Amortização ótima por antecipação de pagamento de dívidas contraídas em empréstimos a juros compostos

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Amortização ótima por antecipação de pagamento de dívidas contraídas em empréstimos a juros compostos"

Transcrição

1 XXVI ENEGEP - Fortlez, CE, Brsil, 9 de Outubro de 2006 Amortizção ótim por tecipção de pgmeto de dívids cotríds em empréstimos uros compostos Lucio Ndler Lis (UFPE) Gertrudes Coelho Ndler Lis (UNICAP) Resumo Itroduz-se este rtigo um metodologi pr defiição de um plo ótimo de liquidção de dívids uros compostos pel tecipção de prcels vecer, úico meio de reegocição dotdo. O modelo está orietdo débitos cotrídos por meio de empréstimos pessois e créditos direto o cosumidor. Trt-se de um modelo de progrmção lier biári, formd por dois coutos de restrições relciods à cpcidde de pgmeto mesl dos edividdos e d obrigtoriedde de pgmeto ds prcels em lgum mês té o vecimeto. Dus medids de performce d solução são sugerids pr um especificção mis dequd dos prâmetros do modelo. Um situção fctível é simuld com o obetivo de ilustrr plicção do modelo de otimizção, que possibilit idicção de ftores relevtes composição do plo ótimo de mortizção. Plvrs-chve: Amortizção, Dívid, Empréstimo, Atecipção.. Itrodução A Fecomercio (2006) estim em 2005 que, só em São Pulo, cerc de 60% pessos cotrírm lgum tipo de dívid em cheque especil, o crtão de crédito ou por empréstimo pessol. O motivo pricipl está o fto de que proimdmete 64% dos pulistos recebem um remuerção bio de 0 slários míimos. A quitção de débitos de empréstimos pessois de modo proporcior um redução máim dos respectivos uros em sempre é um solução óbvi. Deve-se cosiderr s váris possibiliddes de reegocição, o que em sempre é fácil de se fzer, iclusive pr grdes empress (LEMES JR., 2002; ZDANOVICZ, 2000). No cso de pesso físic o Brsil, o edividdo recebe o poio de lgus órgãos de defes que fcilitm gm de possibiliddes pr solução de seus problems ficeiros. Por eemplo, o Código de Defes do Cosumidor Bcário (Resolução º do BC, de 26 de ulho de 200), em seu rt. 7º, prevê possibilidde de liquidção tecipd de dívids, em su totlidde ou prcilmete, s modliddes de empréstimo pessol e de crédito direto o cosumidor por meio de um redução proporciol dos uros icidetes (DI AUGUSTINI et l., 2005). Cotudo, é omisso o que tge à ordem com que este débito prceldo pode ser liquiddo. Nest bertur proporciod pel resolução do Bco Cetrl é que se isere o presete trblho. O modelo proposto cosider possibilidde de reegocição de dívids, origilmete prevists pr médio przo, pel tecipção do pgmeto ds prcels como um cmiho pr redução dos uros compostos. Métodos de progrmção lier biári (WAGNER, c986; WINSTON, c995) são empregdos costrução d fução obetivo e ds restrições referetes à cpcidde de pgmeto mesl do edividdo e d ecessidde de pgmeto té dt de vecimeto ds prcels. Ests medids têm cráter ficeiro e retrtm os custos decorretes do plo dotdo.

2 XXVI ENEGEP - Fortlez, CE, Brsil, 9 de Outubro de Pressupostos do modelo A plicção do modelo ocorre qudo dívid á foi cotríd, e pes será lvo de reegocição por meio de tecipção ds prcels. Tmbém serão desprezdos os vlores referetes ts dmiistrtivs e impostos, especilmete queles sobre s operções ficeirs, mesmo que estes muits vezes represetem um bo fti dos mottes evolvidos. Tods s prcels têm um vecimeto espçdos de um uidde de tempo. Pr todos os efeitos, uidde de tempo dotd este trblho será mesl. Além disso, o pgmeto de tods s prcels o primeiro vecimeto será igul o vlor emprestdo. Apes prtir deste poto é que os uros começm cotr. Por isso, o modelo pes fz setido qudo o úmero de prcels é mior do que. Ates disso, o to de cotrir dívid tem efeito ulo, pois o idivíduo estri o mesmo tempo pegdo pr si o crédito e pgdo itegrlmete o vlor do empréstimo, este último igul o totl creditdo. As prcels do mês são s prcels que vecem o mês. Não ecessrimete s prcels devem ser pgs o mês de vecimeto d prcel, porque outrs opções em meses mis próimos o iício do empréstimo estão sempre dispoíveis. Como trsos o pgmeto ds prcels em relção à dt de vecimeto ão são dmitidos, ão fz setido se flr em mults por trso e uros de mor. A grde vtgem em se tecipr o pgmeto ds prcels é devido um meor vlor ser pgo pel redução dos uros. Não fosse isso, eistêci de um t de iteresse pessol, por meor que se, impediri que tecipção se torsse um titude rciol. Mesmo ssim, é preciso levr em cot que o vlor ecoomizdo pelo pgmeto tecipdo ds prcels ão será ivestido pelo edividdo. Ele ão fz questão de receber uros por meio d plicção ficeir de sus folgs o orçmeto, possivelmete por ão possuir red suficiete pr o porte ds plicções que lhe iteressm. A mortizção iicilmete dotdo segue o sistem Price, que implic em prcels fis durte o período de pgmeto. Algo importte se observr é que, pós resolução do modelo, o ovo plo, que idic polític ótim de mortizção d dívid, ão estrá mis ecessrimete de cordo com este sistem, o presetr prcels equivletes vriáveis, que depede de quts e quis prcels origiis form tecipds em cd mês. 3. Elemetos e costrução do modelo Pr o modelo cosiderdo, s seguites vriáveis form idetificds, represetdo cd um dos elemetos do problem de reegocição de dívids:, : Vlor d prcel do mês pgo o mês ;, : Vriável de decisão idicdor de pgmeto d prcel do mês o mês (vriável biári); : Número de prcels; N : Número de prcels equivletes, ou úmero de meses té quitção complet d dívid; i : T de uros dotdo pel etidde ficeir ( 0 < i < ); 2

3 XXVI ENEGEP - Fortlez, CE, Brsil, 9 de Outubro de 2006 Z : Motte totl ser pgo pelo edividdo; A : Vlor máimo de um prcel, correspodete o pgmeto o mês de vecimeto; B : Cpcidde de pgmeto mesl do edividdo; D : Difereç etre o motte totl pgo e o motte do empréstimo; C : Vlor totl do empréstimo. A fução obetivo pr o problem pode ser epress por: {0,} Mi Z =, () = =. que pode ser iterpretd como o obetivo de miimizr o motte totl ser pgo. Deve-se tmbém otr própri fução obetivo que eiste um restrição de que tods s vriáveis de decisão devem ser biáris. Já s demis restrições podem ser grupds em dois coutos. O primeiro grupo, epresso de um form gerl por: =,, (2) represetdo que o pgmeto d prcel deve cotecer em lgum mês, e o segudo grupo pode ser epresso por: = B,, (3) referete à cpcidde de pgmeto mesl do edividdo. O totl de termos em Z, ou o úmero de vriáveis de decisão, pode ser fcilmete clculdo por. Além disso, os termos =, estão mrrdos os termos precedetes pel seguite relção:, = ( + i), =,2,...,,, >, (4) que idic um fórmul recursiv pr o cálculo do vlor de cd prcel, dd t de uros. Cotiudo té o cso em que prcel é pg o primeiro mês, cheg-se que:, = ( + i),, (5) que idic um fórmul pr o cálculo do vlor d prcel pr pgmeto em cd mês prtir do vlor do primeiro mês. Obvimete, o vlor do pgmeto o vecimeto é clculdo por:, = ( + i), =,2,...,, (6) ode: = Am, m, m =,, (7) ou se, o vlor de um prcel com pgmeto ditdo depede eclusivmete do itervlo de tempo etre o pgmeto e o vecimeto. A substituição d epressão (6) fução obetivo () result em: Mi Z =. {0,} = = ( + i). (8) 3

