EXPERIMENTOS PARA ESTIMAÇÃO DOS PARÂMETROS DE MOTORES DE CORRENTE CONTÍNUA

Tamanho: px
Começar a partir da página:

Download "EXPERIMENTOS PARA ESTIMAÇÃO DOS PARÂMETROS DE MOTORES DE CORRENTE CONTÍNUA"

Transcrição

1 EXPERIMENTOS PARA ESTIMAÇÃO DOS PARÂMETROS DE MOTORES DE CORRENTE CONTÍNUA João Crlos Bslo, Mrcos c Morr Uvrsdd Fdrl do Ro d Jro Escol d Eghr Dpo. d Elroécc Cdd Uvrsár -Ilh do Fudão Ro d Jro - RJ E-l: bslo@vshu.cop.ufrj.br E-l: rcosorr@zpl.co Rsuo. Moors d corr coíu CC ê sgfcv porâc o dsvolvo d srvocsos, por ss rzão o su sudo, o o u s rfr o dsvolvo d odlos coo dfcção dos sus prâros, rc cosdrávl ção s dscpls d Sss d Corol srds dvrsos cursos d ghr. D u for grl, o s dor coo rd são d rdur supodo corr d cpo cos coo síd vlocdd gulr do oor, o odlo lr obdo é o d u ss d prr ord. Iso é sufc áls projo d coroldors udo s cosdr ps rlção d síd, coo é o cso d lboróros pr u prro curso sss d corol. A vg d s dor s odlo é u dfcção dos prâros d fução d rsfrêc pod sr f d for dr, ulzdo-s, por xplo, éccs d rspos früêc, rspos o dgru c.. Coudo, o s cosdrr o odlo por vrávs d sdo o projo d coroldors ulzdo rlção d sdos, or-s cssáro odlr o oor coo u ss d sgud ord. Iso rur u o os prâros lércos rssêc duâc d rdur coo os câcos oo d érc cofc d ro vscoso lrocâcos coss d forç cor-lroorz d oru dv sr dfcdos. E grl, drção dsss prâros é f ulzdo-s sos u rur cocos spcífcos d câc d áus lércs, o u or vávl su dfcção lboróros d corol. É dro ds flosof u s rgo srão proposos xpros u rur so cocos prsdos s dscpls d Sss d Corol. Plvrs-chv: Eso d sss d corol, Lboróro d sss d corol, Idfcção d sss, Míos udrdos MTE - 98

2 . INTRODUÇÃO Moors d corr coíu CC ê sgfcv porâc o dsvolvo d srvocsos [], por ss rzão o su sudo, o o u s rfr o dsvolvo d odlos coo dfcção dos sus prâros, rc cosdrávl ção s dscpls d Sss d Corol srds dvrsos cursos d ghr. D u for grl, o s rbrr coo xcção são d rdur supodo corr d cpo cos coo rspos vlocdd gulr do oor, o odlo lr dodo é o d u ss d prr ord []. Iso é sufc áls projo d coroldors udo s cosdr ps rlção d síd, coo é o cso dos cursos lboróros d u prro curso sss d corol [3]. A vg d s dor s odlo é u dfcção dos prâros d fução d rsfrêc pod sr f d for dr, ulzdo-s, por xplo, éccs d rspos früêc, rspos o dgru c. Coudo, o s cosdrr o odlo por vrávs d sdo o projo d coroldors ulzdo rlção d sdos or-s cssáro odlr o oor coo u ss d sgud ord. Iso rur u o os prâros lércos rssêc duâc d rdur coo os câcos oo d érc cofc d ro vscoso lrocâcos coss d forç corlroorz d oru dv sr dfcdos. E grl, drção dsss prâros é f ulzdo-s sos u rur cocos spcífcos d câc d áus lércs, o u or vávl su dfcção lboróros d corol. É dro ds flosof u s rgo srão proposos xpros u lv à drção dsss prâros u rur so cocos prsdos s dscpls d sss d corol. Es rgo sá sruurdo d sgu for. N sção srão obds s uçõs dâcs pr u odlo d sgud ord d oors CC. Srá osrdo d u sss uçõs dfrcs d sgud ord pod sr dscoplds, lvdo dos sss d prr ord. A vg ds sprção é u, éccs spls d dfcção d sss dscros íos udrdos, por xplo pod sr ulzds pr dfcção dos prâros ds uçõs volvds. Por coplud, sção 3 srá, cl, sblcd u rlção r os prâros cógos d u ss coíuo d prr ord o corrspod ss dscro, sgud, srá f u brv rvsão do éodo dos íos udrdos pr dfcção dos prâros d fução d rsfrêc po dscro d u ss d prr ord. Es é chv pr o dsvolvos dos xpros lércos pr dfcção dos prâros do oor CC sr proposos sção 4. A fcác dos xpros srá dosrd sção 5, od odolog propos s rgo srá ulzd pr dfcr os prâros d u oor CC. Ad s sção srá f vldção, coprdo-s s rsposs do ss rl do odlo obdo u s xcção. Fl, s coclusõs são prsds sção 6.. MODELO DE UMA MÁQUINA DE CORRENTE CONTÍNUA Ns sção srá obdo u odlo áco do oor CC coroldo pl rdur. Pr o, cosdr o crcuo uvl d Fg., od R L do rssêc duâc do crcuo d rdur, J f são o oo d érc d crg o cofc d ro vscoso, v rprs são corr d rdur, é forç cor-lroorz ω do vlocdd gulr do oor. R L v ω J f Fgur. Crcuo uvl d u oor CC coroldo pl rdur Aplcdo-s l ds sõs d rchhoff o crcuo d rdur, obé-s: v R + L d d +. E sgud, usdo-s l d Nwo pr o ovo rocol, pod-s scrvr: f J d d ω ω, d MTE - 99

3 od do o oru produzdo plo oor d rprs u oru xro d prurbção, u, por splcdd, srá cosdrdo xs. O rlcoo r s prs lérc câc do ss é fo prr ds sgus uçõs: gω 3 4 od g do, rspcv, s coss d forç cor-lroorz d oru. Subsudo-s E. 4 E. E. 3 E. obé-s: d v gω R + L 5 d f J d ω + ω. 6 d E sgud, dfdo coo sdos corr d rdur xcção são d rdur v, obé-s s sgus uçõs d sdo: vlocdd gulr ω, do coo d R d L d ω d J g L L + v f ω 0 J. 7 Ass sdo, pr copl dscrção do odlo do ss spço d sdos, é cssáro dfcr os prâros R, L, J, f, g. A dfcção dos prâros R L é, grl, bs prcs, udo ulzdos éodos rdcos d dfcção. U ouro spco sr obsrvdo é o fo do cofc d ro vscoso vrr fução d vlocdd gulr do oor. Coo, o odlo c, f é fo cos, or-s cssáro corr u vlor édo rprsvo pr fx d oprção lr do oor. Tor-s cssáro, poro, buscr ovs rs d s rlzr dfcção R L cosrução d u xpro pr drr f u lv co os dvrsos poos d oprção do oor. Obsrv u s for rbrd coo rspos do ss vlocdd ω, srá cssáro ulzr u ssor côro ou codr, por xplo, cuj são os sus rs é proporcol ω, so é: Subsudo-s E. 8 E. 7, rsul: dfdo L J d d d d v ω 8 g R v v + 9 v fv +. 9b u u v g v, 0 obé-s: MTE - 300

4 d L + R u d d J v + fv u d u rprs dos sss d prr ord dscopldos. Iso pr dfr dos sss, u lérco E ouro câco M, cujs rlzçõs spço d sdos são dds por: x A x + Bu E y Cx od x, A R L, B L C x M y A x C x + B u 3 od x v, A f J, B C. No u rd pr o ss E, u dpd d u grdz xr sobr ul os corol, v, d são os rs do côro, v, u é fução dos prâros do oor. D for slh, rd do ss M, u, dpd d corr d rdur. Iso fz co u dfcção dos prâros R, L, J f ão poss sr f ulzdo-s xpros d rspos o dgru ou d rspos früêc [3]. Es pr obsáculo pod sr rovdo ulzdo-s éodos d dfcção d prâros d sss dscros o po íos udrdos, por xplo. Tor-s cssáro, poro, obr u odlo dscro uvl pr os sss E M. 3. OBTENÇÃO DO MODELO DISCRETO EQUIALENTE A UM MODELO DE PRIMEIRA ORDEM A TEMPO CONTÍNUO 3.. Fudos U ss d prr ord coíuo pod sr dscro pl sgu fução d rsfrêc: Gs Y s U s τs + 4 cuj rprsção spço d sdos pod sr dd por: od A τ, B dds por [4]: x Ax + Bu y Cx, 5 τ C. Sb-s u s uçõs d sdo pr o ss dscro uvl são x + Φx + Γu y Cx od + do os ss d osrg sdo h h h h Ah x τ Ax τ Φ Γ Bdx dx Φ τ 0 0, 6 + é o rvlo d osrg, -s u:. 7 Ds for, ulzdo-s s E. 6 7 é fácl vrfcr u s uçõs dâcs dscrs pl E. 7 pod sr covrds sgu ução dfrçs fs: MTE - 30

