Disciplina: Resistência dos Materiais Unidade V - Flexão. Professor: Marcelino Vieira Lopes, Me.Eng.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Disciplina: Resistência dos Materiais Unidade V - Flexão. Professor: Marcelino Vieira Lopes, Me.Eng."

Transcrição

1 Disciplina: Resistência dos Materiais Unidade V - Flexão Professor: Marcelino Vieira Lopes, Me.Eng.

2 Referência Bibliográfica Hibbeler, R. C. Resistência de materiais. 5.ed. São Paulo: Pearson, Provenza, F. ; Souza, H. R. Resistência dos Materiais. São Paulo: Pro-tec, Provenza, F. Projetista de Máquinas. São Paulo: Pro-tec, Callister, Willian D. Jr. Ciência e Engenharia de Materiais: Uma Introdução. 5.ed. Rio de Janeiro: LTC,

3 UNIDADE 5 FLEXÃO 3

4 Flexão Vigas e eixos são elementos estruturais e mecânicos importantes na engenharia. Nos próximos slides determinaremos os esforços provocados por flexão nesses elementos. Inicialmente serão vistos diagrama de força cortante e momento fletor para uma viga ou eixo. Uma vez determinado o momento interno em uma seção, podemos calcular o esforço de flexão e fazer assim o dimensionamento da viga ou do eixo. 4

5 Tipos de carregamentos 5

6 Diagrama de força cortante e momento fletor Normalmente uma viga ( ou eixo) não está submetida a apenas um tipo de esforço, como mostrado na figura abaixo: F1 A F2 A a F3 B F5 a F4 Como consequência, a seção aa, por exemplo, está submetidas as forças de tração, forças cisalhantes e momentos 6

7 Diagrama de força cortante e momento fletor Força cortante: a seção aa, por exemplo, está submetida a uma força cortante V, cujo sinal positivo é convencionado abaixo: A A a B Corte a-a: a A A V B A Análise do lado esquerdo, V para baixo V Análise do lado esquerdo, V para cima 7

8 Diagrama de força cortante e momento fletor Momento Fletor: a seção aa, por exemplo, está submetida a um momento fletor M, cujo sinal positivo é convencionado abaixo: A A a B a Corte a-a: A A A B M M Análise do lado esquerdo, M: Anti-horário Análise do lado esquerdo, M: horário 8

9 Diagrama de força cortante e momento fletor Exemplo 1. Faça o diagrama de forças cortantes e momento fletor da viga mostrada abaixo. 10N A B a C D b E 5N a 1,0m 1,0m 1,0m 1,0m 10N b 5N 9

10 Diagrama de força cortante e momento fletor Exemplo 1. Seção AA 10N 5N A A B a a C 1,0m 1,0m 1,0m 1,0m 10N B a N D b b E 5N Entre A e C: SFx=0 N=0 SFy=0 V-5=0 V=5N SM=0 M-5*1=0 M=5Nm ou M=5*x [Nm] 5N a 1,0m V M 10

11 Diagrama de força cortante e momento fletor Exemplo 1. Seção bb 10N 5N A A B a a C D b b 1,0m 1,0m 1,0m 1,0m 10N D b E N 5N Entre C e E: SFx=0 N=0 SFy=0 V-5+10=0 V=-5N SM=0 M-5*3+10*1=0 M=5Nm ou M=5*x 10*(x-2) [Nm] 5N 1,0m 1,0m 1,0m b V M 11

12 Diagrama de força cortante e momento fletor Exemplo 1. Diagramas 10N a b 5N V 5N a 1,0m 1,0m 1,0m 1,0m b 5N -5N M 10Nm 5Nm 12

13 Diagrama de força cortante e momento fletor Exemplo 2. Faça o diagrama de forças cortantes e momento fletor da viga mostrada abaixo. 13

14 Diagrama de força cortante e momento fletor Exemplo 2. Cálculo das reações M 0 M 0 /L M 0 /L SM=0 M-M 0 =0 M=M 0 Considerando as reações como um binário: M=Fxd M=F*L F=M/L ou F=M 0 /L 14

15 Diagrama de força cortante e momento fletor Exemplo 2. Entre A e B Entre A e B: SFy=0 V+M 0 /L=0 V=-M 0 /L SM=0 M + (M 0 /L)*x =0 M=-(M 0 /L)*x 15

