Inteligência de Negócios ou Inteligência Competitiva? Noivo Neurótico, Noiva Nervosa. Autoria: Maira Petrini, Maria Tereza Freitas, Marlei Pozzebon

Tamanho: px
Começar a partir da página:

Download "Inteligência de Negócios ou Inteligência Competitiva? Noivo Neurótico, Noiva Nervosa. Autoria: Maira Petrini, Maria Tereza Freitas, Marlei Pozzebon"

Transcrição

1 Inteligência de Negócios ou Inteligência Competitiva? Noivo Neurótico, Noiva Nervosa. Autoria: Maira Petrini, Maria Tereza Freitas, Marlei Pozzebon Resumo No contexto corporativo, a combinação de inovação tecnológica e crescente competitividade fazem com que a gestão da informação seja um enorme desafio e exija processos de tomada de decisão construídos sobre informação segura, oportuna e abrangente. Em relação à Tecnologia de Informação (TI), depois de anos de investimentos marcantes no sentido de implementar uma plataforma tecnológica que apoiasse todos os processos empresariais e que fortalecesse a eficiência da estrutura operacional, a maioria das organizações tem alcançado um estágio onde a implementação de soluções de TI para níveis estratégicos não só é possível, mas necessária. Este contexto explica o aparecimento de diversas áreas ligadas a TI e à gestão das informações, as quais, muitas vezes, tornam-se sinônimo de uma panacéia de conceitos confusos. O objetivo deste artigo é examinar mais a fundo dois destes conceitos: Inteligência de Negócio (Business Intelligence) e Inteligência Competitiva (Competitive Intelligence). Uma extensa revisão de literatura define-os claramente e permite-nos discutí-los à luz de suas diferenças, semelhanças e interdependências. 1 Introdução As empresas precisam ser mais rápidas, mais ágeis e, fundamentalmente, mais inteligentes (Liautaud, 2000). Inteligência é o resultado de um processo que começa com a coleta de dados. A explicação de como as organizações adquirem inteligência residi na transformação dado-informação-inteligência. Um conhecimento tradicional emerge aqui: dados são brutos e refletem as operações e transações diárias da organização; informação são esses dados os quais passaram por um processo de transformação e consolidação, adquirindo um certo nível de contextualização; inteligência eleva a informação a um nível mais alto, como resultado do completo entendimento de ações, contextos e decisões. E como as empresas podem ser mais inteligentes? As empresas precisam operar tão eficiente e produtivamente quanto possível com o objetivo de manterem-se competitivas e buscarem diferenciais frente à concorrência. Um elemento essencial para atingir sucesso envolve a contínua promoção do entendimento do negócio e do seu ambiente pelos funcionários em todos os níveis. Isso pode ser atingido pela implementação de processos os quais voltam-se para a comunicação e compartilhamento das informações estratégicas através da empresa. A conseqüência desta necessidade é um aumento do desenvolvimento e implementação de tecnologias as quais gravam, recuperam, manipulam, analisam e promovem a comunicação de informações (Kudyba & Hoptroff, 2001). Assim, nesse novo mercado cada vez mais competitivo, onde os recursos e o tempo são escassos e onde a informação é matéria prima, a Tecnologia da Informação é apontada como uma ferramenta essencial. Depois de anos de investimento pesado em plataformas tecnológicas para suportar os processos de negócio e fortalecer a construção e a eficiência da estrutura operacional, as organizações chegam ao estágio no qual a utilização de ferramentas que apóiem o processo decisório no nível estratégico tornou-se ainda mais necessário (Petrini, Pozzebon & Freitas, 2004). Dentro deste contexto, o crescimento dos negócios de TI nos últimos anos foi acompanhado e impulsionado pela criação de dezenas de conceitos e centenas de aplicações. Talvez não sirva de consolo, mas trata-se de situação corriqueira, fruto dos paradoxos que surgiram com o desenvolvimento acelerado das aplicações de TI nas empresas (Petrini, 2005). O resultado é um verdadeiro labirinto de referências, alternativas e opções. 1

2 O objetivo desse artigo é lançar luz em relação a duas referências dessa panacéia tecnológica estratégica : Inteligência de Negócio (Business Intelligence) e Inteligência Competitiva. As próximas duas seções (2 e 3) dedicam-se a uma extensa revisão de literatura procurando definir, compreender e identificar estes dois temas, para, na seção 4, discuti-los à luz de suas diferenças, semelhanças e interdependências. 2 Inteligência de Negócio (Business Intelligence) 2.1 Do EIS ao BI Os Executive Information Systems (EISs) foram os primeiros sistemas a surgir no cenário de informações estratégicas na metade dos anos 80. A literatura apresenta uma série de definições para os EISs (Turban & Watson, 1989; Paller & Laska, 1990; Watson, Rainer & Koh, 1991) todas associadas ao entendimento de suas características. Várias características podem ser identificadas através da revisão de diversos trabalhos nesse campo (Chi & Turban, 1995; Turban & Walls, 1995; Elam & Leidner, 1995; Volonino, Watson & Robinson, 1995; Turban, 1995; Watson Et Al., 1995, Rainer & Watson, 1995). Pozzebon et al (1998) propõem uma grade de características de sistemas EIS (Tabela 1) com base em extensa revisão bibliográfica. 1. Quanto ao Acesso, Filtro e 2. Quanto às Capacidades Técnicas ou Funcionalidades Armazenamento dos Dados 1.1 Acessa dados internos e formais 2.1 Possibilita drill down (análise do global para o detalhado) 1.2 Acessa dados externos e formais 2.2 Possibilita técnicas de alarmes, semáforos e exceção 1.3 Acessa dados internos e informais 2.3 Possibilita análises qualitativas 1.4 Acessa dados externos e informais 2.4 Possibilita parametrização (análises ad hoc) 1.5 Armazena dados históricos e atuais 2.5 Possibilita técnicas de OLAP e análise multidimensional 1.6 Armazena dados agregados e detalhados 2.6 Permite atividades de previsão (simulações, projeções) 1.7 Implementa um armazém corporativo de dados 2.7 Facilita a integração e a comunicação com outros ambientes (Internet, planilhas e outros aplicativos e sistemas) 2.8 Implementa funções de mineração de dados 3. Quanto à Interface ou Apresentação 3.1 Possui Interface Gráfica Com Usuário 3.2 É amigável: implementa várias opções de navegação e exige poucos clicks de mouse 3.3 Possui telas de ajuda 3.4 Possui alta concentração e combinação de recursos gráficos 3.5 Possui tempo de resposta rápido 3.6 É acessível de muitos lugares 3.7 É pré-customizado para cada usuário ou classe de usuários. 3.8 É customizável pelo usuário. Tabela 1: Grade de Características dos EISs (Pozzebon et al, 1998). Pode-se dizer que, à luz de todas as definições e características revisitadas, um EIS é um sistema que provê aos executivos facilidade no acesso às informações internas e externas que são relevantes ao processo decisório estratégico. A facilidade de acesso se dá não só pela interface gráfica e amigável, mas também pelas funcionalidades de análise, simulações e projeções que apóiam o processo decisório. O surgimento de tecnologias mais sofisticadas promoveu a evolução dos sistemas EIS, o que pode ser percebido pela clara transformação de suas características e funcionalidades. Dois conceitos estreitamente relacionados trouxeram uma promessa em termos de flexibilidade e integração das informações das empresas: Data Warehouse e On-Line Analytical Processing OLAP. 2

3 Data Warehouse é um banco de dados voltado para o suporte à decisão de usuários finais, derivado de diversos outros bancos de dados operacionais que incluem dados integrados, detalhados e sumarizados, históricos e metadados (Inmon, 1996; Taurion, 1997). O Data Warehouse é, traduzindo-se literalmente, um Armazém de Dados, onde dados históricos, após um processo de limpeza e depuração, são integrados por assunto e/ou domínio de aplicação, e então armazenados, tornando-se disponíveis a qualquer momento para sua análise. É fruto de um processo de limpeza dos dados transacionais, tornando-os disponíveis em estruturas otimizadas para uma rápida recuperação e análise dos dados (Petrini, 1999). Os Data Warehouses permitem consultas estruturadas e customizadas, além de possibilitarem a navegação, dinâmica, por vários níveis de detalhamento das informações. Um termo altamente relacionado à emergência do Data Warehouse é o Data Mart, o qual pode ser definido como um pequeno subconjunto de um Data Warehouse usado por um número menor de usuários, caracterizando-se por focar uma fatia de um Data Warehouse, contemplando dados exclusivos de uma área ou departamento específico (White, 1998). Seguindo a mesma filosofia dos Data Warehouse, os Data Marts representam um tipo menos complexo em termos de implementação e mais fácil de ser gerenciado, pois têm requisitos mais simples de infra-estrutura e menor abrangência funcional. Segundo Gardner (1997), um Data Mart deveria ser implementado como um subconjunto de dados dependentes de um Data Warehouse ou de um repositório com dados detalhados e normalizados, o que garantiria uma resposta consistente às questões de negócio. Uma das razões para gerar Data Marts a partir de um Data Warehouse corporativo é garantir o acesso aos dados em situações de manutenção do Data Warehouse. Um Data Mart habilita os técnicos em sistemas a trabalhar no redesenho do Data Warehouse sem descontinuar o acesso aos dados ou obrigar os usuários a buscar nos sistemas operacionais os dados que necessitam (Cothern, 1997). Além disso, outro motivo para a utilização de Data Mart é a redução do tempo de acesso, promovendo maior rapidez nas análises. Apesar do conceito de Data Mart ser um subconjunto de um Data Warehouse, muitas empresas decidem implementar seus sistemas de BI a partir da adoção direta de Data Marts. Por serem mais rápidos e fáceis de implementar e, conseqüentemente, exigirem menos recursos financeiros inicialmente, pode-se dizer que existem dois grandes impulsionadores para essa decisão: (1) o discurso dos próprios fornecedores de que Data Mart é focado em solução enquanto Data Warehouses são grandes e complexos e (2) a ansiedade das empresas em conseguir resultados rápidos da implementação dos sistemas de BI. O maior perigo dessa abordagem de Data Marts independentes é que, apesar de, inicialmente, serem mais rápidos de implementar, com o passar do tempo e o desenvolvimento de outros Data Marts tornam-se mais difíceis de gerenciar e manter (Inmon, 1999). Não sendo alimentados por uma única e confiável fonte de informações, possivelmente se replica os problemas dos dados já armazenados nos sistemas operacionais, e perde-se uma das grandes vantagens da implementação dos Data Warehouses que é a uniformidade e padronização das informações. Ligadas ao surgimento dos Data Warehouses (DWs) e Data Marts (DMs), as ferramentas de OLAP permitem aos usuários explorar os dados contidos nos DMs e DWs, provendo múltiplas visões destes dados, propiciando abordagens por diferentes ângulos. Trata-se de ferramentas exploratórias interativas de navegação de dados usando técnicas de fatiamento e distribuição para examiná-los de diferentes perspectivas e com diversos graus de detalhamento (Chaudhuri & Dayal, 1997; Dinter Et Al, 1998; Body et al, 2002). Ou seja, as ferramentas OLAP são ferramentas para análise de Data Warehouse, que enfocam análises multidimensionais de dados de modo superior aos mecanismos de resumo (sumário) e lotes encaixantes (quebra ou break-down) entre dimensões oferecidas pelas ferramentas tradicionais. Isso permite maior flexibilidade na disponibilização das informações, pois a análise de um fato - valores, volume de vendas, por exemplo - é feita em várias dimensões - 3

