Comportamento Físico dos Gases Parte I

Tamanho: px
Começar a partir da página:

Download "Comportamento Físico dos Gases Parte I"

Transcrição

1 RECIFE Colégio Salesiano Sagrado Coração ] Aluna(o): Nº: Turma: 2º ano Recife, de de 2013 Disciplina: Química Professor: Eber Barbosa Comportamento Físico dos Gases Parte I 01 Características do Estado Gasoso O estado gasoso é caracterizado por um alto grau de agitação molecular, tendo suas partículas bastante afastadas uma das outras. Os gases são muito menos densos que os sólidos e líquidos, isto é, em igualdade de massa os gases ocupam um volume muito maior. Os gases sempre se misturam entre si (grande difusibilidade). Os volumes dos gases variam muito com a temperatura e pressão. Na verdade o gás não tem forma nem volumes fixos e, para entendermos essas características, faz-se necessário inicialmente estudarmos as grandezas associadas ao estudo do estado gasoso Grandezas Relacionadas ao Estudo dos Gases 2.A O Mol A constante de Avogadro 6, dá origem à grandeza quantidade de matéria, cuja unidade é o mol. Segundo a IUPAC... Mol é a quantidade de matéria de um sistema que contem tantas entidades elementares quantos são os átomos contidos em 0,012 quilogramas de carbono 12. Quando se utiliza o mol, as entidades elementares devem ser especificadas, podendo ser átomos, moléculas, íons, elétrons, outras partículas ou grupamentos de tais partículas. (14 a CGPM 1971) Conferência Geral de Pesos e medidas 2.B Massa Molar (M) Um mol é a quantidade de matéria que contém 6, partículas Como já vimos, um mol é a quantidade de matéria de qualquer amostra de substância que contenha 6, partículas. A massa em gramas desse conjunto de partículas é chamada massa molar. Massa molar (M) é a massa, em gramas, de qualquer amostra de substância que contenha 6, partículas (átomos, moléculas, íons, etc.). Unidade de massa molar: g / mol 1

2 Exemplo: Suponha então que 6, átomos de magnésio estejam sobre uma balança conforme ilustração abaixo: 24 g 6, átomos de magnésio 1 mol de átomos de magnésio Massa de 6, átomos de magnésio Conclusões: A massa molar do magnésio é 24 g/mol. Nos textos de química essa informação é dada da seguinte forma: Mg = 24 g/mol Que significa dizer g de magnésio 1 mol de átomos de Mg 24g de magnésio 6, átomos de Mg 48 g de magnésio 2 mol de átomos de Mg 48g de magnésio 12, átomos de Mg...outro exemplo: A massa molar do gás carbônico, CO 2, corresponde a 44g/mol. Isso significa que: 44g de CO 2 1 mol de moléculas de CO 2 ou 44g de CO 2 6, moléculas de CO 2 88g de CO 2 2 mols de moléculas de CO 2 ou 88g de CO 2 12, moléculas de CO 2 2.C Quantidade de Matéria Gasosa (n) A medida da quantidade de matéria gasosa é dada através da quantidade de mols (do número de mols) de um gás contido em um certo sistema, ou seja... Existe mais ou menos gás onde há mais ou menos quantidade de mols Atenção: Em linguagem matemática, a quantidade de mols é expressa por... n = Entendendo a Medida da Quantidade de Matéria m MM massa qualquer massa molar Considerando as massas molares H 2 = 2 g/mol e CH 4 = 16 g/mol, observe os dois cilindros abaixo contendo iguais massas gasosas em um mesmo volume a uma mesma temperatura. Pergunta: 8g de H 2...para o H 2 2 g 1 mol 8 g n 8 n = 2 n = 4 mol de H 2 8g de CH 4...para o CH 4 16 g 1 mol 8 g n 8 n = 16 n = 0,5 mol de CH 4 Os dois cilindros apresentam a mesma quantidade de gás? Por que sim ou não? Muito embora exista a mesma massa de gases nos dois recipientes, 8 gramas, não existem as mesmas quantidades de gases porque as quantidades de mols não são iguais. Concluímos que existe mais gás hidrogênio porque... n H2 = 8 x n CH4 Não esqueça: A massa não é o critério para se identificar uma maior ou menor quantidade de gás. Importante é a quantidade de mols do gás 2

3 2.D Temperatura (T) moléculas. Consequência da agitação das partículas. Dessa forma entendemos que a temperatura de um gás é uma medida do grau de agitação de suas Unidades de Medida de Temperatura Em química: Kelvin = única escala de temperatura diretamente proporcional à agitação das partículas. No cotidiano: Celsius Conversão de Unidades: T K = T oc E Volume (V) Volume de um recipiente é a medida de sua capacidade. Considerando que o gás não apresenta volume fixo e adotando um recipiente fechado, vamos trabalhar com a seguinte idéia: O volume do gás é o volume do recipiente que o contém, ou seja, o gás se espalha por todo espaço que lhe é permitido ocupar. Volumes de Figuras espaciais Cubo paralelepípedo cilindro esfera a h h r a a V = a 3 Perguntas para debate: A base V = A base. h r V = 4. π. r 3 V = π. r 2. h 3 1 a ) Certa massa de gás hélio está armazenada em um cilindro fechado de capacidade 60 litros. Abrindo a válvula de escape do recipiente, ocorre o vazamento de metade da massa de gás. Qual o volume ocupado pelo gás que ainda restou no cilindro? Início V = 60 L As moléculas do gás se espalham por todo recipiente ocupando os 60 L. Final V = 60 L Após o vazamento, as moléculas que restaram do gás se espalham por todo recipiente e continuam ocupando os 60 L (Porém diminui a pressão do gás). 2 a ) Um recipiente fechado de capacidade para 20 litros contém 2 mols de O 2 e 8 mols de H 2. Qual dos dois gases ocupa maior volume dentro do recipiente? Os dois gases ocuparão o mesmo volume, ou seja, 20 litros. A diferença é que a pressão do H 2(g) será maior porque se encontra em maior quantidade dentro do recipiente. H 2(g) O 2(g) 8 mols 2 mols V do H 2 = V do O 2 Porém Pressão do H 2 > Pressão do O 2 3ª ) Suponha que uma certa massa gasosa esteja confinada em um recipiente de 20 litros com uma pressão P qualquer. Se essa mesma massa gasosa for transferida para um recipiente de 40 litros, qual será o volume ocupado? A pressão continuará a mesma? Início X gramas de gás V = 20 L Pressão = P Fim X gramas de gás V = 40 L Pressão = P/2 Porque quando o gás se espalha sua pressão diminui. 3

4 Principais Unidades de Medida de Volume No Sistema Internacional (SI): metro cúbico (m 3 ) = volume de um cubo de aresta 1 m 3. Nos argumentos químicos: Litro (L) e mililitro (ml) são as unidades mais comuns. X 1000 X 1000 Conversão de Unidades: Litro mililitro m 3 Litro Não esqueça: 1 L = 1000 ml 1 ml = 1 cm 3 1 m 3 = 1000 L 2.F Densidade (d) do Gás em Recipiente Fechado Considerando um recipiente de volume fixo (indeformável) e fechado de forma a não permitir entrada ou saída de gás (ou seja, quantidade de mols de gás constante), a densidade do gás dependerá apenas do volume desse recipiente e da massa de gás nele contido. Entretanto se o gás se estiver confinado em recipiente de capacidade fixa (invariável), então seu volume poderá mudar bastante em função de modificações de temperatura e pressão. Massa fixa de gás sob... 2.G Pressão (P) aplicada. Fisicamente falando a pressão é definida como a razão entre a força (F) e a área (S) sobre a qual ela é Força F Área S d = m V Pressão = Unidades mais comuns: g/ml ou g/cm 3 F S ou Kg/L Provocado pelo aumento da temperatura ou queda de pressão. aumento de volume = diminuição da densidade = o gás rarefeito tende a subir. diminuição de volume = aumento da densidade = o gás concentrado tende a descer. Provocado pela diminuição da temperatura ou aumento de pressão. Para uma mesma força, quanto maior a área em que incide a força menor é a pressão exercida em cada unidade de área dessa superfície. Do ponto de vista químico a pressão é entendida como o resultado da intensidade das colisões das moléculas do gás contra as paredes do recipiente que o contém. Buumm!!! Dessa forma entendemos que a proporção em que aumenta a agitação das moléculas do gás, também aumenta a sua pressão (desde que permaneça constante o volume ocupado pelo gás). Unidades de Medida de Pressão Argumentos químicos: Atmosferas (atm); milímetros de mercúrio (mmhg) Cotidiano: as pessoas confundem pressão com peso. Em 1643, Evangelista Torricelli determinou experimentalmente que a pressão exercida pela atmosfera ao nível do mar corresponde à pressão exercida por uma coluna de mercúrio de 760 mm Hg: Conversão de Unidades: 1 atm = 760 mmhg = 760 torr 10 5 Pa (pascal)* = 1,0 bar mmhg é uma forma de medir pressão que utiliza um tubo de vidro encurvado com uma das extremidades submersa em mercúrio. A pressão é medida pela altura da coluna de mercúrio que sobe pelo tubo de vidro. Quanto maior à pressão no ambiente, mais o mercúrio sobe pela coluna indicando o aumento de pressão. Ao nível do mar O mercúrio sobe pela coluna até uma altura de 760 mm Hg Esta medição indicará a pressão ao nível do mar, ou seja, 1 atm. 4

5 Pressão Atmosférica:.. P < 1 atmosfera P = 1 atmosfera Céu P > 1 atmosfera... Morro.. Praia.. Mar Comentários: Córrego Ao nível do mar a pressão da atmosfera sobre os corpos é denominada de 1 atm. Em regiões elevadas a pressão atmosférica é menor que ao nível do mar. Nessas regiões a concentração de gases, incluindo oxigênio, é menor que o normal ao nível do mar. Em regiões formadas por depressões que fiquem abaixo do nível do mar, a pressão atmosférica é maior que 1 atm. É fundamental lembrar que uma determinada massa gasosa ao sofrer grandes variações de densidade (de volume) pode apresentar mudanças no seu aspecto visual, por exemplo, quanto menor a pressão gasosa (gás rarefeito) mais difícil será sua percepção visual. Observação 1 Relações Entre Pressão Interna e Pressão Externa P Interna = P Externa... o corpo está em equilíbrio e seu volume é constante. P Interna P Externa P Interna > P Externa... o volume do corpo tende a aumentar indefinidamente. P Interna < P Externa... o volume do corpo diminui. É como se o corpo fosse esmagado Observação 2 Relações Entre Pressão e Deslocamento de Massas Gasosas Pressão 1 Possíveis Pressão 2 deslocamentos Região 1 de massas gasosas Região 2 Se P 1 = P 2... O deslocamento dos gases ocorre igualmente de uma região para outra mantendo a pressão constante em ambas as regiões (é como se não houvesse deslocamento dos gases). Se P 1 > P 2... há deslocamento de gases da região 1 para região 2 Se P 1 < P 2... há deslocamento de gases da região 2 para região 1 Observação 3 Relação entre pressão e quantidade de mols A pressão não depende de qual é o gás (natureza do gás), a pressão depende da quantidade de mols de gás existente no recipiente (considerando volume do recipiente e temperatura constantes). A pressão é diretamente proporcional a quantidade de mols de gás. Da mesma forma, o percentual da cada gás na mistura é também uma função da quantidade de matéria (mols) dos gases. 5