4 XXVI ENEGEP - Fortlez, CE, Brsil, 9 de Outubro de 2006 Além disso, tmbém tem-se que: m = 0 = A0 = A, (9) que idic ser o vlor de um prcel pg o vecimeto sempre o mesmo pr todo mês, ou se, tem-se origilmete o sistem Price de mortizção de dívids. Este mesmo vlor poderi ter sido clculdo pel fórmul (DI AUGUSTINI et l., 2005; ROSS et l., 998): A = C, (0) ( + i) = referete o vlor míimo de pgmeto mesl e, coseqüetemete, ds prcels. Se o plo origil de pgmeto o vecimeto for fielmete seguido, o fil do período o edividdo terá desembolsdo o motte equivlete : = = = =, A A, () que se trt do pgmeto máimo pelo edividdo. Ao fil, tem que o pgmeto tecipdo vi resultr lgum desempeho etre este vlor míimo C e o máimo A. Tods ests relções etre pgmetos podem ser idicds pel epressão: 0 < A B C Z* A (2) Necessrimete, por cus d codição > e d epressão (0), ecotr-se tmbém que: > C < < C A < C (3) = ( + i) = ( + i) Além disso, o fto de que só há dúvid em relção o pgmeto prtir d segud prcel, pois primeir deve ser pg obrigtorimete o primeiro mês, ecotr-se que: = 2,..., C < < C < C C < ( + i) = ( + i) = ( + i) C < A. (4) = ( + i) Ou se, um relção complemetr à (2) é idicd por: > A < C < A, (5) o que sempre ssegur eistêci de solução, por permitir regiões ão vzis tto pr B como pr Z *. O modelo de gestão de dívids pode ser o fil idicdo por: Mi. {0,} s : Z = = = = =, B, ( + i) que possui como vriáveis de decisão os termos,, e como prâmetros,,, B, i e. A idicção de um bo solução pr o modelo presetdo depede tes d especificção de medids de performce ds possíveis soluções ótims. Sugerem-se qui dus possibiliddes, como filidde de permitir comprção de desempeho etre soluções: ) Percetul de redução de uros: A Z * I = A C (6) 4

5 XXVI ENEGEP - Fortlez, CE, Brsil, 9 de Outubro de 2006 b) Percetul de redução do vlor máimo ds prcels: C B J = C A Quer-se umetr simultemete tto I como J, ms isto ão se cosegue o mesmo tempo pes modificdo o B e, por coseguite, Z *. O idel é que IJ =. Ests dus medids podem ser o poto de prtid pr especificção de B, pois ão há um metodologi específic que idique utomticmete este prâmetro. Deve-se buscr um solução de compromisso etre s dus medids de desempeho, tededo evetuis restrições. Pr um melhor etedimeto, cosiderdo um couto fio de, pr determido i e, se for possível epressr Z * em termos de B. Etão este vlor seri utomticmete idetificdo se fosse resolvido o problem de otimizção ão lier: M B [ A, C] s : I( B) J ( B) A( C) Z *( B) I( B) = A( C) C C B J ( B) = C A( C) A = = C ( + i) (7) Tl vlor de B coduziri o melhor compromisso etre cpcidde mesl de pgmeto e motte totl pgo, ressltdo que este segudo modelo ão se dmite possibilidde de limitções fi de vlores de B. 4. Simulção Como form de ilustrr um plicção do modelo presetdo, foi dotd situção hipotétic de um idivíduo que teh cotrído um dívid por meio de um empréstimo pessol o totl de C = R$250, 00 pr pgmeto mesl em = 2 prcels iguis uros mesis compostos de i =0%, que deverá ser mortizd pelo sistem Price. Cso ele pudesse quitr tods s prcels vecer o primeiro mês, etão o vlor ser pgo equivleri o vlor do empréstimo C. Etretto, pr o plo iicil de pgmeto prceldo, cd prcel deverá ser de A = R$33, 36. Cso ele se decid por cumprir com este plemeto iicil de efetur os pgmetos s dts de vecimetos ds prcels, o fil do período, est mesm pesso terá desembolsdo um motte equivlete A = R$400, 26, represetdo um créscimo de A C = R$50, 26 sobre o vlor do empréstimo, ou se, um uro totl de 60,%. Assumido que este idivíduo teh recebido um umeto de slário, red etr o permitirá ter como ltertiv o pgmeto tecipdo ds prcels vecer em qulquer ordem. Em primeiro lugr, simulou-se s soluções cso folg orçmetári mesl do idivíduo pr o pgmeto especificmete dest dívid pr diferetes vlores de B. O respectivo desempeho d solução em termos de Z * pr cd vlor de B cosiderdo pode ser observdo figur. Um coseqüêci lógic deste gráfico é que quto mior o fôlego ficeiro pr o 5

6 XXVI ENEGEP - Fortlez, CE, Brsil, 9 de Outubro de 2006 pgmeto de dívids, meor deverá ser o uro resultte, cso se dote polític ótim de pgmetos. Mesmo ssim, o ecedete pgo por se prcelr um dívid ão é úico, e depederá d ordem como os pgmetos são tecipdos. O mesmo gráfico, qudo lisdo em termos do úmero deseável de meses té o pgmeto fil pode ser observdo figur Z* B FIGURA Desempeho do plo ótimo de mortizção tecipd d dívid de cordo com cpcidde de pgmeto mesl Meses B FIGURA 2 Durção do plo ótimo de mortizção tecipd d dívid de cordo com cpcidde de pgmeto mesl Apesr de ão ter sido idicdo, pr cd solução ótim eiste um ordem ótim pr o pgmeto ds prcels que ão é trivil. Idic-se qui um solução de compromisso etre o tempo té o fim dos pgmetos, e cpcidde de tecipção d dívid. Por isso, cosidere que o idivíduo, logo pós cotrção d dívid, teh um reltiv folg em seu orçmeto de form poder locr durte os próimos meses té um teto de R $90, 00. Mesmo ssim, ele esper relizr os pgmetos trqüilmete e de form blced durte os próimos 4 meses, ou se, seri cpz de pgr um totl de R $360, 00. Cotudo, ele ão gostri de ter 6