4 tempo, região geográfica, por exemplo - em drill down (do geral para o particular) ou drill up (do particular para o geral) (PETRINI, 1999). Drill down ou up é uma técnica analítica específica usada para navegar entre níveis de dados, do mais sumarizado (up) ao mais detalhado (down). Os caminhos podem ser definidos pelas hierarquias dentro das dimensões ou outros relacionamentos que podem ser dinâmicos dentro ou entre as dimensões. Mas a transformação das características e funcionalidades dos EISs baseada no surgimento de tecnologias mais sofisticadas vai além. As condições ambientais e culturais nas quais decisões são tomadas foram ficando mais complexas e o ambiente de negócio cada vez mais competitivo. Fortemente ligado a isso, temos o impacto da Internet no aumento da abrangência das informações e das comunicações e, conseqüentemente, nos processos decisórios nas organizações, e emerge o conceito de Inteligência de Negócios (Business Intelligence - BI). Exemplo dessas mudanças na prática, é a inclusão de produtos e serviços baseados na Web em praticamente todos os softwares de EIS que surgiram no mercado nos anos 90: os atuais produtos de BI são usualmente desenvolvidos utilizando recursos web facilitando a análise e distribuição das informações (Carlsson & Turban, 2002; Singh, Watson & Watson, 2002). O conceito de Inteligência de Negócios (BI), que absorve os conceitos de EIS, faz parte da segunda geração dos sistemas corporativos, como o ERP (Enterprise Resource Planning), integrando-se fortemente com ele e com outros sistemas corporativos como o CRM (Customer Relationship Management). Além disso, Inteligência de Negócios (BI) está altamente relacionado com Data Mining, que é um processo de descoberta de informação nova e relevante a partir de grandes volumes de informação. Essa informação é tipicamente um conhecimento escondido obtido pela aplicação de análise estatística, identificando padrões e co-relações nas informações de origem. Um conceito emergente relacionado com a utilização da Internet, define e-business Intelligence como a análise e uso de informação coletada sobre visitantes em Web sites. A inteligência passa a ser prover serviços personalizados aos consumidores a partir da análise da informação coletada (Schonberg, Cofino, Hoch, Podlaseck & Spraragen, 2000). Seguindo essa abordagem, Giovinazzo (2002) aborda a Internet habilitando a infra-estrutura de BI através da integração de Data Warehouse e CRM e da utilização de técnicas de análise visando entender melhor o consumidor e responder as suas necessidades rapidamente. Sendo assim, o termo BI praticamente eliminou o termo EIS da maioria dos sites e listas de produtos dos fornecedores de software (Carlsson & Turban, 2002). A chamada segunda geração dos ERPs é reconhecida pela necessidade de suportar não somente o processamento de transações operacionais, mas também o processamento analítico de informações. 2.2 Definindo Inteligência de Negócios (BI) A revisão de literatura em BI revela uma certa separação entre aspectos técnicos e administrativos, organizados em dois grupos (Tabela 2). Abordagem Administrativa Abordagem Tecnológica Foco Principal O foco no processo de coleta de dados de fontes O foco nas ferramentas internas e externas e análise dos mesmos, a fim tecnológicas que suportam o de gerar informação relevante. processo. Referências Liautaud (2000); Luckevich, Vitt e Misner Kudyba e Hoptroff (2001); Watson, (2002); Schonberg et al. (2000); Kalakota & Goodhue and Wixon (2002); Robinson (2001) Scoggins (1999); Hackathorn (1999); Dhar e Stein (1996); Giovinazzo (2002) Tabela 2: Duas abordagens de Inteligência de Negócios (Petrini & Pozzebon, 2003) 4

5 Na abordagem administrativa, a Inteligência de Negócios (BI) é vista como um processo em que os dados internos e externos da empresa são integrados para gerar informação pertinente para o processo de tomada de decisão. O papel da Inteligência de Negócios (BI) aqui é criar um ambiente informacional com processos através dos quais dados operacionais possam ser coletados, tanto dos sistemas transacionais como de fontes externas, e analisados, revelando dimensões estratégicas do negócio. Desta perspectiva emergem conceitos como organização inteligente : uma empresa que usa a Inteligência de Negócios (BI) para tomar decisões mais rápidas e mais inteligentes que os seus competidores (Liautaud, 2000). Simplificando, inteligência significa a redução de um enorme volume de dados em conhecimento, através de um processo de filtragem, análise e disseminação da informação (Kalakota & Robinson, 2001). A resposta de como as empresas adquirem inteligência poderia estar na transformação de dados-informação-inteligência. Aqui emerge uma crença tradicional: dados são crus e espelham as transações diárias e operacionais de uma empresa; informação são os dados filtrados que, através de um processo de agregação, adquirem um certo nível de significado contextual; inteligência eleva a informação a um estágio superior: é o resultado da compreensão completa de ações, contextos e escolhas. A abordagem tecnológica apresenta a Inteligência de Negócios (BI) como um conjunto de ferramentas que apóia o armazenamento e análise de informação. O foco não está no próprio processo, mas nas tecnologias que permitem a gravação, recuperação, manipulação e análise da informação. Por exemplo, Kudyba e Hoptroff (2001) entendem a Inteligência de Negócios (BI) como uma tecnologia de repositório de dados Data Warehouse (DW) que permite aos usuários extrair dados (demográficos e transacionais) e gerar relatórios estruturados que podem ser distribuídos nas empresas através das redes internas (Intranets). Watson, Goodhue & Wixon (2002) têm identificado que algumas organizações obtêm mais retorno na implementação de DW do que outros, demonstrando inclusive medidas de quantificação do impacto alcançado com a sua implementação. A evolução no uso de DW acontece quando são aplicadas técnicas avançadas de mineração de dados (Data Mining - DM) para transformar dados em informação (Scoggins, 1999). Nesta área, Hackathorn (1999) aborda a convergência de tecnologias de armazenamento de dados (DW), mineração de dados (DM), análise de hipertexto e recursos de informação da Internet como um grande desafio que reside na criação de uma arquitetura para todas estas tecnologias em uma plataforma de Inteligência de Negócios (BI) organizacional. Independente da abordagem, administrativa ou tecnológica, existem idéias compartilhadas em todos estes estudos: (1) a essência da Inteligência de Negócios (BI) é a coleta, análise e uso da informação e (2) o objetivo é apoiar o processo de tomada de decisão estratégica. Na verdade, Business Intelligence, diferentemente de seus antecessores, não é uma tecnologia, mas um conjunto de diversas delas, que visa promover e dar suporte a um ambiente informacional na empresa: ferramentas de extração e conversão, bancos de dados voltados para consultas complexas, ferramentas inteligentes de prospecção e análise de dados e ferramentas de administração e gerenciamento. A Figura 1 apresenta uma proposta de arquitetura de BI, distribuindo as diferentes tecnologias e aplicações discutidas em função de sua principal contribuição em cada uma das etapas no processo de BI. A única ferramenta proposta na arquitetura e ainda não definida nessa revisão bibliográfica são as ferramentas de ETL Extraction, Transforming and Loading, as quais combinam dados em único formato, a partir da Extração captura de dados de diferentes formatos e fontes, Transformação - conversão dos dados (limpeza, agregação e filtragem) e Carga gravação dos dados limpos e convertidos em uma nova estrutura de banco de dados. O principal objetivo das ferramentas ETL é simplificar a carga, a configuração e o 5

6 gerenciamento da montagem de um Data Warehouse (Friedman & Gassman, 2003; Friedman, 2002; Friedman & Schulte, 2001). Data Mining OLAP EIS DSS Relatórios Análise e Distribuição Data Mart Vendas Data Mart Data Mart Produção Financeiro Data Warehouse ETL Extraction Transforming and Loading Data Mart Logístíca Consolidação Coleta Inteligência de Negócios Sistemas Departamentais Sistemas Transacionais ERP,SCM,CRM,Legados *.txt Dados Externos Figura 1: Arquitetura de Inteligência de Negócios (proposta pelo autor). Enfim, BI pode ser definida como um processo sistemático de aquisição, tratamento e análise de informações, visando a facilitar a tomada de decisão. E, por ser uma ampla categoria de softwares e soluções para coleta, consolidação, análise e disseminação de informações, visando melhorar o processo decisório, o conceito de BI pode englobar diferentes aplicações, o que justifica e facilita a compreensão do porquê de tantas iniciativas diferentes receberem o nome de BI. A próxima seção destina-se a realizar e apresentar a mesma estruturação e definição para o conceito de Inteligência Competitiva. 3 Inteligência Competitiva 3.1 Definindo Inteligência Competitiva (IC) De Geus (2002) reforça a importância do conhecimento, pois convida-nos a olhar para as empresas com lentes biológicas, como uma comunidade de seres humanos. O autor cria uma analogia do crescimento organizacional com o desenvolvimento humano, ressaltando a importância da aprendizagem e harmonia com o mundo circundante. Assim como os seres humanos, para sobreviver, também as organizações devem aprender e reter este conhecimento, transformando-o em vantagem competitiva. Essa procura pela vantagem competitiva leva-nos ao conceito de Inteligência Competitiva. A inteligência está relacionada com os dados. Os dados, depois de organizados e tratados, geram a informação. A informação, quando analisada torna-se conhecimento, e o conhecimento é a chave para a inteligência. Inteligência Competitiva é uma ferramenta estratégica que permite ao decisor aumentar a competitividade da sua organização através da identificação das suas forças chave e antecipar as direções do mercado para o futuro (Lackman et al., 2000). Dentro deste contexto a Inteligência Competitiva (IC) desponta como uma potente ferramenta de apoio à alta gestão. E por quê? Atividades como o acompanhamento das intenções dos concorrentes e ocorrências imprevistas no mercado; atenção constante à Internet e outros meios de comunicação em massa; contato com clientes, fornecedores, parceiros, especialistas 6

7 e outras fontes fiáveis; participação em congressos e feiras; criação de perfis psicológicos de tomadores de decisão de alto nível, entre outras, fazem parte do dia-a-dia dos profissionais de IC (Prescott e Miller, 2002). Mas, mais importante do que obter essas informações, destacam os autores, os profissionais de IC tratam-nas, depuram-nas e transformam-nas em conhecimento que permitem auxiliar o trabalho da análise estratégica. A introdução do processo de inteligência dentro de uma organização pode mudar a abordagem arcaica de que os gerentes pensam e os trabalhadores fazem; através do incentivo aos colaboradores para apresentarem sugestões e idéias a respeito de mudanças no mercado, bem como possibilitar alertas de riscos potenciais que tenham constatado (Miller, 2002). Por outro lado, a Inteligência Competitiva (IC) também está associada a gestão de riscos. O profissional de IC usa a informação fornecida por vendedores, consultores, empregados e outras fontes, analisa-a e gera a inteligência para responder a questões específicas, identificando e gerindo possíveis fontes de riscos. Assim, uma outra abordagem de IC é vê-la como uma ferramenta que permite aos decisores calcular riscos e definir orientações em função dos vários cenários existentes (Gilad, 2001). Também Kempfer alerta para a importância da gestão de riscos como o grande desafio da IC face à nova realidade econômica, combinando conceitos de inteligências (competitiva, militar e de investigação), pois integra a segurança e as necessidades da alta gestão, gerando sinergias para uma melhor tomada de decisões, considerando os riscos envolvidos (Kempfer, 2002). Entretanto, é bastante comum a confusão existente entre Inteligência Competitiva e a prática de espionagem, uma vez que faz parte do processo de inteligência o levantamento de informações importantes sobre a concorrência. Porém, como definido na página da SCIP Society of Competitive Intelligence Professionals IC é um processo ético e sistemático para obtenção, análise e gestão da informação que pode afetar os planos, decisões e operações da sua companhia. Fala-se em dados, informação, sistemas de informação, recursos humanos, gestão de risco, marketing, ética, gestão do conhecimento, etc. Mas o que é Inteligência Competitiva afinal? Como define Ward (2001) IC, em poucas palavras, é a arte de fazer as perguntas certas para as fontes certas na forma/direção certa, na hora certa.. Isto é, IC é uma nova forma de pensar e de agir, pois não são os dados, tampouco a informação gerada a partir deles que ajudam no processo de tomada de decisão, mas sim a sua análise, o conhecimento individual e coletivo que é extraído a partir deles. 3.2 O Ciclo da Inteligência Competitiva (Competitive Intelligence) Assim como os processos de tomada de decisão e aprendizagem trabalham em ciclos; também o processo de geração de inteligência trabalha de forma cíclica. Conforme Miller (2002) o ciclo de IC é composto por quatro fases a serem executadas iterativamente, conforme ilustra a figura a seguir. Identificação NECESSIDADES DISSEMINAÇÃO Inteligência 1 COLECTA Informações 4 Ciclo de Inteligência 2 3 ANÁLISE Informações Figura 2: Ciclo de Inteligência Competitiva (Adaptado de Taborda e Ferreira (2002)) 7