6 Exemplo: Um recipiente contém 64 g de anidrido sulfuroso (SO 2 ) e 64 g de metano (CH 4 ). Se a pressão total de gases no interior do recipiente é de 4 atm, determine suas pressões parciais. Dados: CH 4 = 16 g/mol e SO 2 = 64 g/mol SO 2 CH 4 Outra possível resolução... 64g 1 mol de SO 2 64g 4 mol de CH 4 Dessa forma... P SO = x atm 2 Então P CH = 4x atm As pressões não serão definidas pelas massas, mas sim pelas quantidades de mols dos gases. Dessa forma entendemos que a pressão do gás metano será maior... P CH = 4 x P 4 SO 2 Porque n CH = 4 x n SO P SO + P CH = 4 x + 4x = 4 5x = 4 x = 0,8 2 4 P total = 4 atm P SO 2 = 0,8 atm P CH = 3,2 atm 4...para o CH 4 4 atm 5 mol de gases P CH4 4 mol de CH 4 P CH4 = 3,2 atm...para o SO 2 4 atm 5 mol de gases P SO2 1 mol de SO 2 P SO2 = 0,8 atm Testes de Vestibulares 01 (ENEM 2012) Um dos problemas ambientais vivenciados pela agricultura hoje em dia é a compactação do solo, devida ao intenso tráfego de máquinas cada vez mais pesadas, reduzindo a produtividade das culturas. Uma das formas de prevenir o problema de compactação do solo é substituir os pneus dos tratores por pneus mais a) largos, reduzindo a pressão sobre o solo. d) estreitos, aumentando a pressão sobre o solo. b) estreitos, reduzindo a pressão sobre o solo. e) altos, reduzindo a pressão sobre o solo. c) largos, aumentando a pressão sobre o solo. 02 (UFPE Vitória e Caruaru/2007.2) A matéria apresenta-se na natureza em três estados físicos: sólido, líquido e gasoso. Estes estados possuem características distintas em relação à energia de suas partículas, bem como aspectos macroscópicos de forma e volume. É característica do estado gasoso: a) forma fixa e volume variável. c) forma e volume variáveis. e) alto estado de agregação. b) forma variável e volume fixo. d) forma e volume fixos. 03 (UFPE Serra Talhada/2007) A propriedade quantidade de matéria é a grandeza física que representa a quantidade de entidades elementares (átomos, moléculas, íons, etc.) de uma substância qualquer. Esta grandeza tem como unidade de medida o: a) grama. b) litro. c) coulomb. d) hertz. e) mol. 04 (UFPE 1 a fase/2000) Um vendedor de balões de gás na Praia de Boa Viagem, em Recife, utiliza um cilindro de 60 L de Hélio a 5 atm de pressão, para encher os balões. A temperatura do ar é 30 o C e o cilindro está em um local bem ventilado e na sombra. No momento em que o vendedor não conseguir encher mais nenhum balão, qual o volume e a pressão do gás Hélio restante no cilindro? a) V = 0 L; P = 0 atm c) V = 60 L; P = 1 atm e) V = 60 L; P = 0 atm b) V = 22,4 L; P = 1 atm d) V = 10 L; P = 5 atm 6

7 pressão pressão pressão pressão pressão 05 (UFPE 2 a fase/99) Uma lata de spray qualquer foi utilizada até não mais liberar seu conteúdo. Neste momento podemos dizer: I II 0 0 A pressão de gases no interior da lata é zero. 1 1 A pressão de gases no interior da lata é igual à pressão atmosférica. 2 2 Existe vácuo no interior da lata. 3 3 Ao aquecermos a lata a pressão no seu interior não varia. 4 4 Ao aquecermos a lata e pressionarmos sua válvula, gases sairão novamente da mesma. 06 (UPE Quí. I/2005) Coloca-se uma esponja de aço umedecida dentro de um cilindro provido de um êmbolo móvel que se desloca sem atrito, à temperatura ambiente. A pressão interna do cilindro é originada pela presença de ar atmosférico (N 2 e O 2 ) e é igual à pressão externa. Observa-se o sistema em laboratório, durante o tempo necessário, para que se conclua e verifique se ocorreu ou não reação química no interior do cilindro. P ext N 2 É de se esperar que, ao término da experiência, O 2 Esponja de aço umedecida a) o êmbolo desloque-se para baixo, em função da diminuição da pressão interna no interior do cilindro. b) o êmbolo permaneça imóvel, pois não ocorre variação da pressão interna do cilindro. c) o êmbolo desloque-se para cima, em função do aumento de pressão interna no interior do cilindro, decorrente da presença da esponja de aço. d) a esponja de aço absorva todo nitrogênio existente no interior do cilindro, reduzindo, portanto, a pressão interna. e) o N 2 e O 2 reajam entre si, formando um óxido ácido que, ao interagir com a água impregnada na esponja de aço, forma o ácido nítrico, corroendo toda a esponja de aço. 07 (UFPE 1 a fase/2002) Em um recipiente fechado de volume constante, contendo 0,5 mol de CO 2 e 0,2 mol de NO 2, adiciona-se N 2 até completar 0,3 mol. Identifique, dentre os gráficos abaixo, o que melhor representa o que acontece com as pressões total e parciais no interior do recipiente durante a adição do nitrogênio. a) pressão total b) c) pressão total pressão total pressão de CO 2 pressão de CO 2 pressão de NO 2 pressão de NO 2 pressão de N2 pressão de NO 2 pressão de N2 pressão de CO 2 pressão de N 2 tempo de adição tempo de adição tempo de adição d) pressão total e) pressão total pressão de N 2 pressão de CO 2 pressão de N 2 pressão de NO 2 pressão de CO 2 pressão de NO 2 tempo de adição tempo de adição 08 (UFPE 1 a fase/94) O ar é uma solução gasosa contendo 20%, aproximadamente, de oxigênio. Em um recipiente com 5 atmosferas de ar, qual a pressão parcial do gás oxigênio? a) 0,2 b) 0,8 c) 1 d) 2 e) 5 7

8 09 (UFPE 1 a fase/2001) Admitindo-se que o desempenho físico dos jogadores de futebol esteja unicamente relacionado com a concentração de oxi-hemoglobina no sangue, representada por Hb-O 2 (sangue), a qual é determinada, simplificadamente, pelo equilíbrio: Hemoglobina (sangue) + O 2 (g) Hb-O 2(sangue), e considerando-se que as frações molares dos dois principais constituintes da atmosfera, N 2 e O 2, são constantes, qual das alternativas abaixo explica a diferença no desempenho físico dos jogadores quando jogam em Recife, PE, e em La Paz na Bolívia? Dados: altitude do Recife 0 m e altitude de La Paz 3600 m. a) A pressão parcial de oxigênio em La Paz é maior que em Recife; portanto o desempenho dos jogadores em La Paz deve ser pior do que em Recife. b) A pressão parcial de oxigênio em La Paz é menor que em Recife; portanto o desempenho dos jogadores em La Paz deve ser pior do que em Recife. c) A pressão parcial de oxigênio em La Paz é igual a de Recife; portanto o desempenho dos jogadores em La Paz deve ser pior do que em Recife. d) A pressão parcial de oxigênio em La Paz é menor que em Recife; portanto o desempenho dos jogadores em La Paz deve ser melhor do que em Recife. e) A pressão parcial de oxigênio em La Paz é igual à de Recife; portanto o desempenho dos jogadores em La Paz e em Recife deve ser o mesmo. 10 (UFPE 2ª fase/2009) Gases, líquidos e sólidos exemplificam estados físicos da matéria e o conhecimento adequado das propriedades destes estados, permite afirmar que: I II 0 0 um gás tende a ocupar o volume total do recipiente que o contém. 1 1 a solubilidade de um gás em um líquido depende da pressão parcial exercida por esse gás sobre o líquido. 2 2 bolhas de gás tendem a elevar-se no interior de um líquido e crescem à medida que se deslocam para alcançar a superfície. 3 3 substâncias no estado sólido sempre têm densidade maior do que no estado líquido. 4 4* em um sistema constituído por dois gases, o gás com maior massa molar exerce a maior pressão parcial. *O texto deveria ser assim: em um sistema constituído por massas iguais de dois gases, o gás com maior massa molar exerce a maior pressão parcial. 11 (UFPE 2 a fase) Em dois botijões de gás, A e B, de mesmo volume, contendo respectivamente hidrogênio e hélio à mesma temperatura, verifica-se que as massas são iguais. Em relação a esta experiência analise as alternativas verdadeiras e as falsas. (Dados H 2 = 2 g/mol e He = 4 g/mol) I II 0 0 A pressão no botijão A é igual à pressão no botijão B. 1 1 A pressão no botijão A é duas vezes maior do que a pressão no botijão B. 2 2 A pressão no botijão A é a metade da pressão no botijão B. 3 3 O número de mols do gás hidrogênio é duas vezes o número de mols do gás hélio. 4 4 O número de mols do gás hidrogênio é idêntico ao número de mols do gás hélio. 12 (UFPE 2 a fase/2011) Massas iguais de metano, CH 4, e hexa-fluoreto de enxofre, SF 6, foram introduzidas em recipientes separados, de iguais volumes, à mesma temperatura. A massa molar do hexa-fluoreto de enxofre é maior do que a massa molar do metano. Na tentativa de descrever corretamente a relação de comportamento dos dois gases armazenados nos respectivos recipientes, admitindo-se comportamento ideal, podemos afirmar que: I II 0 0 ambos os recipientes contêm o mesmo número de moléculas. 1 1 as pressões exercidas pelos gases nos dois recipientes são diferentes. 2 2 as quantidades de matéria dos dois gases nos recipientes são diferentes. 3 3 as massas molares dos dois gases, a uma dada temperatura e pressão, são iguais. 4 4 os volumes molares dos dois gases, a uma dada temperatura e pressão, são iguais. 8

9 13 (UNICAP Qui. I/94) Em um recipiente de volume X, encontramos 0,4 g de He (g) e 0,4 g de CH 4(g), a uma temperatura W. (Dados: H = 1 u; He = 4 u; C = 12 u) I II 0 0 O número de moléculas de He e CH 4 são iguais. 1 1 A pressão exercida pelo He é igual à exercida pelo CH A pressão total no recipiente é a soma das pressões de He e CH Se o gás He for retirado do recipiente, a pressão final se reduzirá à metade. 4 4 Se W for 0 o C e a pressão total 1 atm, o volume x será 5,6 litros. Análise com o Professor: 14 (UFPE 2 a fase/99) Dois recipientes encontram-se ligados por uma válvula inicialmente fechada, como mostra a figura abaixo. No recipiente menor, com volume de 1, encontra-se gás carbônico na pressão de 1 atm. No recipiente maior, com volume de 3, encontra-se oxigênio na pressão de 6 atm. Considerando que a válvula é aberta e os dois gases se misturam, ocupando o volume dos dois recipientes, podemos afirmar: I II 0 0 A pressão parcial de gás carbônico será 0,25 atm. 1 1 A pressão parcial de oxigênio será 4,5 atm. 2 2 A pressão total no interior do recipiente será 4,75 atm. 3 3 A pressão total no interior do recipiente será de 7atm. 4 4 A pressão no interior do recipiente maior será menor que a pressão no interior do recipiente menor. Responda você mesmo: 15 (UFPE 2 a fase/1997: Prova de Física II) Um balão de vidro, de volume V = 1 litro e contendo hélio a uma pressão de 1 atm, é ligado por um tubo fino a um outro balão idêntico que contém o mesmo gás a 5 atm e à mesma temperatura. Determine o valor em atmosferas da pressão em cada um dos balões alguns minutos após a válvula de conexão S ter sido aberta, se a temperatura for mantida constante durante todo processo. He P 1 = 1 atm S He P 2 = 5 atm 16 (UFPE 1 a fase/95) Um balão cheio com ar quente sobe a grandes altitudes por que: a) As moléculas do ar quente são menores do que as moléculas do ar na temperatura ambiente. b) Dentro do balão há menos moléculas de ar por unidade de volume. c) As moléculas de ar quente são maiores do que as moléculas do ar na temperatura ambiente. d) As moléculas do ar quando aquecidas são rompidas, formando átomos mais leves e diminuindo a densidade do ar. e) As moléculas do ar quando aquecidas formam agregados, aumentando o espaço vazio entre elas. 9