7 XXVI ENEGEP - Fortlez, CE, Brsil, 9 de Outubro de 2006 de pgr mis de R $300, 00, e tmbém queri ecotrr um solução que ão eigisse um coteção muito grde de despess. Se o vlor de R $90, 00 for especificdo pr B o modelo presetdo, respost se dri como idicdo tbel. Um desvtgem deste plo é que bo prte d mortizção se cocetr os três primeiros meses, o usr tod cpcidde de pgmeto este período. Mês Prcels Vlor,4,8, R$ 88,39 2 2,3,6 R$ 86,42 3 5,7,9,0 R$ 86, R$ 5,56 MONTANTE R$ 276,70 JURO 0,68 % Tbel Plo ótimo de mortizção pr B = 90 Um busc sucessiv pelo melhor plo de mortizção o setido de equilibrr melhor os pgmetos idicou ser B=72 opção mis dequd, pois presetou um blcemeto perfeito os qutro meses dispoíveis, coforme tbel 2. Mês Prcels Vlor,5,9 R$ 7,70 2 2,6,0 R$ 7,70 3 3,7, R$ 7,70 4 4,8,2 R$ 7,70 MONTANTE R$ 286,80 JURO 4,72 % Tbel 2 Plo ótimo de mortizção pr B = 72 Algo ser meciodo est solução de compromisso refere-se o fto d respost precer muito óbvi, o que certmete ão coteceri pr vlores de B bio de R$7,70. Ou se, qudo cpcidde de pgmeto se situ bio deste limite, ão é possível obter fcilmete um plo ótimo de mortizção de dívids. 5. Cosiderções fiis Mostrou-se como o pgmeto de um dívid prceld deve ser tecipd de form otimizd. A solução depede de que qulquer prcel poss quitd em qulquer mês tes do vecimeto. Um álise de compromisso etre cpcidde de pgmeto, o uro totl resultte e o úmero de meses deseável té o fim d dívid é bse pr determição do plo ótimo. Não foi desevolvido um método cofiável pr se especificr um vlor dequdo pr o mior pgmeto mesl que permit um blcemeto d mortizção tecipd. A escolh do B deve ser resultdo de um busc seletiv por um coeficiete que permit equilibrr o pgmeto os meses pretedidos sem implicr em um umeto ecessivo dos uros. É importte slietr que ifluêci dos coeficietes, sobre o vlor ótimo Z * se dá 7

8 XXVI ENEGEP - Fortlez, CE, Brsil, 9 de Outubro de 2006 tto o setido positivo como egtivo, ddo que eles precem tto fução obetivo como s restrições. Estes coeficietes estão relciodos o vlor tecipdo ds prcels e, por coseguite, t de uros dotd. Portto, um álise de sesibilidde se fz id ecessári pr se determir o impcto que um dd t de uros eercer sobre o plo ótimo de mortizção de dívids. Referêcis DI AUGUSTINI, Crlos A. Mtemátic plicd à gestão de egócios. Rio de Jeiro: FGV, FECOMERCIO Relese: Edividmeto fic estável e idimplêci recu 7 potos em mio, pur Fecomercio. Dispoível em Acesso em: 24/05/2006. LUENBERGER, Dvid. G. Ivestmet sciece. New Yor: Oford Uiversity Press, 998. ROSS, Stephe A., WESTERFIELD, Rdolph W. & JORDAN, Brdford D. Pricípios de dmiistrção ficeir. São Pulo: Atls, 998. WAGNER, Hrvey M. Pesquis operciol. 2.ed. Rio de Jeiro: Pretice Hll do Brsil, c986. WINSTON, Wye L. Itroductio to mthemticl progrmmig pplictios d lgorithms. 2d. ed. Belmot (CA): Dubury Press, c995. ZDANOVICZ, José E. Plemeto ficeiro e orçmeto. 3ª ed. Porto Alegre: Sgr Luzztto,

Resolução dos Exercícios Propostos

Resolução dos Exercícios Propostos Mtemátic Ficeir: Aplicções à Aálise de Ivestimetos 4ª. Edição Resolução dos Exercícios Propostos Etre os méritos deste livro, que fzem dele um dos preferidos pelos estudtes e professores, está explicr

Leia mais

PROVA DE MATEMÁTICA - TURMAS DO

PROVA DE MATEMÁTICA - TURMAS DO PROVA DE MATEMÁTICA - TURMAS DO o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MARÇO DE 0. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 0. (UDESC SC)

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear Geometri Alític e Álgebr Lier 8. Sistems Lieres Muitos problems ds ciêcis turis e sociis, como tmbém ds egehris e ds ciêcis físics, trtm de equções que relciom dois cojutos de vriáveis. Um equção do tipo,

Leia mais

Elementos de Análise Financeira Fluxos de Caixa Séries Uniformes de Pagamento

Elementos de Análise Financeira Fluxos de Caixa Séries Uniformes de Pagamento Elemetos de Aálise Ficeir Fluxos de Cix Séries Uiformes de Pgmeto Fote: Cpítulo 4 - Zetgrf (999) Mtemátic Ficeir Objetiv 2ª. Ed. Editorção Editor Rio de Jeiro - RJ Séries de Pgmetos - Defiição Defiição:

Leia mais

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2.

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2. 49 FUNÇÃO EXPONENCIAL Professor Lur. Potêcis e sus proprieddes Cosidere os úmeros ( 0, ), mr, N e, y, br Defiição: vezes por......, ( ), ou sej, potêci é igul o úmero multiplicdo Proprieddes 0 pr todo

Leia mais

Unidade 2 Progressão Geométrica

Unidade 2 Progressão Geométrica Uidde Progressão Geométric Seuêci e defiição de PG Fórmul do termo gerl Fução expoecil e PG Juros compostos e PG Iterpolção geométric Som dos termos de um PG Seuêci e defiição de PG Imgie ue você tem dus

Leia mais

Resolução Numérica de Sistemas Lineares Parte II

Resolução Numérica de Sistemas Lineares Parte II Cálculo Numérico Resolução Numéric de Sistems Lieres Prte II Prof Jorge Cvlcti jorgecvlcti@uivsfedubr MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - wwwdscufcgedubr/~cum/ Sistems

Leia mais

Lista de Exercícios 01 Algoritmos Sequência Simples

Lista de Exercícios 01 Algoritmos Sequência Simples Uiversidde Federl do Prá UFPR Setor de Ciêcis Exts / Deprtmeto de Iformátic DIf Discipli: Algoritmos e Estrutur de Ddos I CI055 Professor: Dvid Meotti (meottid@gmil.com) List de Exercícios 0 Algoritmos

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ DEPARTAMENTO DE ENGENHARIA AGRÍCOLA HIDRÁULICA APLICADA AD 0195 Prof.: Raimundo Nonato Távora Costa CONDUTOS LIVRES

UNIVERSIDADE FEDERAL DO CEARÁ DEPARTAMENTO DE ENGENHARIA AGRÍCOLA HIDRÁULICA APLICADA AD 0195 Prof.: Raimundo Nonato Távora Costa CONDUTOS LIVRES UNVERSDADE FEDERAL DO CEARÁ DEPARTAMENTO DE ENGENHARA AGRÍCOLA HDRÁULCA APLCADA AD 019 Prof.: Rimudo Noto Távor Cost CONDUTOS LVRES 01. Fudmetos: Os codutos livres e os codutos forçdos, embor tem potos

Leia mais

SISTEMA DE EQUAÇÕES LINEARES

SISTEMA DE EQUAÇÕES LINEARES SISTEM DE EQUÇÕES LINERES Defiição Ddos os úmeros reis b com equção b ode são vriáveis ou icógits é deomid equção lier s vriáveis Os úmeros reis são deomidos coeficietes ds vriáveis respectivmete e b é

Leia mais

Programação Linear Introdução

Programação Linear Introdução Progrmção Liner Introdução Prof. Msc. Fernndo M. A. Nogueir EPD - Deprtmento de Engenhri de Produção FE - Fculdde de Engenhri UFJF - Universidde Federl de Juiz de For Progrmção Liner - Modelgem Progrmção