16 Diagrama de força cortante e momento fletor Exemplo 2. Entre B e C Entre B e C: SFy=0 V+M 0 /L=0 V=-M 0 /L SM=0 M + (M 0 /L)*x M 0 =0 M=M 0 (1 - x/l) 16

17 Diagrama de força cortante e momento fletor Exemplo 2. Diagrama L/2 L/2 M 0 M 0 /L M 0 /L V -M 0 /L M M 0 /2 17 -M 0 /2

18 Diagrama de força cortante e momento fletor Exemplo 3. Faça o diagrama de forças cortantes e momento fletor da viga mostrada abaixo. 18

19 Diagrama de força cortante e momento fletor Exemplo 3. Cálculo das reações. R A R B SFy=0 RA + RB = w*l RA=RB RA=RB=w*L/2 19

20 Diagrama de força cortante e momento fletor Exemplo 3. R A =W*L/2 R B Força cortante N dv / dx = -w dv = -w. dx a M dv = - w. dx x V V = -w.x + C necessário incluir R A V = R A w.x V = wl/2 wx 20 V = w (L/2 x)

21 Diagrama de força cortante e momento fletor Exemplo 3. Momento dm / dx = V dm = V. dx R A =W*L/2 R B dm = V dx M = (R A w.x)dx N M = R A.dx - w.x.dx x a V M M =R A.x w.x 2 /2 M=wLx/2-wx 2 /2 M=w/2 * (xl x 2 ) 21

22 Diagrama de força cortante e momento fletor Exemplo 3. Diagramas V = w (L/2 x) M=w/2 * (xl x 2 ) V wl/2 M 10Nm wl 2 /8 -wl/2 22

23 Método Gráfico: Diagrama de força cortante e momento fletor 23

24 Método Gráfico: Diagrama de força cortante e momento fletor 24

25 Deformação por flexão de um elemento reto A seção transversal de uma viga reta permanece plana quando a viga se deforma por flexão. Isso provoca uma tensão de tração de um lado da viga e uma tensão de compressão do outro lado. 25

26 Deformação por flexão de um elemento reto 26

27 Deformação por flexão de um elemento reto A deformação longitudinal varia linearmente de zero no eixo neutro a um valor máximo no ponto mais afastado deste. A lei de Hooke se aplica quando o material e homogêneo. O eixo neutro passa pelo centroide da área da seção transversal. 27

28 Deformação por flexão de um elemento reto e um elemento reto 28

29 A fórmula da flexão s = E. e 29

30 A fórmula da flexão I σ = tensão normal M = momento interno I = momento de inércia y = distância perpendicular do eixo neutro c=distância perpendicular do eixo neutro a um ponto mais afastado do eixo neutro onde a tensão máxima 30

31 Momento de Inércia (I) 31

32 Exercício 1) Um elemento com as dimensões mostradas na figura devera ser usado para resistir a um momento fletor interno M=2kNm. Determine a tensão máxima no elemento (13,9MPa) 32

33 Exercício 2) A peça de mármore, que podemos considerar como um material linear elástico frágil, tem peso específico de 150lb/ft 3 (2402,8 kg/m 3 ) e espessura de 0,75in. Calcule a tensão de flexão máxima na peça se ela estiver apoiada (a) em seu lado e (b) em suas bordas. Se a tensão de ruptura for σ rup =200psi, explique as consequências de apoiar a peça em cada uma das posições. 1 ft (pé) = 0,3048 m 1 in (polegada) = 0,0254 m 1,00 lb (libra) = 0,4536 kg 1 psi = 6894,757 Pa SI: m, kg, N, Pa 33

34 Exercício 3) A viga simplesmente apoiada tem a área de seção transversal mostrada na figura abaixo. Determine a tensão de flexa o máxima absoluta na viga e represente a distribuição de tensa o na sec a o transversal nessa localizac a o. 34

35 Exercício 3) A viga simplesmente apoiada tem a área de seção transversal mostrada na figura abaixo. Determine a tensão de flexa o máxima absoluta na viga e represente a distribuição de tensa o na sec a o transversal nessa localizac a o. 35