8 Na primeira fase do ciclo, Identificação das Necessidades, é necessário identificar os responsáveis pelas principais decisões, isto é, os utilizadores do conhecimento a ser produzido como resultado do processo de inteligência. Os profissionais de IC elaboram junto dos gestores o levantamento das suas reais necessidades, através de reuniões e entrevistas individuais. Nestas entrevistas, são discutidos os riscos de decisões pendentes, opiniões sobre possíveis surpresas, preocupações sobre agentes externos, bem como vigilâncias a monitorar. Este processo tem como resultado uma lista de especificações de inteligência, os KITs Key Intelligence Topics em torno de diversos tópicos, como concorrentes, situações de mercado, planejamento e decisões, alianças, aquisições, entre outros. A clareza com que estes tópicos são definidos é que vai determinar o sucesso ou não do programa de inteligência, sendo que a sua ausência é uma das causas freqüentes apontada pelo baixo desempenho e frustração dos profissionais da área (Herring, 2002). Depois de identificados, os KITs são organizados e separados por categorias funcionais, porque diferentes tipos de tópicos exigem diferentes operações de inteligência e diferenciadas fontes de informação. Conforme define Herring (2002), de um modo geral as necessidades de inteligência podem ser enquadradas numa das três categorias funcionais: a) Decisões e ações estratégicas; relativas a um amplo leque de decisões sobre investimentos estratégicos, planos de ação para novos lançamentos de produtos, elaboração de planos estratégicos e informação sobre novas estratégias da concorrência. b) Tópicos de alerta antecipado; voltados para ameaças, palpites ou receios, incluindo iniciativas dos concorrentes, surpresas tecnológicas e ações do governo. c) Descrição dos principais atores encontrados no mercado específico; incluindo concorrentes, clientes, fornecedores, órgãos reguladores e parceiros potenciais. A partir da definição das necessidades dos usuários, organiza-se a coleta de informações, determinando a estratégia de procura e quais fontes a utilizar, caracterizando o processo relativo a segunda fase do ciclo de IC, Coleta da informação. As informações a serem coletadas podem ser classificadas tanto pelo seu grau de confiabilidade e relevância como pela fonte utilizada para a obtenção das mesmas. Conforme definem Silva e Neves (2003), as fontes de dados podem ser classificadas quanto à sua estrutura, como fontes formais ou textuais, apresentando-se de forma estruturada; ou informais, não estruturadas e geralmente externas à organização. Também podem ser qualificadas conforme o seu conteúdo, como fontes primárias (dados inalterados vindos diretamente das fontes) ou secundárias (dados que já sofreram algum tipo de interpretação ou análise prévia). Para que o processo de inteligência seja compreendido como um todo, é importante ter claro as diferentes fontes de informação e a metodologia para o acesso às mesmas. A metodologia utilizada varia conforme a fonte da informação a ser recolhida. Assim, para obter informações junto de pessoas, através de uma entrevista, é necessário uma preparação e condução adequada de acordo com padrões éticos estabelecidos (Taborda e Ferreira, 2002). Já as fontes secundárias se referem a outras procedências, não exclusivas, e podem ser acessadas por todas as partes interessadas no processo. Porém, são necessárias porque proporcionam as informações de bastidores e geram sustentabilidade para as opiniões obtidas das fontes primárias (Miller, 2002). Estas fontes podem ser originadas a partir de impressos dos mais diversos tipos, bem como dados disponíveis em páginas da Internet, em revistas, jornais, livros, tanto do ambiente econômico e social quanto fontes específicas do setor em que a empresa atua (Fuld, 1995). Outras fontes internacionais, governamentais, embaixadas, câmaras de comércio, domínios e patentes são também consideradas fontes secundárias que podem auxiliar o trabalho da inteligência. 8

9 Porém, é importante perceber que existe uma fonte inesgotável de informações dentro da própria organização, tanto através dos recursos humanos como pelas informações contidas nas bases de dados alimentadas pelos Sistemas de Informação. Incorporar informações externas a estas informações internas é que pode gerar um valor agregado e criar um diferencial no mercado competitivo. A terceira fase do ciclo de IC corresponde à geração do conhecimento propriamente dita, onde os analistas procuram a identificação de padrões e tendências significativas, relações entre os dados até então não detectadas. É a fase mais crítica, pois requer analistas com habilidades específicas e conhecimentos no assunto que está a ser pesquisado. Conforme descreve Michael Sandman (Miller, 2002), análise é o elo de ligação entre o material bruto dados e o produto de valor agregado inteligência.. O autor considera os modelos de análise somente como um referencial técnico onde serão agregados fatos, teorias bem formuladas e alguns palpites, cujo resultado final depende da capacidade humana de pensar e formular soluções: Modelos são boas ferramentas para a realização de boas análises. Não constituem, porém, substitutos à altura da diligência, da recolha bem orientada e de uma mente aberta e inquisitiva. (Sandman apud Miller, 2002). Silva e Neves (2003) reforçam a importância da clareza dos objetivos da pesquisa, isto é, ter o foco muito bem estabelecido, uma vez que a análise deve gerar conhecimento que auxilie ao processo de tomada de decisões, especialmente as estratégicas: O propósito da análise competitiva NÃO é aprender sobre os competidores, mas sim oferecer alternativas para a tomada de decisão e para a ação.. Conforme definem Gomes e Braga (2001), a quarta etapa do ciclo de IC envolve a entrega da informação analisada, a inteligência, em formato conciliável com o perfil do usuário, a alta gerência. A distribuição deste produto da inteligência pode ser feita de inúmeras formas, tanto por meio das tecnologias de informação como por contato informal. O apoio tecnológico pode ser feito através de envio de relatórios analíticos por , através de newsletter ou informação colocada na intranet da organização (Hohhof apud Miller 2002). Tanto o formato quanto a periodicidade vão depender das necessidades de inteligência e do perfil do gestor que vai utilizá-la. Por outro lado, há gestores que preferem o contato direto, recebendo as informações necessárias através de reuniões de equipes, ou até mesmo, em conversas informais. Todavia, o processo de geração da inteligência, relativo ao ciclo já descrito anteriormente, deve envolver todos os empregados da companhia. Conforme Fuld (1995), a empresa deve encontrar os meios adequados para compartilhar e comunicar a informação vital para o processo de inteligência. O autor ressalta também que, se este passar a ser um comportamento corrente da organização, as tecnologias então podem ser o próximo passo para incrementar o processo. Cabe salientar que, de acordo com pesquisas realizadas pela empresa Fuld & Company em 2002 a respeito de ferramentas de IC disponíveis no mercado, a maioria dos softwares especializados para IC apresentam melhores desempenhos nas fases de coleta dos dados e disseminação da informação (Fuld & Company, 2002). Enfim, Inteligência Competitiva é um processo de coleta, análise e disseminação de informação precisa, relevante, específica, atual e visionária, relacionada com a empresa, o ambiente empresarial e os competidores (Miller, 2002). Esse processo é define um ciclo composto por quatro fases executadas iterativamente: (1) Identificação das Necessidades, (2) Coleta de informações, (3) Análise e (4) Disseminação da inteligência. Uma vez conceituados os dois temas, na próxima seção iremos discuti-los à luz de suas diferenças, semelhanças e interdependências. 9

10 4 Discussão Nas duas últimas seções percorremos diversos autores buscando compilar e sistematizar definições envolvendo Inteligência Competitiva (IC) e Inteligência de Negócios (BI). Nesta seção nosso objetivo é aumentar a compreensão desses temas a partir de uma discussão que ressalta as semelhanças, diferenças e interdependências entre os mesmos. Tanto na definição de BI quanto na de IC, encontram-se dois temas comuns: (1) a distinção entre informação e inteligência e (2) o processo de coleta, organização e análise dos dados. Informação ou Inteligência? Informação é fatual, inteligência é algo que pode determinar uma atitude. Por exemplo, em uma indústria de manufatura, o nível de desperdício é uma informação que pode ser analisada com o passar do tempo, de acordo com a linha de produto (o seu contexto). Estas análises mostram que os níveis de desperdício são mais altos em um período específico de tempo, com uma linha de produto específica. As análises mais profundas, incluindo informação externa, podem mostrar que tal incremento coincide com o aumento de umidade de ar. A inteligência, que pode ser utilizada para determinar uma ação, é que o material usado naquela linha de produto específico é mais sensível a umidade do ar do que outros materiais. A construção de um sistema eficiente de inteligência passa pela integração de três fatores: pessoas que interajam em determinados processos e se apóiem em tecnologia disponível para a execução das suas tarefas. Porém, como ressalta Fuld (1995), o sucesso de um sistema de inteligência é construído sobre e ao redor da cultura organizacional: sistemas de inteligência têm, independente do potencial das aplicações informáticas, um teor sobretudo humano.. Tanto IC quanto BI apóiam-se em Tecnologia de Informação. Entretanto, as ferramentas existentes auxiliam na coleta e organização/disseminação dos dados, mas não conseguem ainda gerar o conhecimento necessário dentro do processo de inteligência: a intervenção humana é fundamental. Os dados explorados por ferramentas como data warehouses e data minings, transformam-se em informação que pode ser utilizada no suporte ao processo de tomada de decisões. Nos últimos anos, os resultados fornecidos por data warehouses migraram de relatórios estáticos a análises multi-dimensionais, com as suas capacidades melhoradas e o cruzamento de informações multi-departamentais, fornecendo respostas que agregam vantagem competitiva ao negócio (Moncla e Consulting, 2000). Entretanto, apesar de todos os avanços nesta área, existe ainda uma deficiência na indústria de software: software geralmente não analisa, e quando o faz, analisa de uma forma muito rudimentar, puramente quantitativa, utilizando somente dados internos. Porém, a realidade dos negócios mostra que a maioria das análises devem ser baseadas em dados qualitativos, não somente em números ou estatísticas (Fuld e Sawka, 2000). As experiências de quem analisa são tão ou mais importantes que os dados a serem analisados. Diversos autores destacam a importância do fator humano no trabalho de IC, especialmente na terceira fase do ciclo, quando é realizada a análise dos dados e a geração do conhecimento (Silva e Neves, 2003), (Sandman apud Miller, 2002), (Taborda e Ferreira, 2002), (Fuld & Company, 2002), (Freitas e Moscarola, 2000). Entretanto, mesmo deixando-se claro a importância fundamental da intervenção humana para a geração da inteligência, as informações ofertadas nos sistemas de BI ou IC são determinantes para essa geração, uma vez que é baseado nelas que o analista gera a inteligência. O enfoque na tecnologia não traz resultados de valor sem estar fortemente 10

