maia EXERCÍCIOS DE SALA 1 4 5 7 8 9 10 C E B B A C A B A E 11 1 1 14 15 1 17 18 19 0 B A D B B E E A B D EXERCÍCIOS PROPOSTOS 1 4 5 7 8 9 10 11 1 A D A B B C B E C D E C 1 14 15 1 17

Leia mais

Geometria Analítica. Katia Frensel - Jorge Delgado. NEAD - Núcleo de Educação a Distância. Curso de Licenciatura em Matemática UFMA

Geometria Analítica. Katia Frensel - Jorge Delgado. NEAD - Núcleo de Educação a Distância. Curso de Licenciatura em Matemática UFMA Geometria Analítica NEAD - Núcleo de Educação a Distância Curso de Licenciatura em Matemática UFMA Katia Frensel - Jorge Delgado Março, 2011 ii Geometria Analítica Conteúdo Prefácio ix 1 Coordenadas na

Leia mais

Vestibular UFBA a FASE. Resolução da prova de Matemática Por Profa. Maria Antônia Conceição Gouveia. QUESTÕES de 01 a 08

Vestibular UFBA a FASE. Resolução da prova de Matemática Por Profa. Maria Antônia Conceição Gouveia. QUESTÕES de 01 a 08 Vestibular UFBA 006 a FASE. Resolução da prova de Matemática Por Profa. Maria Antônia Conceição Gouveia. QUESTÕES de 0 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados

Leia mais

Congruência de triângulos

Congruência de triângulos Segmento: Pré-vestibular Coleção: Alfa, Beta e Gama Disciplina: Matemática Volume: 1 Unidade IV: Série 4 Resoluções Congruência de triângulos 1. a) 90 + 3x + x + x + 30 360 6x + 10 360 6x 40 x 40 b) 105

Leia mais

Exercícios de Revisão

Exercícios de Revisão Professor: Cassio Kiechaloski Mello Disciplina: Matemática Exercícios de Revisão Geometria Analítica Geometria Plana Geometria Espacial Números Complexos Polinômios Na prova de recuperação final, não será

Leia mais

3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0.

3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0. Universidade Federal de Uerlândia Faculdade de Matemática Disciplina : Geometria Analítica (GMA00) Assunto: Superfícies, Quádricas, Curvas e Coordenadas Professor Sato 4 a Lista de exercícios. Determinar

Leia mais

Prova Vestibular ITA 2000

Prova Vestibular ITA 2000 Prova Vestibular ITA Versão. ITA - (ITA ) Sejam f, g : R R definidas por f ( ) = e g cos 5 ( ) =. Podemos afirmar que: f é injetora e par e g é ímpar. g é sobrejetora e f é bijetora e g é par e f é ímpar

Leia mais

MATEMÁTICA. Lucro = x x 11 1, = x. (19) O ELITE RESOLVE FUVEST 2006 SEGUNDA FASE - MATEMÁTICA.

MATEMÁTICA. Lucro = x x 11 1, = x. (19) O ELITE RESOLVE FUVEST 2006 SEGUNDA FASE - MATEMÁTICA. () 5- O ELITE RESOLVE FUVEST SEGUND FSE - MTEMÁTIC MTEMÁTIC QUESTÃO Um tapete deve ser bordado sobre uma tela de m por m, com as cores marrom, mostarda, verde e laranja, da seguinte forma: o padrão quadrado

Leia mais

GGM Geometria Analítica I 19/04/2012- Turma M1 Dirce Uesu

GGM Geometria Analítica I 19/04/2012- Turma M1 Dirce Uesu GGM0016 Geometria Analítica I 19/04/01- Turma M1 Dirce Uesu CÔNICAS DEFINIÇÃO GEOMÉTRICA Exercício: Acesse o sitio abaixo e use o programa: http://www.professores.uff.br/hjbortol/disciplinas/005.1/gma04096/applets/conic/co

Leia mais

Matemática. Resolução das atividades complementares. M21 Geometria Analítica: Cônicas

Matemática. Resolução das atividades complementares. M21 Geometria Analítica: Cônicas Resolução das atividades complementares Matemática M Geometria Analítica: Cônicas p. FGV-SP) Determine a equação da elipse de centro na origem que passa pelos pontos A, 0), B, 0) e C0, ). O centro da elipse

Leia mais

Matemática: Trigonometria Vestibulares UNICAMP

Matemática: Trigonometria Vestibulares UNICAMP Matemática: Trigonometria Vestibulares 015-011 - UNICAMP 1. (Unicamp 015) A figura abaixo exibe um círculo de raio r que tangencia internamente um setor circular de raio R e ângulo central θ. a) Para θ

Leia mais

Ponto 1) Representação do Ponto

Ponto 1) Representação do Ponto Ponto 1) Representação do Ponto Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Plano Cartesiano, sistemas de coordenadas: pontos e retas Na geometria