36 Flexão Assimétrica Quando flexão ocorre em torno de um eixo arbitrário, que não os eixos de inércia principais ao longo do eixo de simetria da seção; Obtemos as componentes do momento, a tensão será dada pela superposição das tensões das componentes; Pela regra da mão direita; Notando que o eixo neutro (N) tem Inclinação α, e o M tem inclinação θ; 36

37 Vigas Compostas Vigas com dois materiais sa o comumente chamadas de vigas compostas e sa o projetadas de forma a desenvolver maneiras mais eficientes para resistir a s cargas aplicadas. Como a fórmula da flexão em vigas foi desenvolvida para o caso de materiais homogêneos, esta fórmula não pode ser aplicada diretamente para determinar as tensões de flexão em vigas compostas por diferentes materiais. Para estudar estes casos de viga, considere uma viga composta de dois diferentes materiais. 37

38 Vigas Compostas 38

39 Vigas Compostas <EI> = Integral da rigidez equivalente 39

40 Vigas Compostas Exemplo: A viga composta abaixo e sujeita a um momento fletor de M = 2 kn.m. Determine pelo me todo da rigidez equivalente as tensões nos pontos B e C se Eac o = 200 GPa e Emad = 12 GPa. 40

41 Vigas Compostas Exemplo: A viga composta abaixo e sujeita a um momento fletor de M = 2 kn.m. Determine pelo me todo da rigidez equivalente as tensões nos pontos B e C se Eac o = 200 GPa e Emad = 12 GPa. Matemática - Série Concursos Públicos Curso Prático & Objetivo c - Determinar as tensões: Ponto C: C E aço M EI y c ,87.10 ( 36,38) 12 C = 7,78 N/mm 2 = 7,78 Mpa Ponto B: B E mad B = -1,71 Mpa M EI y B ( , ,38) 41 Exemplo 6.8: Se o momento máximo no ski abaixo é 77,78 N.m, determine tensões de flexão no aço e na madeira se a seção transversal do ski é com

42 Vigas de concreto armado Todas as vigas submetidas a flexão pura devem resistir aos esforços de tração e compressão. O concreto, entretanto é muito suscetível a fraturas quando está sob tensão e, portanto, por si só não seria adequado para resistir a um momento fletor. A fim de contornar essa deficiência, os engenheiros colocam barras de aço, conforme abaixo: 42

43 Vigas Curvas Em uma viga maciça curva, de raio menor que 5 vezes a largura, a deformação normal não varia linearmente com a largura. (Tensão e deformação normal serão hiperbólicos) Como consequência o eixo neutro não passa pelo centroide. 43

44 Vigas Curvas A localização R do eixo neutro é dada por: Existem valores tabelados para algumas geometrias: 44

45 Vigas Curvas Observando um elemento no segmento superior, Vemos que este está sujeito à um tensão circunferencial σ equilibrada por componente tensão radial σ r (σ r é desprezível). A tensão normal circunferencial é então expressada por uma das duas fórmulas hiperbólicas abaixo: 45

46 Vigas Curvas A tensão normal circunferencial é então expressada por uma das duas fórmulas hiperbólicas abaixo: 46

47 Concentrações de Tensão Transformações bruscas na seção transversal de uma viga, fazem com que as tensões não sejam uniformemente distribuídas, conforme tem-se considerado até este ponto da matéria. Como consequência, tem-se pontos da viga com tensões muito superiores às tensões médias, a isto é dado o nome de concentrações de tensões: 47

48 Concentrações de Tensão Exemplos de descontinuidades na seção de uma viga que causa concentrações de tensões: A tensão máxima pode ser determinada utilizando-se um fator k tabelado: 48

49 Concentrações de Tensão: Fator K 49

50 Concentrações de Tensão A tensão normal de flexão admissível para a barra, mostrada abaixo, é 175 MPa. Determinar o momento máximo M que pode ser aplicado. 1. Determinar K 2. Determinar c, (direto c = 10/2 = 5mm) 3. Calcular I = bh 3 /12 4. M=s*I / (K.c) 50

51 Concentrações de Tensão A tensão normal de flexão admissível para a barra, mostrada abaixo, é 175 MPa. Determinar o momento máximo M que pode ser aplicado. K r/h = 1,5/10=0,15 w/h = 30/10 = 3 K =1,6 I = b.h 3 /12 I = 0,005*0,010 3 /12 I= 4,1667x10-10 m 4 M=s*I / (K.c) M = 175*10 6 *4,1667x10-10 / (1,6*0,005) M = 9,11N.m 51