11 associado ao negócio, ou seja, antes de tudo é necessária a identificação de quais informações são realmente estratégicas para a empresa. No estudo de Petrini, Pozzebon e Freitas (2004) concluem que as empresas estão adotando Inteligência de Negócios (BI) como uma nova aplicação tecnológica, um software novo, e não como uma nova abordagem administrativa. O valor de um sistema de Inteligência de Negócios (BI) está no valor dos indicadores e na informação que é produzida, analisada e disseminada. Se não houver nenhuma consciência em como produzir, analisar e disseminar tal informação e quão estratégicas são esses alertas produzidos, o benefício destes sistemas provavelmente será mínimo ou desaparecerá. Esta pesquisa sugere que o papel estratégico e social de TI não é sempre percebido. Atrás de qualquer aplicação de TI, demonstram-se escolhas sociais e políticas. Adotar uma aplicação de Inteligência de Negócios (BI) é muito mais uma questão organizacional ou administrativa do que tecnológica. Quando as empresas prestam mais atenção em como construir e gerir técnica e efetivamente um repositório de dados centralizado do que em construir coletiva e socialmente um mecanismo de produção e disseminação de informação útil e oportuna para a tomada de decisão, pode-se perder muito do benefício potencial de um projeto de Inteligência de Negócios (BI). Coletar e armazenar uma coleção de métricas, sem o respectivo alinhamento com os objetivos estratégicos organizacionais, podem ser vistos como desperdício de tempo e esforço. O Processo de coleta, organização e análise dos dados. Esta é outra semelhança que faz com que, muitas vezes, o conceito de Inteligência Competitiva (IC) seja confundido com o conceito de Inteligência de Negócios (BI) uma vez que ambas têm como idéia central a coleta, organização e análise dos dados: os dados são coletados, organizados e explorados, transformando-se em informação, a qual emerge das pessoas e que pode ser utilizada no suporte ao processo de tomada de decisões. Mas é ao aprofundarmos o entendimento desse processo de coleta, organização e análise que começam a emergir as principais diferenças entre esses dois conceitos. Qual o tipo e a origem dos dados coletados? Os dados a serem coletados são orientados e direcionados a partir dos objetivos estratégicos, no caso de BI, e dos Key Inteligent Topics (KIT), no caso de IC. Entretanto, os dados em BI são essencialmente estruturados, enquanto que em IC eles são textuais. Em outras palavras, pode-se dizer que a essência dos sistemas de BI trabalha com dados quantitativos e estruturados, enquanto IC preocupa-se com dados qualitativos. Essa característica de IC em trabalhar com dados textuais (qualitativos), oriundos muitas vezes de entrevistas com funcionários, clientes ou fornecedores, faz com que esse conceito encontre uma interdependência com Gestão do Conhecimento no que se refere ao processo de conversão do conhecimento tácito em explícito. Pensadores como Nonaka e Takeuchi (1997), Stewart (2002), Nicolau (2002), Davenport et al (2003), entre outros, realçam a urgência em tratar o conhecimento como ativo estratégico e a necessidade de o gerir de forma explícita e organizada. Assim, o conceito de Inteligência Competitiva (Competitive Intelligence) está intimamente ligado à utilização da Gestão de Conhecimento, pois esta disponibiliza métodos de transferência do conhecimento existente, tanto o tácito quanto o explícito, proporciona espaço para a inovação; tornando estas atividades um comportamento coletivo, e não uma atividade especializada para poucos (Nonaka e Takeuchi, 1997). Isso esta intimamente relacionado com a origem desses dados. Em BI a fonte principal são os sistemas e bancos de dados que controlam a operação da empresa. Mesmo os dados externos, são obtidos sob o formato de pesquisas realizadas sistematicamente ou específicas, mas cujo resultado é estruturado, como por exemplo, um estudo que divulgue o percentual de 11

12 participação no mercado da empresa e seus concorrentes ou indicadores demográficos. Já em IC as fontes são bem mais diversificadas, podendo ser desde contratos com fornecedores, normalmente disponíveis no departamento jurídico da empresa, até notícias no jornal sobre uma possível privatização do setor ou entrada de um novo concorrente. Ou seja, apesar de conceitualmente contemplar dados externos, na prática BI concentra-se em especial nos dados internos da organização. Em um estudo realizado por Petrini, Pozzebon e Freitas (2004), o qual descreve um panorama do uso de BI nas organizações brasileiras, o item relativo às fontes de informação aponta que o foco é a informação produzida de sistemas operacionais ou transacionais. Poucas empresas têm se preocupado com informação externa. Só 27% das empresas utilizam informação externa nos seus sistemas de Inteligência de Negócios (BI). Nestes casos, as informações externas perfazem de 10% a 25% da informação total utilizada. Entre as principais fontes de informação externa, encontramos os institutos de mercado (participação de mercado), institutos governamentais (informação demográfica) e pesquisa de mercado feita sob encomenda para um propósito específico. Já em IC, o foco está na obtenção das informações externas que envolvem a cadeia de valor da organização como um todo e o mercado que a cerca, remetendo-nos ao conceito das forças competitivas (PORTER, 1996) : competidores, novos entrantes, fornecedores, clientes e produtos substitutivos. Em outras palavras, a própria etapa de coleta é mais complexa em IC pelo fato de que a diversidade de fontes é muito maior. Quem usa os dados? Em IC, a organização como um todo pode ser vista como fonte de informação, mas os usuários dela, ou seja, quem efetivamente recebe as informações, é um numero muito reduzido de pessoas, normalmente ligadas ao nível estratégico: a alta gerência. Isto é explicado tanto pela natureza da informação como pela própria definição de Inteligência Competitiva. Decisões estratégicas envolvem a elaboração de planos de longo prazo, a definição de objetivos para a organização e de estratégias para alcançar esses objetivos, tarefas pertinentes a alta gerência. Também Larry Kahaner nos sugere os verdadeiros usuários da informação de IC através da sua definição: Competitive Intelligence é uma ferramenta estratégica que permite ao decisor senior aumentar a competitividade da sua organização através da identificação das suas forças chave e antecipar as direções do mercado para o futuro (Lackman et al., 2000). BI tende a atender o maior número possível de decisores, independente do nível organizacional. Na verdade, essa idéia esta intimamente ligada à emergência do conceito de Gerenciamento de Desempenho Corporativo (Corporate Performance Management CPM) provendo valor estratégico completo. Gerenciamento de Desempenho Corporativo (CPM) é um termo guarda-chuva que descreve metodologias, métricas, processos e tecnologias usados para monitorar e gerenciar o desempenho do negócio de uma organização (GEISHECKER E RAYNER, 2001). Em outras palavras, CPM representa uma estratégia para desenvolvimento de soluções de BI. Nesse conceito, o valor é obtido traduzindo informações estratégicas em planos operacionais e realimentado a estratégia com informações dos resultados operacionais gerados, integrando todos os elementos do ciclo de planejamento (estratégico) e controle (tático). A idéia é fazer da democracia da informação um fato, compartilhando informações através ou mesmo além das fronteiras da organização, para todos os funcionários, clientes, fornecedores e parceiros de negócio. 12

13 5 Conclusões A compreensão dos conceitos de Inteligência Competitiva (IC) e Inteligência de Negócios (BI) evidencia que as grandes diferenças entre esses dois conceitos residem em dois grandes grupos: (1) o tipo e a origem dos dados e (2) o público para o qual os resultados são destinados. Em BI a origem dos dados, ou seja, a fonte principal, são os sistemas e bancos de dados que controlam a operação da empresa, levando-nos a trabalhar com dados essencialmente estruturados. Em IC o foco está na obtenção das informações externas que envolvem a cadeia de valor da organização como um todo e o mercado que a cerca: competidores, novos entrantes, fornecedores, clientes e produtos substitutivos, o que nos leva a trabalhar com dados em formato de texto e, conseqüentemente, não estruturados. Enquanto os sistemas de BI trabalham com dados quantitativos e estruturados, IC contempla dados qualitativos. O público que utiliza os resultados desses sistemas também muda significativamente. Em IC os usuários constituem-se de um número muito reduzido de pessoas, normalmente ligadas ao nível estratégico: a alta gerência, enquanto BI tende a atender o maior número possível de decisores, independente do nível organizacional. Entretanto, a construção de um sistema eficiente de inteligência, seja dentro da idéia de BI ou IC, passa pela integração de pessoas e tecnologia. Fuld (1995) ressalta que o sucesso de um sistema de inteligência é construído sobre e ao redor da cultura organizacional: sistemas de inteligência têm, independente do potencial das aplicações informáticas, um teor sobretudo humano. Mais uma vez a importância do fator humano no sucesso é enfatizada. Os modelos de análise, por mais automatizados que sejam, são estruturas que comportam dados e informação. Porém, nada substitui a capacidade humana de raciocinar e avaliar a sua real relevância e a sua credibilidade, bem como de agregar valor à geração final da inteligência. Ou seja, emerge das pessoas e dos relacionamentos interpessoais a capacidade de gerar inteligência. Referências BODY, M.; MIQUEL, M.; BÉDARD, Y.; TCHOUNIKINE, A. A multidimensional and multiversion structure for OLAP applications. Proceedings of the 5th ACM international workshop on Data Warehousing and OLAP. November, CARLSSON, C.; TURBAN, E. DSS: Directions for the next Decade. Decision Support System, v.33, n.2, p , June CHAUDHURI, S.; DAYAL, U. Data warehousing and OLAP for decision support. Proceedings of the 1997 ACM SIGMOD international conference on Management of Data, v.26, n.2, jun CHI, R.T.; TURBAN, E. Distributed Intelligent Executive Information Systems. Decision Support Systems, v.14, p , COTHERN, M. Data Warehousing: Understanding its Role in a Business Management Architecture. Data Warehouse Article Library, 1997, acesso em 23 março DAVENPORT, T. PRUSAK, L. WILSON, H., Vencendo com as Melhores Ideias: Como Fazer as Grandes Ideias Acontecerem na sua Empresa, Rio de Janeiro: Campus,

14 DE GEUS, A., Biólogo Organizacional, em Dearlove, D., Rodrigues, J., Crainer, S e Brown, T., 2002, Mestres da Gestão 42 Gurus do Management em Directo, Lisboa: Centro Atlântico, 2002, pp DHAR, V, & STEIN, R. Seven Methods for Transforming Corporate Data into Business Intelligence, Prentice Hall, DINTER, B.; SAPIA, C.; HÖFLING, G.; BLASCHKA, M. The OLAP market: state of the art and research issues. Proceedings of the 1st ACM international workshop on Data warehousing and OLAP, November, ELAM, J.J.; LEIDNER, D.G. EIS Adoption, Use and Impact: the Executive Perspective. Decision Support Systems, v.14, p , HACKATHORN, R. Farming the Web for Systematic Business Intelligence. Proceedings Of The Fifth ACM SIGKDD International Conference On Knowledge Discovery and Data Mining, San Diego, United States, FULD, L., The New Competitor Intelligence, New York: Wiley, 1995, pp FULD & COMPANY, Inc., Leveraging the Web, Intelligence Software Report 2002, FULD, L. e SAWKA, K., Money Can t Buy You Smarts, CIO Magazine, FREITAS, H. e MOSCAROLA, J., Análise de Dados Quantitativos e Qualitativos: Casos Aplicados Usando o Sphinx, Porto Alegre: Editora Sagra Luzzatto, FRIEDMAN, T.; GRASSMAN, B. Client Issues for Extraction, Transformation and Loading, Gartner Group, FRIEDMAN, T. Gartner's Evaluation Criteria for the ETL Magic Quadrant, Gartner Group, FRIEDMAN, T. & SCHULT, R. Integration Brokers and ETL Tools: Is the Line Blurring? Gartner Group, GILAD, B., Industry Risk Management: CI s Next Step, Competitive Intelligence Magazine, Vol 4, Nº 3, 2001, pp GIOVINAZZO, W. Internet-Enabled Business Intelligence, Prentice Hall, GOMES, E. e BRAGA, F., Inteligência competitiva: como transformar informação em um negócio lucrativo, Rio de Janeiro: Campus, HERRING, J., Tópicos Fundamentais de Inteligência: Processo para Identificação e Definição de Necessidades de Inteligência, 2002, em PRESCOTT, J. e MILLER, S., Inteligência Competitiva na Prática, Rio de Janeiro: Campus, INMON, W.H. Charting the Course: Meta Data for the Data Mart Environment. DM Review, april, INMON, W.H. The Data Warehouse and Data Mining. Commmunications of The ACM Data Mining, v.39, n.11, p.49-50, November KALAKOTA, R & ROBINSON, M. E-business 2.0 Roadmap for success, Addison- Wesley, NY, KEMPFER, H., Risk Management Intelligence, Competitive Intelligence Magazine, Vol 5, Nº 6, 2002, pp KUDYBA, S, & HOPTROFF, R. Data Mining and Business Intelligence: A Guide to Productivity, Idea Group Publishing, LACKMAN, C., SABAN, H and LANASA, J., Organizing the Competitive Intelligence Function: A Benchmarking Study, Competitive Intelligence Review, Vol 11, Nº 1, 2000, pp LIAUTAUD, B. E-Business Intelligence: Turning Information into Knowledge into Profit, McGraw-Hill, LUCKEVICH, M.; Vitt, E.; Misner, S. Business Intelligence, Microsoft Press, MILLER, J., O Milénio da Inteligência Competitiva, Porto Alegre: Bookman,