Leia mais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA Equções Epoeciis... Fução Epoecil..4 Logritmos: Proprieddes 6 Fução Logrítmic. Equções Logrítmics...5 Iequções Epoeciis e Logrítmics.8 Equções Epoeciis 0. (ITA/74)

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA VICE-REITORIA DE ENSINO DE GRADUAÇÃO E CORPO DISCENTE COORDENAÇÃO DE EDUCAÇÃO A DISTÂNCIA MATEMÁTICA FINANCEIRA Rio de Jeiro / 007 TODOS OS DIREITOS RESERVADOS À UNIVERSIDADE CASTELO BRANCO UNIDADE I PROGRESSÕES

Leia mais

Matemática C Extensivo V. 6

Matemática C Extensivo V. 6 Mtemátic C Etesivo V 6 Eercícios ) D ) D ) C O vlor uitário do isumo é represetdo por y Portto pelo produto ds mtrizes A e B temos o seguite sistem: 5 5 9 y 5 5y 5y 9 5y 5 Portto: y 4 y 4 As médis uis

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 13/03/10

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 13/03/10 RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: /0/0 PROFESSOR: CARIBÉ Num cert comuidde, 0% ds pessos estvm desempregds. Foi feit um cmph, que durou 6 meses, pr tetr iserir ests pessos

Leia mais

Matemática 1 Professor Paulo Cesar Pfaltzgraff Ferreira. Sumário

Matemática 1 Professor Paulo Cesar Pfaltzgraff Ferreira. Sumário Mtemátic Professor Pulo Cesr Pfltgrff Ferreir i Sumário Uidde Revisão de Tópicos Fudmetis do Esio Médio... 0. Apresetção... 0. Simologi Mtemátic mis usul... 0. Cojutos Numéricos... 0. Operções com Números

Leia mais

1- SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES

1- SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES - SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES.- Métodos etos pr solução de sistems lieres Métodos pr solução de sistems de equções lieres são divididos priciplmete em dois grupos: ) Métodos Etos:

Leia mais

Apostila de Introdução Aos Métodos Numéricos

Apostila de Introdução Aos Métodos Numéricos Apostil de Itrodução Aos Métodos Numéricos PARTE II o Semestre - Prof. Slete Souz de Oliveir Buffoi Ídice SISTEMAS LINEARES... INTRODUÇÃO... MÉTODOS DIRETOS: ELIMINAÇÃO DE GAUSS... Sistem lier com... Eemplo:...

Leia mais

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1 Mtrizes e Sistems de equções lieres D.I.C. Medes s mtrizes são um ferrmet básic formulção de problems de mtemátic e de outrs áres. Podem ser usds: resolução de sistems de equções lieres; resolução de sistems

Leia mais

CAPÍTULO VI FUNÇÕES REAIS DE VARIÁVEL REAL. LIMITES E CONTINUIDADE

CAPÍTULO VI FUNÇÕES REAIS DE VARIÁVEL REAL. LIMITES E CONTINUIDADE 1. Itrodução CAPÍTULO VI FUNÇÕES REAIS DE VARIÁVEL REAL. LIMITES E CONTINUIDADE Ddo um qulquer cojuto A R, se por um certo processo se fz correspoder cd A um e um só y = f() R, diz-se que se defiiu um

Leia mais

1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2

1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2 Istituto Superior Técico Deprtmeto de Mtemátic Secção de Álgebr e Aálise o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBiom e MEFT o Sem. 00/ 5/J/0 - v. Durção: h30m RESOLUÇÃO. 6,0 vl. Determie um

Leia mais

Cap 5 Equivalência de Métodos

Cap 5 Equivalência de Métodos Cp Equivlêci de Métodos. INTRODUÇÃO Qudo desejmos lisr ltertivs, o primeiro poto cuidr é que els sejm compráveis. ssim, ão fz setido lisr os vlores tuis ( ) de um ssitur de dois os de um revist com um

Leia mais

Z = {, 3, 2, 1,0,1,2,3, }

Z = {, 3, 2, 1,0,1,2,3, } Pricípios Aritméticos O cojuto dos úmeros Iteiros (Z) Em Z estão defiids operções + e. tis que Z = {, 3,, 1,0,1,,3, } A) + y = y + (propriedde comuttiv d dição) B) ( + y) + z = + (y + z) (propriedde ssocitiv

Leia mais

SISTEMAS LINEARES. Sendo x e y, respectivamente, o número de pontos que cada jogador marcou, temos uma equação com duas incógnitas:

SISTEMAS LINEARES. Sendo x e y, respectivamente, o número de pontos que cada jogador marcou, temos uma equação com duas incógnitas: SISTEMAS LINEARES Do grego system ( Sy sigific juto e st, permecer, sistem, em mtemátic,é o cojuto de equções que devem ser resolvids juts,ou sej, os resultdos devem stisfzêlos simultemete. Já há muito

Leia mais

Resolução de sistemas lineares SME 0200 Cálculo Numérico I

Resolução de sistemas lineares SME 0200 Cálculo Numérico I Resolução de sistems lieres SME Cálculo Numérico I Docete: Prof. Dr. Mrcos Areles Estgiário PAE: Pedro Muri [reles@icmc.usp.br, muri@icmc.usp.br] Itrodução Sistems lieres são de grde importâci pr descrição

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOTS E U Geometri lític e Álger ier Sistems de Equções ieres Professor: ui Ferdo Nues, r Geometri lític e Álger ier ii Ídice Sistems de Equções ieres efiições Geris Iterpretção Geométric de Sistems de

Leia mais

Sequências Numéricas Progressão Aritmética. Prof.: Joni Fusinato

Sequências Numéricas Progressão Aritmética. Prof.: Joni Fusinato Sequêcis Numérics Progressão Aritmétic Prof.: Joi Fusito joi.fusito@ifsc.edu.br jfusito@gmil.com Sequêci de Fibocci Leordo Fibocci (1170 150) foi um mtemático itlio. Ficou cohecido pel descobert d sequêci

Leia mais

Escola de Engenharia de Lorena - USP Cinética Química Capítulo 01 Introdução a Cinética

Escola de Engenharia de Lorena - USP Cinética Química Capítulo 01 Introdução a Cinética 1.1 - ITODUÇÃO O termo ciétic está relciodo movimeto qudo se pes ele prtir de seu coceito físico. tretto, s reções químics, ão há movimeto, ms sim mudçs de composição do meio reciol, o logo d reção. Termodiâmic

Leia mais

o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2.

o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2. Mtemátic I - Gestão ESTG/IPB Resolução. (i).0 : r 0.000.0 00.0 00 0 0.0 00 0 00.000 00 000.008 90 0.000.000 00 000 008 90.00 00 00 00 9 Dividedo = Divisor x Quociete + Resto.0 = x.008 + 0.000. Num divisão

Leia mais

Matemática Financeira Introdução a Matemática Financeira e Comercial e suas aplicações.