Flexão. Diagramas de força cortante e momento fletor. Diagramas de força cortante e momento fletor

Flexão. Diagramas de força cortante e momento fletor. Diagramas de força cortante e momento fletor Capítulo 6: Flexão Adaptado pela prof. Dra. Danielle Bond Diagramas de força cortante e momento fletor Elementos delgados que suportam carregamentos aplicados perpendicularmente a seu eixo longitudinal

Leia mais

RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE II

RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE II RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE II Prof. Dr. Daniel Caetano 2012-2 Objetivos Conhecer as hipóteses simplificadoras na teoria de flexão Conceituar a linha neutra Capacitar para a localização da

Leia mais

ENG285 4ª Unidade 1. Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais.

ENG285 4ª Unidade 1. Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais. ENG285 4ª Unidade 1 Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais. Momento de Inércia (I) Para seção retangular: I =. Para

Leia mais

Tensão. Introdução. Introdução

Tensão. Introdução. Introdução Capítulo 1: Tensão Adaptado pela prof. Dra. Danielle Bond Introdução A resistência dos materiais é um ramo da mecânica que estuda as relações entre as cargas externas aplicadas a um corpo deformável e

Leia mais

Resistência dos. Materiais. Capítulo 3. - Flexão

Resistência dos. Materiais. Capítulo 3. - Flexão Resistência dos Materiais - Flexão cetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Flexão Pura Flexão Simples Flexão

Leia mais

Carregamentos Combinados

Carregamentos Combinados - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Carregamentos Combinados

Leia mais

Tensões de Flexão nas Vigas

Tensões de Flexão nas Vigas - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Tensões de Flexão nas Vigas

Leia mais

São as vigas que são fabricadas com mais de um material.

São as vigas que são fabricadas com mais de um material. - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Tensões em Vigas Tópicos

Leia mais

Capítulo 7 Cisalhamento

Capítulo 7 Cisalhamento Capítulo 7 Cisalhamento 7.1 Cisalhamento em elementos retos O cisalhamento V é o resultado de uma distribução de tensões de cisalhamento transversal que age na seção da viga. Devido à propriedade complementar

Leia mais

Várias formas da seção transversal

Várias formas da seção transversal Várias formas da seção transversal Seções simétricas ou assimétricas em relação à LN Com o objetivo de obter maior eficiência (na avaliação) ou maior economia (no dimensionamento) devemos projetar com

Leia mais

RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE III

RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE III RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE III Prof. Dr. Daniel Caetano 2012-2 Objetivos Conceituar a flexão assimétrica Conceituar a flexão oblíqua Determinar a posição da linha neutra em barras sob flexão

Leia mais

Resistência dos Materiais IV Lista de Exercícios Capítulo 3 Flexão de Peças Curvas

Resistência dos Materiais IV Lista de Exercícios Capítulo 3 Flexão de Peças Curvas Observações: 1 ft 304,8 mm 1 ksi 1000 lb/in 1 in 5,4 mm 1 ksi 1000 psi 1 ft 1 in 1 kip 1000 lb 1 psi 1 lb/in 6.131 O elemento curvo mostrado na figura é simétrico e esta sujeito ao momento fletor M600lb.ft.

Leia mais

Equações Diferenciais aplicadas à Flexão da Vigas

Equações Diferenciais aplicadas à Flexão da Vigas Equações Diferenciais aplicadas à Flexão da Vigas Page 1 of 17 Instrutor HEngholmJr Version 1.0 September 21, 2014 Page 2 of 17 Indice 1. CONCEITOS PRELIMINARES DA MECANICA.... 4 1.1. FORÇA NORMAL (N)...

Leia mais

Unisanta - Tópicos de Mecânica - Prof. Damin - Aula n.º - Data / / FLEXÃO SIMPLES. Introdução: Y lado tracionado X. lado tracionado.