15 MONCLA, B. e CONSULTING, F., The Rise of E-Business and Business Intelligence, DM Review, NICOLAU, I., Gestão do Conhecimento nas Organizações e Mercados de Serviços, Revista Portuguesa e Brasileira de Gestão, Vol 1, Nº 3, 2002, pp NONAKA, I. e TAKEUCHI, H., Criação de Conhecimento na Empresa, Rio de Janeiro: Campus, PALLER, A. & LASKA, R. The EIS Book, Dow Jones-Irwin, Homewood, Illinois, PETRINI, M. A viabilidade técnica e o enriquecimento de um modelo de E.I.S - Enterprise Information System com características para comportamentos proativos na recuperação de informações. Dissertação de Mestrado. Escola de Administração, PPGA Programa de Pós- Graduação em Administração, UFRGS, junho de PETRINI,M., Labirinto high-tech. Gestão Empresarial, cap. 15, Editora Atlas, São Paulo, SP, PETRINI, M. & POZZEBON, M. The Value of Business Intelligence in the Context of Developing Countries. Proceedings of 11th European Conference on Information Systems, Napoli, Itália, PETRINI, M., POZZEBON, M. e FREITAS, M., Qual é o Papel da Inteligência de Negócios (BI) nos Países em Desenvolvimento? Um Panorama das Empresas Brasileiras, Curitiba: Anais do 28º Encontro da ANPAD Associação Nacional dos Programas de Pós-graduação em Administração, POZZEBON, M., FREITAS, H.; PETRINI, M. A Definição de Categorias para o Estudo de Comportamentos Proativos na Recuperação de Informações. Anais do XXII encontro da ANPAD. Foz do Iguaçu, PRESCOTT, J. e MILLER, S., Inteligência Competitiva na Prática, Rio de Janeiro: Campus, RAINER, R.K.; WATSON, H. What does it Take for Sucessfull Executive Information Systems? Decision Support Systems, vol.14, p , SCHONBERG, E.; COFINO, T.; HOCH, R.; PODLASECK, M.; SPRARAGEN, S. Measuring Success, Communications oh the ACM, vol. 43, no. 8, Aug, 2000, pp SCOGGINS, J. A Practitioner s View Of Techniques Used In Data Warehousing For Sifting Through Data To Provide Information, Proceedings Of The Eight International Conference On Information And Knowledege Management, Kansas City, MI, SILVA, R. e NEVES, A., Gestão de Empresas na Era do Conhecimento, Lisboa: Sílabo, SINGH, S.; WATSON, H.J. & WATSON, R. EIS support for the strategic management process. Decision Support Systems, Volume 33, Issue 1, p , STEWART, T., A Riqueza do Conhecimento: o Capital Intelectual e a Nova Organização, Rio de Janeiro: Campus, TABORDA, J. e FERREIRA, M., Competitive Intelligence Um Novo Posicionamento das Organizações, Cascais: Pergaminho, TAURION, C. Data Warehouse: Estado da Arte e Estado da Prática. Developers Magazine, Rio de Janeiro, n.6, p.10-11, fevereiro, TURBAN, E. Decision Support and Expert Systems, Rio de Janeiro, Prentice-Hall, TURBAN, E.; WALLS, J.G. Executive Information Systems - a Special Issue. Decision Support Systems, vol. 14, p.85-88, TURBAN, E.; WATSON, H.J. Integrating Expert Systems, Executive Information Systems, and Decision Support Systems. DSS-89 Transactions, San Diego, California, June VOLONINO, L.; WATSON, H.J.. & ROBINSON, S. Using EIS to Respond to Dynamic Business Condition. Decision Support Systems, vol. 14, p ,

16 WARD, C., It s just comma sense (part II), Competitive Intelligence Magazine, Vol 4, Nº 3, 2001, pp WATSON, H.; GOODHUE, D.; WIXON, B. The Benefits of Data Warehousing: Why some organizations realize exceptional payoffs. Information & Management, Amsterdam, May, WATSON, H.; RAINER, K.; KOH, C. Executive Information Systems: a Framework for a Development and a Survey of Current Practices. MIS Quartely, vol. 15, no. 01, p March WATSON, H.J.; WATSON, R; SINGH,S. & HOLMES,D. Development Practices for Executive Information Systems: Findings of a Field Study. Decision Support Systems, vol.14, p , WHITE, C. Managing Data Mart Development. Database Associates International Inc., 1999, acesso em 23 maio

FUNDAMENTOS DE SISTEMAS DE INFORMAÇÃO

FUNDAMENTOS DE SISTEMAS DE INFORMAÇÃO @ribeirord FUNDAMENTOS DE SISTEMAS DE INFORMAÇÃO Rafael D. Ribeiro, M.Sc,PMP. rafaeldiasribeiro@gmail.com http://www.rafaeldiasribeiro.com.br Lembrando... Aula 4 1 Lembrando... Aula 4 Sistemas de apoio

Leia mais

Resumo dos principais conceitos. Resumo dos principais conceitos. Business Intelligence. Business Intelligence

Resumo dos principais conceitos. Resumo dos principais conceitos. Business Intelligence. Business Intelligence É um conjunto de conceitos e metodologias que, fazem uso de acontecimentos e sistemas e apoiam a tomada de decisões. Utilização de várias fontes de informação para se definir estratégias de competividade

Leia mais

Planejamento Estratégico de TI. Prof.: Fernando Ascani

Planejamento Estratégico de TI. Prof.: Fernando Ascani Planejamento Estratégico de TI Prof.: Fernando Ascani Data Warehouse - Conceitos Hoje em dia uma organização precisa utilizar toda informação disponível para criar e manter vantagem competitiva. Sai na

Leia mais

Aline França a de Abreu, Ph.D

Aline França a de Abreu, Ph.D Aline França a de Abreu, Ph.D igti.eps.ufsc.br 07 / 10/ 04 Núcleo de estudos Criado em 1997 - UFSC/EPS Equipe multidisciplinar, com aproximadamente 20 integrantes OBJETIVO Gerar uma competência e uma base

Leia mais

BUSINESS INTELLIGENCE -Inteligência nos Negócios-

BUSINESS INTELLIGENCE -Inteligência nos Negócios- UNIVERSIDADE SÃO FRANCISCO CENTRO DE CIÊNCIAS JURÍDICAS, HUMANAS E SOCIAIS BUSINESS INTELLIGENCE -Inteligência nos Negócios- Curso: Administração Hab. Sistemas de Informações Disciplina: Gestão de Tecnologia

Leia mais

A evolução da tecnologia da informação nos últimos 45 anos

A evolução da tecnologia da informação nos últimos 45 anos A evolução da tecnologia da informação nos últimos 45 anos Denis Alcides Rezende Do processamento de dados a TI Na década de 1960, o tema tecnológico que rondava as organizações era o processamento de

Leia mais

01/12/2009 BUSINESS INTELLIGENCE. Agenda. Conceito. Segurança da Informação. Histórico Conceito Diferencial Competitivo Investimento.

01/12/2009 BUSINESS INTELLIGENCE. Agenda. Conceito. Segurança da Informação. Histórico Conceito Diferencial Competitivo Investimento. BUSINESS INTELLIGENCE Agenda BI Histórico Conceito Diferencial Competitivo Investimento Segurança da Objetivo Áreas Conceito O conceito de Business Intelligencenão é recente: Fenícios, persas, egípcios

Leia mais

Uma estrutura (framework) para o Business Intelligence (BI)

Uma estrutura (framework) para o Business Intelligence (BI) Uma estrutura conceitural para suporteà decisão que combina arquitetura, bancos de dados (ou data warehouse), ferramentas analíticas e aplicações Principais objetivos: Permitir o acesso interativo aos

Leia mais

Sistema. Atividades. Sistema de informações. Tipos de sistemas de informação. Everson Santos Araujo everson@everson.com.br

Sistema. Atividades. Sistema de informações. Tipos de sistemas de informação. Everson Santos Araujo everson@everson.com.br Sistema Tipos de sistemas de informação Everson Santos Araujo everson@everson.com.br Um sistema pode ser definido como um complexo de elementos em interação (Ludwig Von Bertalanffy) sistema é um conjunto

Leia mais

Planejamento Estratégico de TI. Prof.: Fernando Ascani

Planejamento Estratégico de TI. Prof.: Fernando Ascani Planejamento Estratégico de TI Prof.: Fernando Ascani BI Business Intelligence A inteligência Empresarial, ou Business Intelligence, é um termo do Gartner Group. O conceito surgiu na década de 80 e descreve

Leia mais

Business Intelligence Um enfoque gerencial para a Inteligência do Negócio.Efrain Turban e outros.tradução. Bookman, 2009.

Business Intelligence Um enfoque gerencial para a Inteligência do Negócio.Efrain Turban e outros.tradução. Bookman, 2009. REFERÊNCIAS o o Business Intelligence Um enfoque gerencial para a Inteligência do Negócio.Efrain Turban e outros.tradução. Bookman, 2009. Competição Analítica - Vencendo Através da Nova Ciência Davenport,

Leia mais

Fornecendo Inteligência, para todo o mundo, a mais de 20 anos.

Fornecendo Inteligência, para todo o mundo, a mais de 20 anos. Fornecendo Inteligência, para todo o mundo, a mais de 20 anos. Fundada em 1989, a MicroStrategy é fornecedora líder Mundial de plataformas de software empresarial. A missão é fornecer as plataformas mais

Leia mais

Business Intelligence e ferramentas de suporte

Business Intelligence e ferramentas de suporte O modelo apresentado na figura procura enfatizar dois aspectos: o primeiro é sobre os aplicativos que cobrem os sistemas que são executados baseados no conhecimento do negócio; sendo assim, o SCM faz o

Leia mais

high-tech Labirinto ERA DIGITAL por Maira Petrini FGV-EAESP

high-tech Labirinto ERA DIGITAL por Maira Petrini FGV-EAESP ERA DIGITAL Labirinto high-tech Nos últimos anos, o crescimento dos negócios de informática foi acompanhado e impulsionado pela criação de dezenas de conceitos e centenas de aplicações. O resultado é que

Leia mais

5 Estudo de Caso. 5.1. Material selecionado para o estudo de caso

5 Estudo de Caso. 5.1. Material selecionado para o estudo de caso 5 Estudo de Caso De modo a ilustrar a estruturação e representação de conteúdos educacionais segundo a proposta apresentada nesta tese, neste capítulo apresentamos um estudo de caso que apresenta, para

Leia mais

Professor: Disciplina:

Professor: Disciplina: Professor: Curso: Esp. Marcos Morais de Sousa marcosmoraisdesousa@gmail.com Sistemas de informação Disciplina: Introdução a SI Noções de sistemas de informação Turma: 01º semestre Prof. Esp. Marcos Morais

Leia mais

srbo@ufpa.br www.ufpa.br/srbo

srbo@ufpa.br www.ufpa.br/srbo CBSI Curso de Bacharelado em Sistemas de Informação BI Prof. Dr. Sandro Ronaldo Bezerra Oliveira srbo@ufpa.br www.ufpa.br/srbo Tópicos Especiais em Sistemas de Informação Faculdade de Computação Instituto

Leia mais

Inteligência Organizacional, Inteligência Empresarial, Inteligência Competitiva, Infra-estrutura de BI mas qual é a diferença?