10 17 (Enem 1 a aplicação/2010) Júpiter, conhecido como o gigante gasoso, perdeu uma de suas listas mais proeminentes, deixando o seu hemisfério sul estranhamente vazio. Observe a região em que a faixa sumiu, destacada pela seta. A aparência de Júpiter é tipicamente marcada por duas faixas escuras em sua atmosfera uma no hemisfperio norte e outra no hemisfério sul. Como o gás está constantemente em movimento, o desaparecimento da faixa no planeta relaciona-se ao movimento das diversas camadas de nuvens em sua atmosfera. A luz do sol, refletida nessas nuvens, gera a imagem que é captada pelos telescópios, no espaço ou na terra. O desaparecimento da faixa sul pode ter sido determinado por uma alteração a) na temperatura da superfície do planeta. b) no formato da camada gasosa do planeta. c) no campo gravitacional gerado pelo planeta. d) na composição química das nuvens do planeta. e) Na densidade das nuvens que compõem o planeta Resoluções de Testes Comentários Adicionais 10

11 03 Hipótese de Avogadro Gases diferentes confinados em recipientes de mesmo volume à mesma temperatura apresentarão a mesma pressão apenas quando apresentarem a mesma quantidade de matéria (mesma quantidade de moléculas). Mesmo volume, temperatura e pressão = Mesma quantidade de mols. Exemplo: Considere dois recipientes A e B de mesmo volume contendo, respectivamente, 32g de SO 2 e certa massa de CH 4, ambos nas mesmas condições de temperatura e pressão. Determine a massa de metano no recipiente B. Dados: CH 4 = 16 g/mol e SO 2 = 64 g/mol A B 32g 0,5 mol de SO 2 Xg =? SO 2 CH 4 Se ambos apresentam mesmo Volume, temperatura e pressão...então ambos apresentam mesma quantidade de mols, ou seja, há também 0,5 mol de metano: m CH4 = 8g Análise com o Professor: 18 (UFPE 2 a fase/98) Em determinadas condições de temperatura e pressão, 10 litros de hidrogênio gasoso, H 2, pesam 1,0 g. Qual seria o peso de 10 litros de hélio, He, nas mesmas condições? (Dados: H = 1 u; He = 4 u) 04 Proporcionalidade Entre as Grandezas 4.A Grandezas Diretamente Proporcionais Em linguagem simplificada, quando uma grandeza X aumenta provocando aumento de mesma intensidade em outra grandeza Y, ou quando as grandezas X e Y diminuem com a mesma proporção, diremos que as grandezas são diretamente proporcionais. Como exemplo podemos dizer que se X aumenta 10 vezes então Y também aumenta 10 vezes ou se X diminui 5 vezes, Y também diminui 5 vezes. Nesses casos, em linguagem matemática, diremos que a razão entre X e Y é uma constante. Se X é diretamente proporcional a Y... 4.B Grandezas Inversamente Proporcionais Também em linguagem simplificada, quando uma grandeza X aumenta provocando diminuição de mesma intensidade em outra grandeza Y ou quando a grandeza X diminui gerando aumento de mesma proporção em Y, diremos que as grandezas são inversamente proporcionais. Como exemplo podemos dizer que se X aumentar 10 vezes então Y diminuirá 10 vezes ou se X diminuir 5 vezes, Y aumentará 5 vezes. Nesses casos, em linguagem matemática diremos que o produto entre X e Y é uma constante. Se X é inversamente proporcional a Y... X Y = K X. Y = K 11

12 05 Quando Há Variação da Quantidade de Mols 5.A Variação da Quantidade de mols e variação do Volume (Recipiente Fechado) Para pressão e temperatura constantes... início fim Aumentando-se a quantidade de mols do gás = aumenta-se o volume. Diminuindo-se a quantidade de mols do gás = reduz-se o volume. Conclusão: Quantidade de mols e volume são grandezas diretamente proporcionais. n 1 n = 2 V 1 V 2 No estado final o volume é duas vezes maior porque a quantidade de mols de gás final é o dobro da inicial 5.B Variação da Quantidade de mols e variação da Pressão (Recipiente Fechado) início Para volume e temperatura constantes... fim Aumentando-se a quantidade de mols do gás = aumenta-se a pressão. Diminuindo-se a quantidade de mols do gás = reduz-se a pressão. Conclusão: Quantidade de mols e pressão são grandezas diretamente proporcionais. n 1 n = 2 P 1 P 2 No estado final a pressão é duas vezes maior porque a quantidade de mols de gás final é o dobro da inicial 5.C Variação da Quantidade de mols e variação da Temperatura (Recipiente ABERTO) Em recipiente aberto com pressão constante... O aumento da temperatura = diminui a quantidade de mols de gás no recipiente. A redução da temperatura = aumenta a quantidade de mols de gás no recipiente. Conclusão: Quantidade de mols e temperatura são grandezas inversamente proporcionais. início fim n 1. T 1 = n 2. T 2 Pressupondo que a temperatura final seja o dobro da inicial, então a quantidade de gás final (que ainda resta no recipiente) é metade da quantidade de gás inicial. Análise com o Professor: 19 (UNICAP Qui. II/96) A que temperatura, em graus Celcius, devemos aquecer um frasco aberto, inicialmente a 27,4 o C, para que 20% do gás nele contido escape? 12

13 P 2 P 2 > P 1 06 Leis Físicas dos Gases Estão relacionadas com as transformações gasosas. Transformar o estado de um gás é modificar a pressão, temperatura ou volume do gás, quando não há variação da quantidade de mols. Dessa forma podemos destacar três importantes leis: 6.A Transformação Isotérmica (Temperatura = CTE) Pressão: P 1 Pressão: P 2 Volume: V 1 Volume: V 2 P 2 > P 1 V 2 < V 1 P e V são inversamente proporcionais P V T 1 Todos os pontos sobre a mesma curva apresentam a mesma temperatura e mesma energia cinética média T 2 Temperatura 1 > Temperatura 2 Lei de Boyle Mariott P 1. V 1 = P 2. V 2 6.B Transformação Isobárica (Pressão = CTE) V Todos os pontos sobre essa mesma diagonal terão a mesma pressão. T V V P 1 P 1 P 2 P 2 > P 1 Temperatura: T 1 Temperatura: T 2 Volume: V 1 Volume: V 2 T Gay Lussac T T 2 > T 1 V 2 > V 1 T e V são diretamente proporcionais V 1 T 1 = V 2 T 2 6.C Transformação Isocórica, Isovolumétrica, Isométrica (Volume = CTE) P Todos os pontos sobre essa mesma diagonal terão o mesmo volume. T Baixa agitação molecular Alta agitação molecular P P V 1 V 1 V 2 V 2 > V 1 V 2 V 2 > V 1 Temperatura: T 1 Temperatura: T 2 Pressão: P 1 Pressão: P 2 T Lei de Charles T T 2 > T 1 P 2 > P 1 P e T são diretamente proporcionais P 1 T 1 = P 2 T 2 13

14 6.D Equação Geral dos Gases Está relacionada com as transformações onde há variação simultânea de volume, temperatura e pressão, mantendo-se constante a quantidade de matéria. Em 1802, Joseph Gay-Lussac verificou que se a temperatura fosse medida pela escala Kelvin (K), a pressão (P) e a temperatura (T) apresentariam variação proporcional. Relacionando as três transformações gasosas estudadas até aqui, obtemos uma relação denominada equação geral dos gases: P 1. V 1 T 1 = P 2. V 2 T 2 Transformação Isotérmica Transformação Isobárica Transformação Isocórica Lei de Boyle Mariott Gay Lussac Lei de Charles P 1. V 1 = P 2. V 2 V 1 T 1 = V 2 T 2 P 1 T 1 = P 2 T 2 Análise com o Professor: 20 (UFPE 2 a fase/95) Uma certa quantidade de gás ideal ocupa 30 litros à pressão de 2 atm e à temperatura de 300K. Que volume passará a ocupar se a temperatura e a pressão tiverem seus valores dobrados? 21 (UNIVASF/2006 Prova de Física) Na fase de compressão de um motor a gasolina, o pistão comprime a mistura ar + combustível, no interior do cilindro, de modo que o volume reduz-se para 1/10 do volume inicial e a pressão aumenta para cerca de 15 vezes a pressão inicial. Supondo que, no início da compressão, a temperatura no interior do cilindro é de 300 K, qual a temperatura da mistura no fim da compressão? (Trate a mistura ar + combustível como um gás ideal.) a) 320 K b) 400 K c) 450 K d) 500 K e) 600 K Responda você mesmo: 22 (UFPE 2 a fase/2013 Prova de Física) Um gás ideal passa por uma transformação termodinâmica em que sua pressão dobra, seu número de moléculas triplica, e seu volume é multiplicado por um fator de 12. Nessa transformação, qual a razão entre as temperaturas absolutas final e inicial do gás? 23 (UFPE 2 a fase/93) Quantos litros de oxigênio são liberados na atmosfera, a temperatura constante e ao nível do mar, por um balão de 22 litros, contendo este gás a uma pressão de 3,5 atmosferas? 14

15 07 Volume Molar dos Gases (Volume de 1 mol de gás) Até 1982, a pressão padrão era tomada como uma atmosfera (1 atm ou Pa) e a temperatura como 0 C (273,15 K) e, portanto, o volume molar de um gás nas CNTP era 22,4 L/mol até A partir de 1982, a União Internacional de Química Pura e Aplicada (IUPAC) alterou o valor da pressão padrão, de forma que as novas condições normais de temperatura e pressão são: t = 0 C ou T = 273,15 K e p = Pa = 1 ba As razões que levaram a IUPAC a alterar o valor da pressão padrão foram: valor numérico igual a 1 (1 x10 5 Pascal), compatibilidade com as unidades SI, produção de alterações muito pequenas nas tabelas de dados termodinâmicos e considerável simplificação dos cálculos, entre outros aspectos. 7.A Volume Molar do Gás nas CNTP Como o valor da pressão padrão foi reduzido de Pa para Pa, houve um consequente aumento no volume molar. O valor recomendado pela IUPAC, a partir de 1982, é: 1 mol de gás = 22,7 litros (CNTP) Perguntas: Considerando que a massa molar do gás de cozinha (butano) é 58 g/mol, determine: a) Qual o volume ocupado por 116g desse gás nas condições normais, considerando o volume molar 22,7 L/mol? 58 g 1 mol 22,7 L 1 mol 116 g n V 2 mol n = 2 mol de gás butano V = 45,4 L de gás butano b) Qual a massa e o número de moléculas de gás butano existente em um botijão de 11,2 litros submetidos à 760 mmhg e 273K, considerando o volume molar 22,4 L/mol? 22,4 L 1 mol 11,2 L n n = 0,5 mol de gás 58 g 1 mol m 0,5 mol m = 29 g de butano 6, moléculas 1 mol X 0,5 mol X = 3, moléculas de butano Análise com o Professor: 24 (FESP UPE/94) Considere dois recipientes de iguais volumes contendo gases submetidos às mesmas condições de temperatura e pressão. No primeiro, há 11,0 g de um gás A e no segundo recipiente há 1, moléculas de um gás B. Há quantos gramas do gás A em 67,2 litros medidos nas CNTP? a) 132,0 g b) 11,0 g c) 44,0 g d) 88,0 g e) 8,9 g Responda você mesmo: 25 (UFPE 2 a fase/94) Um mol de gás ideal nas CNTP ocupa 22,4 litros. Qual o volume em litros, ocupado por uma mistura contendo dois mols de nitrogênio, dois mols de oxigênio e um mol de gás carbônico quando a pressão é duplicada a temperatura constante? 15