Unisanta - Tópicos de Mecânica - Prof. Damin - Aula n.º - Data / / FLEXÃO SIMPLES. Introdução: Y lado tracionado X. lado tracionado. FLEÃO SIMPLES. Introdução: (Boanerges, 1980-S.D.) Como a força cortante não altera as tensões normais estamos aqui examinando as flexões pura normal e simples normal. Observando a seção transversal em

Leia mais

Conteúdo. Resistência dos Materiais. Prof. Peterson Jaeger. 3. Concentração de tensões de tração. APOSTILA Versão 2013

Conteúdo. Resistência dos Materiais. Prof. Peterson Jaeger. 3. Concentração de tensões de tração. APOSTILA Versão 2013 Resistência dos Materiais APOSTILA Versão 2013 Prof. Peterson Jaeger Conteúdo 1. Propriedades mecânicas dos materiais 2. Deformação 3. Concentração de tensões de tração 4. Torção 1 A resistência de um

Leia mais

RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica

RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica Centro Federal de Educação Tecnológica de Santa Catarina CEFET/SC Unidade Araranguá RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica Prof. Fernando H. Milanese, Dr. Eng. milanese@cefetsc.edu.br Conteúdo

Leia mais

Resistência dos Materiais

Resistência dos Materiais Aula 2 Tensão Normal Média e Tensão de Cisalhamento Média Tópicos Abordados Nesta Aula Definição de Tensão. Tensão Normal Média. Tensão de Cisalhamento Média. Conceito de Tensão Representa a intensidade

Leia mais

Exercícios de Resistência dos Materiais A - Área 3

Exercícios de Resistência dos Materiais A - Área 3 1) Os suportes apóiam a vigota uniformemente; supõe-se que os quatro pregos em cada suporte transmitem uma intensidade igual de carga. Determine o menor diâmetro dos pregos em A e B se a tensão de cisalhamento

Leia mais

Prof. MSc. David Roza José 1/19

Prof. MSc. David Roza José 1/19 1/19 Vasos de Pressão de Paredes Finas Vasos de pressão cilíndricos ou esféricos são comumente utilizados na indústria como tanques ou caldeiras. Quando sob pressão, o material do qual são feitos está

Leia mais

RESISTÊNCIA DOS MATERIAIS II CISALHAMENTO TRANSVERSAL PARTE I

RESISTÊNCIA DOS MATERIAIS II CISALHAMENTO TRANSVERSAL PARTE I RESISTÊNCIA DOS MATERIAIS II CISALHAMENTO TRANSVERSAL PARTE I Prof. Dr. Daniel Caetano 2012-2 Objetivos Conceituar cisalhamento transversal Compreender quando ocorre o cisalhamento transversal Determinar

Leia mais

Carga axial. Princípio de Saint-Venant

Carga axial. Princípio de Saint-Venant Carga axial Princípio de Saint-Venant O princípio Saint-Venant afirma que a tensão e deformação localizadas nas regiões de aplicação de carga ou nos apoios tendem a nivelar-se a uma distância suficientemente

Leia mais

TENSÕES DE FLEXÃO e de CISALHAMENTO EM VIGAS

TENSÕES DE FLEXÃO e de CISALHAMENTO EM VIGAS DIRETORIA ACADÊMICA DE CONSTRUÇÃO CIVIL Tecnologia em Construção de Edifícios Disciplina: Construções em Concreto Armado TENSÕES DE FLEXÃO e de CISALHAMENTO EM VIGAS Notas de Aula: Edilberto Vitorino de

Leia mais

Cisalhamento transversal

Cisalhamento transversal Capítulo 7: Cisalhamento transversal Adaptado pela prof. Dra. Danielle Bond Cisalhamento em elementos retos Vimos que por conta dos carregamentos aplicados, as vigas desenvolvem uma força de cisalhamento

Leia mais

Programa. Centroide Momentos de Inércia Teorema dos Eixos Paralelos. 2 Propriedades Geométricas de Áreas Planas

Programa. Centroide Momentos de Inércia Teorema dos Eixos Paralelos. 2 Propriedades Geométricas de Áreas Planas Propriedades Geométricas de Áreas Planas Programa 2 Propriedades Geométricas de Áreas Planas Centroide Momentos de Inércia Teorema dos Eixos Paralelos L Goliatt, M Farage, A Cury (MAC/UFJF) MAC-015 Resistência

Leia mais

Objetivo: Determinar a equação da curva de deflexão e também encontrar deflexões em pontos específicos ao longo do eixo da viga.