Inteligência Organizacional, Inteligência Empresarial, Inteligência Competitiva, Infra-estrutura de BI mas qual é a diferença? Inteligência Organizacional, Inteligência Empresarial, Inteligência Competitiva, Infra-estrutura de BI mas qual é a diferença? * Daniela Ramos Teixeira A Inteligência vem ganhando seguidores cada vez mais

Leia mais

Identificar as mudanças que acontecem na forma e no uso de apoio à decisão em empreendimentos de e-business. Identificar o papel e alternativas de

Identificar as mudanças que acontecem na forma e no uso de apoio à decisão em empreendimentos de e-business. Identificar o papel e alternativas de 1 Identificar as mudanças que acontecem na forma e no uso de apoio à decisão em empreendimentos de e-business. Identificar o papel e alternativas de relatórios dos sistemas de informação gerencial. Descrever

Leia mais

SUMÁRIO 1. INTRODUÇÃO... 2 2. O QUE É DATA WAREHOUSE?... 2 3. O QUE DATA WAREHOUSE NÃO É... 4 4. IMPORTANTE SABER SOBRE DATA WAREHOUSE... 5 4.

SUMÁRIO 1. INTRODUÇÃO... 2 2. O QUE É DATA WAREHOUSE?... 2 3. O QUE DATA WAREHOUSE NÃO É... 4 4. IMPORTANTE SABER SOBRE DATA WAREHOUSE... 5 4. SUMÁRIO 1. INTRODUÇÃO... 2 2. O QUE É DATA WAREHOUSE?... 2 3. O QUE DATA WAREHOUSE NÃO É... 4 4. IMPORTANTE SABER SOBRE DATA WAREHOUSE... 5 4.1 Armazenamento... 5 4.2 Modelagem... 6 4.3 Metadado... 6 4.4

Leia mais

Data Warehousing Visão Geral do Processo

Data Warehousing Visão Geral do Processo Data Warehousing Visão Geral do Processo Organizações continuamente coletam dados, informações e conhecimento em níveis cada vez maiores,, e os armazenam em sistemas informatizados O número de usuários

Leia mais

Curso Superior de Tecnologia em BD Suporte de Apoio à Decisão

Curso Superior de Tecnologia em BD Suporte de Apoio à Decisão Curso Superior de Tecnologia em BD Suporte de Apoio à Decisão Aula 01 Agenda Introdução Conceitos Histórico Fornecedores Quadrantes Mágicos Introdução aos Próximos tópicos 2 Introdução Sistemas de Apoio

Leia mais

CONSIDERAÇÕES SOBRE ATIVIDADES DE IDENTIFICAÇÃO, LOCALIZAÇÃO E TRATAMENTO DE DADOS NA CONSTRUÇÃO DE UM DATA WAREHOUSE

CONSIDERAÇÕES SOBRE ATIVIDADES DE IDENTIFICAÇÃO, LOCALIZAÇÃO E TRATAMENTO DE DADOS NA CONSTRUÇÃO DE UM DATA WAREHOUSE CONSIDERAÇÕES SOBRE ATIVIDADES DE IDENTIFICAÇÃO, LOCALIZAÇÃO E TRATAMENTO DE DADOS NA CONSTRUÇÃO DE UM DATA WAREHOUSE Fabio Favaretto Professor adjunto - Programa de Pós Graduação em Engenharia de Produção

Leia mais

Universidade de Brasília Departamento de Ciência da Informação e Documentação Profa.:Lillian Alvares

Universidade de Brasília Departamento de Ciência da Informação e Documentação Profa.:Lillian Alvares Universidade de Brasília Departamento de Ciência da Informação e Documentação Profa.:Lillian Alvares Comunidades de Prática Grupos informais e interdisciplinares de pessoas unidas em torno de um interesse

Leia mais

Aula 15. Tópicos Especiais I Sistemas de Informação. Prof. Dr. Dilermando Piva Jr.

Aula 15. Tópicos Especiais I Sistemas de Informação. Prof. Dr. Dilermando Piva Jr. 15 Aula 15 Tópicos Especiais I Sistemas de Informação Prof. Dr. Dilermando Piva Jr. Site Disciplina: http://fundti.blogspot.com.br/ Conceitos básicos sobre Sistemas de Informação Conceitos sobre Sistemas

Leia mais

Adriano Maranhão BUSINESS INTELLIGENCE (BI),

Adriano Maranhão BUSINESS INTELLIGENCE (BI), Adriano Maranhão BUSINESS INTELLIGENCE (BI), BUSINESS INTELLIGENCE (BI) O termo Business Intelligence (BI), popularizado por Howard Dresner do Gartner Group, é utilizado para definir sistemas orientados

Leia mais

Unidade III PRINCÍPIOS DE SISTEMAS DE. Prof. Luís Rodolfo

Unidade III PRINCÍPIOS DE SISTEMAS DE. Prof. Luís Rodolfo Unidade III PRINCÍPIOS DE SISTEMAS DE INFORMAÇÃO Prof. Luís Rodolfo Vantagens e desvantagens de uma rede para a organização Maior agilidade com o uso intenso de redes de computadores; Grandes interações

Leia mais

Business Intelligence. Business Intelligence. Business Intelligence. Business Intelligence. Business Intelligence

Business Intelligence. Business Intelligence. Business Intelligence. Business Intelligence. Business Intelligence Juntamente com o desenvolvimento desses aplicativos surgiram os problemas: & Data Warehouse July Any Rizzo Oswaldo Filho Década de 70: alguns produtos de BI Intensa e exaustiva programação Informação em

Leia mais

Estratégias em Tecnologia da Informação. ERP, CRM, BI, Data mining, Data warehouse, ETL Gerenciamento de Dados e Conhecimento

Estratégias em Tecnologia da Informação. ERP, CRM, BI, Data mining, Data warehouse, ETL Gerenciamento de Dados e Conhecimento Estratégias em Tecnologia da Informação Capítulo 7 ERP, CRM, BI, Data mining, Data warehouse, ETL Gerenciamento de Dados e Conhecimento Material de apoio 2 Esclarecimentos Esse material é de apoio para

Leia mais

Sistemas de Apoio à Inteligência do Negócio

Sistemas de Apoio à Inteligência do Negócio Sistemas de Apoio à Inteligência do Negócio http://www.uniriotec.br/~tanaka/sain tanaka@uniriotec.br Visão Geral de Business Intelligence Evolução dos Sistemas de Informação (computadorizados) 1950 s:

Leia mais

e-business A IBM definiu e-business como: GLOSSÁRIO

e-business A IBM definiu e-business como: GLOSSÁRIO Através do estudo dos sistemas do tipo ERP, foi possível verificar a natureza integradora, abrangente e operacional desta modalidade de sistema. Contudo, faz-se necessário compreender que estas soluções

Leia mais

Utilização de ferramentas de colaboração para Gestão do Conhecimento

Utilização de ferramentas de colaboração para Gestão do Conhecimento Utilização de ferramentas de colaboração para Gestão do Conhecimento Carlos Roberto de Souza Tavares 1 Carlos Mário Dal Col Zeve 2 RESUMO Um dos maiores problemas que as empresas atuais enfrentam refere-se

Leia mais

Business Intelligence

Business Intelligence e-book Senior Business Intelligence 1 Índice 03 05 08 14 17 20 22 Introdução Agilize a tomada de decisão e saia à frente da concorrência Capítulo 1 O que é Business Intelligence? Capítulo 2 Quatro grandes

Leia mais

1. Centros de Competência de BI

1. Centros de Competência de BI Pagina: 1 1. Centros de Competência de BI Originalmente, o termo Centro de competência de BI (conhecido também como BICC Business Intelligence Competence Center) foi utilizado pelo instituto de pesquisa

Leia mais

MBA Gestão da Tecnologia de Informação

MBA Gestão da Tecnologia de Informação MBA Gestão da Tecnologia de Informação Informações: Dias e horários das aulas: Segundas e Terças-feiras das 18h00 às 22h00 aulas semanais; Sábados das 08h00 às 12h00 aulas quinzenais. Carga horária: 600

Leia mais

Conceitos. - Sistema de Informação, Estruturas e Classificação. - Dados x Informações. Edson Almeida Junior www.edsonalmeidajunior.com.

Conceitos. - Sistema de Informação, Estruturas e Classificação. - Dados x Informações. Edson Almeida Junior www.edsonalmeidajunior.com. Conceitos - Sistema de Informação, Estruturas e Classificação - Dados x Informações Edson Almeida Junior www.edsonalmeidajunior.com.br Definição de Sistema Uma coleção de objetos unidos por alguma forma

Leia mais

TÉCNICAS DE INFORMÁTICA WILLIAN FERREIRA DOS SANTOS

TÉCNICAS DE INFORMÁTICA WILLIAN FERREIRA DOS SANTOS TÉCNICAS DE INFORMÁTICA WILLIAN FERREIRA DOS SANTOS Vimos em nossas aulas anteriores: COMPUTADOR Tipos de computadores Hardware Hardware Processadores (CPU) Memória e armazenamento Dispositivos de E/S

Leia mais

Universidade de Brasília. Departamento de Ciência da Informação e Documentação. Prof a.:lillian Alvares

Universidade de Brasília. Departamento de Ciência da Informação e Documentação. Prof a.:lillian Alvares Universidade de Brasília Departamento de Ciência da Informação e Documentação Prof a.:lillian Alvares Fóruns óu s/ Listas de discussão Espaços para discutir, homogeneizar e compartilhar informações, idéias

Leia mais

Business Intelligence e Inteligência Analítica BUSINESS INTELLIGENCE

Business Intelligence e Inteligência Analítica BUSINESS INTELLIGENCE Business Intelligence e Inteligência Analítica BUSINESS INTELLIGENCE Sumário Conceitos/Autores chave... 3 1. Introdução... 4 2. Teoria de Negócios... 5 3. Profi ssionais de BI... 6 4. Verdades e Mitos

Leia mais

PÓS-GRADUAÇÃO Lato Sensu. Gestão e Tecnologia da Informação

PÓS-GRADUAÇÃO Lato Sensu. Gestão e Tecnologia da Informação IETEC - INSTITUTO DE EDUCAÇÃO TECNOLÓGICA PÓS-GRADUAÇÃO Lato Sensu Gestão e Tecnologia da Informação BAM: Analisando Negócios e Serviços em Tempo Real Daniel Leôncio Domingos Fernando Silva Guimarães Resumo

Leia mais

Inteligência Competitiva

Inteligência Competitiva PROFA. LILLIAN ALVARES FACULDADE DE CIÊNCIA DA INFORMAÇÃO UNIVERSIDADE DE BRASÍLIA 2 Encontrando o que você precisa, usando o que você conhece A inteligência competitiva gerenciando o conhecimento estratégico