5 y Φy + Γu. 8 Poro, clculdo-s Φ Γ ão o gho cos d po τ do odlo po coíuo do ss pod sr clculdos ulzdo-s s rlçõs dds Idfcção dos prâros Φ Γ Supodo u h sdo f usção dos ss d síd y pod-s, prr d E. 9, scrvr: d rd u, pr 0,,...,, y Φy 0 + Γu 0 y Φy + Γu y Φy + Γu 9 u pod sr grupds sgu for rcl: b Ax 0 od [ y y y ] b, y 0 y A y u 0 u u [ Φ Γ] x. 0b Dv sr obsrvdo u prác, o úro d poos obdos é uo or u dos, o u fz co u sj cssáro ulzr o éodo dos íos udrdos pr drr x. Ulzdo-s frrs d álgbr lr [5], é possívl osrr u solução u z b Ax do or ucld é dd por: x A A A b. Obsrvção: N dfcção d sss dscros ulzdo-s o éodo dos íos udrdos, for do sl d rd porâc vl. E grl, ulz-s pulsos d lrgur vrávl lórs u vz u sso frá co u o sl coh forçõs d dvrss früêcs. 4. EXPERIMENTOS PARA IDENTIFICAÇÃO DOS PARÂMETROS Ns sção srão prsdos os xpros u possbl dfcção dos prâros d oors CC, b coo, drção d su rgão lr d oprção, ul o éodo proposo s rgo pod sr pldo. 4.. Drção d rgão lr Coo é sbdo [3], o oor CC prs u ão-lrdd do po zo or, u é dvd à frcção os cs d rolo. Tor-s cssáro, ão, corr u fx d oprção ul s poss sr cosdrdo lr. Pr o, bs plcr o oor dgrus d são d plud, 0,,,..., dr os rspcvos vlors d são d síd são o côro, 0,,,...,. E sgud, for-s os prs crsos, jus-s os poos obdos por u polôo d gru sr rbrdo, so é, Co os ddos obdos, o-s o sgu ss d uçõs: MTE - 30

6 MTE , 3 u é d for b Ax, co rz A possudo uo s lhs u colus. A solução obd ulzdo-s o éodo dos íos udrdos é x A A A b. U vz drdo o polôo p, -s u rgão lr corrspodrá o rvlo o ul o gráfco d drvd d rlção é proxd prll o xo ds bscsss. 4.. Drção d g É fácl osrr u, udo xprsss udds do ss rcol, s coss do oor,, d forç cor-lroorz, g, possu o so vlor. Logo, pr s drr g, bs clculr u dls. No, prr d E. 3 u, rg pr, g E. Ds for, supodo u o gho do côro sj cohcdo cso sj dscohcdo, su drção pod sr f cofor sugrdo [5], ão drção d g, pod sr f d sgu for: co os rs do oor bro, plcr u oru xro o oor,.., fç-o fucor coo grdor ç s rspcvs sõs os rs do côro do oor. Coo os rs do oor são bro, ão há crculção d corr rdur, poro, são dd os rs é prc gul à forç cor-lroorz E. A drção d g é f jusdo-s os poos E, por u r u pss pl org. O cofc ds r é g é obdo fordo-s os vors [ ] E E E... [ ] ω W W W... clculdo-s ω ω g Drção d R L Bsdo or prsd sção, pr s obr os prâros lércos do odlo é prcso u s df o sl d rd u. Cofor obsrvdo sção 3., grl, são scolhdos coo ss d rd pulsos d lrgur lór, u vz u coê forçõs sobr dvrss früêcs. Coo v é u sl d são, u for d od co s crcríscs c pod sr fcl grd lboróro. No, d, u coo rd u dpd d d são os rs do côro, usção do sl v dv sr bé rlzd. Obsrv u, pr o ss E, -s: y y u + Φ Γ 5 od s pod fcl vrfcr, co jud d E. 7, u Φ R L h Γ Φ R. Lbrdo u y, ão drção d R L pod sr f, d cordo co sção 3., d sgu r: for-s o ss d uçõs Γ Φ u u u u

7 g od u v v. Coo o ss c sá for b Ax A possu uo s lhs u colus, o éodo dos íos udrdos dv sr prgdo pr drr x,., x A A A b. Após lgus pulçõs lgébrcs, pod-s fcl corr R L u são ddos por: R Φ Γ L Rh l Φ Drção d J f Pr drção dos prâros câcos sgu-s os sos pssos d dfcção dos prâros lércos, poddo, clusv, sr provdos dul xpro o sl d são os rs do oor, v, o sl d corr d rdur,. Poro, f usção dss ss, clcul u odo u pr o ss M od, d cordo co E. 7, Φ y Φ y + Γ u drdos d sgu r: for-s o ss d uçõs 9 f J h Γ Φ sdo y v, ão J f são f v v v v v 0 v v v 3 u 0 u u u Φ Γ u, coo o cso ror é d for b lv : Ax, cuj solução é x A A A b. Spls pulçõs lgébrcs f Φ Γ J fh l Φ EXEMPLO Ns sção srão prsdos os rsuldos obdos co rlzção dos xpros proposos pr dfcr os prâros d u oor d corr coíu, ulzdo o curso d Lboróro d Sss d Corol d Escol d Eghr d Uvrsdd Fdrl do Ro d Jro. E sgud, srá f vldção do odlo cujos prâros for obdos prr dos xpros. 5.. Expros Ns Fg. 3 são rprsdos os gráfcos d cordo co sção 4., d od s pod cosr vsul u rgão lr vr d 6. Poro, é s fx u os ds xpros dv sr rlzdos. Drd rgão lr d oprção, o psso sgu é drção dos ghos g. Pr o, dv-s d ão cohcr o gho do côro. No cso do oor CC sudo, -s, rd s. Ds for, procddo d cordo co sção 4., obé-s o gráfco d Fg. 4, od são rprsdos os poos W,E, r jusd plo éodo dos íos udrdos, lvdo 0, 0453 rd s. g MTE - 304

8 ols ols Fgur. Gráfco codo os prs, os vlors p pr u polôo d 5 ª ord jusdo d cordo co sção 4.. d d p ols Fgur 3. Gráfco co os vlors d drvd d p pr os sos poos d Fg. E ols Fgur 4. Gráfco dos poos W Fl, pr drção d R,, E r jusd plo éodo dos íos udrdos L, J f, é cssáro ps u úco xpro cujo sl d, sá osrdo Fg. 5. Os ss d corr d rdur são os rs do côro rd, v v, rsuls d plcção do sl d são, são rprsdos s Fg. 6 7, rspcv. Procddo d ω rd s cordo co s sçõs , obé-s os sgus vlors pr os prâros lércos: R 30, Ω L 34, H. Os vlors dos prâros câcos são: J 37, 0 5 g f 53, 0 5 g rd s. MTE - 305

9 v ols Tpo sgudos Fgur 5. Sl d são plcdo rdur do oor CC Apérs Tpo sgudos Fgur 6. Sl d corr d rdur v ols Tpo sgudos Fgur 7. Sl d são os rs do côro 5.. ldção do odlo A fcêc dos xpros roduzdos s rblho srá coprovd prr d sulção do odlo d sgud ord dscro pl E. 7, ldo-o co o so sl d são v ulzdo os xpros coldo-s os ss d síd, v, d corr,. Ns Fg. 8 9 são rprsds s curvs rl lh coíu suld lh rcjd pr são do côro pr corr d rdur, rspcv. MTE - 306