Objetivo: Determinar a equação da curva de deflexão e também encontrar deflexões em pontos específicos ao longo do eixo da viga. - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Deflexão de Vigas Objetivo:

Leia mais

Introdução cargas externas cargas internas deformações estabilidade

Introdução cargas externas cargas internas deformações estabilidade TENSÃO Introdução A mecânica dos sólidos estuda as relações entre as cargas externas aplicadas a um corpo deformável e a intensidade das cargas internas que agem no interior do corpo. Esse assunto também

Leia mais

Disciplina: Resistência dos Materiais Unidade I - Tensão. Professor: Marcelino Vieira Lopes, Me.Eng. http://profmarcelino.webnode.

Disciplina: Resistência dos Materiais Unidade I - Tensão. Professor: Marcelino Vieira Lopes, Me.Eng. http://profmarcelino.webnode. Disciplina: Resistência dos Materiais Unidade I - Tensão Professor: Marcelino Vieira Lopes, Me.Eng. http://profmarcelino.webnode.com/blog/ Referência Bibliográfica Hibbeler, R. C. Resistência de materiais.

Leia mais

Sumário e Objectivos. Mecânica dos Sólidos 18ªAula. Lúcia M.J. S. Dinis 2007/2008

Sumário e Objectivos. Mecânica dos Sólidos 18ªAula. Lúcia M.J. S. Dinis 2007/2008 Sumário e Objectivos Sumário: Método da Viga Conjugada. Objectivos da Aula: Ser capaz de determinar a flecha e a inclinação num ponto fazendo uso do Método da Viga Conjugada 1 Viga Flectida Estrutura de

Leia mais

RESISTÊNCIA DOS MATERIAIS II - Notas de Aulas

RESISTÊNCIA DOS MATERIAIS II - Notas de Aulas RESISTÊNCIA DOS MATERIAIS II - Notas de Aulas Prof. José Junio Lopes BIBLIOGRAFIA BÁSICA HIBBELER, Russell Charles. Resistência dos Materiais ed. São Paulo: Pearson Prentice Hall, 2009. 1 - CONCEITOS FUNDAMENTAIS

Leia mais

RESISTÊNCIA DOS MATERIAIS II 6º CICLO (EEM 6NA) Profa. Ms. Grace Kelly Quarteiro Ganharul

RESISTÊNCIA DOS MATERIAIS II 6º CICLO (EEM 6NA) Profa. Ms. Grace Kelly Quarteiro Ganharul RESISTÊNCIA DOS MATERIAIS II 6º CICLO (EEM 6NA) Profa. Ms. Grace Kelly Quarteiro Ganharul gracekellyq@yahoo.com.br grace.ganharul@aedu.com Graduação em Engenharia Mecânica Disciplina: RESISTÊNCIA DOS MATERIAIS

Leia mais

1 Introdução 3. 2 Estática de partículas Corpos rígidos: sistemas equivalentes SUMÁRIO. de forças 67. xiii

1 Introdução 3. 2 Estática de partículas Corpos rígidos: sistemas equivalentes SUMÁRIO. de forças 67. xiii SUMÁRIO 1 Introdução 3 1.1 O que é a mecânica? 4 1.2 Conceitos e princípios fundamentais mecânica de corpos rígidos 4 1.3 Conceitos e princípios fundamentais mecânica de corpos deformáveis 7 1.4 Sistemas

Leia mais

Curso de Engenharia Civil. Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil CAPÍTULO 3: FLEXÃO

Curso de Engenharia Civil. Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil CAPÍTULO 3: FLEXÃO Curso de Engenharia Civil Universidade Estadual de aringá Centro de Tecnologia Departamento de Engenharia Civil CÍTULO 3: FLEXÃO 3. Revisão de Esforços nternos étodo das Seção: 3. Revisão de Esforços nternos

Leia mais

Sumário. Introdução O conceito de tensão 1. Tensão e deformação Carregamento axial 49

Sumário. Introdução O conceito de tensão 1. Tensão e deformação Carregamento axial 49 1 Introdução O conceito de tensão 1 Introdução 2 1.1 Um breve exame dos métodos da estática 2 1.2 Tensões nos elementos de uma estrutura 4 1.3 Tensão em um plano oblíquo sob carregamento axial 25 1.4 Tensão