Leia mais

Estratégias em Tecnologia da Informação

Estratégias em Tecnologia da Informação Estratégias em Tecnologia da Informação Capítulo 6 Sistemas de Informações Estratégicas Sistemas integrados e sistemas legados Sistemas de Gerenciamento de Banco de Dados Material de apoio 2 Esclarecimentos

Leia mais

Capital Intelectual. O Grande Desafio das Organizações. José Renato Sátiro Santiago Jr. José Renato Sátiro Santiago. Novatec

Capital Intelectual. O Grande Desafio das Organizações. José Renato Sátiro Santiago Jr. José Renato Sátiro Santiago. Novatec Capital Intelectual O Grande Desafio das Organizações José Renato Sátiro Santiago Jr. José Renato Sátiro Santiago Novatec 1 Tudo começa com o conhecimento A gestão do conhecimento é um assunto multidisciplinar

Leia mais

Capítulo 13: Tecnologia da Informação. Prof.: Roberto Franciscatto

Capítulo 13: Tecnologia da Informação. Prof.: Roberto Franciscatto Capítulo 13: Tecnologia da Informação Prof.: Roberto Franciscatto Introdução Uma informação é um arranjo de dados (nomes, palavras, números, sons, imagens) capazes de dar forma ou sentido a algo do interesse

Leia mais

Data Warehouse Processos e Arquitetura

Data Warehouse Processos e Arquitetura Data Warehouse - definições: Coleção de dados orientada a assunto, integrada, não volátil e variável em relação ao tempo, que tem por objetivo dar apoio aos processos de tomada de decisão (Inmon, 1997)

Leia mais

E-Business global e colaboração

E-Business global e colaboração E-Business global e colaboração slide 1 2011 Pearson Prentice Hall. Todos os direitos reservados. 2.1 Copyright 2011 Pearson Education, Inc. publishing as Prentice Hall Objetivos de estudo Quais as principais

Leia mais

Estudar os Sistemas de Processamento de Transação (SPT)

Estudar os Sistemas de Processamento de Transação (SPT) Estudar a Colaboração Empresarial. Objetivos do Capítulo Estudar os Sistemas de Processamento de Transação (SPT) Identificar o papel e alternativas de relatórios dos sistemas de informação gerencial. Estudar

Leia mais

Inteligência Empresarial. BI Business Intelligence. Business Intelligence 22/2/2011. Prof. Luiz A. Nascimento

Inteligência Empresarial. BI Business Intelligence. Business Intelligence 22/2/2011. Prof. Luiz A. Nascimento Inteligência Empresarial Prof. Luiz A. Nascimento BI Pode-se traduzir informalmente Business Intelligence como o uso de sistemas inteligentes em negócios. É uma forma de agregar a inteligência humana à

Leia mais

Uma Arquitetura de Gestão de Dados em Ambiente Data Warehouse

Uma Arquitetura de Gestão de Dados em Ambiente Data Warehouse Uma Arquitetura de Gestão de Dados em Ambiente Data Warehouse Alcione Benacchio (UFPR) E mail: alcione@inf.ufpr.br Maria Salete Marcon Gomes Vaz (UEPG, UFPR) E mail: salete@uepg.br Resumo: O ambiente de

Leia mais

DATA WAREHOUSE. Rafael Ervin Hass Raphael Laércio Zago

DATA WAREHOUSE. Rafael Ervin Hass Raphael Laércio Zago DATA WAREHOUSE Rafael Ervin Hass Raphael Laércio Zago Roteiro Introdução Aplicações Arquitetura Características Desenvolvimento Estudo de Caso Conclusão Introdução O conceito de "data warehousing" data

Leia mais

Administração de Sistemas de Informação I

Administração de Sistemas de Informação I Administração de Sistemas de Informação I Prof. Farinha Aula 04 Conceito Sistema de Informação é uma série de elementos ou componentes inter-relacionados que coletam (entrada), manipulam e armazenam (processo),

Leia mais

BUSINESS INTELLIGENCE, O ELEMENTO CHAVE PARA O SUCESSO DAS ORGANIZAÇÕES.

BUSINESS INTELLIGENCE, O ELEMENTO CHAVE PARA O SUCESSO DAS ORGANIZAÇÕES. Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 22 a 25 de outubro, 2012 88 BUSINESS INTELLIGENCE, O ELEMENTO CHAVE PARA O SUCESSO DAS ORGANIZAÇÕES. Andrios Robert Silva Pereira, Renato Zanutto

Leia mais

Qual é o Papel da Inteligência de Negócios (BI) nos Países em Desenvolvimento? Um Panorama das Empresas Brasileiras

Qual é o Papel da Inteligência de Negócios (BI) nos Países em Desenvolvimento? Um Panorama das Empresas Brasileiras Qual é o Papel da Inteligência de Negócios (BI) nos Países em Desenvolvimento? Um Panorama das Empresas Brasileiras Autoria: Maira Petrini, Marlei Pozzebon, Maria Tereza Freitas Resumo No contexto corporativo,

Leia mais

Interatividade aliada a Análise de Negócios

Interatividade aliada a Análise de Negócios Interatividade aliada a Análise de Negócios Na era digital, a quase totalidade das organizações necessita da análise de seus negócios de forma ágil e segura - relatórios interativos, análise de gráficos,

Leia mais

SAD. Paulo Silva, Rodolfo Ribeiro, Vinicius Tavares

SAD. Paulo Silva, Rodolfo Ribeiro, Vinicius Tavares SAD Paulo Silva, Rodolfo Ribeiro, Vinicius Tavares DataWarehouse Armazena informações relativas a uma organização em BD Facilita tomada de decisões Dados são coletados de OLTP(séries históricas) Dados

Leia mais

Colaboração nas Empresas SPT SIG Aplicações Empresariais

Colaboração nas Empresas SPT SIG Aplicações Empresariais Capítulo 3: Sistemas de Apoio Gerenciais Colaboração nas Empresas SPT SIG Aplicações Empresariais Objetivos do Capítulo Explicar como os SI empresariais podem apoiar as necessidades de informação de executivos,

Leia mais

Sistemas Empresariais. Capítulo 3: Sistemas de Negócios. Colaboração SPT SIG

Sistemas Empresariais. Capítulo 3: Sistemas de Negócios. Colaboração SPT SIG Capítulo 3: Sistemas de Negócios Colaboração SPT SIG Objetivos do Capítulo Explicar como os SI empresariais podem apoiar as necessidades de informação de executivos, gerentes e profissionais de empresas.

Leia mais

IBM Cognos Business Intelligence Scorecarding

IBM Cognos Business Intelligence Scorecarding IBM Cognos Business Intelligence Scorecarding Unindo a estratégia às operações com sucesso Visão Geral O Scorecarding oferece uma abordagem comprovada para comunicar a estratégia de negócios por toda a

Leia mais

Fundamentos da inteligência de negócios: gestão da informação e de bancos de dados

Fundamentos da inteligência de negócios: gestão da informação e de bancos de dados Fundamentos da inteligência de negócios: gestão da informação e de bancos de dados slide 1 1 Copyright 2011 Pearson Education, Inc. publishing as Prentice Hall Objetivos de estudo Como um banco de dados

Leia mais

Utilizando a Inteligência Competitiva para Tomar Decisões

Utilizando a Inteligência Competitiva para Tomar Decisões Utilizando a Inteligência Competitiva para Tomar Decisões São Paulo, 9 de outubro de 2006. 0 Apresentação da MKM Consulting 1 Mauro Martins Sócio Diretor da MKM Consulting MKM Consulting Mauro Martins

Leia mais

Sistema Integrado de Gestão ERP Sistema Integrado de Gestão

Sistema Integrado de Gestão ERP Sistema Integrado de Gestão Sistema Integrado de Gestão ERP Sistema Integrado de Gestão ERP Prof: Edson Thizon ethizon@gmail.com Sistema ERP; Processos de Desenvolvimento, Seleção, Aquisição, Implantação de ERP; Aderência e divergência

Leia mais

PLANO DE ENSINO DO 2º SEMESTRE LETIVO DE 2012

PLANO DE ENSINO DO 2º SEMESTRE LETIVO DE 2012 PLANO DE ENSINO DO 2º SEMESTRE LETIVO DE 2012 Curso: TECNOLOGIA EM GESTÃO COMERCIAL Habilitação: TECNÓLOGO Disciplina: NEGÓCIOS INTELIGENTES (BUSINESS INTELLIGENCE) Período: M V N 4º semestre do Curso

Leia mais

Unidade II GERENCIAMENTO DE SISTEMAS. Prof. Roberto Marcello

Unidade II GERENCIAMENTO DE SISTEMAS. Prof. Roberto Marcello Unidade II GERENCIAMENTO DE SISTEMAS DE INFORMAÇÃO Prof. Roberto Marcello SI Sistemas de gestão A Gestão dos Sistemas Integrados é uma forma organizada e sistemática de buscar a melhoria de resultados.

Leia mais

Sistemas Integrados de Gestão História e Evolução do Conceito

Sistemas Integrados de Gestão História e Evolução do Conceito Sistemas Integrados de Gestão História e Evolução do Conceito Sistemas de Informação Prof. Gerson gerson.prando@fatec.sp.gov.br Evolução dos SI OPERACIONAL TÁTICO OPERACIONAL ESTRATÉGICO TÁTICO ESTRATÉGICO

Leia mais

BUSINESS INTELLIGENCE APLICADO NA GESTÃO ACADÊMICA

BUSINESS INTELLIGENCE APLICADO NA GESTÃO ACADÊMICA BUSINESS INTELLIGENCE APLICADO NA GESTÃO ACADÊMICA Marcio Rodrigo Teixeira e Mehran Misaghi Instituto Superior Tupy (IST) / Sociedade Educacional de Santa Catarina (SOCIESC) Campus Boa Vista, Joinville,

Leia mais

DCC133 Introdução à Sistemas de Informação. E-business global e colaboração

DCC133 Introdução à Sistemas de Informação. E-business global e colaboração Curso de Bacharelado em Sistemas de Informação DCC133 Introdução à Sistemas de Informação TÓPICO 2 E-business global e colaboração Prof. Tarcísio de Souza Lima OBJETIVOS DE ESTUDO Identificar e descrever

Leia mais

Trata-se de uma estratégia de negócio, em primeira linha, que posteriormente se consubstancia em soluções tecnológicas.