Leia mais

PROVA COMENTADA PELOS PROFESSORES DO CURSO POSITIVO

PROVA COMENTADA PELOS PROFESSORES DO CURSO POSITIVO Vestibular UFPR 0/0 - ª Fase COMENTÁRIO DA PROVA DE Buscando uma forma técnica de análise, selecionamos três tópicos que acreditamos serem as características mais importantes em uma prova com a intenção

Leia mais

Exercícios de Aprofundamento Mat Geom Espacial

Exercícios de Aprofundamento Mat Geom Espacial 1. (Fuvest 015) No cubo ABCDEFGH, representado na figura abaixo, cada aresta tem medida 1. Seja M um ponto na semirreta de origem A que passa por E. Denote por θ o ângulo BMH e por x a medida do segmento

Leia mais

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO www.professorwaltertadeu.mat.br ) Uma escada de m de comprimento está apoiada no chão

Leia mais

A primeira coisa a fazer é saber quais são as equações das curvas quando elas já se encontram na melhor

A primeira coisa a fazer é saber quais são as equações das curvas quando elas já se encontram na melhor Identificação de Cônicas Uma equação do segundo grau ax + bxy + cy + dx + ey + f = 0 define de maneira implícita uma curva no plano xy: o conjunto dos pontos (x, y) que satisfazem a equação. Por exemplo,

Leia mais

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes Circunferência MA092 Geometria plana e analítica Francisco A. M. Gomes UNICAMP - IMECC Setembro de 2016 A circunferência é o conjunto dos pontos de um plano que estão a uma mesma distância (denominada

Leia mais

Seno e Cosseno de arco trigonométrico

Seno e Cosseno de arco trigonométrico Caderno Unidade II Série Segmento: Pré-vestibular Resoluções Coleção: Alfa, Beta e Gama Disciplina: Matemática Volume: Unidade II: Série Seno e Cosseno de arco trigonométrico. sen90 cos80 sen70 ( ) ( )

Leia mais

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta Matemática - 3ª série Roteiro 04 Caderno do Aluno Estudo da Reta I - Inclinação de uma reta () direção É a medida do ângulo que a reta forma com o semieixo das abscissas (positivo) no sentido anti-horário.

Leia mais

III CAPÍTULO 21 ÁREAS DE POLÍGONOS

III CAPÍTULO 21 ÁREAS DE POLÍGONOS 1 - RECORDANDO Até agora, nós vimos como calcular pontos, retas, ângulos e distâncias, mas não vimos como calcular a área de nenhuma figura. Na aula de hoje nós vamos estudar a área de polígonos: além

Leia mais

EXERCÍCIOS DE FIXAÇÃO MATEMÁTICA II 3 a SÉRIE ENSINO MÉDIO INTEGRADO GEOMETRIA ANALÍTICA

EXERCÍCIOS DE FIXAÇÃO MATEMÁTICA II 3 a SÉRIE ENSINO MÉDIO INTEGRADO GEOMETRIA ANALÍTICA EXERCÍCIOS DE FIXAÇÃO MATEMÁTICA II a SÉRIE ENSINO MÉDIO INTEGRADO GEOMETRIA ANALÍTICA ******************************************************************************** 1) (U.F.PA) Se a distância do ponto

Leia mais

Questão 1. Questão 2. Resposta. Resposta

Questão 1. Questão 2. Resposta. Resposta Questão Um tapete deve ser bordado sobre uma tela de m por m, com as cores marrom, mostarda, verde e laranja, da seguinte forma: o padrão quadrado de 8 cm por 8 cm, mostrado abaio, será repetido tanto

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades Prova tarde Seu pé direito nas melhores faculdades IBMEC - 05/novembro/006 ANÁLISE QUANTITATIVA E LÓGICA DISCURSIVA a) 9 x, se x p 0. Considere a função f (x) =, em que p é x, se x > p uma constante real.

Leia mais

Professor Alexandre Assis. Lista de exercícios de Geometria

Professor Alexandre Assis. Lista de exercícios de Geometria 1. A figura representa três círculos idênticos no interior do triângulo retângulo isósceles ABC. 3. Observando a figura a seguir, determine (em cm): a) o valor de x. b) a medida do segmento AN, sabendo

Leia mais

SISTEMAS DE COORDENADAS

SISTEMAS DE COORDENADAS 1 SISTEMAS DE COORDENADAS 2.1 Coordenadas polares no R² Fonte: Cálculo A. Funções. Limite. Derivação. Integração. Diva Marília Flemming. Mírian Buss Gonçalves. Até o presente momento, localizamos um ponto

Leia mais

GABARITO PROVA B GABARITO PROVA A. Colégio Providência Avaliação por Área 2ª SÉRIE ENSINO MÉDIO

GABARITO PROVA B GABARITO PROVA A. Colégio Providência Avaliação por Área 2ª SÉRIE ENSINO MÉDIO Colégio Providência Avaliação por Área Matemática e suas tecnologias 1ª ETAPA Data: 11/05/2015 2ª SÉRIE ENSINO MÉDIO GABARITO PROVA A GABARITO PROVA B A B C D 1 XXXX xxxxx xxxxx xxxxx 2 4 5 6 7 8 9 10

Leia mais

IME º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

IME º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR IME - 2004 1º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 CALCULE o número natural n que torna o determinante a seguir igual a 5. Por Chio, tem-se Matemática Questão 02 Considere

Leia mais

CPV conquista 93% das vagas do ibmec

CPV conquista 93% das vagas do ibmec conquista 9% das vagas do ibmec (junho/008) Prova REsolvida IBMEC 09/Novembro /008 (tarde) ANÁLISE QUANTITATIVA E LÓGICA DISCURSIVA 0. Renato decidiu aplicar R$ 00.000,00 em um fundo de previdência privada.