Leia mais

LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I

LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I A - Tensão Normal Média 1. Ex. 1.40. O bloco de concreto tem as dimensões mostradas na figura. Se o material falhar quando a tensão normal média atingir 0,840

Leia mais

Universidade Federal de Ouro Preto Escola de Minas DECIV. Superestrutura de Ferrovias. Aula 10 DIMENSIONAMENTO DE DORMENTES

Universidade Federal de Ouro Preto Escola de Minas DECIV. Superestrutura de Ferrovias. Aula 10 DIMENSIONAMENTO DE DORMENTES Universidade Federal de Ouro Preto Escola de Minas DECIV CIV 259 Aula 10 DIMENSIONAMENTO DE DORMENTES Universidade Federal de Ouro Preto Escola de Minas DECIV CIV 259 Universidade Federal de Ouro Preto

Leia mais

1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional = 4200 knm²

1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional = 4200 knm² CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA O ENADE 1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional 42 knm² Formulário: equação

Leia mais

Propriedades Geométricas de um seção Plana e Propriedades Mecânicas dos Materiais

Propriedades Geométricas de um seção Plana e Propriedades Mecânicas dos Materiais MKT-MDL-05 Versão 00 Propriedades Geométricas de um seção Plana e Propriedades Mecânicas dos Materiais Curso: Bacharelado em Engenharia Civil Turma: 5º Docente: Carla Soraia da Silva Pereira MKT-MDL-05

Leia mais

Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio NECE. Experimento de ensino baseado em problemas. Módulo 01: Análise estrutural de vigas

Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio NECE. Experimento de ensino baseado em problemas. Módulo 01: Análise estrutural de vigas Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio NECE Experimento de ensino baseado em problemas Módulo 01: Análise estrutural de vigas Aula 02: Estruturas com barras sob corportamento axial

Leia mais

, Equação ESFORÇO NORMAL SIMPLES 3.1 BARRA CARREGADA AXIALMENTE

, Equação ESFORÇO NORMAL SIMPLES 3.1 BARRA CARREGADA AXIALMENTE 3 ESFORÇO NORMAL SIMPLES O esforço normal simples ocorre quando na seção transversal do prisma atua uma força normal a ela (resultante) e aplicada em seu centro de gravidade (CG). 3.1 BARRA CARREGADA AXIALMENTE

Leia mais

RESISTÊNCIA DOS MATERIAIS CONTROLE DE QUALIDADE INDUSTRIAL Aula 03 TENSÃO

RESISTÊNCIA DOS MATERIAIS CONTROLE DE QUALIDADE INDUSTRIAL Aula 03 TENSÃO CONTROLE DE QUALIDADE INDUSTRIAL Tensão Tensão é ao resultado da ação de cargas externas sobre uma unidade de área da seção analisada na peça, componente mecânico ou estrutural submetido à solicitações

Leia mais

Professor: José Junio Lopes

Professor: José Junio Lopes Lista de Exercício Aula 3 TENSÃO E DEFORMAÇÃO A - DEFORMAÇÃO NORMAL 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada à viga provocar um deslocamento

Leia mais

Aula 03 Tensão; Tensão Normal Média em uma barra com carga axial

Aula 03 Tensão; Tensão Normal Média em uma barra com carga axial Aula 03 Tensão; Tensão Normal Média em uma barra com carga axial Prof. Wanderson S. Paris, M.Eng. prof@cronosquality.com.br Conceito de Tensão Representa a intensidade da força interna sobre um plano específico

Leia mais

Flexão. Tensões na Flexão. e seu sentido é anti-horário. Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras.