10 Obsrv u s curvs d corr d são o côro obds prr d sulção são uo próxs d rl, o u osr u ão só o odlo proposo é váldo rprs b o coporo d áu CC, coo os xpros u sugrdos são, d fo, fczs. v ols Tpo sgudos Fgur 7. Coprção r s curvs rl suld d são os rs do côro Apérs 6. CONCLUSÃO Ns rgo, xpros u ulz so cocos prsdos s dscpls d Sss d Corol for proposos pr dfcção d odos os prâros d oors d corr coíu. A fcác dos xpros fo coprovd pl su plcção dfcção dos prâros d u oor CC ulzdo os cursos d Lboróro d Sss d Corol d UFRJ. Agrdcos Es rblho fo prcl fcdo plo CNP pl Fudção d Apro à Psus do Esdo do Ro d Jro FAPERJ. 7. REFERÊNCIAS Tpo sgudos Fgur 8. Coprção r s curvs rl suld d corr d rdur [] W. Lohrd, Corol of Elcrcl Drvs, d Edo, Sprgr-rlg : Brl, 996. [] R. C. Dorf, Modr Corol Syss, Addso-Wsly, Rdg : MA, 986. [3] J. C. Bslo, A lborory for frs cours Corol Syss, Irol Jourl of Elcrcl Egrg Educo, sr publcdo o vol. 39, o., 00. [4]. J. Asro B. Wr, Copur-corolld syss: hory d dsg, Prc-Hll, Eglwood Clffs, 984. [5] J. C. Bslo, Lboróro d Sss d Corol I, Escol d Eghr, UFRJ, Ro d Jro, 999. MTE - 307

Matrizes - Teoria ...

Matrizes - Teoria ... Mrzs - Tor Mrz Rgulr Mrz Rgulr d ord por é u qudro fordo por los dsposos lhs olus ou s Rprsros u rz d lhs olus por Os los d rz srão dfdos por u lr o dos íds o prro íd d lh o sgudo íd olu à qu pr o lo Iguldd

Leia mais

VII ENCONTRO ENSINO EM ENGENHARIA

VII ENCONTRO ENSINO EM ENGENHARIA VII ENCONTRO ENSINO EM ENGENHARIA PROGRAMA COOPERATIVO EXPERIMENTOS PARA ESTIMAÇÃO DOS PARÂMETROS DE MOTORES DE CORRENTE CONTÍNUA João Crlos Bslo - bslo@shnu.cop.ufrj.br Mrcos Vcn Morr - rcosorr@zpl.co

Leia mais

= n + 1. a n. n 1 =,,,,,, K,,K. K descreve uma sequência finita.

= n + 1. a n. n 1 =,,,,,, K,,K. K descreve uma sequência finita. DICIPINA: CÁCUO A CONTEÚDO: EQUÊNCIA PROFEORA: NEYVA ROMEIRO PERÍODO: BIMETRE EQUÊNCIA Um squêc um fução f cujo domío o cojuo dos ros posvos su gráfco o plo y do po, ou d, squêc um cojuo d prs orddos do

Leia mais

ALGUMAS PROPRIEDADES DAS CURVAS CONVEXAS DO PLANO

ALGUMAS PROPRIEDADES DAS CURVAS CONVEXAS DO PLANO Dprmo d Mmá ALGUMAS PROPRIEDADES DAS CURVAS CONVEXAS DO PLANO Aluo: Pul Muro Nus Ordor: Hr Nols Aux Irodução Nos ds us mmá fz-s prs m odos os lugrs. Ao olor um mod pr lfor ou osgur ls guém pr pr psr m

Leia mais

TÓPICOS. Integração complexa. Integral de linha. Teorema de Cauchy. Fórmulas integrais de Cauchy.

TÓPICOS. Integração complexa. Integral de linha. Teorema de Cauchy. Fórmulas integrais de Cauchy. No m, liur dss pomos ão disps d modo lgum liur d iliogri pricipl d cdir hm-s à ção pr imporâci do rlho pssol rlir plo luo rsolvdo os prolms prsdos iliogri, sm ul prévi ds soluçõs proposs, ális compriv

Leia mais

ESTIMATIVA: é o valor numérico obtido para o estimador numa certa amostra.

ESTIMATIVA: é o valor numérico obtido para o estimador numa certa amostra. 9 - STIMAÇÃO D PARÂMTROS 9 INTRODUÇÃO: Sj,,, u ostr ltór co fução (dsdd) d proldd cohcd, sj d u vtor dos prâtros dst vrávl ltór Ass {,,, k } os k prâtros qu chos d spço d prâtros dotdo por Θ tão o ojtvo

Leia mais

Mecânica & Ondas. Módulo 10: O Oscilador harmónico. J. Seixas

Mecânica & Ondas. Módulo 10: O Oscilador harmónico. J. Seixas Mcânc & Onds Oscldor hrónco Spls Co ro Forçdo Oscldors copldos qução ds onds Módulo : O Oscldor hrónco J. Ss Prlnr: Poncs U forç dz - s consrv v s s u l qu du F d Por plo, grvdd é consrv v dgz F g F -

Leia mais

RESPOSTA DO SISTEMA. Resposta em Regime Transitório Resposta em Regime Permanente

RESPOSTA DO SISTEMA. Resposta em Regime Transitório Resposta em Regime Permanente RESPOSTA DO SISTEMA Rsps m Rgm Trsór Rsps m Rgm Prm Exmpls d ssms d prmr rdm Tqu d águ crld pr um bó Tx d vrçã lur é prprcl (H-h) dh k( H h) k h H ( ) Ssm RC, cpcr m sér cm rssr dv C RC ( V V C ) V C RC

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica. Prova Substitutiva de Mecânica B PME /07/2012

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica. Prova Substitutiva de Mecânica B PME /07/2012 Po Substtut Mcâc B PME 3/7/ po po: utos (ão é pto o uso spostos ltôcos) º Qustão (3,5 potos) O sco o R, ss cto, g too hst O u s o o plo fgu o à ção o po o poto O. Et hst o cl O, st u ol tocol costt u otco

Leia mais

y z CC2: na saída do reator: z = 1: 0. Pe dz Os valores característicos do problema são as raízes de: Da Pe 0 Pe Pe

y z CC2: na saída do reator: z = 1: 0. Pe dz Os valores característicos do problema são as raízes de: Da Pe 0 Pe Pe COQ-86 Méodos Nuércos para Ssas Dsrbuídos Explos Ilusravos d EDO co Problas d Valors o Cooro -) Modlo sacoáro do raor co dsprsão soérco Coo o obvo ds sudo d caso é lusrar o ovo procdo avalar o su dspo

Leia mais

09. Se. 10. Se. 12. Efetue: 13. Calcule C. a é:, determine a matriz X

09. Se. 10. Se. 12. Efetue: 13. Calcule C. a é:, determine a matriz X LIST DE EER MTRIZES E DETERMINNTES PROF ROGERINHO º ENSINO MÉDIO NOME Nº TURM Rrsn n for d l rz, co s, s, Dd rz, co, scrv rz (M O rço d u rz qudrd é so dos lnos d su dgonl rncl O rço d rz ) (, l qu é:

Leia mais

PMR Mecânica Computacional para Mecatrônica. Elemento Isoparamétrico de 4 nós

PMR Mecânica Computacional para Mecatrônica. Elemento Isoparamétrico de 4 nós PMR3 - Mcâca opacoal para Mcarôca Elo Isoparaérco d ós osdros cal a fção rpoladora para lo raglar osrado a fgra: 3 sdo a arál d sado os cofcs as arás dpds. osdrado os alors dssa fção os ós do râglo os:

Leia mais

Transformada de Laplace. Prof. Eng. Antonio Carlos Lemos Júnior

Transformada de Laplace. Prof. Eng. Antonio Carlos Lemos Júnior Trormd d plc Pro. Eg. oio Crlo mo Júior GEND Diição d Trormd d plc Trormd d plc d lgu ii Propridd d Trormd d plc Exrcício Corol d Sm Mcâico Trormd d plc Obivo: O obivo d ção é zr um irodução à Trormd d

Leia mais

Espaço de Estados. Modelo de Estado: y(t) = saída u(t) = entrada. função de transferência em cadeia fechada (f.t.c.f) :

Espaço de Estados. Modelo de Estado: y(t) = saída u(t) = entrada. função de transferência em cadeia fechada (f.t.c.f) : Epço Eo Eqo or corolo covcol - rlção r í-r, o fção rfrêc, o corolo moro - crção qçõ o m m rmo qçõ frc ªorm q pom r com m qção frcl ª orm form mrcl. O o oção mrcl mplfc m mo rprção mmác m qçõ. O mo úmro

Leia mais

A formulação representada pelas equações (4.1)-(4.3) no método de elementos finitos é denominada de formulação forte (strong formulation).