Trata-se de uma estratégia de negócio, em primeira linha, que posteriormente se consubstancia em soluções tecnológicas. CUSTOMER RELATIONSHIP MANAGEMENT Customer Relationship Management CRM ou Gestão de Relacionamento com o Cliente é uma abordagem que coloca o cliente no centro dos processos do negócio, sendo desenhado

Leia mais

APLICATIVOS CORPORATIVOS

APLICATIVOS CORPORATIVOS Sistema de Informação e Tecnologia FEQ 0411 Prof Luciel Henrique de Oliveira luciel@uol.com.br Capítulo 3 APLICATIVOS CORPORATIVOS PRADO, Edmir P.V.; SOUZA, Cesar A. de. (org). Fundamentos de Sistemas

Leia mais

Universidade de Brasília. Faculdade de Ciência da Informação. Prof a Lillian Alvares

Universidade de Brasília. Faculdade de Ciência da Informação. Prof a Lillian Alvares Universidade de Brasília Faculdade de Ciência da Informação Prof a Lillian Alvares Fóruns Comunidades de Prática Mapeamento do Conhecimento Portal Intranet Extranet Banco de Competências Memória Organizacional

Leia mais

GESTÃO. Gestão dos Processos e Operações Gestão de Sistemas e Tecnologias de Informação (dentro do capítulo 6) CLF

GESTÃO. Gestão dos Processos e Operações Gestão de Sistemas e Tecnologias de Informação (dentro do capítulo 6) CLF GESTÃO Gestão dos Processos e Operações Gestão de Sistemas e Tecnologias de Informação (dentro do capítulo 6) Informação e Decisões Gerir envolve tomar muitas e frequentes decisões Para decidir com eficácia

Leia mais

Dados x Informações. Os Sistemas de Informação podem ser:

Dados x Informações. Os Sistemas de Informação podem ser: CONCEITOS INICIAIS O tratamento da informação precisa ser visto como um recurso da empresa. Deve ser planejado, administrado e controlado de forma eficaz, desenvolvendo aplicações com base nos processos,

Leia mais

PALAVRAS CHAVE RESUMO

PALAVRAS CHAVE RESUMO ESIG2001 SPATIAL INTELLIGENCE INFORMAÇÃO GEOGRÁFICA COMO MEIO DE SUPORTE À DECISÃO João Machado Costa, Rui Marques Ferreira Novabase www.novabase.pt joao.machado@novabase.pt PALAVRAS CHAVE Spatial Information

Leia mais

SISTEMAS DE APOIO À DECISÃO SAD

SISTEMAS DE APOIO À DECISÃO SAD SISTEMAS DE APOIO À DECISÃO SAD Conceitos introdutórios Decisão Escolha feita entre duas ou mais alternativas. Tomada de decisão típica em organizações: Solução de problemas Exploração de oportunidades

Leia mais

Tópicos Avançados Business Intelligence. Banco de Dados Prof. Otacílio José Pereira. Unidade 10 Tópicos Avançados Business Inteligence.

Tópicos Avançados Business Intelligence. Banco de Dados Prof. Otacílio José Pereira. Unidade 10 Tópicos Avançados Business Inteligence. Tópicos Avançados Business Intelligence Banco de Dados Prof. Otacílio José Pereira Unidade 10 Tópicos Avançados Business Inteligence Roteiro Introdução Níveis organizacionais na empresa Visão Geral das

Leia mais

Aplicação A. Aplicação B. Aplicação C. Aplicação D. Aplicação E. Aplicação F. Aplicação A REL 1 REL 2. Aplicação B REL 3.

Aplicação A. Aplicação B. Aplicação C. Aplicação D. Aplicação E. Aplicação F. Aplicação A REL 1 REL 2. Aplicação B REL 3. Sumário Data Warehouse Modelagem Multidimensional. Data Mining BI - Business Inteligence. 1 2 Introdução Aplicações do negócio: constituem as aplicações que dão suporte ao dia a dia do negócio da empresa,

Leia mais

REVIE Rede de Melhores Práticas para MKT e Vendas

REVIE Rede de Melhores Práticas para MKT e Vendas REVIE Rede de Melhores Práticas para MKT e Vendas Este artigo foi publicado originalmente em abril de 2009 por Daniela Ramos Teixeira no portal Meta Análise. Este é o 1º dos artigos da série que Daniela

Leia mais

Universidade de Brasília. Faculdade de Ciência da Informação. Profa. Lillian Alvares

Universidade de Brasília. Faculdade de Ciência da Informação. Profa. Lillian Alvares Universidade de Brasília Faculdade de Ciência da Informação Profa. Lillian Alvares Fóruns / Listas de discussão Espaços para discutir, homogeneizar e compartilhar informações, idéias e experiências que

Leia mais

A utilização de sistemas ERP voltados para Instituições de Ensino Superior Privadas

A utilização de sistemas ERP voltados para Instituições de Ensino Superior Privadas 2º Contecsi Congresso Internacional de Gestão da Tecnologia e Sistemas de Informação / Internacional Conference on Information Systems and Technology Management 01-03 de Junho de 2005 São Paulo/SP Brasil

Leia mais

Thalita Moraes PPGI Novembro 2007

Thalita Moraes PPGI Novembro 2007 Thalita Moraes PPGI Novembro 2007 A capacidade dos portais corporativos em capturar, organizar e compartilhar informação e conhecimento explícito é interessante especialmente para empresas intensivas

Leia mais

Business Intelligence: Desafios e Melhores Práticas

Business Intelligence: Desafios e Melhores Práticas Sucesu RJ - IV Congresso de Inteligência Competitiva Business Intelligence: Desafios e Melhores Práticas Eugenio Pedrosa Petrobras Roteiro Arquitetura de BI Evolução da BI nas Empresas Corporate Performance

Leia mais

DATA WAREHOUSE. Introdução

DATA WAREHOUSE. Introdução DATA WAREHOUSE Introdução O grande crescimento do ambiente de negócios, médias e grandes empresas armazenam também um alto volume de informações, onde que juntamente com a tecnologia da informação, a correta

Leia mais

E-business: Como as Empresas Usam os Sistemas de Informação

E-business: Como as Empresas Usam os Sistemas de Informação Capítulo 2 E-business: Como as Empresas Usam os Sistemas de Informação 2.1 2007 by Prentice Hall OBJETIVOS DE ESTUDO Identificar e descrever as principais características das empresas que são importantes

Leia mais

Estratégias em Tecnologia da Informação. Posição e Vantagem Competitiva Aplicações integradas Aplicações Web

Estratégias em Tecnologia da Informação. Posição e Vantagem Competitiva Aplicações integradas Aplicações Web Estratégias em Tecnologia da Informação Capítulo 09 Posição e Vantagem Competitiva Aplicações integradas Aplicações Web Material de apoio 2 Esclarecimentos Esse material é de apoio para as aulas da disciplina

Leia mais

Data Warehouses. Alunos: Diego Antônio Cotta Silveira Filipe Augusto Rodrigues Nepomuceno Marcos Bastos Silva Roger Rezende Ribeiro Santos

Data Warehouses. Alunos: Diego Antônio Cotta Silveira Filipe Augusto Rodrigues Nepomuceno Marcos Bastos Silva Roger Rezende Ribeiro Santos Data Warehouses Alunos: Diego Antônio Cotta Silveira Filipe Augusto Rodrigues Nepomuceno Marcos Bastos Silva Roger Rezende Ribeiro Santos Conceitos Básicos Data Warehouse(DW) Banco de Dados voltado para

Leia mais

Tecnologias e Sistemas de Informação

Tecnologias e Sistemas de Informação Universidade Federal do Vale do São Francisco Curso de Administração Tecnologia e Sistemas de Informação - 02 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti

Leia mais

Unidade II GESTÃO DO CONHECIMENTO. Profa. Leonor Cordeiro Brandão

Unidade II GESTÃO DO CONHECIMENTO. Profa. Leonor Cordeiro Brandão Unidade II GESTÃO DO CONHECIMENTO Profa. Leonor Cordeiro Brandão Relembrando Vimos alguns conceitos importantes: O que são dados; O que é informação; Quando uma informação se transforma em conhecimento;

Leia mais

Data Warehousing. Leonardo da Silva Leandro. CIn.ufpe.br

Data Warehousing. Leonardo da Silva Leandro. CIn.ufpe.br Data Warehousing Leonardo da Silva Leandro Agenda Conceito Elementos básicos de um DW Arquitetura do DW Top-Down Bottom-Up Distribuído Modelo de Dados Estrela Snowflake Aplicação Conceito Em português:

Leia mais

Criação e uso da Inteligência e Governança do BI

Criação e uso da Inteligência e Governança do BI Criação e uso da Inteligência e Governança do BI Criação e uso da Inteligência e Governança do BI Governança do BI O processo geral de criação de inteligência começa pela identificação e priorização de

Leia mais

SISTEMAS DE INFORMAÇÃO GERENCIAIS

SISTEMAS DE INFORMAÇÃO GERENCIAIS SISTEMAS DE INFORMAÇÃO GERENCIAIS O PODER DA INFORMAÇÃO Tem PODER quem toma DECISÃO Toma DECISÃO correta quem tem SABEDORIA Tem SABEDORIA quem usa CONHECIMENTO Tem CONHECIMENTO quem possui INFORMAÇÃO (Sem

Leia mais

Sistemas de Apoio à Decisão (SAD) - Senado

Sistemas de Apoio à Decisão (SAD) - Senado Sistemas de Apoio à Decisão (SAD) - Senado DW OLAP BI Ilka Kawashita Material preparado :Prof. Marcio Vitorino Sumário OLAP Data Warehouse (DW/ETL) Modelagem Multidimensional Data Mining BI - Business

Leia mais

Os novos usos da tecnologia da informação na empresa

Os novos usos da tecnologia da informação na empresa Os novos usos da tecnologia da informação na empresa Internet promoveu: Transformação Novos padrões de funcionamento Novas formas de comercialização. O maior exemplo desta transformação é o E- Business

Leia mais

UNIVERSIDADE FEDERAL DE MINAS GERAIS BACHARELADO EM SISTEMAS DE INFORMAÇÃO

UNIVERSIDADE FEDERAL DE MINAS GERAIS BACHARELADO EM SISTEMAS DE INFORMAÇÃO UNIVERSIDADE FEDERAL DE MINAS GERAIS BACHARELADO EM SISTEMAS DE INFORMAÇÃO Proposta de Formação Complementar: BUSINESS INTELLIGENCE E SUA APLICAÇÃO À GESTÃO Aluno: Yussif Tadeu de Barcelos Solange Teixeira

Leia mais

Administração de Sistemas de Informação I

Administração de Sistemas de Informação I Administração de Sistemas de Informação I Prof. M.Sc. Anderson Pazin Aula 01 Sistema Sistema é um conjunto de elementos dinamicamente relacionados formando uma atividade para atingir um objetivo sobre

Leia mais

GESTÃO EMPRESARIAL E TECNOLOGIA DA INFORMAÇÃO

GESTÃO EMPRESARIAL E TECNOLOGIA DA INFORMAÇÃO GESTÃO EMPRESARIAL E TECNOLOGIA DA INFORMAÇÃO * César Raeder Este artigo é uma revisão de literatura que aborda questões relativas ao papel do administrador frente à tecnologia da informação (TI) e sua

Leia mais

Administração de Sistemas de Informação Gerenciais UNIDADE IV: Fundamentos da Inteligência de Negócios: Gestão da Informação e de Banco de Dados Um banco de dados é um conjunto de arquivos relacionados

Leia mais

ADMINISTRAÇÃO DA INFORMÁTICA

ADMINISTRAÇÃO DA INFORMÁTICA ADMINISTRAÇÃO DA INFORMÁTICA A informação sempre esteve presente em todas as organizações; porém, com a evolução dos negócios, seu volume e valor aumentaram muito, exigindo uma solução para seu tratamento,

Leia mais

Um Modelo de Mensuração da Contribuição da Gestão do Conhecimento em Projetos

Um Modelo de Mensuração da Contribuição da Gestão do Conhecimento em Projetos 1 Um Modelo de Mensuração da Contribuição da Gestão do Conhecimento em Projetos José Renato Sátiro Santiago Junior 1. Introdução A estruturação de processos voltados para a medição e monitoramentos das

Leia mais

Universidade Cruzeiro do Sul. Campus Virtual Unidade I: Unidade: Processos Mercadológicos

Universidade Cruzeiro do Sul. Campus Virtual Unidade I: Unidade: Processos Mercadológicos Universidade Cruzeiro do Sul Campus Virtual Unidade I: Unidade: Processos Mercadológicos 2010 0 O Processo pode ser entendido como a sequência de atividades que começa na percepção das necessidades explícitas

Leia mais

Estratégias em Tecnologia da Informação. Posição e Vantagem Competitiva Aplicações integradas Aplicações Web

Estratégias em Tecnologia da Informação. Posição e Vantagem Competitiva Aplicações integradas Aplicações Web Estratégias em Tecnologia da Informação Capítulo 11 Posição e Vantagem Competitiva Aplicações integradas Aplicações Web Material de apoio 2 Esclarecimentos Esse material é de apoio para as aulas da disciplina

Leia mais