Matemática Financeira Introdução a Matemática Financeira e Comercial e suas aplicações. Mtemátic Ficeir Itrodução Mtemátic Ficeir e Comercil e sus plicções. Rikey Pulo Pires Felix, Licecido em Mtemátic pel Uiversidde Estdul de Goiás, Pós Grdudo em Gestão Empresril pel Fculdde Motes Belos

Leia mais

As funções exponencial e logarítmica

As funções exponencial e logarítmica As fuções epoecil e logrítmic. Potêcis em Sej um úmero rel positivo, isto é, * +. Pr todo, potêci, de bse e epoete é defiid como o produto de ftores iguis o úmero rel :...... vezes Pr, estbelece-se 0,

Leia mais

Professor Mauricio Lutz FUNÇÃO EXPONENCIAL

Professor Mauricio Lutz FUNÇÃO EXPONENCIAL Professor Muricio Lutz REVISÃO SOBRE POTENCIAÇÃO ) Expoete iteiro positivo FUNÇÃO EPONENCIAL Se é u uero rel e é iteiro, positivo, diferete de zero e ior que u, expressão represet o produto de ftores,

Leia mais

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a).

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a). POLINÔMIOS II. TEOREMA DE D ALEMBERT O resto d divisão de um poliômio P(x) por x é igul P(). m m Sej, com efeito, P x x x..., um poliômio de x, ordedo segudo s potecis m m decrescetes de x. Desigemos o

Leia mais

3. Admitindo SOLUÇÃO: dy para x 1 é: dx. dy 3t. t na expressão da derivada, resulta: Questão (10 pontos): Seja f uma função derivável e seja g x f x

3. Admitindo SOLUÇÃO: dy para x 1 é: dx. dy 3t. t na expressão da derivada, resulta: Questão (10 pontos): Seja f uma função derivável e seja g x f x UIVERSIDADE FEDERAL DE ITAJUBÁ CALCULO e PROVA DE TRASFERÊCIA ITERA, EXTERA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 9/6/ CADIDATO: CURSO PRETEDIDO: OBSERVAÇÕES: Prov sem cosult. A prov pode ser feit

Leia mais

ESTABILIDADE. Pólos Zeros Estabilidade

ESTABILIDADE. Pólos Zeros Estabilidade ESTABILIDADE Pólo Zero Etbilidde Itrodução Um crcterític importte pr um item de cotrole é que ele ej etável. Se um etrd fiit é plicd o item de cotrole, etão íd deverá er fiit e ão ifiit, ito é, umetr em

Leia mais

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFEREÇA ( ( x( Coeficiete costte. ( ( x ( Coeficiete vriável (depedete do tempo. Aplicmos x( pr e cosidermos codição iicil ( ( ( M ( ( ( ( x( x( ( x(

Leia mais

Este capítulo tem por objetivo apresentar métodos para resolver numericamente uma integral.

Este capítulo tem por objetivo apresentar métodos para resolver numericamente uma integral. Nots de ul de Métodos Numéricos. c Deprtmeto de Computção/ICEB/UFOP. Itegrção Numéric Mrcoe Jmilso Freits Souz, Deprtmeto de Computção, Istituto de Ciêcis Exts e Biológics, Uiversidde Federl de Ouro Preto,

Leia mais

Capítulo III. Circuitos Resistivos

Capítulo III. Circuitos Resistivos Cpítulo III Ciruitos esistivos. Itrodução Neste pítulo serão estudds s leis de Kirhhoff, utilizdo-se de iruitos resistivos que são mis filmete lisdos. O estudo desss leis é plido em seguid s deduções de

Leia mais

Gabarito - Matemática Grupo G

Gabarito - Matemática Grupo G 1 QUESTÃO: (1,0 ponto) Avlidor Revisor Um resturnte cobr, no lmoço, té s 16 h, o preço fixo de R$ 1,00 por pesso. Após s 16h, esse vlor ci pr R$ 1,00. Em determindo di, 0 pessos lmoçrm no resturnte, sendo

Leia mais

Universidade Federal de Ouro Preto UFOP. Instituto de Ciências Exatas e Biológicas ICEB. Departamento de Computação DECOM

Universidade Federal de Ouro Preto UFOP. Instituto de Ciências Exatas e Biológicas ICEB. Departamento de Computação DECOM Progrmção de Computdores I BCC 701 01- List de Exercícios 01 Sequêci Simples e Prte A Exercício 01 Um P. A., Progressão Aritmétic, fic determid pel su rzão (r) e pelo seu primeiro termo ( 1 ). Escrev um

Leia mais

INTRODUÇÃO À AVALIAÇÃO ECONÓMICA DE INVESTIMENTOS

INTRODUÇÃO À AVALIAÇÃO ECONÓMICA DE INVESTIMENTOS UNIVERSIDADE TÉCNICA DE LISBOA INSTITUTO SUPERIOR TÉCNICO DEEC / Secção de Eergi Eergis Reováveis e Produção Descetrlizd INTRODUÇÃO À AVALIAÇÃO ECONÓMICA DE INVESTIMENTOS Rui M.G. Cstro (Com bse um texto

Leia mais

3 SISTEMAS DE EQUAÇÕES LINEARES

3 SISTEMAS DE EQUAÇÕES LINEARES . Itrodução SISTEAS DE EQUAÇÕES INEARES A solução de sistems lieres é um ferrmet mtemátic muito importte egehri. Normlmete os prolems ão-lieres são soluciodos por ferrmets lieres. As fotes mis comus de

Leia mais

APOSTILA DE CÁLCULO NUMÉRICO

APOSTILA DE CÁLCULO NUMÉRICO APOSTILA DE CÁLCULO NUMÉRICO Professor: Willim Wger Mtos Lir Moitor: Ricrdo Albuquerque Ferdes ERROS. Itrodução.. Modelgem e Resolução A utilizção de simuldores uméricos pr determição d solução de um problem

Leia mais

a a 3,88965 $140 7 9% 7 $187 7 9% a 5, 03295

a a 3,88965 $140 7 9% 7 $187 7 9% a 5, 03295 Anuiddes equivlentes: $480 + $113 + $149 5 9% 5 VPL A (1, 09) $56, 37 A 5 9% 3,88965 5 9% 5 9% AE = = = = $14, 49 = 3,88965 AE B $140 $620 + $120 + 7 9% 7 VPL B (1, 09) $60, 54 = = = 5, 03295 7 9% 7 9%

Leia mais

PROVA DE MATEMÁTICA DA UNICAMP VESTIBULAR 2009 1 a e 2 a Fase RESOLUÇÃO: Professora Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UNICAMP VESTIBULAR 2009 1 a e 2 a Fase RESOLUÇÃO: Professora Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UNICAMP VESTIBULAR 9 e Fse Professor Mri Atôi Gouvei. FASE _ 9 9. N décd de 96,com redução do úmero de bleis de grde porte,como blei zul, s bleis mike tártic pssrm ser o lvo preferêci

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire Uiversidde Slvdor UNIFACS Cursos de Egehri Métodos Mtemáticos Aplicdos / Cálculo Avçdo / Cálculo IV Prof: Ilk Rebouçs Freire Série de Fourier Texto : Itrodução. Algus Pré-requisitos No curso de Cálculo

Leia mais

Revisão de Álgebra Matricial

Revisão de Álgebra Matricial evisão de Álgebr Mtricil Prof. Ptrici Mri ortolo Fote: OLDINI, C. e WETZLE, F.; Álgebr Lier. ª. ed. São Pulo. Editor Hrbr, 986 Álgebr Mtricil D Mtemátic do º. Gru: y ( y ( De( : y Em ( : ( Em ( : y y 8