A formulação representada pelas equações (4.1)-(4.3) no método de elementos finitos é denominada de formulação forte (strong formulation). 4. Fomlção Mcl o Méoo Elmos Fos s cpílo sá ps fomlção mcl o méoo lmos fos pos plcção o méoo lv ssms lgécos q pom s ogzos fom mcl p poso solção po éccs mécs pops p c po qção fcl: lípc pólc o hpólc. O poo

Leia mais

( ) 2. Eletromagnetismo I Prof. Dr. Cláudio S. Sartori - CAPÍTULO VIII Exercícios 1 ˆ ˆ ( ) Idl a R. Chamando de: x y du. tg θ

( ) 2. Eletromagnetismo I Prof. Dr. Cláudio S. Sartori - CAPÍTULO VIII Exercícios 1 ˆ ˆ ( ) Idl a R. Chamando de: x y du. tg θ Elromgnismo Prof. Dr. Cláudio S. Srori - CPÍTUO V Ercícios Emplo Cálculo do cmpo mgnéico d um fio d comprimno prcorrido por um corrn léric num pono P(,,. dl - r + + r dl d P(,, r r + + ( ( r r + + r r

Leia mais

8 = 1 GRUPO II. = x. 1 ln x

8 = 1 GRUPO II. = x. 1 ln x Tst Itrmédio Mtmátic A Rsolução (Vrsão ) Durção do Tst: 90 miutos 0.04.04.º Ao d Escolridd RESOLUÇÃO GRUPO I. Rspost (A) Tm-s: log^00h log00 + log + 04 06. Rspost (B) S c + m ou s +, tm-s lim. Como lim

Leia mais

EXERCÍCIOS DE EQUAÇÕES DE DIFERENÇAS FINITAS

EXERCÍCIOS DE EQUAÇÕES DE DIFERENÇAS FINITAS MP Cálculo de Dfereçs Fs Bcreldo e Esísc IME/USP EXERCÍCIOS DE EQUÇÕES DE DIFERENÇS FINITS SOLUÇÕES E SUGESTÕES Bblogrf: [ETS] ppled Ecooerc Te Seres, Wler Eders, Cper : Dfferece Equos (dspoível e p://cgcpeuspbr/cdf/

Leia mais

EXEMPLO 3 - CONTINUAÇÃO

EXEMPLO 3 - CONTINUAÇÃO AJUSTE A U POLINÔIO Se curv f for jusd um polômo de gru, eremos f * () 0 Segudo o mesmo procedmeo eror, chegremos o segue ssem ler: m L O L L 0 EXEPLO Os ddos bo correspodem o volume do álcool ídrco em

Leia mais

4.21 EXERCÍCIOS pg. 176

4.21 EXERCÍCIOS pg. 176 78 EXERCÍCIOS pg 7 Nos rcícios d clculr s drivds sucssivs t ordm idicd, 5 7 IV V 7 c d c, 5, 8 IV V VI 8 8 ( 7) ( 8), ( ) ( ) '' ( ) ( ) ( ) ( ) 79 5, 5 8 IV, 8 7, IV 8 l, 9 s, 7 8 cos IV V VI VII 5 s

Leia mais

Módulo III. Processadores de texto

Módulo III. Processadores de texto Módul F d O Pd d x Flh d Clul F d duvdd @2006 Módul v 1 Pd d x Uldd í djv Wwd d d x Ed u du Sl x Tblh u du Fç d g Fçõ gé Fçõ d x A lz l lu ú @2006 Módul v 2 Pd d x F d dh Tbl M uç Plzç d l dl Cç d lzd

Leia mais

ORGANIZAÇÃO DIDÁTICA DO PROCESSO DE ENSINO, APRENDIZAGEM E DESENVOLVIMENTO: O PLANEJAMENTO. Prof. Dr. Roberto Valdés Puentes

ORGANIZAÇÃO DIDÁTICA DO PROCESSO DE ENSINO, APRENDIZAGEM E DESENVOLVIMENTO: O PLANEJAMENTO. Prof. Dr. Roberto Valdés Puentes ORGANIZAÇÃO DIDÁTICA DO PROCESSO DE ENSINO, APRENDIZAGEM E DESENVOLVIMENTO: O PLANEJAMENTO Prf. Dr. Rbr Vdés Pus PPGED/FACED/UFU rbrpus@fcd.ufu.br MOMENTOS DO PROCESSO DE ENSINO, APRENDIZAGEM E DESENVOLVIMENTO

Leia mais

Informática BASES DE DADOS. 4.1 Noções de Bases de Dados. Conceitos fundamentais do Modelo Relacional

Informática BASES DE DADOS. 4.1 Noções de Bases de Dados. Conceitos fundamentais do Modelo Relacional BASES E AOS @2007 v 1 41 çõ d B d d C b duó dl Rll C ud d dl Rll Rçõ d gdd dlg d h d B d d Rl @2007 v 2 O qu é u B d d? u gé, qulqu ju d dd é u B d d (B): u gd d d hd; u l d C/V; u lv; d ul; dd gudd ud

Leia mais

Métodos Computacionais em Engenharia DCA0304 Capítulo 4

Métodos Computacionais em Engenharia DCA0304 Capítulo 4 Métodos Computciois m Eghri DCA34 Cpítulo 4 4 Solução d Equçõs Não-lirs 4 Técic d isolmto d rízs ris m poliômios Cosidrdo um poliômio d orm: P L Dsj-s cotrr os limits ds rízs ris dst poliômio Chmrmos d

Leia mais

ESTIMATIVA: é o valor numérico obtido para o estimador numa certa amostra.

ESTIMATIVA: é o valor numérico obtido para o estimador numa certa amostra. I- STIMAÇÃO D PARÂMTROS 9 INTRODUÇÃO: Sj,,, um mostr ltór com fução (dsdd d proldd cohcd, sj d θ um vtor dos prâmtros dst vrávl ltór Assm θ {θ, θ,, θ k } os k prâmtros qu chmmos d spço d prâmtros dotdo

Leia mais

Princípios de Telecomunicações

Princípios de Telecomunicações UNVERSDADE FEDERAL DE PERNAMBUO ro d cologi Gociêcis urso d Eghri Eléric Elrôic ODE Grupo d Psquis m omuicçõs Pricípios d lcomuicçõs élio MAGALÃES DE OLVERA, BEE, MEE, Docur, MEEE Lis d Exrcício 9 d Novmbro

Leia mais

Folhas de Cálculo. O EXCEL como Folha de Cálculo

Folhas de Cálculo. O EXCEL como Folha de Cálculo Flh d Clul O qu é: U Flh d Clul é, dç, u ju d élul qu u glh u bl qu d l- vé d xõ lóg /u O qu : Ogzç ç d bl l d vl; F, í,, qu jud xu lul lx; Auzç d, vé d gç u d ódg d lul u d uld; Rç g d ç; d bl ulzd çõ

Leia mais

3 Solução Analítica Exata para Viga Infinita no Caso Linear

3 Solução Analítica Exata para Viga Infinita no Caso Linear 37 3 Solução Alítc Ext pr Vg It o Cso Lr st cpítulo são borddos os procdmtos pr rsolução d qução (.4, pr o cso spcíco d um vg prsmátc d comprmto to. st sstm os dslocmtos rotçõs tdm pr o zro à mdd qu s

Leia mais

Transporte Vestiário Higiene Pessoal Poupança

Transporte Vestiário Higiene Pessoal Poupança Álgbr Mricil PRTE LGUMS CONSDERÇÕES TEORCS MTRZES Noção d mriz Mrizs formm um impor cocio m mmáic, d spcil uso o sudo d rsformçõs lirs mriiz é um bl d lmos disposos m lih colus Mriz m é um bl d m úmros

Leia mais

Figura 1. m. Responda às seguintes questões:

Figura 1. m. Responda às seguintes questões: UIVERSIDADE DE LISBOA ISIUO SUPERIOR ÉCICO Vbrções e Ruído º Exme /5-5 de Jero de 5 (sem cosul) Problem (6 vl.) Fgur Cosdere o mecsmo de gru de lberdde reresedo fgur, que se ecor su osção cl de equlíbro

Leia mais

CCI-22 CCI-22. Ajuste de Curvas. Matemática Computacional. Regressão Linear. Ajuste de Curvas

CCI-22 CCI-22. Ajuste de Curvas. Matemática Computacional. Regressão Linear. Ajuste de Curvas CCI- CCI- eá Copuol Ause e Curvs Crlos Herque Q. Forser Nos opleeres Ause e Curvs Apl-se os seues sos: Erpolção: vlores or o ervlo elo Vlores o erros proveees e oservções Cosse e: Deerr prâeros que ee