16 08 Idealidade do Gás O comportamento ideal do gás está associado a um conjunto de fatores assim resumidos: Gás Ideal... tem forma variável tem volume variável não há força de atração entre as moléculas as colisões entre suas moléculas são perfeitamente elásticas O gás adota a forma do recipiente que o contém. O volume do gás é o volume do recipiente que o contém. Quanto menor for a interação entre as moléculas, maior é a idealidade do gás. Quanto menor a perda de energia cinética durante as colisões intermoleculares, mais ideal é o gás. Considerando que os gases conhecidos não obedecem plenamente ao perfil acima exposto, entendemos que o estudo da idealidade gasosa concentra-se em discutir os princípios que conduzem um gás real a se aproximar do comportamento de gás ideal. Verifica-se que a idealidade gasosa aumenta à medida que é maior a distância entre as moléculas: Conclusões: Gases formados por moléculas apolares apresentam comportamento mais ideal que os gases compostos por moléculas polares. + + Forte atração Dificuldade para se afastar Baixa idealidade gasosa Fraca atração facilidade para se afastar Alta idealidade gasosa Em temperaturas mais altas os gases são mais ideais. Isso ocorre porque em temperaturas elevadas, o volume ocupado pelo gás é bastante maior. Dessa forma as moléculas se encontram mais afastadas, diminuindo as forças de atração entre as moléculas. Em pressões mais baixas os gases são mais ideais. Isso ocorre porque em pressões baixas, o volume ocupado pelo gás é bastante maior. Dessa forma as moléculas se encontram mais afastadas, diminuindo as forças de atração entre as moléculas. Gases com pequenas massas moleculares são mais ideais. Isso ocorre porque, a uma mesma temperatura, gases mais leves apresentam maior agitação molecular que os gases mais pesados. O gás é mais ideal à medida que é maior o seu estado de agitação molecular. Análise com o Professor: 26 (UFPE 2 a fase/97) Um gás ideal é aquele que não apresenta interações entre suas partículas (átomos ou moléculas) e cujas partículas possuem dimensões desprezíveis. Esta idealidade pode ser atingida somente sob certas condições experimentais. Como base nestes comentários analise as afirmativas abaixo: I II 0 0 À temperatura ambiente, o oxigênio gasoso a 0,01 atm de pressão se comporta menos idealmente que a 10 atm de pressão. 1 1 Nas mesmas condições de temperatura e pressão o hidrogênio deve se comportar mais idealmente que o cloro. 2 2 Numa mesma pressão, um mesmo gás deve ser mais ideal quanto maior for sua temperatura. 3 3 Moléculas polares devem se comportar mais idealmente do que moléculas apolares. 4 4 Moléculas de água devem se comportar menos idealmente que moléculas de dióxido de carbono. 16

17 09 Equação de Clapeyron ou Equação do Estado Gasoso Permite relacionar o volume, a pressão e a temperatura de uma determinada quantidade de mols de gás rigorosamente ideal. P. V = n. R. T Demonstração: P = Pressão em atm ou mmhg (nos textos de química) V = Volume em litros m n = Quantidade de mols n = M T = Temperatura em Kelvin (T K = T oc + 273) R = Constante universal dos gases R = 0,082 atm. L / mol. K (para pressão em atm) R = 62,3 mmhg. L / mol. K (para pressão em mmhg) 1 mol de gás nas CNTP Partindo-se da equação geral dos gases e considerando 1 mol de gás inicialmente nas CNTP... P 1. V 1 T 1 = P 2. V 2 T 2 1 atm. 22,4 L 273 K = P 2. V 2 T 2 0,082 0,082 atm. L / K R = P 2. V 2 T 2 R = P. V T P. V = R. T Para 1 mol de gás Para 1 mol de gás. Um gás será considerado ideal quando obedecer rigorosamente à Equação de Clapeyron. Para n mols de gás em quaisquer condições de pressão, volume e temperatura... P. V = n. R. T Análise com o Professor: 27 (UFPE 1 a fase/2005: Prova de física) Uma panela de pressão com volume interno de 3,0 litros e contendo 1,0 litro de água é levada ao fogo. No equilíbrio térmico, a quantidade de vapor de água que preenche o espaço restante é de 0,2 mol. A válvula de segurança da panela vem ajustada para que a pressão interna não ultrapasse 4,1 atm. Considerando o vapor de água como um gás ideal e desprezando o pequeno volume de água que se transformou em vapor, calcule a temperatura, em 10 2 K, atingida dentro da panela. a) 4,0 b) 4,2 c) 4,5 d) 4,7 e) 5,0 17

18 Análise com o Professor: 28 (Vestibular Seriado 2º ano UPE/2009) Um tanque de cm 3 contém gás metano, CH 4, submetido a 27ºC. Constatou-se que ocorreu um vazamento de gás em uma das válvulas do tanque, ocasionando uma variação de 4 atm. Em relação ao gás metano que escapou do tanque, é CORRETO afirmar que Dados: ma( C ) = 12u, ma( H ) = 1u, R = 0,082 L.atm/mol.k ΔH(combustão do CH 4 ) = 212 kcal/mol a) a massa do gás liberada para a atmosfera corresponde a 32,0g do gás. b) a combustão total de toda a massa de gás que escapou para a atmosfera libera 848,0kcal. c) foram liberadas para a atmosfera 1,806 x moléculas de metano. d) foram liberados para a atmosfera três mols de moléculas de metano. e) o gás liberado para a atmosfera, se confinado em um recipiente de 100,0L, a 27ºC, exercerá uma pressão de 6,0atm. Responda você mesmo: 29 (UPE Quí. II/2004) Um tanque, contendo gás butano a 227 o C com capacidade de 4,10 m 3, sofre um vazamento ocasionado por defeito em uma das válvulas de segurança. Procedimentos posteriores confirmaram uma variação de pressão na ordem de 1,5 atm. Admitindo-se que a temperatura do tanque não variou, pode-se afirmar que a massa perdida de butano, em kg, foi: (Dado: C 4 H 10 = 58 g/mol) a) 8,7 b) 2,9 c) 15,0 d) 0,33 e) 330,3 30 (UPE Quí. II/2007) A variação de pressão interna constatada em um botijão de gás de cozinha, a 27ºC, por ocasião da preparação de uma dobradinha por uma dona de casa, é igual a 2,46 atm. (Admita que a temperatura e a capacidade do botijão permanecem constantes e que todo calor produzido pela combustão do butano foi utilizado na preparação da dobradinha). Dados: ma(c) = 12u, ma (H) = 1u, R = 0,082L.atm/mol.K Calor de combustão do butano = 693 kcal/mol Sabendo-se que a capacidade do botijão é 20,0L e que o gás nele contido é o butano, é correto afirmar que a) A preparação da dobradinha consumiu 174,0g de gás butano. b) A quantidade de calor necessária para a preparação da dobradinha é igual a 2.079kcal. c) A massa do butano utilizada na combustão para a preparação da dobradinha é igual a 116,0g. d) Foram queimadas 1,806 x moléculas de butano para a preparação da dobradinha. e) Apenas 0,25 mol de butano foi necessário para a preparação da dobradinha. 18

19 Testes de Vestibulares 31 (UNICAP Qui. II/2002) Numa garrafa PET de 2 L, vazia e aberta ao nível do mar, foram colocados 22g de gelo seco e, em seguida, fechada. Admitindo-se o recipiente indeformável e a temperatura estabilizada em 27 o C, qual a pressão total dentro da garrafa, após total transformação do gelo seco? (Massas molares em g/mol: C = 12 e O = 16) I II 0 0 A pressão no interior da garrafa é de 6,15 atm. 1 1 Como o gelo seco não sublima, a pressão é desprezível. 2 2 A pressão no interior da garrafa é de 1 atm. 3 3 A pressão no interior da garrafa é de7,15 atm. 4 4 A pressão no interior da garrafa é de 6,15 atm (resultante da transformação do gelo seco) + 1atm 32 (UFPE 2 a fase/94) A concentração de monóxido de carbono, CO, na fumaça de cigarro é aproximadamente 4 x 10-5 mols/litro. Considerando a equação dos gases ideais, PV = nrt, com R = 0,08 atm.litro/mol.k, determine a pressão parcial de CO à 27 o C, em unidade de 10-5 atm? 33 (UFPE 1ª fase/2009) As propriedades físicas de um gás ideal são descritas por quatro parâmetros (quantidade de matéria, n; temperatura, T; pressão, P; volume, V). Estes quatro parâmetros não são independentes, e as relações entre eles estão explicitadas na equação de estado do gás ideal, PV = nrt. Qual das afirmações a seguir, relacionadas à equação citada, é incorreta? a) Um gás ideal é definido como aquele que obedeceria rigorosamente à equação de estado PV = nrt. b) Em certas circunstâncias, gases reais comportam-se, aproximadamente, segundo o modelo de um gás ideal. c) O valor numérico da constante R depende das unidades de P, V, n e T. d) O parâmetro P, na equação PV = nrt, é definido necessariamente pela pressão externa exercida sobre o sistema. e) A pressão osmótica de uma solução diluída-ideal, π, é calculada com o uso de uma equação análoga a PV = nrt. 34 (UFPE 2 a fase/1998: Prova de Física I) Em um laboratório o melhor vácuo que pode ser obtido em um certo recipiente corresponde à pressão de 2,5 x atm. Quantas moléculas por milímetro cúbico existem no interior do recipiente à temperatura de 27 o C? 35 (UFPE 1 a fase/2005) Dois recipientes contendo diferentes gases que não reagem entre si, são interligados através de uma válvula. Sabendo-se que: 1) Não há variação de temperatura, 2) A pressão inicial do gás A é o triplo da pressão inicial do gás B, 3) O volume do frasco A é o dobro do frasco B, Qual será a pressão do sistema (frasco A + B) quando a válvula for aberta? a) O dobro da pressão do frasco B c) 5/3 da pressão do frasco B e) 1/3 da pressão do frasco A b) 7/3 da pressão do frasco B d) 2/3 da pressão do frasco A 36 (UPE Quí. II/2011) Uma mistura com 1,0 mols de gases, formada por SO 2, N 2 e H 2, ocupa um recipiente de volume V, está submetida a uma temperatura T e exerce uma pressão total de 2,46atm. Injeta-se essa mistura em uma ampola na qual há um reagente que absorve completamente apenas o gás SO 2. Em seguida, os gases remanescentes são colocados no mesmo recipiente inicial, submetidos à mesma temperatura T, verificando-se que a pressão total que os gases exercem decresce para 1,968atm. A massa de SO 2 absorvida pelo reagente é igual a Dados: ma(s) = 32u, ma (O) = 16u a) 16,4g b) 12,8g c) 25,6g d) 2,46g e) 19,2g *Essa questão foi anulada porque, na prova original, não foi informado que a quantidade de matéria total contida na mistura correspondia a 1,0 mols de gases, conforme aparece logo no início do texto digitado nesse material didático. 19