Leia mais

SOLUÇÕES DE EDO LINEARES DE 2 A ORDEM NA FORMA INFINITA

SOLUÇÕES DE EDO LINEARES DE 2 A ORDEM NA FORMA INFINITA SOLUÇÕES DE EDO LINEARES DE A ORDEM NA FORMA INFINITA Coforme foi visto é muito simples se obter solução gerl de um EDO lier de ordem coeficietes costtes y by cy em termos ds fuções lgébrics e trscedetes

Leia mais

Simbolicamente, para. e 1. a tem-se

Simbolicamente, para. e 1. a tem-se . Logritmos Inicilmente vmos trtr dos ritmos, um ferrment crid pr uilir no desenvolvimento de cálculos e que o longo do tempo mostrou-se um modelo dequdo pr vários fenômenos ns ciêncis em gerl. Os ritmos

Leia mais

AVALIAÇÃO TRIMESTRE. DISCIPLINA Matemática ALUNO(A) GABARITO

AVALIAÇÃO TRIMESTRE. DISCIPLINA Matemática ALUNO(A) GABARITO COORDENAÇÃO ENSINO MÉDIO AVALIAÇÃO - 0 TRIMESTRE NOTA UNIDADE(S): CAMBOINHAS PROFESSOR Equie DISCIPLINA Mtemátic SÉRIE/TURMA O /A E B DATA /0/00 NITERÓI SÃO GONÇALO X X ALUNO(A) GABARITO N IMPORTANTE:.

Leia mais

Revisão para o Vestibular do Instituto Militar de Engenharia www.rumoaoita.com & Sistema Elite de Ensino

Revisão para o Vestibular do Instituto Militar de Engenharia www.rumoaoita.com & Sistema Elite de Ensino Revisão pr o Vestibulr do Istituto Militr de Egehri wwwrumooitcom Sistem Elite de Esio CÔNICAS (IME-8/8) Determie equção de um círculo que tgeci hipérbole potos em que est hipérbole é ecotrd pel ret os

Leia mais

Capítulo zero Glossário

Capítulo zero Glossário Cpítulo zero Glossário Esse cpítulo é formdo por tems idispesáveis à mtemátic que, certmete, você deve Ter estuddo de um ou outr form durte su vid escolr. Sempre que tiver dúvids o logo do restte do teto

Leia mais

CAPÍTULO VIII APROXIMAÇÃO POLINOMIAL DE FUNÇÕES

CAPÍTULO VIII APROXIMAÇÃO POLINOMIAL DE FUNÇÕES CAPÍTULO VIII APROXIMAÇÃO POLINOMIAL DE FUNÇÕES 1. Poliómios de Tylor Sej (x) um ução rel de vriável rel com domíio o cojuto A R e cosidere- -se um poto iterior do domíio. Supoh-se que ução dmite derivds

Leia mais

Semelhança e áreas 1,5

Semelhança e áreas 1,5 A UA UL LA Semelhnç e áres Introdução N Aul 17, estudmos o Teorem de Tles e semelhnç de triângulos. Nest ul, vmos tornr mis gerl o conceito de semelhnç e ver como se comportm s áres de figurs semelhntes.

Leia mais

PROF. GILMAR AUGUSTO PROF. GILMAR AUGUSTO

PROF. GILMAR AUGUSTO PROF. GILMAR AUGUSTO MÚLTIPLOS E DIVISORES - (Of. Justiç Bttis e Adrdi). Ds firmtivs: - O úmero zero é o úico úmero pr que é primo; - O úmero ão é primo em composto; - Os úmeros que têm mis de dois divisores são chmdos úmeros

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Interpolação Métodos de Lagrange

TP062-Métodos Numéricos para Engenharia de Produção Interpolação Métodos de Lagrange TP6-Métodos Numéricos pr Egehri de Produção Iterpolção Métodos de grge Prof. Volmir Wilhelm Curitib, 5 Iterpolção Cosiste em determir um fução g() que descreve de form proimd o comportmeto de outr fução

Leia mais

SÉRIES DE FOURIER Prof. Me. Ayrton Barboni

SÉRIES DE FOURIER Prof. Me. Ayrton Barboni SUMÁRIO SÉRIES DE FOURIER Prof. Me. Arto Brboi. INTRODUÇÃO.... SÉRIES DE FOURIER..... Fuções Periódics..... Fuções secciolmete difereciáveis..... Fuções de rcos múltiplos..... Coeficietes de Fourier...

Leia mais

SISTEMAS DE EQUAÇÕES LINEARES

SISTEMAS DE EQUAÇÕES LINEARES SISTEMAS DE EQUAÇÕES LINEARES Um problem fudmetl que ormlmete é ecotrdo descrição mtemátic de feômeos físicos é o d solução simultâe de um cojuto de equções. Trduzido pr liuem mtemátic, tis feômeos pssm

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prov QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA 1 Cofir os cmpos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, coforme o que cost etiquet fixd

Leia mais

MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 =

MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 = MÓDULO IV. Defiição POTENCIACÃO Qudo um úmero é multiplicdo por ele mesmo, dizemos que ele está elevdo o qudrdo, e escrevemos:. Se um úmero é multiplicdo por ele mesmo váris vezes, temos um potêci:.. (

Leia mais

Método de Eliminação de Gauss. Método de Eliminação de Gauss

Método de Eliminação de Gauss. Método de Eliminação de Gauss Método de Elimição de Guss idei básic deste método é trsormr o sistem b um sistem equivlete b, ode é um mtriz trigulr superior, eectudo trsormções elemetres sobre s lihs do sistem ddo. Cosidere-se o sistem

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

QUESTÕES DE 01 A 09. Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas.

QUESTÕES DE 01 A 09. Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas. PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - SETEMBRO DE ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ PROFESSORA MARIA ANTÔNIA C GOUVEIA QUESTÕES DE A 9 Assile

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. INTEGRAIS DEFINIDAS

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. INTEGRAIS DEFINIDAS FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ENGENHARIA DE PRODUÇÃO ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. PROFESSOR: MARCOS AGUIAR CÁLCULO II INTEGRAIS DEFINIDAS. NOTAÇÃO DE SOMAÇÃO

Leia mais

Vamos supor um quadrado com este, divididos em 9 quadradinhos iguais.

Vamos supor um quadrado com este, divididos em 9 quadradinhos iguais. Rdicição O que é, fil, riz qudrd de um úmero? Vmos supor um qudrdo com este, divididos em 9 qudrdihos iguis. Pegdo cd qudrdiho como uidde de áre, podemos dizer que áre do qudrdo é 9 qudrdihos, ou sej,

Leia mais

Análise de Variância com Dois Factores

Análise de Variância com Dois Factores Análise de Vriânci com Dois Fctores Modelo sem intercção Eemplo Neste eemplo, o testrmos hipótese de s três lojs terem volumes médios de vends iguis, estmos testr se o fctor Loj tem influênci no volume

Leia mais

( ) E( X) = µ (desconhecido) V( X) = σ 2 (conhecido) ( ) se X ~ N µ,σ 2 ( ) se X qq e n grande

( ) E( X) = µ (desconhecido) V( X) = σ 2 (conhecido) ( ) se X ~ N µ,σ 2 ( ) se X qq e n grande A Pires, IST, Outubro de 000 Cpítulo 7 - Estimção por itervlos 7. Itervlos de cofiç Pr lém dum estimtiv potul de um prâmetro é, em muits situções, importte dispôr de lgum form de itervlo que idique cofiç