Leia mais

Aula 9 Cônicas - Rotação de sistemas de coordenadas

Aula 9 Cônicas - Rotação de sistemas de coordenadas MÓDULO 1 - AULA 9 Aula 9 Cônicas - Rotação de sistemas de coordenadas Objetivos Entender mudanças de coordenadas por rotações. Identificar uma cônica rotacionada a partir da sua equação geral. Identificar

Leia mais

NOTAÇÕES. : conjunto dos números naturais : conjunto dos números inteiros : conjunto dos números reais

NOTAÇÕES. : conjunto dos números naturais : conjunto dos números inteiros : conjunto dos números reais MATEMÁTICA NOTAÇÕES : conjunto dos números naturais : conjunto dos números inteiros : conjunto dos números reais mxn ( ): conjunto das matrizes reais m x n det(m): determinante da matriz M M t : transposta

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta Questão 1 a) Quantos múltiplos de 9 há entre 100 e 1000? b) Quantos múltiplos de 9 ou 1 há entre 100 e 1000? a) Como 99 = 9 11 e 1 000 = 9 111 + 1, há 11 múltiplos positivos de 9 menores que 100 e 111

Leia mais

GABARITO ITA MATEMÁTICA

GABARITO ITA MATEMÁTICA GABARITO ITA MATEMÁTICA Sistema ELITE de Ensino ITA - 014/01 GABARITO 01. D 11. B 0. C 1. E 0. D 1. C 04. E 14. D 0. D 1. E 06. E 16. A 07. B 17. E 08. B 18. A 09. C 19. A 10. A 0. C Sistema ELITE de Ensino

Leia mais

4.1 posição relativas entre retas

4.1 posição relativas entre retas 4 P O S I Ç Õ E S R E L AT I VA S Nosso objetivo nesta seção é entender a posição relativa entre duas retas, dois planos e ou uma reta e um plano, isto é, se estes se interseccionam, se são paralelos,

Leia mais

MATEMÁTICA QUESTÃO 02. BC 7, calcule

MATEMÁTICA QUESTÃO 02. BC 7, calcule (9) -0 O ELITE RESOLVE FUVEST 008 SEGUNDA FASE MATEMÁTICA MATEMÁTICA QUESTÃO 0 João entrou na lanchonete BOG e pediu hambúrgueres, suco de laranja e cocadas, gastando R$,0. Na mesa ao lado, algumas pessoas

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II. Ficha de trabalho nº 3.

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II. Ficha de trabalho nº 3. Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II Ficha de trabalho nº 3 1. Resolver, da página 80 do seu manual, 1.1. as alíneas a), c) e e) dos

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 4. Questão 2. alternativa D. alternativa E. alternativa D. alternativa D

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 4. Questão 2. alternativa D. alternativa E. alternativa D. alternativa D Questão TIPO DE PROVA: A O algarismo das dezenas do número! é: a) 5 b) 0 c) d) 7 e) A quantidade de zeros com que termina o número n! é igual ao número de fatores 5 presentes em sua fatoração. Na fatoração

Leia mais

01- Assunto: Função Polinomial do 1º grau. Determine o domínio da função f(x) =

01- Assunto: Função Polinomial do 1º grau. Determine o domínio da função f(x) = EXERCÍCIOS COMPLEMENTARES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO - ª ETAPA ============================================================================================== 0- Assunto: Função Polinomial do

Leia mais

Colégio Santa Maria Lista de exercícios 1º médio 2011 Prof: Flávio Verdugo Ferreira.

Colégio Santa Maria Lista de exercícios 1º médio 2011 Prof: Flávio Verdugo Ferreira. Colégio Santa Maria Lista de exercícios 1º médio 2011 Prof: Flávio Verdugo Ferreira. 1- ( VUNESP) A parábola de equação y = ax² passa pelo vértice da parábola y = 4x - x². Ache o valor de a: a) 1 b) 2

Leia mais

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2006 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Seja E um ponto externo a uma circunferência. Os segmentos e interceptam essa circunferência nos pontos B e A, e, C

Leia mais

Exercícios de matemática - 3º ano - Ensino Médio - 3º bimestre

Exercícios de matemática - 3º ano - Ensino Médio - 3º bimestre Exercícios de matemática - 3º ano - Ensino Médio - 3º bimestre Pergunta 1 de 10 - Assunto: Álgebra [011 - ENEM] Um bairro de uma cidade foi planejado em uma região plana, com ruas paralelas e perpendiculares,delimitando

Leia mais