20 37 (UFPE 2 a fase/2013 Prova de Biologia) A respiração é um processo de trocas gasosas que ocorre de forma característica, de acordo com o modo de vida do organismo, sempre obedecendo às leis físico-químicas que regem os gases. Quanto à respiração humana, analise o que se afirma a seguir. I II 0 0 A fixação do O 2 à hemoglobina é menor em grandes altitudes. 1 1 Para que ocorra expiração, a pressão intrapulmonar deve ser menor que a atmosférica. 2 2 A difusão de CO 2 dos tecidos para o sangue é maior nos músculos do que nos pulmões, e aumenta com a atividade física. 3 3 A entrada de ar nos pulmões ocorre quando aumenta o volume pulmonar por contração do diafragma. 4 4 A expansão do tórax pela movimentação das costelas aumenta a pressão intrapulmonar e permite a expiração. Leia e analise a situação-problema a seguir e responda à questão 38. Um certo gás ideal realiza o ciclo representado no diagrama PV abaixo. Sabe-se que Po = 3,0 kpa e Vo = 2,0 m³. P 3P 0 b c P 0 a d 0 V 0 38 (UPE SSA 2º Ano/2011 Prova de Física) É CORRETO afirmar que o maior e o menor valor da temperatura que o gás apresenta durante o ciclo valem respectivamente a) T a e T b b) T b e T d c) T c e T a d) T b e T c e) T d e T c 4V 0 V (UPE SSA 2º Ano/2011) As figuras abaixo mostram as etapas de uma atividade experimental. Inicialmente, colocou-se um balão de festa cheio de ar e vedado dentro de uma caixa de isopor. Em seguida, derramou-se N2 líquido a uma temperatura 77K sobre esse balão (Figura 1). Após certo tempo, retirou-se o balão do interior da caixa de isopor e observou-se que ele havia murchado (Figura 2). Figura 1. Balão de festa cheio de ar na presença de N2 Figura 2. Balão de festa após o contato com líquido a 77K. Com relação a essa atividade experimental, líquido é a 77K. CORRETO afirmar que houve A) redução do tamanho das moléculas de ar no interior do balão. B) acréscimo nas colisões entre as moléculas do ar, provocando uma expansão do tamanho dessas moléculas. C) elevação da pressão exercida pelo ar no interior do balão, por causa do aumento das colisões entre as moléculas. D) diminuição da energia cinética média das moléculas de ar, reduzindo os espaços entre as moléculas e, consequentemente, o volume ocupado no balão. E) redução da temperatura por causa da presença de N2 líquido, impedindo o balão de ficar novamente cheio à temperatura ambiente. 20

21 (UPE SSA 3º Ano/2011) A oxiemoglobina, resultante da interação química entre o oxigênio do ar e a hemoglobina do sangue, é responsável pelo transporte de oxigênio no sangue (Equação 1). O acúmulo do monóxido de carbono num recinto fechado provoca alteração na respiração humana, pois, nesse caso, a oxiemoglobina sofre modificação, formando a carboxiemoglobina. Hemoglobina + O2 Oxiemoglobina (1) Recentemente foi divulgada, na mídia televisiva, a morte de um casal por intoxicação com monóxido de carbono, CO. Eles dormiam num quarto fechado onde havia queima de madeira numa lareira. Diante disso, analise as seguintes considerações: I. O acréscimo da concentração de CO provocou o aumento da produção de oxiemoglobina. II. A concentração de CO no quarto resultou da combustão incompleta da madeira na lareira. III. A combustão completa de madeira deslocou o equilíbrio no sentido de produzir mais hemoglobina. IV. O processo químico ocorrido no quarto do casal é idêntico ao enfrentado por jogadores de futebol quando jogam em países de maior altitude, como a Bolívia. V. A morte do casal ocorreu porque o equilíbrio da reação 1 foi afetado no sentido de formar a hemoglobina, que, em contato com o CO, forma a carboxihemoglobina, diminuindo o transporte de oxigênio no sangue. Estão CORRETAS A) I e II. B) II e V. C) IV e V. D) III e IV. E) I, II, III e V. 11 (ENEM 2003) Nos últimos anos, o gás natural (GNV: gás natural veicular) vem sendo utilizado pela frota de veículos nacional, por ser viável economicamente e menos agressivo do ponto de vista ambiental. O quadro compara algumas características do gás natural e da gasolina em condições ambiente. Densidade (kg /m 3 ) Poder Calorífico (kj /kg) GNV 0, Gasolina Apesar das vantagens no uso de GNV, sua utilização implica algumas adaptações técnicas, pois, em condições ambiente, o volume de combustível necessário, em relação ao de gasolina, para produzir a mesma energia, seria a) muito maior, o que requer um motor muito mais potente. b) muito maior, o que requer que ele seja armazenado a alta pressão. c) igual, mas sua potência será muito menor. d) muito menor, o que o torna o veículo menos eficiente. e) muito menor, o que facilita sua dispersão para a atmosfera. Resoluções de Testes Comentários Adicionais 21

22 Resoluções de Testes Comentários Adicionais Gabarito do Capítulo: Comportamento Físico do Gases Parte I N o Resposta N o Resposta N o Resposta N o Resposta 22

23 VFVVF C Comunique-se com seu professor: quimicaeber@hotmail.com 23

LISTA DE EXERCÍCIOS ESTUDO DOS GASES

LISTA DE EXERCÍCIOS ESTUDO DOS GASES GOVERNO DO ESTADO DE PERNAMBUCO GRÉ MATA NORTE UNIVERSIDADE DE PERNAMBUCO CAMPUS MATA NORTE ESCOLA DE APLICAÇÃO PROFESSOR CHAVES LISTA DE EXERCÍCIOS ALUNO(A): Nº NAZARÉ DA MATA, DE DE 2015 2º ANO ESTUDO

Leia mais

Equação Geral dos Gases

Equação Geral dos Gases Equação Geral dos Gases EXERCÍCIOS DE APLICAÇÃO 01 (EEM-SP) Uma determinada massa gasosa, confinada em um recipiente de volume igual a 6,0 L, está submetida a uma pressão de 2,5 atm e sob temperatura de

Leia mais

Se um sistema troca energia com a vizinhança por trabalho e por calor, então a variação da sua energia interna é dada por:

Se um sistema troca energia com a vizinhança por trabalho e por calor, então a variação da sua energia interna é dada por: Primeira Lei da Termodinâmica A energia interna U de um sistema é a soma das energias cinéticas e das energias potenciais de todas as partículas que formam esse sistema e, como tal, é uma propriedade do

Leia mais

Do ponto de vista da Termodinâmica, gás ideal é aquele para o qual vale, para quaisquer valores de P e T, a equação de estado de Clapeyron:

Do ponto de vista da Termodinâmica, gás ideal é aquele para o qual vale, para quaisquer valores de P e T, a equação de estado de Clapeyron: Equação de Estado de Van der Waals Do ponto de vista da Termodinâmica, gás ideal é aquele para o qual vale, para quaisquer valores de P e T, a equação de estado de Clapeyron: P i V i = nrt em que colocamos

Leia mais

Comportamento Físico dos Gases 3ª Parte

Comportamento Físico dos Gases 3ª Parte RECIFE Colégio Salesiano Sagrado Coração ] Aluna(o): Nº: Turma: 3º ano Recife, de de 03 Disciplina: Química Professor: Eber Barbosa Comportamento Físico dos Gases 3ª Parte 0 Energia Cinética Média dos

Leia mais

Profa. Maria Fernanda - Química nandacampos.mendonc@gmail.com

Profa. Maria Fernanda - Química nandacampos.mendonc@gmail.com Profa. Maria Fernanda - Química nandacampos.mendonc@gmail.com Por que precisamos calibrar os pneus dos carro? Vídeo: https://www.youtube.com/watch?v=9aapomthyje Pressão abaixo da recomendada reduz a durabilidade

Leia mais

Lista de exercícios 15 Transformações gasosas

Lista de exercícios 15 Transformações gasosas Lista de exercícios 15 Transformações gasosas 01. Desenhe a curva correspondente (numa dada temperatura) para a transformação isotérmica, explique o porquê desta denominação. 02. Desenhe a curva correspondente

Leia mais

Disciplina de Físico Química I - Gases Ideais- Lei de Boyle-Charles. Prof. Vanderlei Inácio de Paula contato: vanderleip@anchieta.

Disciplina de Físico Química I - Gases Ideais- Lei de Boyle-Charles. Prof. Vanderlei Inácio de Paula contato: vanderleip@anchieta. Disciplina de Físico Química I - Gases Ideais- Lei de Boyle-Charles. Prof. Vanderlei Inácio de Paula contato: vanderleip@anchieta.br A físico-química é a disciplina que estuda as propriedades físicas e

Leia mais

Exercícios de Termodinâmica

Exercícios de Termodinâmica Exercícios de Termodinâmica 1-Uma massa gasosa, inicialmente num estado A, sofre duas transformações sucessivas e passa para um estado C. A partir do estado A esse gás sofre uma transformação isobárica

Leia mais

CALORIMETRIA, MUDANÇA DE FASE E TROCA DE CALOR Lista de Exercícios com Gabarito e Soluções Comentadas

CALORIMETRIA, MUDANÇA DE FASE E TROCA DE CALOR Lista de Exercícios com Gabarito e Soluções Comentadas COLÉGIO PEDRO II PRÓ-REITORIA DE PÓS-GRADUAÇÃO, PESQUISA, EXTENSÃO E CULTURA PROGRAMA DE RESIDÊNCIA DOCENTE RESIDENTE DOCENTE: Marcia Cristina de Souza Meneguite Lopes MATRÍCULA: P4112515 INSCRIÇÃO: PRD.FIS.0006/15

Leia mais

3.2 Equilíbrio de Fases Vapor - Líquida - Sólida numa Substância Pura Consideremos como sistema a água contida no conjunto êmbolo - cilindro abaixo:

3.2 Equilíbrio de Fases Vapor - Líquida - Sólida numa Substância Pura Consideremos como sistema a água contida no conjunto êmbolo - cilindro abaixo: - Resumo do Capítulo 0 de Termodinâmica: Capítulo - PROPRIEDADES DE UMA SUBSTÂNCIA PURA Nós consideramos, no capítulo anterior, três propriedades familiares de uma substância: volume específico, pressão

Leia mais

Nome:...N o...turma:... Data: / / ESTUDO DOS GASES E TERMODINÂMICA

Nome:...N o...turma:... Data: / / ESTUDO DOS GASES E TERMODINÂMICA Ensino Médio Nome:...N o...turma:... Data: / / Disciplina: Física Dependência Prof. Marcelo Vettori ESTUDO DOS GASES E TERMODINÂMICA I- ESTUDO DOS GASES 1- Teoria Cinética dos Gases: as moléculas constituintes

Leia mais

PROF. KELTON WADSON OLIMPÍADA 8º SÉRIE ASSUNTO: TRANSFORMAÇÕES DE ESTADOS DA MATÉRIA.