Leia mais

TRANSFORMAÇÕES CONTÍNUAS

TRANSFORMAÇÕES CONTÍNUAS TRANSFORMAÇÕES CONTÍNUAS Tscçõs o mo U, 0 0 odo scção o mo odo voução U, 0 HU, 0 Hmoo, H, dd do mo U fução d H U, H 0 0 H gdo do guo ds scçõs o mo [ H, U, ] 0 0 H 0 H 0, 0 H cos do movmo: E, g, cosv-s

Leia mais

Laplace para Problemas Setorialmente Homogêneos

Laplace para Problemas Setorialmente Homogêneos Trbho prdo o XXXVII CNMAC, S.J. do Cmpo - SP, 20 Prodg Sr of h Brz Soy of Compuo d Appd Mhm Té d Prção do Domío Apd Equção d Lp pr Probm Sorm Homogêo Cro Frdrh Loffr Progrm d Pó Grdução m Eghr M, PPGEM/UFES,

Leia mais

Equações diferenciais ordinárias Euler e etc. Equações diferenciais ordinárias. c v m. dv dt

Equações diferenciais ordinárias Euler e etc. Equações diferenciais ordinárias. c v m. dv dt Euções derecs ordárs Euler e etc. Aul 7/05/07 Métodos Numércos Aplcdos à Eger Escol Superor Agrár de Combr Lcectur em Eger Almetr 006/007 7/05/07 João Noro/ESAC Euções derecs ordárs São euções composts

Leia mais

CAPÍTULO 3. Exercícios é contínua, decrescente e k 2 positiva no intervalo [ 3, [. De ln x 1 para x 3, temos. dx 3.

CAPÍTULO 3. Exercícios é contínua, decrescente e k 2 positiva no intervalo [ 3, [. De ln x 1 para x 3, temos. dx 3. CAPÍTULO Exrcícios.. b) Sj séri. A fução f( x) é cotíu, dcrsct l x l x positiv o itrvlo [, [. D l x pr x, tmos dx dx. x l x x dx x covrgt Þ l x covrgt. l d) Sj séri 0 m [ 0, [. Tmos: x 4. A fução f( x)

Leia mais

que indica que, através do operador H, pode-se determinar y(t) para qualquer u(t).

que indica que, através do operador H, pode-se determinar y(t) para qualquer u(t). 8. REPRESENÇÃO NO ESPÇO DE ESDOS 8. Coco so ( prsção srá f o omío o mpo coío; s frçs com o cso scro são pqs srão prss posrorm). rprsção r/sí m ssm lr só é ál qo, o mpo cl, o ssm sá o so scoáro. ssm é ál

Leia mais

Aulas práticas: Introdução à álgebra geométrica

Aulas práticas: Introdução à álgebra geométrica Auls prátics: Introdução à álgr gométric Prolm Mostr qu ár A do prllogrmo d figur nx é dd por A= = αβ αβ y β α α β β A = αβ αβ α x α β = α + α, = β + β = = αβ + αβ = = ( αβ αβ)( ) = + = = 0 = = = 0 = Prolm

Leia mais

PROVA NACIONAL ESCRITA DE MATEMÁTICA

PROVA NACIONAL ESCRITA DE MATEMÁTICA PROVA NACIONAL ESCRITA DE MATEMÁTICA Equip Rsposávl Pl Elorção Corrção d Prov: Prof. Douor Sérgio Brrir Prof.ª Douor Cri Lmos Durção d Prov: 0 miuos. Tolrâci: 30 miuos Coção: 00 PONTOS Escol d Proviêci

Leia mais

CONVERSORES CC-CA. CA Aplicações: Inversor monofásico em meia ponte. Inversor monofásico em ponte. Conversores CC-CA de frequência variável

CONVERSORES CC-CA. CA Aplicações: Inversor monofásico em meia ponte. Inversor monofásico em ponte. Conversores CC-CA de frequência variável CONVERSORES ELECTRÓNCOS DE POTÊNCA A ALTA FREQUÊNCA CONVERSORES CC-CA - versores CONVERSORES CC-CA CA Aplicções: Coversores CC-CA de frequêci vriável corolo de velocidde de moores de idução foes de limeção

Leia mais

INTEGRAÇÃO NUMÉRICA. Em situações práticas, a função a ser integrada não é fornecida analiticamente, e sim por meio de pares (x, f(x)).

INTEGRAÇÃO NUMÉRICA. Em situações práticas, a função a ser integrada não é fornecida analiticamente, e sim por meio de pares (x, f(x)). NTEGRAÇÃ NUMÉRCA trodução Em stuçõs prátcs, ução sr tgrd ão é orcd ltcmt, sm por mo d prs,. Nsts csos tor-s cssár utlção d métodos umércos pr o cálculo do vlor d tgrl d. grupos: s métodos ms utldos podm

Leia mais

Associação de Resistores e Resistência Equivalente

Associação de Resistores e Resistência Equivalente Associção d sistors sistêci Equivlt. Itrodução A ális projto d circuitos rqurm m muitos csos dtrmição d rsistêci quivlt prtir d dois trmiis quisqur do circuito. Além disso, pod-s um séri d csos práticos

Leia mais

CCI-22 CCI-22. 6) Ajuste de Curvas. Matemática Computacional

CCI-22 CCI-22. 6) Ajuste de Curvas. Matemática Computacional CCI- CCI- eá Copuol Ajuse de Curvs éodo dos íos Qudrdos Regressão er Irodução CCI- éodo dos íos Qudrdos Regressão ler Ajuse u polôo Ajuse ours urvs Quldde do juse Irodução CCI- éodo dos íos Qudrdos Regressão

Leia mais

Matrizes 2. Notação de uma matriz 2 Matriz Quadrada 2 Matriz Diagonal 2 Matriz linha 2 Matriz coluna 2 Matrizes iguais 2. Matriz Transposta 3

Matrizes 2. Notação de uma matriz 2 Matriz Quadrada 2 Matriz Diagonal 2 Matriz linha 2 Matriz coluna 2 Matrizes iguais 2. Matriz Transposta 3 //, :: Mrizes Defiição Noção de u riz Mriz Qudrd Mriz Digol Mriz lih Mriz colu Mrizes iguis Eercício Mriz Trspos Proprieddes d riz rspos Mriz Opos Mriz Nul Mriz ideidde ou Mriz uidde dição de Mrizes Eercício

Leia mais

9. MODELAGEM DE CONVERSORES: MODELO DA CHAVE PWM

9. MODELAGEM DE CONVERSORES: MODELO DA CHAVE PWM Fns Chs C. 9 Mlgm nrsrs: ml h PWM J. A. Pml 9. MOEAGEM E CONERSORES: MOEO A CHAE PWM As lgs báss nrsrs CCCC ssum um h nrl ur nãnrl sss lmns lnrs nrns n m. A njun ss us hs r nm h PWM [9.]. O bj ns íul é

Leia mais

Módulo I MOTORES DE BUSCA NA INTERNET

Módulo I MOTORES DE BUSCA NA INTERNET Módul MOTORES E BUSCA NA NTERNET duç Pqu d ç d gé Pqu d ç B d d Ulzç d d -l F d duç -l @2007 v 1 O qu é? A é d udl d d d ud qu uç l qulqu ud d ud, d lh u C u? Avé d u ju d l (g d uç TCP/P) qu ê gd vg d

Leia mais

Capítulo 4: Derivada A Reta Tangente. y = uma curva definida no intervalo ( a, ) e sejam ( x, y ) e Q( x y ) P dois pontos

Capítulo 4: Derivada A Reta Tangente. y = uma curva definida no intervalo ( a, ) e sejam ( x, y ) e Q( x y ) P dois pontos Isio d Ciêcis Es - Dprmo d Mmáic Cálclo I Proª Mri Jli Vr Crlo d Arjo Cpílo : Drid - A R T Sj b disios d cr Sj s r sc q pss plos poos P Q Cosidrdo o riâlo râlo PMQ, ir o ldo, mos q iclição d r s, o coici

Leia mais

Universidade Federal do Rio de Janeiro COPPE Programa de Engenharia Química 2014/1 1

Universidade Federal do Rio de Janeiro COPPE Programa de Engenharia Química 2014/1 1 Univrsidd Fdrl do Rio d Jniro COPPE Progrm d Engnhri Químic COQ 79 ANÁLISE DE SISEMAS DA ENGENHARIA QUÍMICA AULA : Rprsnção m Espço d Esdos 4/ Rprsnção m Espço d Esdos Esdo: O sdo d um sism no mpo é o