Leia mais

Cálculo Numérico Resolução Numérica de Sistemas Lineares Parte II

Cálculo Numérico Resolução Numérica de Sistemas Lineares Parte II Cálculo Numérico Resolução Numéric de Sistems Lieres Prte II Prof: Reildo Hs Métodos Itertivos Motivção I Ocorrêci em lrg escl de sistems lieres em cálculos de Egehri e modelgem cietífic Eemplos: Simulções

Leia mais

Cálculo II. Eliezer Batista Elisa Zunko Toma Márcio Rodolfo Fernandes Silvia Martini de Holanda Janesch

Cálculo II. Eliezer Batista Elisa Zunko Toma Márcio Rodolfo Fernandes Silvia Martini de Holanda Janesch Cálculo II Eliezer Btist Elis Zuko Tom Márcio Rodolfo Ferdes Silvi Mrtii de Hold Jesch ª Edição Floriópolis, Govero Federl Presidete d Repúblic: Dilm V Rousseff Miistro de Educção: Aloízio Mercdte Coordedor

Leia mais

COPEL INSTRUÇÕES PARA CÁLCULO DA DEMANDA EM EDIFÍCIOS NTC 900600

COPEL INSTRUÇÕES PARA CÁLCULO DA DEMANDA EM EDIFÍCIOS NTC 900600 1 - INTRODUÇÃO Ests instruções têm por objetivo fornecer s orientções pr utilizção do critério pr cálculo d demnd de edifícios residenciis de uso coletivo O referido critério é plicável os órgãos d COPEL

Leia mais

COLÉGIO NAVAL 2016 (1º dia)

COLÉGIO NAVAL 2016 (1º dia) COLÉGIO NAVAL 016 (1º di) MATEMÁTICA PROVA AMARELA Nº 01 PROVA ROSA Nº 0 ( 5 40) 01) Sej S som dos vlores inteiros que stisfzem inequção 10 1 0. Sendo ssim, pode-se firmr que + ) S é um número divisíel

Leia mais

2 - Modelos em Controlo por Computador

2 - Modelos em Controlo por Computador Modelção, Idetificção e Cotrolo Digitl 2-Modelos e Cotrolo por Coputdor 2 - Modelos e Cotrolo por Coputdor Objectivo: Itroduzir clsse de odelos digitis que são epregues est discipli pr o projecto de cotroldores

Leia mais

EXERCÍCIOS: d) 1.1 = e) = f) = g) 45.45= Potenciação de um número é o produto de fatores iguais a esse número; h)

EXERCÍCIOS: d) 1.1 = e) = f) = g) 45.45= Potenciação de um número é o produto de fatores iguais a esse número; h) d). = e).. = f).. = Potecição de um úmero é o produto de ftores iguis esse úmero; ) =. = 9 ) =.. = (OBS.: os úmeros:. são ditos ftores, ou ses) g).= h) 8.8.8= i) 89.89.89 = EXERCÍCIOS: 0. Sedo =, respod:

Leia mais

Definição: Seja a equação diferencial linear de ordem n e coeficientes variáveis:. x = +

Definição: Seja a equação diferencial linear de ordem n e coeficientes variáveis:. x = + Vléi Zum Medeios & Mihil Lemotov Resolução de Equções Difeeciis Liees po Séies Poto Odiáio (PO) e Poto Sigul (PS) Defiição: Sej equção difeecil lie de odem e coeficietes viáveis: ( ) ( ) b ( ) é dito poto

Leia mais

Classificação e Pesquisa de Dados

Classificação e Pesquisa de Dados Clssificção e Pesquis de Ddos Auls 06 Clssificção de ddos por Troc: QuickSort Exercício Supoh que se desej clssificr o seguite vetor: O R D E N A Assum que chve prticiodor está posição iicil do vetor e

Leia mais

Redes elétricas Circuitos que contém resistências e geradores de energia podem ser analisados usando sistemas de equações lineares;

Redes elétricas Circuitos que contém resistências e geradores de energia podem ser analisados usando sistemas de equações lineares; Álger Lier Mtrizes e vetores Sistems lieres Espços vetoriis Bse e dimesão Trsformções lieres Mtriz de um trsformção lier Aplicções d Álger Lier: Redes elétrics Circuitos que cotém resistêcis e gerdores

Leia mais

No que segue, apresentamos uma definição formal para a exponenciação. Se a 0, por definição coloca-se a a a, a a a a e assim por diante. Ou.

No que segue, apresentamos uma definição formal para a exponenciação. Se a 0, por definição coloca-se a a a, a a a a e assim por diante. Ou. MAT Cálculo Diferecil e Itegrl I RESUMO DA AULA TEÓRICA 3 Livro do Stewrt: Seções.5 e.6. FUNÇÃO EXPONENCIAL: DEFINIÇÃO No ue segue, presetos u defiição forl pr epoecição uisuer R e., pr 2 3 Se, por defiição

Leia mais

Matemática. Módulo 10. Equações Diferenciais. Por

Matemática. Módulo 10. Equações Diferenciais. Por Mtemátic Módulo Equções Difereciis Por George L. Ekol, BSc,MSc. Abril 7 Module Developmet Templte C. ESTRUTURA DO MÓDULO I. INTRODUÇÂO. TÍTULO DO MÓDULO Equções Difereciis. PRÉ-REQUISITOS PARA O CURSO

Leia mais

Vascaínos 300 3 100% MATEMÁTICA FINANCEIRA PROFESSORES: EDU/VICENTE 1,32. Escola SESC de Ensino Médio. Definição: Porcentagem ou razão percentual é

Vascaínos 300 3 100% MATEMÁTICA FINANCEIRA PROFESSORES: EDU/VICENTE 1,32. Escola SESC de Ensino Médio. Definição: Porcentagem ou razão percentual é MATEMÁTICA FINANCEIRA PROFESSORES: EDU/VICENTE Defiição: Porcetgem ou rzão percetul é um rzão e eomior. A porcetgem é represet pelo símbolo % (por ceto. Ftor e Acumulção e Cpitl(Ftor e umeto Ex.: Num escol

Leia mais

Capitulo 9 Resolução de Exercícios

Capitulo 9 Resolução de Exercícios FORMULÁRIO Empréstimos a Curto Prazo (Juros Simples) Taxa efetiva liear i l i ; Taxa efetiva expoecial i Empréstimos a Logo Prazo Relações Básicas C k R k i k ; Sk i Sk i e i ; Sk Sk Rk ; Sk i Sk R k ;

Leia mais

ARA UMA EDUCAÇÃO P OBAL CIDADANIA GL CIDAC

ARA UMA EDUCAÇÃO P OBAL CIDADANIA GL CIDAC l o i c r e t I o t s e f i M M U R P O Ã Ç L C U B O ED L G I N D CID CIDC Este Mifesto foi relizdo com o poio ficeiro d Uião Europei, ms o coteúdo é pes d resposbilidde dos utores, e ão pode ser tomdo

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler http://wwwuematbr/eugeio SISTEMAS DE AMORTIZAÇÃO A ecessidade de recursos obriga aqueles que querem fazer ivestimetos a tomar empréstimos e assumir dívidas que são pagas com juros que variam de acordo

Leia mais

... Soma das áreas parciais sob a curva que fornece a área total sob a curva.