PROF. KELTON WADSON OLIMPÍADA 8º SÉRIE ASSUNTO: TRANSFORMAÇÕES DE ESTADOS DA MATÉRIA. PROF. KELTON WADSON OLIMPÍADA 8º SÉRIE ASSUNTO: TRANSFORMAÇÕES DE ESTADOS DA MATÉRIA. 1)Considere os seguintes dados obtidos sobre propriedades de amostras de alguns materiais. Com respeito a estes materiais,

Leia mais

Leis Ponderais e Cálculo Estequiométrico

Leis Ponderais e Cálculo Estequiométrico Leis Ponderais e Cálculo Estequiométrico 1. (UFF 2009) Desde a Antiguidade, diversos povos obtiveram metais, vidro, tecidos, bebidas alcoólicas, sabões, perfumes, ligas metálicas, descobriram elementos

Leia mais

Gases. 1 atm = 1 kpa. 1 mmhg = 1 Torr. 1 m = 1000 L 1 L = 1000 ml = 1000 cm ESTUDO DOS GASES

Gases. 1 atm = 1 kpa. 1 mmhg = 1 Torr. 1 m = 1000 L 1 L = 1000 ml = 1000 cm ESTUDO DOS GASES 1 ESUDO DOS GSES INRODUÇÃO O estudo dos gases é de grande importância na compreensão de fatos que ocorrem no nosso cotidiano, tais como: um balão subir, uma bexiga murchar com o tempo, a pressão interna

Leia mais

AULA PRÁTICA DE QUÍMICA GERAL Estudando a água parte 32

AULA PRÁTICA DE QUÍMICA GERAL Estudando a água parte 32 AULA PRÁTICA DE QUÍMICA GERAL Estudando a água parte 32 9º NO DO ENSINO FUNDAMENTAL - 1º ANO DO ENSINO MÉDIO OBJETIVO Diversos experimentos, usando principalmente água e materiais de fácil obtenção, são

Leia mais

4. Introdução à termodinâmica

4. Introdução à termodinâmica 4. Introdução à termodinâmica 4.1. Energia interna O estabelecimento do princípio da conservação da energia tornou-se possível quando se conseguiu demonstrar que junto com a energia mecânica, os corpos

Leia mais

2- TRABALHO NUMA TRANSFORMAÇÃO GASOSA 4-1ª LEI DA TERMODINÂMICA

2- TRABALHO NUMA TRANSFORMAÇÃO GASOSA 4-1ª LEI DA TERMODINÂMICA AULA 07 ERMODINÂMICA GASES 1- INRODUÇÃO As variáveis de estado de um gás são: volume, pressão e temperatura. Um gás sofre uma transformação quando pelo menos uma das variáveis de estado é alterada. Numa

Leia mais

SÉRIE: 2º ano EM Exercícios de recuperação final DATA / / DISCIPLINA: QUÍMICA PROFESSOR: FLÁVIO QUESTÕES DE MÚLTIPLA ESCOLHA

SÉRIE: 2º ano EM Exercícios de recuperação final DATA / / DISCIPLINA: QUÍMICA PROFESSOR: FLÁVIO QUESTÕES DE MÚLTIPLA ESCOLHA SÉRIE: 2º ano EM Exercícios de recuperação final DATA / / DISCIPLINA: QUÍMICA PROFESSOR: FLÁVIO QUESTÕES DE MÚLTIPLA ESCOLHA QUESTÃO 01 Em uma determinada transformação foi constatado que poderia ser representada

Leia mais

CAPACIDADE TÉRMICA E CALOR ESPECÍFICO 612EE T E O R I A 1 O QUE É TEMPERATURA?

CAPACIDADE TÉRMICA E CALOR ESPECÍFICO 612EE T E O R I A 1 O QUE É TEMPERATURA? 1 T E O R I A 1 O QUE É TEMPERATURA? A temperatura é a grandeza física que mede o estado de agitação das partículas de um corpo. Ela caracteriza, portanto, o estado térmico de um corpo.. Podemos medi la

Leia mais

TERMODINÂMICA EXERCÍCIOS RESOLVIDOS E TABELAS DE VAPOR

TERMODINÂMICA EXERCÍCIOS RESOLVIDOS E TABELAS DE VAPOR TERMODINÂMICA EXERCÍCIOS RESOLVIDOS E TABELAS DE VAPOR Prof. Humberto A. Machado Departamento de Mecânica e Energia DME Faculdade de Tecnologia de Resende - FAT Universidade do Estado do Rio de Janeiro

Leia mais

TERMODINÂMICA CONCEITOS FUNDAMENTAIS. Sistema termodinâmico: Demarcamos um sistema termodinâmico em. Universidade Santa Cecília Santos / SP

TERMODINÂMICA CONCEITOS FUNDAMENTAIS. Sistema termodinâmico: Demarcamos um sistema termodinâmico em. Universidade Santa Cecília Santos / SP CONCEITOS FUNDAMENTAIS Sistema termodinâmico: Demarcamos um sistema termodinâmico em Universidade função do que Santa desejamos Cecília Santos estudar / SP termodinamicamente. Tudo que se situa fora do

Leia mais

CAPITULO 1 Propriedades dos gases. PGCEM Termodinâmica dos Materiais UDESC

CAPITULO 1 Propriedades dos gases. PGCEM Termodinâmica dos Materiais UDESC CAPITULO 1 Propriedades dos gases PGCEM Termodinâmica dos Materiais UDESC Referência Bibliográfica ATKINS, P.; Paula, J. de. Fisico-Química, Vol 1. 8ª ed., Editora LTC, Rio de Janeiro, 2006, cap 1. Ball,

Leia mais

Escola de Engenharia de Lorena USP - Cinética Química Capítulo 05 Reações Irreversiveis a Volume Varíavel

Escola de Engenharia de Lorena USP - Cinética Química Capítulo 05 Reações Irreversiveis a Volume Varíavel 1 - Calcule a fração de conversão volumétrica (ε A) para as condições apresentadas: Item Reação Condição da Alimentação R: (ε A ) A A 3R 5% molar de inertes 1,5 B (CH 3 ) O CH 4 + H + CO 30% em peso de

Leia mais

Propriedades de uma Substância Pura

Propriedades de uma Substância Pura Propriedades de uma Substância Pura A substância pura Composição química invariável e homogênea. Pode existir em mais de uma fase, porém sua composição química é a mesma em todas as fases. Equilíbrio Vapor-líquido-sólido

Leia mais

CAPÍTULO 6 Termologia

CAPÍTULO 6 Termologia CAPÍTULO 6 Termologia Introdução Calor e Temperatura, duas grandezas Físicas bastante difundidas no nosso dia-a-dia, e que estamos quase sempre relacionando uma com a outra. Durante a explanação do nosso

Leia mais

Comportamento Físico dos Gases. Introdução ao Cálculo Químico. 01 Características do Estado Gasoso. 02 Grandezas Relacionadas ao Estudo dos Gases

Comportamento Físico dos Gases. Introdução ao Cálculo Químico. 01 Características do Estado Gasoso. 02 Grandezas Relacionadas ao Estudo dos Gases ] Introdução ao Cálculo Químico 01 Características do Estado Gasoso O estado gasoso é caracterizado por um alto grau de agitação molecular, tendo suas partículas bastante afastadas uma das outras. Os gases

Leia mais

QUÍMICA QUESTÃO 41 QUESTÃO 42

QUÍMICA QUESTÃO 41 QUESTÃO 42 Processo Seletivo/UNIFAL- janeiro 2008-1ª Prova Comum TIPO 1 QUÍMICA QUESTÃO 41 Diferentes modelos foram propostos ao longo da história para explicar o mundo invisível da matéria. A respeito desses modelos

Leia mais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais LEI DE OHM Conceitos fundamentais Ao adquirir energia cinética suficiente, um elétron se transforma em um elétron livre e se desloca até colidir com um átomo. Com a colisão, ele perde parte ou toda energia

Leia mais

Professora Sonia Exercícios sobre Cinética gasosa

Professora Sonia Exercícios sobre Cinética gasosa Exercícios sobre Cinética gasosa O próximo enunciado se refere às questões de 01 a 09. Coloque V (verdadeiro) e F (falso) para as questões a seguir. 01. ( ) As partículas que formam um gás (que podem ser

Leia mais

DISCIPLINA AMB30093 TERMODINÂMICA - Aula 3 17/10/2013. Prof. Robson Alves de Oliveira robson.aoliveira@gmail.com.br robson.oliveira@unir.

DISCIPLINA AMB30093 TERMODINÂMICA - Aula 3 17/10/2013. Prof. Robson Alves de Oliveira robson.aoliveira@gmail.com.br robson.oliveira@unir. DISCIPLINA AMB30093 TERMODINÂMICA - Aula 3 17/10/2013 Prof. Robson Alves de Oliveira robson.aoliveira@gmail.com.br robson.oliveira@unir.br Ji-Paraná - 2013 Porque a água atinge o seu ponto máximo em 3,98

Leia mais

a) Qual a pressão do gás no estado B? b) Qual o volume do gás no estado C

a) Qual a pressão do gás no estado B? b) Qual o volume do gás no estado C Colégio Santa Catarina Unidade XIII: Termodinâmica 89 Exercícios de Fixação: a) PV = nr T b)pvn = RT O gráfico mostra uma isoterma de uma massa c) PV = nrt d) PV = nrt de gás que é levada do e) PV = nrt

Leia mais

Cap. 24. Gases perfeitos. 21 questões

Cap. 24. Gases perfeitos. 21 questões Cap 24 Gases perfeitos 21 questões 357 Gases perfeitos 01 UFFRJ 1 a Fase 20 Nas cidades I e II não há tratamento de água e a população utiliza a ebulição para reduzir os riscos de contaminação A cidade

Leia mais

Mecânica dos Fluidos PROF. BENFICA benfica@anhanguera.com www.marcosbenfica.com

Mecânica dos Fluidos PROF. BENFICA benfica@anhanguera.com www.marcosbenfica.com Mecânica dos Fluidos PROF. BENFICA benfica@anhanguera.com www.marcosbenfica.com LISTA 2 Hidrostática 1) Um adestrador quer saber o peso de um elefante. Utilizando uma prensa hidráulica, consegue equilibrar

Leia mais

DESENVOLVENDO HABILIDADES CIÊNCIAS DA NATUREZA I - EM

DESENVOLVENDO HABILIDADES CIÊNCIAS DA NATUREZA I - EM Olá Caro Aluno, Você já reparou que, no dia a dia quantificamos, comparamos e analisamos quase tudo o que está a nossa volta? Vamos ampliar nossos conhecimentos sobre algumas dessas situações. O objetivo

Leia mais

As forças atrativas entre duas moléculas são significativas até uma distância de separação d, que chamamos de alcance molecular.

As forças atrativas entre duas moléculas são significativas até uma distância de separação d, que chamamos de alcance molecular. Tensão Superficial Nos líquidos, as forças intermoleculares atrativas são responsáveis pelos fenômenos de capilaridade. Por exemplo, a subida de água em tubos capilares e a completa umidificação de uma

Leia mais

Curso de Farmácia. Operações Unitárias em Indústria Prof.a: Msd Érica Muniz 6 /7 Período DESTILAÇÃO

Curso de Farmácia. Operações Unitárias em Indústria Prof.a: Msd Érica Muniz 6 /7 Período DESTILAÇÃO Curso de Farmácia Operações Unitárias em Indústria Prof.a: Msd Érica Muniz 6 /7 Período DESTILAÇÃO 1 Introdução A destilação como opção de um processo unitário de separação, vem sendo utilizado pela humanidade

Leia mais

COMENTÁRIOS DA PROVA DE FÍSICA DO SSA-UPE 2 ANO

COMENTÁRIOS DA PROVA DE FÍSICA DO SSA-UPE 2 ANO COMENTÁRIOS DA PROVA DE FÍSICA DO SSA-UPE 2 ANO 23. Leia o seguinte texto: Considere que esse grande espelho, acima da camada da atmosfera, estará em órbita geoestacionária. Com base nessas informações,

Leia mais

Termodinâmica Química: Lista 1: Gases. Resolução comentada de exercícios selecionados

Termodinâmica Química: Lista 1: Gases. Resolução comentada de exercícios selecionados Termodinâmica Química: Lista 1: Gases. Resolução comentada de exercícios selecionados Prof. Fabrício R. Sensato Semestre 4º Engenharia: Materiais Período: Matutino/diurno Regimes: Normal/DP Agosto, 2005

Leia mais

EXERCÍCIOS DE APLICAÇÃO

EXERCÍCIOS DE APLICAÇÃO Equação do Gás Ideal EXERCÍCIOS DE APLICAÇÃO 01 (UFSCar-SP) Tem-se 0,8 mol de um gás ideal, ocupando o volume de 8,2 litros. Sabendo que a pressão exercida é de 5 atm, calcule em que temperatura o gás

Leia mais

Faculdade de Administração e Negócios de Sergipe

Faculdade de Administração e Negócios de Sergipe Faculdade de Administração e Negócios de Sergipe Disciplina: Física Geral e Experimental III Curso: Engenharia de Produção Assunto: Gravitação Prof. Dr. Marcos A. P. Chagas 1. Introdução Na gravitação