Leia mais

7º E ESCOLA SECUNDÁRIA C/ 3º CICLO DE CARVALHOS RELAÇÃO DE TURMA. Terceiro Ciclo do Ensino Básico. Nome

7º E ESCOLA SECUNDÁRIA C/ 3º CICLO DE CARVALHOS RELAÇÃO DE TURMA. Terceiro Ciclo do Ensino Básico. Nome SO SUÁ / 3º O OS n v 0/03 ÇÃO U 7º c cl d nn Bác º m / O J S º c 0000 SOUS X X X X X X X - X X X X X 07660 0000 S X X X X X X X - X - X X X 0765 00003 S X X X X X X X - X X X X X 0905 00004 BO O X X X

Leia mais

Dualidade. Fernando Nogueira Dualidade 1

Dualidade. Fernando Nogueira Dualidade 1 Dldd Frnndo Nogr Dldd Todo prolm d P.L. pod sr ssttído por m modlo qvlnt dnomndo Dl. O modlo orgnl é chmdo Prml. Prolm Prml M Sjto j n j n c j j j j j j {... n} {... m} Prolm Dl Sjto W m m j c {... m}

Leia mais

Vieiras com palmito pupunha ao molho de limão

Vieiras com palmito pupunha ao molho de limão Vs o to nh o oho d ão Oá, ss ntd fo ns dos tos fz s gost. Aé d nd dd, obnção d sbos sson té os s xgnts. A t s dfí v s onsg vs fss. Ingdnts: 1 to nh; 3 dúzs d vs; s nt t; d do. Modo d fz: t s tbhos é bs

Leia mais

BANCO DE FÓRMULAS PROF. FRED MOURA. Movimento Circular 1 T. a cp. = velocidade angular. = espaço angular. Unidades de medida

BANCO DE FÓRMULAS PROF. FRED MOURA. Movimento Circular 1 T. a cp. = velocidade angular. = espaço angular. Unidades de medida O D ÓMUL O. D MOU MU & MU Moo ul Lço Oblíuo p = lo ul * opo l - MU y y y y y s y y y = lo é = ção spço = spço ul = o H s = Ilo po = üê * opo hozol - MU = spço (l) = píoo x os = spço Il = lo = lo l = lção

Leia mais

Dinâmica de uma partícula material de massa constante

Dinâmica de uma partícula material de massa constante ísc Gel Dâc de u ícul el de ss cose Dâc de u ícul el de ss cose Iodução Dâc É o esudo d elção esee ee o oeo de u coo e s cuss desse oeo. Ese oeo é o esuldo d ecção co ouos coos que o cec. s ecções são

Leia mais

MATEMÁTICA. 01. Sejam os conjuntos P 1, P 2, S 1 e S 2 tais que (P 2 S 1) P 1, (P 1 S 2) P 2 e (S 1 S 2) (P 1 P 2). Demonstre que (S 1 S 2) (P 1 P 2).

MATEMÁTICA. 01. Sejam os conjuntos P 1, P 2, S 1 e S 2 tais que (P 2 S 1) P 1, (P 1 S 2) P 2 e (S 1 S 2) (P 1 P 2). Demonstre que (S 1 S 2) (P 1 P 2). GGE RESOE - VESTIBULAR IME MATEMÁTICA) MATEMÁTICA Sj o ojuo S S qu S ) S ) S S ) ) or qu S S ) ) : Sj S S Coo S S ão ou l r o rol oo uor r grl) qu oo S ão logo oo qurío orr F F F F F ) Crufrê ro -) ro

Leia mais

Código PE-ACSH-2. Título:

Código PE-ACSH-2. Título: CISI Ctro Itrção Srvços Iformtc rão Excução Atv Itr o CISI Cóo Emto por: Grêc o Stor 1. Objtvo cmpo plcção Est ocumto tm como fl fr o prão brtur chmos suport o CISI. A brtur chmos é rlz o sstm hlpsk, qu

Leia mais

Fernando Nogueira Dualidade 1

Fernando Nogueira Dualidade 1 Dldd Frnndo Nogr Dldd Todo problm d P.L. pod sr sbsttído por m modlo qvlnt dnomndo Dl. O modlo orgnl é chmdo Prml. Problm Prml j n j n c j j j j j j b {... n} {...m} Problm Dl Mn W m m b j c {... m} j

Leia mais

Visão Geral Métodos construtivos Métodos construtivos O Mercado Visão de Negócios Alguns números Principais diferenciais

Visão Geral Métodos construtivos Métodos construtivos O Mercado Visão de Negócios Alguns números Principais diferenciais Shw C TÓPICOS Vã Gl Mé cv Mé cv O Mc Vã Ngóc Alg ú Pcp fc Rl N vç Pc Q fz Vã Gl A ESTRUTURA ECOLÓGICA CONSTRUTORA, g c l é c cçã à v pcpçã q lz écc clógc. Sb p v é pf pívl v, p g cl c fã. N çã ppc c, c

Leia mais

TÓPICOS EM MATEMÁTICA AVANÇADA PARA A ENGENHARIA: Álgebra Linear, Geometria Analítica, Cálculo e Equações Diferenciais,

TÓPICOS EM MATEMÁTICA AVANÇADA PARA A ENGENHARIA: Álgebra Linear, Geometria Analítica, Cálculo e Equações Diferenciais, UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA/SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE ENGENHARIA CIVIL/ DEPARTAMENTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM MÉTODOS NUMÉRICOS EM ENGENHARIA TÓPICOS

Leia mais

Electromagnetismo e Óptica

Electromagnetismo e Óptica Elctromgntismo Óptic Lbortório 1 Expriênci d Thomson OBJECTIVOS Obsrvr o fito d forç d Lorntz. Mdir o cmpo d indução mgnétic produzido por bobins d Hlmholtz. Dtrminr xprimntlmnt o vlor d rlção crg/mss

Leia mais

Material Teórico - Módulo Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Razões Trigonométricas no Triângulo Retângulo.

Material Teórico - Módulo Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Razões Trigonométricas no Triângulo Retângulo. Mtril Tórico - Módulo Triângulo Rtângulo, Li dos Snos ossnos, Poĺıgonos Rgulrs Rzõs Trigonométrics no Triângulo Rtângulo Nono no utor: Prof Ulisss Lim Prnt Rvisor: Prof ntonio min M Nto Portl d OMEP 1

Leia mais

1- Resolução de Sistemas Lineares.

1- Resolução de Sistemas Lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sstes Leres..- Mtrzes e Vetores..2- Resolução de Sstes Leres de Equções Algébrcs por Métodos Extos (Dretos)..3- Resolução de Sstes Leres

Leia mais

I n f o r m á t i c a. Informática. D e p. G. Licenciatura em: Gestão de Empresas. Docentes: António Carvalho Rui Pedro Duarte

I n f o r m á t i c a. Informática. D e p. G. Licenciatura em: Gestão de Empresas. Docentes: António Carvalho Rui Pedro Duarte Lu : d E : Aó Cvlh Ru Pd u @2007 v 1 v d u Objv Pg Rg d Avlç Bblg @2007 v 2 @2007 v 3 Objv Cld çõ b b ç, u v ul, d ulzç vluv duz çõ b d d ud u d lh d ç vlv dd d xlç d d d x lh d lul P lu ulzç d u xd d,

Leia mais

10.7 Área da Região Limitada por duas Funções Nesta seção, consideraremos a região que está entre os gráficos de duas funções.

10.7 Área da Região Limitada por duas Funções Nesta seção, consideraremos a região que está entre os gráficos de duas funções. 0.7 Ár d Rgião Limitd por dus Funçõs Nst sção, considrrmos rgião qu stá ntr os gráficos d dus funçõs. S f g são contínus f () g() 0 pr todo m [,], ntão ár A d rgião R, limitd plos gráficos d f, g, = =,

Leia mais

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES RESOLUÇÃO DE EQUAÇÕES POR EIO DE DETERINANTES Dtrmt um mtrz su orm Sj mtrz: O trmt st mtrz é: Emlo: Vmos suor o sstm us quçõs om us óts y: y y Est sstm quçõs o sr srto orm mtrl: y Est qução r três mtrzs:.