... Soma das áreas parciais sob a curva que fornece a área total sob a curva. CAPÍTULO 7 - INTEGRAL DEFINIDA OU DE RIEMANN 7.- Notção Sigm pr Soms A defiição forml d itegrl defiid evolve som de muitos termos, pr isso itroduzimos o coceito de somtório ( ). Eemplos: ( + ) + + + +

Leia mais

2. Resolução Numérica de Equações Não-Lineares

2. Resolução Numérica de Equações Não-Lineares . Resolução Numéric de Equções Não-Lieres. Itrodução Neste cpítulo será visto lgoritmos itertivos pr ecotrr rízes de fuções ão-lieres. Nos métodos itertivos, s soluções ecotrds ão são ets, ms estrão detro

Leia mais

0,01. Qual a resposta correta à pergunta de Chiquinho, considerandose os valores atribuídos às variáveis pelo professor?

0,01. Qual a resposta correta à pergunta de Chiquinho, considerandose os valores atribuídos às variáveis pelo professor? GABARIO Questão: Chiquiho ergutou o rofessor qul o vlor umérico d eressão + y+ z. Este resodeu-lhe com cert iroi: como queres sber o vlor umérico de um eressão, sem tribuir vlores às vriáveis? Agor, eu

Leia mais

MÓDULO II POTENCIAÇÃO RADICIAÇÃO

MÓDULO II POTENCIAÇÃO RADICIAÇÃO MÓDULO II POTENCIAÇÃO E RADICIAÇÃO MÓDULO II POTENCIAÇÃO E RADICIAÇÃO O ódulo II é oposto por eeríios evolvedo poteição e rdiição Estos dividido-o e dus prtes pr elhor opreesão ª PARTE: POTENCIAÇÃO DEFINIÇÃO

Leia mais

6/16/2011. Relações de Girard Relações entre raizes e coeficientes. a x. a 1. Considere-se as raízes i, i=1,2,...n, e P(x) na forma fatorada:

6/16/2011. Relações de Girard Relações entre raizes e coeficientes. a x. a 1. Considere-se as raízes i, i=1,2,...n, e P(x) na forma fatorada: 66 Numero de Rizes Reis Teorem de Bolzo Sej = um equção lgébric com coeficietes reis,b. Se b , etão eiste um úmero pr de rízes reis, ou ão eistem

Leia mais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES

Leia mais

Somatórios e Recorrências

Somatórios e Recorrências Somtórios e Recorrêcis Uiversidde Federl do Amzos Deprtmeto de Eletrôic e Computção Exemplo: MxMi () Problem: Ddo um vetor de iteiros A, ecotrr o mior e o meor elemetos de A O úmero de comprções etre elemetos

Leia mais

6.1 Recursos de Curto Prazo ADMINISTRAÇÃO DO CAPITAL DE GIRO. Capital de giro. Capital circulante. Recursos aplicados em ativos circulantes (ativos

6.1 Recursos de Curto Prazo ADMINISTRAÇÃO DO CAPITAL DE GIRO. Capital de giro. Capital circulante. Recursos aplicados em ativos circulantes (ativos ADMINISTRAÇÃO DO CAPITAL DE GIRO 6.1 Recursos de curto przo 6.2 Administrção de disponibiliddes 6.3 Administrção de estoques 6.4 Administrção de conts 6.1 Recursos de Curto Przo Administrção Finnceir e

Leia mais

COMENTÁRIO DA PROVA. I. Se a expansão decimal de x é infinita e periódica, então x é um número racional. é um número racional.

COMENTÁRIO DA PROVA. I. Se a expansão decimal de x é infinita e periódica, então x é um número racional. é um número racional. COMENTÁRIO DA PROVA Como já er esperdo, prov de Mtemátic presetou um bom úmero de questões com gru reltivmete lto de dificuldde, s quis crcterístic fudmetl foi mescl de dois ou mis tems em um mesm questão

Leia mais

Curso MIX. Matemática Financeira. Juros compostos com testes resolvidos. 1.1 Conceito. 1.2 Período de Capitalização

Curso MIX. Matemática Financeira. Juros compostos com testes resolvidos. 1.1 Conceito. 1.2 Período de Capitalização Curso MI Matemática Fiaceira Professor: Pacífico Referêcia: 07//00 Juros compostos com testes resolvidos. Coceito Como vimos, o regime de capitalização composta o juro de cada período é calculado tomado

Leia mais

MATEMÁTICA BÁSICA. a c ad bc. b d bd EXERCÍCIOS DE AULA. 01) Calcule o valor de x em: FRAÇÕES

MATEMÁTICA BÁSICA. a c ad bc. b d bd EXERCÍCIOS DE AULA. 01) Calcule o valor de x em: FRAÇÕES MATEMÁTICA BÁSICA FRAÇÕES EXERCÍCIOS DE AULA ) Clcule o vlor de x em: A som e sutrção de frções são efetuds prtir d oteção do míimo múltiplo comum dos deomidores. É difícil respoder de imedito o resultdo

Leia mais

Carteiras de Mínimo VAR ( Value at Risk ) no Brasil

Carteiras de Mínimo VAR ( Value at Risk ) no Brasil Carteiras de Míimo VAR ( Value at Risk ) o Brasil Março de 2006 Itrodução Este texto tem dois objetivos pricipais. Por um lado, ele visa apresetar os fudametos do cálculo do Value at Risk, a versão paramétrica

Leia mais

Progressões 16 2, 32 2 e por aí vai. outubro. julho a10. janeiro a7

Progressões 16 2, 32 2 e por aí vai. outubro. julho a10. janeiro a7 Progressões Itrodução Ao lçrmos um moed, teremos dois resultdos possíveis: cr ou coro. e lçrmos dus moeds diferetes, pssmos ter qutro resultdos diferetes: (cr, cr), (cr, coro), (coro, cr) e (coro, coro).

Leia mais

Fatoração e Expressões Algébricas

Fatoração e Expressões Algébricas Ftorção e Expressões Algébrics Prof. Edso. As iddes de dois irmãos hoje são úmeros iteiros e cosecutivos. Dqui os, difereç etre s iddes deles será /0 d idde do mis velho. A som ds iddes desses irmãos,

Leia mais

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial º semestre de Engenhri Civil/Mecânic Cálculo Prof Olg (º sem de 05) Função Eponencil Definição: É tod função f: R R d form =, com R >0 e. Eemplos: = ; = ( ) ; = 3 ; = e Gráfico: ) Construir o gráfico d

Leia mais

Apostila de Introdução Aos Métodos Numéricos

Apostila de Introdução Aos Métodos Numéricos Apostil de Itrodução Aos étodos Numéricos PARTE II o Semestre - Prof. Slete Souz de Oliveir Buffoi Ídice SISTEAS LINEARES... INTRODUÇÃO... ÉTODOS DIRETOS: ELIINAÇÃO DE GAUSS... Sistem lier com...5 Eemplo:...7

Leia mais

Vale ressaltar que um programa foi desenvolvido em MatLab para solucionar os sistemas de equações propostos.

Vale ressaltar que um programa foi desenvolvido em MatLab para solucionar os sistemas de equações propostos. MSc Alexdre Estácio Féo Associção Educciol Dom Bosco - Fculdde de Egehri de Resede Cix Postl: 8.698/87 - CEP: 75-97 - Resede - RJ Brsil Professor e Doutordo de Egehri efeo@uifei.edu.br Resumo: Neste trblho

Leia mais

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou POLINÔMIOS Definição: Um polinômio de gru n é um função que pode ser escrit n form P() n n i 0... n i em que cd i é um número compleo (ou i 0 rel) tl que n é um número nturl e n 0. Os números i são denomindos

Leia mais