Leia mais

Sólidos, líquidos e gases

Sólidos, líquidos e gases Mudanças de fase Sólidos, líquidos e gases Estado sólido Neste estado, os átomos da substâncias se encontram muito próximos uns dos outros e ligados por forças eletromagnéticas relativamente grandes. Eles

Leia mais

Química Geral PROF. LARISSA ROCHA ALMEIDA - CURSINHO VITORIANO 1

Química Geral PROF. LARISSA ROCHA ALMEIDA - CURSINHO VITORIANO 1 Química Geral AULA 1 PROPRIEDADES GERAIS DA MATÉRIA E CONCEITOS INICIAIS PROF. LARISSA ROCHA ALMEIDA - CURSINHO VITORIANO 1 Tópicos Matéria Energia Diagrama de Mudança de Fases Ciclo da Água Universo e

Leia mais

1ª Lista de exercícios de Física 2 ( Fluidos)

1ª Lista de exercícios de Física 2 ( Fluidos) Unesp UNIVERSIDADE ESTADUAL PAULISTA Campus de Sorocaba Engenharia Ambiental Profa. Maria Lúcia Antunes 1ª Lista de exercícios de Física 2 ( Fluidos) 1) Encontre o aumento de pressão de um fluido em uma

Leia mais

A Matéria Química Geral

A Matéria Química Geral Química Geral A Matéria Tudo o que ocupa lugar no espaço e tem massa. A matéria nem sempre é visível Noções Preliminares Prof. Patrícia Andrade Mestre em Agricultura Tropical Massa, Inércia e Peso Massa:

Leia mais

ESTEQUIOMETRIA. Prof. João Neto

ESTEQUIOMETRIA. Prof. João Neto ESTEQUIOMETRIA Prof. João Neto 1 Lei de Lavoisier Leis Ponderais Lei de Dalton Lei de Proust 2 Fórmula molecular Fórmula mínima Tipos de Fórmulas Fórmula eletrônica ou de Lewis Fórmula Centesimal Fórmula

Leia mais

O AR É UMA MISTURA DE GASES QUE FORMAM A ATMOSFERA DO PLANETA TERRA.

O AR É UMA MISTURA DE GASES QUE FORMAM A ATMOSFERA DO PLANETA TERRA. O AR É UMA MISTURA DE GASES QUE FORMAM A ATMOSFERA DO PLANETA TERRA. Imagem: Vista da lua crescente do topo da atmosfera da Terra / NASA Earth Observatory / Domínio Público COMPOSIÇÃO APROXIMADA DOS GASES

Leia mais

Lista I de exercícios de estequiometria e balanceamento de equações Química Geral e Experimental I Prof. Hamilton Viana

Lista I de exercícios de estequiometria e balanceamento de equações Química Geral e Experimental I Prof. Hamilton Viana 1. O iso-octano é um combustível automotivo. A combustão desse material ocorre na fase gasosa. Dados a massa molar do iso-octano igual a 114g/mol, o volume molar de gás nas "condições ambiente" igual a

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo II Aula 05 1. Introdução A mecânica dos gases é a parte da Mecânica que estuda as propriedades dos gases. Na Física existem três estados da matéria

Leia mais

Transições de Fase de Substâncias Simples

Transições de Fase de Substâncias Simples Transições de Fase de Substâncias Simples Como exemplo de transição de fase, vamos discutir a liquefação de uma amostra de gás por um processo de redução de volume a temperatura constante. Consideremos,

Leia mais

MÁQUINAS TÉRMICAS AT-101

MÁQUINAS TÉRMICAS AT-101 Universidade Federal do Paraná Curso de Engenharia Industrial Madeireira MÁQUINAS TÉRMICAS AT-101 M.Sc. Alan Sulato de Andrade alansulato@ufpr.br INTRODUÇÃO: Uma das formas mais empregadas para produção

Leia mais

Termodinâmica Química Lista 2: 1 a Lei da Termodinâmica. Resolução comentada de exercícios selecionados

Termodinâmica Química Lista 2: 1 a Lei da Termodinâmica. Resolução comentada de exercícios selecionados Termodinâmica Química Lista 2: 1 a Lei da Termodinâmica. Resolução comentada de exercícios selecionados Prof. Fabrício R. Sensato Semestre 4º Engenharia: Materiais Período: Matutino/diurno Regimes: Normal/DP

Leia mais

Água e Solução Tampão

Água e Solução Tampão União de Ensino Superior de Campina Grande Faculdade de Campina Grande FAC-CG Curso de Fisioterapia Água e Solução Tampão Prof. Dra. Narlize Silva Lira Cavalcante Fevereiro /2015 Água A água é a substância

Leia mais

Propriedades físicas e químicas das substâncias

Propriedades físicas e químicas das substâncias Propriedades físicas e químicas das substâncias Na Natureza há uma grande diversidade de materais. Muitos desses materais são substâncias mas será que são puras? Há substâncias que, mesmo misturadas com

Leia mais

TURMA DE ENGENHARIA - FÍSICA

TURMA DE ENGENHARIA - FÍSICA Prof Cazuza 1 (Uff 2012) O ciclo de Stirling é um ciclo termodinâmico reversível utilizado em algumas máquinas térmicas Considere o ciclo de Stirling para 1 mol de um gás ideal monoatônico ilustrado no

Leia mais

- A velocidade da reação direta (V1) é igual à velocidade da reação inversa (V2) V 1 = V 2

- A velocidade da reação direta (V1) é igual à velocidade da reação inversa (V2) V 1 = V 2 EQUILÍBRIO QUÍMICO Equilíbrio Químico - Equilíbrio químico é a parte da físico-química que estuda as reações reversíveis e as condições para o estabelecimento desta atividade equilibrada. A + B C + D -

Leia mais

MUDANÇA DE ESTADO FÍSICO, PRESSÃO DE VAPOR... *

MUDANÇA DE ESTADO FÍSICO, PRESSÃO DE VAPOR... * MUDANÇA DE ESTADO FÍSICO, PRESSÃO DE VAPOR... * MUDANÇA DE ESTADO FÍSICO Antes de verificarmos como ocorrem as mudanças de estado físico de uma substância, vamos caracterizar cada um dos estados aqui estudados.

Leia mais

Lista de Exercícios - Unidade 10 Entropia e a segunda lei da termodinâmica

Lista de Exercícios - Unidade 10 Entropia e a segunda lei da termodinâmica Lista de Exercícios - Unidade 10 Entropia e a segunda lei da termodinâmica Segunda Lei da Termodinâmica 1. (UECE 2009) Imagine um sistema termicamente isolado, composto por cilindros conectados por uma

Leia mais

Fração. Página 2 de 6

Fração. Página 2 de 6 1. (Fgv 2014) De acordo com dados da Agência Internacional de Energia (AIE), aproximadamente 87% de todo o combustível consumido no mundo são de origem fóssil. Essas substâncias são encontradas em diversas

Leia mais

ESTADOS FÍSICOS DA MATÉRIA

ESTADOS FÍSICOS DA MATÉRIA ESTADOS FÍSICOS DA MATÉRIA A matéria pode se apresentar em diferentes estados físicos, como sólido, líquido e gasoso. Algumas propriedades da matéria dependem de seu estado físico. O estado sólido Em determinada

Leia mais

www.enemdescomplicado.com.br

www.enemdescomplicado.com.br Exercícios de Física Gravitação Universal 1-A lei da gravitação universal de Newton diz que: a) os corpos se atraem na razão inversa de suas massas e na razão direta do quadrado de suas distâncias. b)

Leia mais

QUÍMICA SEGUNDA ETAPA - 1997

QUÍMICA SEGUNDA ETAPA - 1997 QUÍMICA SEGUNDA ETAPA - 1997 QUESTÃO 01 Os valores das sucessivas energias de ionização de um átomo constituem uma evidência empírica da existência de níveis de energia. Os diagramas abaixo pretendem representar,

Leia mais

Elementos e fatores climáticos

Elementos e fatores climáticos Elementos e fatores climáticos O entendimento e a caracterização do clima de um lugar dependem do estudo do comportamento do tempo durante pelo menos 30 anos: das variações da temperatura e da umidade,

Leia mais

Projeto rumo ao ita. Química. Exercícios de Fixação. Exercícios Propostos. Termodinâmica. ITA/IME Pré-Universitário 1. 06. Um gás ideal, com C p

Projeto rumo ao ita. Química. Exercícios de Fixação. Exercícios Propostos. Termodinâmica. ITA/IME Pré-Universitário 1. 06. Um gás ideal, com C p Química Termodinâmica Exercícios de Fixação 06. Um gás ideal, com C p = (5/2)R e C v = (3/2)R, é levado de P 1 = 1 bar e V 1 t = 12 m³ para P 2 = 12 bar e V 2 t = 1m³ através dos seguintes processos mecanicamente

Leia mais

Prof. André Motta - mottabip@hotmail.com_ C) O calor contido em cada um deles é o mesmo. D) O corpo de maior massa tem mais calor que os outros dois.

Prof. André Motta - mottabip@hotmail.com_ C) O calor contido em cada um deles é o mesmo. D) O corpo de maior massa tem mais calor que os outros dois. Exercícios de Termometria 1-Calor é: A) Energia que aumenta em um corpo quando ele se aquece. B) Energia que sempre pode ser convertida integralmente em trabalho. C) O agente físico responsável pelo aquecimento

Leia mais

PROVA DE QUÍMICA - 1998 Segunda Etapa

PROVA DE QUÍMICA - 1998 Segunda Etapa PROVA DE QUÍMICA - 1998 Segunda Etapa QUESTÃO 01 Num laboratório químico, havia três frascos que continham, respectivamente, um alcano, um álcool e um alqueno. Foram realizados experimentos que envolviam

Leia mais

Transformações físicas de substâncias puras Aula 1

Transformações físicas de substâncias puras Aula 1 Transformações físicas de substâncias puras Aula 1 Físico-Química 2 Termodinâmica Química 2 Profa. Claudia de Figueiredo Braga Diagramas de Fases Diagramas de fases: Uma das formas mais compactas de exibir

Leia mais

Lista de Exercícios 4 Indústrias Químicas Resolução pelo Monitor: Rodrigo Papai de Souza

Lista de Exercícios 4 Indústrias Químicas Resolução pelo Monitor: Rodrigo Papai de Souza Lista de Exercícios 4 Indústrias Químicas Resolução pelo Monitor: Rodrigo Papai de Souza 1) a-) Calcular a solubilidade do BaSO 4 em uma solução 0,01 M de Na 2 SO 4 Dissolução do Na 2 SO 4 : Dado: BaSO

Leia mais

p A = p B = = ρgh = h = Por outro lado, dado que a massa total de fluido despejada foi m, temos M 1 m = ρ(v 1 + V 2 ) = ρ 4 H + πd2 4 h = H = 4

p A = p B = = ρgh = h = Por outro lado, dado que a massa total de fluido despejada foi m, temos M 1 m = ρ(v 1 + V 2 ) = ρ 4 H + πd2 4 h = H = 4 Q1 (,5) Um pistão é constituído por um disco ao qual se ajusta um tubo oco cilíndrico de diâmetro d. O pistão está adaptado a um recipiente cilíndrico de diâmetro D. massa do pistão com o tubo é M e ele

Leia mais

Sobre as substâncias representadas pelas estruturas I e II, é INCORRETO afirmar:

Sobre as substâncias representadas pelas estruturas I e II, é INCORRETO afirmar: 8 GABARITO 1 1 O DIA 2 o PROCESSO SELETIVO/2005 QUÍMICA QUESTÕES DE 16 A 30 16. Devido à sua importância como catalisadores, haletos de boro (especialmente B 3 ) são produzidos na escala de toneladas por

Leia mais

Programa de Retomada de Conteúdo 1º Bimestre

Programa de Retomada de Conteúdo 1º Bimestre Educação Infantil, Ensino Fundamental e Ensino Médio Regular. Rua Cantagalo 313, 325, 337 e339 Tatuapé Fones: 2293-9393 e 2293-9166 Diretoria de Ensino Região LESTE 5 Programa de Retomada de Conteúdo 1º

Leia mais

ESTADOS DA MATÉRIA. O átomo é composto por outras partículas ainda menores.