Leia mais

Interpretação Geométrica. Área de um figura plana

Interpretação Geométrica. Área de um figura plana Integrl Definid Interpretção Geométric Áre de um figur pln Interpretção Geométric Áre de um figur pln Sej f(x) contínu e não negtiv em um intervlo [,]. Vmos clculr áre d região S. Interpretção Geométric

Leia mais

Perfis de modulação upstream para placas de linhas de cabo

Perfis de modulação upstream para placas de linhas de cabo d dulç u l d lh d b Íd Iduç é-u Ru lzd vçõ Iê lu u d l d dulç l d l d dulç (u) ódg DOI.-d ( d IO w d) ódg DOI.-d ( ) lu Adddu d l d dulç l d lh d lgd ( ) l d lh d M l d lh M Aêd A álul d h d l u - D Aêd

Leia mais

4. Análise de Sistemas de Controle por Espaço de Estados

4. Análise de Sistemas de Controle por Espaço de Estados Sisma para vrificação Lógica do Corolo Dzmro 3 4. ális d Sismas d Corol por Espaço d Esados No capiulo arior, vimos qu a formulação d um Prolma Básico d Corolo Ópimo Liar, ra cosidrado um sisma diâmico

Leia mais

Integrais. A integral indefinida de uma função f(t) é representada como. Por outro lado, a integral definida, representada como

Integrais. A integral indefinida de uma função f(t) é representada como. Por outro lado, a integral definida, representada como J. A. M. Flipp d Soz Igris (rsmo l) Igris A igrl idfiid d m fção f() é rprsd como f ( τ) Por oro ldo, igrl dfiid, rprsd como f ( τ), f ( τ) τ o f ( τ) dτ 3 d fz Som d Rim q clcl ár so crv m m irvlo m dfiido

Leia mais

1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2

1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2 Istituto Superior Técico Deprtmeto de Mtemátic Secção de Álgebr e Aálise o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBiom e MEFT o Sem. 00/ 5/J/0 - v. Durção: h30m RESOLUÇÃO. 6,0 vl. Determie um

Leia mais

4. VIBRAÇÃO FORÇADA - FORÇAS NÃO SENOIDAIS

4. VIBRAÇÃO FORÇADA - FORÇAS NÃO SENOIDAIS VIBRAÇÕES MEÂNIAS - APÍTULO VIBRAÇÃO ORÇADA 3. VIBRAÇÃO ORÇADA - ORÇAS NÃO SENOIDAIS No capíulo ao suou-s a vbação oçaa ssas co u gau lba, subos a oças cação oa soal. Es suo po s so paa aplcaçõs quao as

Leia mais

Salada de atum com sorbet de limão

Salada de atum com sorbet de limão Sd d t o sobt d ão Ess sd fo dos A vão os ngdnts o odo d fz: - Rú: só t o to bsâo, zt td d s; - At sdo: oo ç d t nt n fgd nt, dxndo 10 sgndos d do f b o dnto; - Lss d êndos: oo fgd nt o fo d zt té do;

Leia mais

CÁLCULO I 2º Semestre 2011/2012. Duração: 2 horas e 15 minutos

CÁLCULO I 2º Semestre 2011/2012. Duração: 2 horas e 15 minutos NOVA SHOOL OF BSINESS AND EONOMIS ÁLLO I º Ssr / EXAME ª ÉOA TÓIOS DE RESOLÇÃO Juho Duração: horas iuos Não é priido o uso d calculadoras Não pod dsagrafar as folhas do uciado Rspoda d fora jusificada

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Dprtnto Mtátic Disciplin Anális Mtátic II Curso Engnhri do Abint º Sstr º Fich nº 6: Equçõs difrnciis d vriávis sprds správis, totis cts, co fctor intgrnt hoogéns d ª ord. Coptição ntr spécis E hbitts

Leia mais

Ánálise de Fourier tempo discreto

Ánálise de Fourier tempo discreto Fculdd d Eghri Áális d Fourir tpo discrto 4.5.5.5.5.5.5 -.5 -.5 - - -8-6 -4-4 6 8 - - -5 5 5 5 SS MIEIC 8/9 Progr d SS Fculdd d Eghri Siis Sists uls Sists Lirs Ivrits uls Aális d Fourir (tpo cotíuo) uls

Leia mais

Vamos analisar o seguinte circuito trifásico: Esta aula:! Sistemas Trifásicos equilibrados com Transformador ideal

Vamos analisar o seguinte circuito trifásico: Esta aula:! Sistemas Trifásicos equilibrados com Transformador ideal EA6 Circuits FEEC UNCAMP Aul 6 Est ul:! Sistms Trifásics quilibrds cm Trnsfrmdr idl Nst ul nlisrms um sistm trifásic quilibrd cm trnsfrmdr Cm sistm é quilibrd, pdms nlisr circuit trifásic trtnd pns d um

Leia mais

TÉCNICAS DE INTEGRAÇÃO. 1.1 Integrais por Substituição Mudança de Variáveis

TÉCNICAS DE INTEGRAÇÃO. 1.1 Integrais por Substituição Mudança de Variáveis UFP VIRTUL Liccitr m Mtmátic Distâci Discipli: álclo Difrcil Irl II Prof Jorg ost Drt Filho Ttor: Moisés Vi F d Olivir TÉNIS DE INTEGRÇÃO Técics d Irção Iris por Sbstitição Mdç d Vriávis Sjm f g fçõs tis

Leia mais

Problemas de Electromagnetismo e Óptica LEAN + MEAer

Problemas de Electromagnetismo e Óptica LEAN + MEAer Pobls d logniso Ópi AN MA 7 Ópi P 7 (Pobl 3 do píulo do livo nodução à Físi d Dis d Dus l) O spo d opinos d ond p luz visívl vi n d 4x -9 (viol) 75x -9 (vlho) n qu vlos vi fquêni d luz visívl? n 75x 4

Leia mais

RESULTADO FINAL OPTATIVAS INTERCURSO

RESULTADO FINAL OPTATIVAS INTERCURSO Ç Ã B S F PVS S 2014/2 ome atrícula urso S GÇVS SG204104 SÇÃ ÊSS S P SG208080 G P H SG207287 BÁB G H SG204772 ÇÃ BY FGS SG207806 ÇÃ FÍS B S V SG207988 S - ÍG PGS PS S SG208360 QÍ V F SG204632 H V GÇVS

Leia mais

Hans Staden Luiz Antonio Aguiar PROJETO DE LEITURA. O autor. Romance histórico. Ficha Autor: Quadro sinóptico

Hans Staden Luiz Antonio Aguiar PROJETO DE LEITURA. O autor. Romance histórico. Ficha Autor: Quadro sinóptico Hs S Lz r J L r Lz r s 9, Jr. sr Lrr rslr, l -J, s sr lr lr sss, é rss rs lrárs, rr, rr, só Lr slr rl r fs rçã rçã lrár. rl r rrs sórs qrs ár l rk. s íls ls vrss rês ss lvrs, lsv J lr íl f- l Jvl, 99,

Leia mais

s t r r t r tr és r t t t

s t r r t r tr és r t t t s rã ê s r s t r r t r tr és r t t t ss rt çã r t çã r str r r t r ár r t Pr ss r 1 r rs s Pr s t r t úr Pr t r st rr Pr t r ã s Pr t r ár r t Novembro, 2015 s t r r t r tr és r t t t 2r t s rã ê s rs

Leia mais

a x Solução a) Usando a Equação de Schrödinger h m

a x Solução a) Usando a Equação de Schrödinger h m www.fsc.com.br Consdr m rtícl d mss m confnd ntr os ontos / /, q od s movr lvrmnt nst rgão o longo do o. Son q s rds q lmtm st rgão sjm comltmnt mntrávs (oço d otncl nfnto ndmnsonl) rtícl stá sbmtd m otncl

Leia mais

Adição dos antecedentes com os consequentes das duas razões

Adição dos antecedentes com os consequentes das duas razões Adição dos ntcdnts com os consqunts ds dus rzõs Osrv: 0 0 0 0, ou sj,, ou sj, 0 Otnh s trnsformds por mio d dição dos ntcdnts com os consqünts: ) ) ) 0 0 0 0 0 0 0 0 ) 0 0 0 0 ) 0 0 0 0 ) Osrv gor como

Leia mais

Física III Escola Politécnica GABARITO DA PR 28 de julho de 2011

Física III Escola Politécnica GABARITO DA PR 28 de julho de 2011 Físic III - 4320301 Escol Politécnic - 2011 GABARITO DA PR 28 de julho de 2011 Questão 1 () (1,0 ponto) Use lei de Guss pr clculr o vetor cmpo elétrico produzido por um fio retilíneo infinito com densidde

Leia mais

Sobre a obra: Sobre nós:

Sobre a obra: Sobre nós: Sobre a obra: A presente obra é disponibilizada pela equipe do ebook espírita com o objetivo de oferecer conteúdo para uso parcial em pesquisas e estudos, bem como o simples teste da qualidade da obra,

Leia mais

TRANSITÓRIOS MECÂNICOS DO MOTOR DE INDUÇÃO

TRANSITÓRIOS MECÂNICOS DO MOTOR DE INDUÇÃO CAPÍTULO 7 TRANSITÓRIOS MECÂNICOS DO MOTOR DE INDUÇÃO 7.1 INTRODUÇÃO Vaos cosderar o caso de u oor de dução dusral, aleado por esões rfáscas balaceadas. Tal oor e a caracerísca orque-velocdade represeada

Leia mais

Pêndulo de Torção. Objetivo: Introdução teórica. Estudar a dependência do memento de inércia de um corpo com relação à sua forma.

Pêndulo de Torção. Objetivo: Introdução teórica. Estudar a dependência do memento de inércia de um corpo com relação à sua forma. FEP Pêndulo de Torção nstituto de Físic d Universidde de São Pulo Pêndulo de Torção Objetivo: Estudr deendênci do eento de inérci de u coro co relção à su for. ntrodução teóric O torque é definido coo:

Leia mais

Procedimento do U.S.HCM2010

Procedimento do U.S.HCM2010 Eh Táo Poo o U.S.HM1 ál oo o, l (oo l o HM/1). íl ço o ção o ool zão /. íl ço /l ção o j (LoS So) V Tl 18-4,5 (HM1 ão l oo íl l ço o j é l ço lo áo) ál oção xl o oolo o EUA. o ção EMA, l à çõ áoo. oo o

Leia mais

Conversão de Energia I

Conversão de Energia I Deprtento de Engenhri Elétric Conversão de Energi Aul 5.5 Máquins de Corrente Contínu Prof. Clodoiro Unsihuy-Vil Bibliogrfi FTZGERALD, A. E., KNGSLEY Jr. C. E UMANS, S. D. Máquins Elétrics: co ntrodução

Leia mais

Física III Escola Politécnica Prova de Recuperação 21 de julho de 2016

Física III Escola Politécnica Prova de Recuperação 21 de julho de 2016 Físic III - 4220 Escol Politécnic - 2016 Prov de Recuperção 21 de julho de 2016 Questão 1 A cmd esféric n figur bixo tem um distribuição volumétric de crg dd por b O P ρ(r) = 0 pr r < α/r 2 pr r b 0 pr

Leia mais

conjunto dos números inteiros. conjunto dos números que podem ser representados como quociente de números inteiros.

conjunto dos números inteiros. conjunto dos números que podem ser representados como quociente de números inteiros. Cpítulo I Noçõs Eltrs d Mtátic. Oprçõs co frcçõs, Equçõs Iquçõs Tipos d úros {,,,,,6, } cojuto dos úros turis. 0 { 0} {,,,, 0,,,, } cojuto dos úros itiros., 0 0 p : p, q q cojuto dos úros rciois ou frccioários,

Leia mais

Agrupamento de Escolas Drª Laura Ayres

Agrupamento de Escolas Drª Laura Ayres cár rª r yrs, Qrtr, lé tífc-místc êcs clgs 11º 1 r fs Vz 15 X X X X X X X 9405 2 r s más 16 X X X X X X X 11481 3 r chz rt 16 X X X X X X X 11596 4 árbr f mrl rrã 15 X X X X X X X 11597 5 c f ckhm rrs

Leia mais

Diversão e cultura para a gurizada - Nº de outubro de é dia de comemorar

Diversão e cultura para a gurizada - Nº de outubro de é dia de comemorar Dvã l z - Nº 79-13 2013 AL I C E P S E EDIÇÃO á v ç é Pí, 13 2013.l.. 2 O f F çã jl O h çã E G Pv 15 Ró T C Cç f h ô çã ê lç l. Jé Alx Slv Jú, 8, E.M.E.F. Jã XXIII, Al Nv f v 7 8. Gl L, 10, GEO Tú, Jã

Leia mais

R F. R r. onde: F = 1 fóton/(cm 2 s) = 10 4 fótons/(m 2 s) λ R hc

R F. R r. onde: F = 1 fóton/(cm 2 s) = 10 4 fótons/(m 2 s) λ R hc Prob. : Ua lâada d sódo co oênca P W rrada nrga ( 589 n) unorn odas as drçõs. Quanos óons or sgundo (R) são dos la lâada? b) A qu dsânca da lâada ua la oaln absorn absor óons à razão (ou luo: F) d, óon/(c

Leia mais

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura.

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura. Cálculo I Aul 2 - Cálculo de Volumes Dt: 29/6/25 Objetivos d Aul: Clculr volumes de sólidos por seções trnsversis Plvrs-chves: Seções Trnsversis - Volumes Volume de um Cilindro Nosso objetivo nest unidde

Leia mais

CÁLCULO I. Aula n o 29: Volume. A(x i ) x = i=1. Para calcularmos o volume, procedemos da seguinte maneira:

CÁLCULO I. Aula n o 29: Volume. A(x i ) x = i=1. Para calcularmos o volume, procedemos da seguinte maneira: CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 29: Volume. Objetivos d Aul Clculr o volume de sólidos de revolução utilizndo o método

Leia mais

Soluções E-Procurement

Soluções E-Procurement Soluçõs -Procurm Móulos Vgs Aprsção Dspss Tomé A. Gl Jro/2003 Sumáro: Soluçõs - Procurm 2 Soluçõs - Procurm m xrp 3 Prcps Vgs 4 Solução 5 Móulo vgs 7 Móulo Rlóros Aprsção spss 8 Cls 9 Cocos Ús 10 www.scrgl.com

Leia mais

11.4 ANÁLISE TRIDIMENSIONAL DE EDIFÍCIOS - MODELO DE 3 GRAUS DE LIBERDADE POR PISO

11.4 ANÁLISE TRIDIMENSIONAL DE EDIFÍCIOS - MODELO DE 3 GRAUS DE LIBERDADE POR PISO .4 ANÁLISE RIDIMENSIONAL DE EDIFÍCIOS - MODELO DE 3 RAUS DE LIBERDADE POR PISO RIIDEZ INFINIA NO PLANO 3 grus e lbere / so v u z.4. ANÁLISE ESÁICA. DESLOCAMENOS, FORÇAS E EUAÇÕES DE EUILÍBRIO u v Desloceo

Leia mais

Computação Gráfica Interativa - Gattass 01/10/15

Computação Gráfica Interativa - Gattass 01/10/15 Coção Gáf I - G 0/0/5 Aoo d Ro d Ro P o o P o o Ição oção O q á f? A q dâ do oo? R T Coção Gáf I - G 0/0/5 So Oão Efo Po Gd d I ê do do o Idd do oo oo Foof D Pooo o éo XX! R T Coção Gáf I - G 0/0/5 C o

Leia mais

Messinki PUSERRUSLIITIN EM 10 MM PUSERRUSLIITIN EM 12 MM PUSERRUSLIITIN EM 15 MM PUSERRUSLIITIN EM 18 MM PUSERRUSLIITIN EM 22 MM

Messinki PUSERRUSLIITIN EM 10 MM PUSERRUSLIITIN EM 12 MM PUSERRUSLIITIN EM 15 MM PUSERRUSLIITIN EM 18 MM PUSERRUSLIITIN EM 22 MM Messinki Tuote LVI-numero Pikakoodi PUSERRUSLIITIN EM 1551002 XV87 PUSERRUSLIITIN EM PUSERRUSLIITIN EM PUSERRUSLIITIN EM PUSERRUSLIITIN EM PUSERRUSLIITIN EM PUSERRUSLIITIN EM 2 PUSERRUSLIITIN EM 35 MM

Leia mais

Teoria de Quadripolos. Teoria de Quadripolos. Teoria de Quadripolos. Teoria de Quadripolos Classificação dos quadripolos

Teoria de Quadripolos. Teoria de Quadripolos. Teoria de Quadripolos. Teoria de Quadripolos Classificação dos quadripolos -07-04 Qudriolo é u circuito eléctrico co dois teriis de etrd e dois teriis de síd. Neste disositivo são deterids s corretes e tesões os teriis de etrd e síd e ão o iterior do eso. Clssificção dos udriolos

Leia mais