ESTADOS DA MATÉRIA. O átomo é composto por outras partículas ainda menores. ESTADOS DA MATÉRIA A matéria que temos a nossa volta é formada de moléculas que são constituídas por átomos. Uma combinação destes átomos forma as substâncias que conhecemos, porém, devemos salientar que

Leia mais

Mecânica dos Fluidos. Aula 3 Estática dos Fluidos, Definição de Pressão. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos. Aula 3 Estática dos Fluidos, Definição de Pressão. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 3 Estática dos Fluidos, Definição de Pressão Tópicos Abordados Nesta Aula Estática dos Fluidos. Definição de Pressão Estática. Unidades de Pressão. Conversão de Unidades de Pressão. Estática dos Fluidos

Leia mais

Prova de Química Resolvida Segunda Etapa Vestibular UFMG 2011 Professor Rondinelle Gomes Pereira

Prova de Química Resolvida Segunda Etapa Vestibular UFMG 2011 Professor Rondinelle Gomes Pereira QUESTÃO 01 Neste quadro, apresentam-se as concentrações aproximadas dos íons mais abundantes em uma amostra de água típica dos oceanos e em uma amostra de água do Mar Morto: 1. Assinalando com um X a quadrícula

Leia mais

3 Propriedades Coligativas

3 Propriedades Coligativas 3 Propriedades Coligativas 1 Introdução É bastante comum as pessoas adicionarem sal à água que será utilizada no cozimento de alimentos. Com a adição de sal de cozinha, a água demora mais tempo para entrar

Leia mais

5. Resultados e Análises

5. Resultados e Análises 66 5. Resultados e Análises Neste capítulo é importante ressaltar que as medições foram feitas com uma velocidade constante de 1800 RPM, para uma freqüência de 60 Hz e uma voltagem de 220 V, entre as linhas

Leia mais

O estado no qual um ou mais corpos possuem a mesma temperatura e, dessa forma, não há troca de calor entre si, denomina-se equilíbrio térmico.

O estado no qual um ou mais corpos possuem a mesma temperatura e, dessa forma, não há troca de calor entre si, denomina-se equilíbrio térmico. 4. CALORIMETRIA 4.1 CALOR E EQUILÍBRIO TÉRMICO O objetivo deste capítulo é estudar a troca de calor entre corpos. Empiricamente, percebemos que dois corpos A e B, a temperaturas iniciais diferentes, ao

Leia mais

Janine Coutinho Canuto

Janine Coutinho Canuto Janine Coutinho Canuto Termologia é a parte da física que estuda o calor. Muitas vezes o calor é confundido com a temperatura, vamos ver alguns conceitos que irão facilitar o entendimento do calor. É a

Leia mais

Introdução. Muitas reações ocorrem completamente e de forma irreversível como por exemplo a reação da queima de um papel ou palito de fósforo.

Introdução. Muitas reações ocorrem completamente e de forma irreversível como por exemplo a reação da queima de um papel ou palito de fósforo. Introdução Muitas reações ocorrem completamente e de forma irreversível como por exemplo a reação da queima de um papel ou palito de fósforo. Existem também sistemas, em que as reações direta e inversa

Leia mais

Matéria: Química Assunto: Materiais Prof. Gilberto Ramos

Matéria: Química Assunto: Materiais Prof. Gilberto Ramos Matéria: Química Assunto: Materiais Prof. Gilberto Ramos Química Materiais, suas propriedades e usos Estados Físicos Estado vem do latim status (posição,situação, condição,modo de estar). O estado físico

Leia mais

Resolução da Prova de Química Vestibular Verão UERGS/2003 Prof. Emiliano Chemello

Resolução da Prova de Química Vestibular Verão UERGS/2003 Prof. Emiliano Chemello Fácil Resolução da Prova de Química Vestibular Verão UERGS/2003 Prof. Emiliano Chemello Médio www.quimica.net/emiliano emiliano@quimica.net Difícil Níveis de dificuldade das Questões 01. Em um frasco,

Leia mais

Solidificação: é o processo em que uma substância passa do estado líquido para o estado sólido.

Solidificação: é o processo em que uma substância passa do estado líquido para o estado sólido. EXERCÍCIOS PREPARATÓRIOS 1. (G1) Explique o significado das palavras a seguir. Observe o modelo. Solidificação: é o processo em que uma substância passa do estado líquido para o estado sólido. Vaporização:

Leia mais

Balanço de Massa e Energia Aula 4

Balanço de Massa e Energia Aula 4 Gases e Vapores Na maioria das pressões e temperaturas, uma substância pura no equilíbrio existe inteiramente como um sólido, um líquido ou um gás. Contudo, em certas temperaturas e pressões, duas ou mesmo

Leia mais

FÍSICA: CONCEITOS E EXERCÍCIOS DE FÍSICA TÉRMICA

FÍSICA: CONCEITOS E EXERCÍCIOS DE FÍSICA TÉRMICA FÍSICA: CONCEITOS E EXERCÍCIOS DE FÍSICA TÉRMICA 1 SOBRE Apanhado de exercícios sobre física térmica selecionados por segrev. O objetivo é que com esses exercícios você esteja preparado para a prova, mas

Leia mais

Capítulo 2. A 1ª Lei da Termodinâmica

Capítulo 2. A 1ª Lei da Termodinâmica Capítulo 2. A 1ª Lei da Termodinâmica Parte 1: trabalho, calor e energia; energia interna; trabalho de expansão; calor; entalpia Baseado no livro: Atkins Physical Chemistry Eighth Edition Peter Atkins

Leia mais

Lista 04. F.02 Espelhos Planos e Esféricos

Lista 04. F.02 Espelhos Planos e Esféricos F.02 Espelhos Planos e Esféricos 2º Série do Ensino Médio Turma: Turno: Vespertino Lista 03 Lista 04 Questão 01) Obedecendo às condições de Gauss, um espelho esférico fornece, de um objeto retilíneo de

Leia mais

CAPACITORES. Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br

CAPACITORES. Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br CAPACITORES DEFINIÇÕES Quando as placas do capacitor estão carregadas com cargas iguais e de sinais diferentes, estabelece-se entre as placas uma diferença de potencial V que é proporcional à carga. Q

Leia mais

5 Equacionando os problemas

5 Equacionando os problemas A UA UL LA Equacionando os problemas Introdução Nossa aula começará com um quebra- cabeça de mesa de bar - para você tentar resolver agora. Observe esta figura feita com palitos de fósforo. Mova de lugar

Leia mais

Introdução à Química Inorgânica

Introdução à Química Inorgânica Introdução à Química Inorgânica Orientadora: Drª Karla Vieira Professor Monitor: Gabriel Silveira Química A Química é uma ciência que está diretamente ligada à nossa vida cotidiana. A produção do pão,

Leia mais

A) Escreva a equação que representa a semi-reação de redução e seu respectivo potencial padrão.

A) Escreva a equação que representa a semi-reação de redução e seu respectivo potencial padrão. QUÍMICA QUESTÃ 01 Aparelhos eletrônicos sem fio, tais como máquinas fotográficas digitais e telefones celulares, utilizam, como fonte de energia, baterias recarregáveis. Um tipo comum de bateria recarregável

Leia mais

De acordo a Termodinâmica considere as seguintes afirmações.

De acordo a Termodinâmica considere as seguintes afirmações. Questão 01 - (UFPel RS/2009) De acordo a Termodinâmica considere as seguintes afirmações. I. A equação de estado de um gás ideal, pv = nrt, determina que a pressão, o volume, a massa e a temperatura podem

Leia mais

ATIVIDADE II COLÉGIO TIA IVONE - CTI. PROFESSOR: NEW CRISTIAN SÉRIE: 1ª SÉRIE DO ENSINO MÉDIO Aluno(a): 1. Conceitue:

ATIVIDADE II COLÉGIO TIA IVONE - CTI. PROFESSOR: NEW CRISTIAN SÉRIE: 1ª SÉRIE DO ENSINO MÉDIO Aluno(a): 1. Conceitue: COLÉGIO TIA IVONE - CTI DISCIPLINA: QUÍMICA Data: / /2012 PROFESSOR: NEW CRISTIAN SÉRIE: 1ª SÉRIE DO ENSINO MÉDIO Aluno(a): ATIVIDADE II 1. Conceitue: a) Matéria b) Energia 2. Qual a relação entre matéria

Leia mais

Leonnardo Cruvinel Furquim TERMOQUÍMICA

Leonnardo Cruvinel Furquim TERMOQUÍMICA Leonnardo Cruvinel Furquim TERMOQUÍMICA Termoquímica Energia e Trabalho Energia é a habilidade ou capacidade de produzir trabalho. Mecânica; Elétrica; Calor; Nuclear; Química. Trabalho Trabalho mecânico

Leia mais

Estados Físicos Da Matéria

Estados Físicos Da Matéria Direitos Exclusivos para o autor: Prof. Gil Renato Ribeiro Gonçalves CMB- Colégio Militar de Brasília gylrenato@gmail.com Reservados todos os direitos. É proibida a duplicação ou reprodução desta aula,

Leia mais

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de?

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de? Física 01. Um fio metálico e cilíndrico é percorrido por uma corrente elétrica constante de. Considere o módulo da carga do elétron igual a. Expressando a ordem de grandeza do número de elétrons de condução

Leia mais

QUESTÃO 1 ALTERNATIVA B

QUESTÃO 1 ALTERNATIVA B 1 QUESTÃO 1 Marcos tem 10 0,25 = 2,50 reais em moedas de 25 centavos. Logo ele tem 4,30 2,50 = 1,80 reais em moedas de 10 centavos, ou seja, ele tem 1,80 0,10 = 18 moedas de 10 centavos. Outra maneira

Leia mais

NOME: Nº. ASSUNTO: Recuperação Final - 1a.lista de exercícios - Comentada VALOR: 13,0 NOTA:

NOME: Nº. ASSUNTO: Recuperação Final - 1a.lista de exercícios - Comentada VALOR: 13,0 NOTA: NOME: Nº 2 o ano do Ensino Médio TURMA: Data: 11/ 12/ 12 DISCIPLINA: Física PROF. : Petrônio L. de Freitas ASSUNTO: Recuperação Final - 1a.lista de exercícios - Comentada VALOR: 13,0 NOTA: INSTRUÇÕES (Leia

Leia mais

2 Comportamento Termodinâmico de Fluidos no Reservatório

2 Comportamento Termodinâmico de Fluidos no Reservatório Comportamento Termodinâmico de Fluidos no Reservatório 39 2 Comportamento Termodinâmico de Fluidos no Reservatório 2.1 Introdução Apresenta-se neste capítulo uma breve análise dos princípios básicos do

Leia mais

PROPRIEDADES DA MATÉRIA

PROPRIEDADES DA MATÉRIA Profª Msc.Anna Carolina A. Ribeiro PROPRIEDADES DA MATÉRIA RELEMBRANDO Matéria é tudo que tem massa e ocupa lugar no espaço. Não existe vida nem manutenção da vida sem matéria. Corpo- Trata-se de uma porção

Leia mais

Leis Históricas da Estequiometria

Leis Históricas da Estequiometria Estequiometria A proporção correta da mistura ar-combustível para o motor de uma carro de corrida pode ser tão importante quanto a habilidade do piloto para ganhar a corrida. As substâncias químicas, como

Leia mais