Flexão. Tensões na Flexão. e seu sentido é anti-horário. Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras. Flexão Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras. O estudo da flexão que se inicia, será dividido, para fim de entendimento, em duas partes: Tensões na flexão; Deformações

Leia mais

Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio. CIV 1111 Sistemas Estruturais na Arquitetura I

Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio. CIV 1111 Sistemas Estruturais na Arquitetura I Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio CIV 1111 Sistemas Estruturais na Arquitetura I Profa. Elisa Sotelino Prof. Luiz Fernando Martha Estruturas Submetidas à Flexão e Cisalhamento

Leia mais

RESISTÊNCIA DOS MATERIAIS AULAS 02

RESISTÊNCIA DOS MATERIAIS AULAS 02 Engenharia da Computação 1 4º / 5 Semestre RESISTÊNCIA DOS MATERIAIS AULAS 02 Prof Daniel Hasse Tração e Compressão Vínculos e Carregamentos Distribuídos SÃO JOSÉ DOS CAMPOS, SP Aula 04 Vínculos Estruturais

Leia mais

Caderno de Prova. Resistência dos Materiais. Universidade Federal Fronteira Sul. Edital n o 006/UFFS/ de maio. das 14 às 17 h.

Caderno de Prova. Resistência dos Materiais. Universidade Federal Fronteira Sul. Edital n o 006/UFFS/ de maio. das 14 às 17 h. Universidade Federal Fronteira Sul Edital n o 006/UFFS/2010 Caderno de Prova 23 de maio das 14 às 17 h 3 h* E6P14 Resistência dos Materiais Confira o número que você obteve no ato da inscrição com o que

Leia mais

LISTA DE EXERCÍCIOS ÁREA 1. Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02

LISTA DE EXERCÍCIOS ÁREA 1. Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02 LISTA DE EXERCÍCIOS ÁREA 1 Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02 Prof: Diego R. Alba 1. O macaco AB é usado para corrigir a viga defletida DE conforme a figura. Se a força compressiva

Leia mais

4 ENSAIO DE FLEXÃO. Ensaios Mecânicos Prof. Carlos Baptista EEL

4 ENSAIO DE FLEXÃO. Ensaios Mecânicos Prof. Carlos Baptista EEL 4 ENSAIO DE FLEXÃO Ensaio de Flexão: Bastante aplicado em materiais frágeis ou de alta dureza - Exemplos: cerâmicas estruturais, aços-ferramenta - Dificuldade de realizar outros ensaios, como o de tração

Leia mais

FLEXÃO COMPOSTA RETA E OBLÍQUA

FLEXÃO COMPOSTA RETA E OBLÍQUA Universidade Federal de Ouro Preto - Escola de Minas Departamento de Engenharia Civil CIV620-Construções de Concreto Armado FLEXÃO COMPOSTA RETA E OBLÍQUA Profa. Rovadávia Aline Jesus Ribas Ouro Preto,

Leia mais

Capítulo 5 Carga Axial

Capítulo 5 Carga Axial Capítulo 5 Carga Axial Resistência dos Materiais I SIDES 05 Prof. MSc. Douglas M. A. Bittencourt prof.douglas.pucgo@gmail.com Objetivos do capítulo Determinar a tensão normal e as deformações em elementos

Leia mais

RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I

RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I Prof. Dr. Daniel Caetano 2012-2 Objetivos Conhecer o princípio de Saint- Venant Conhecer o princípio da superposição Calcular deformações em elementos

Leia mais

Carga axial. Princípio de Saint-Venant. Princípio de Saint-Venant

Carga axial. Princípio de Saint-Venant. Princípio de Saint-Venant Capítulo 4: Carga axial Adaptado pela prof. Dra. Danielle Bond Princípio de Saint-Venant Anteriormente desenvolvemos os conceitos de: Tensão (um meio para medir a distribuição de força no interior de um

Leia mais

Capítulo 3: Propriedades mecânicas dos materiais

Capítulo 3: Propriedades mecânicas dos materiais Capítulo 3: Propriedades mecânicas dos materiais O ensaio de tração e compressão A resistência de um material depende de sua capacidade de suportar uma carga sem deformação excessiva ou ruptura. Essa propriedade

Leia mais

UFJF - Professores Elson Toledo e Alexandre Cury MAC003 - Resistência dos Materiais II LISTA DE EXERCÍCIOS 03

UFJF - Professores Elson Toledo e Alexandre Cury MAC003 - Resistência dos Materiais II LISTA DE EXERCÍCIOS 03 UFJF - Professores Elson Toledo e Alexandre Cury MAC003 - Resistência dos Materiais II LISTA DE EXERCÍCIOS 03 1. Em um ponto crítico de uma peça de aço de uma máquina, as componentes de tensão encontradas

Leia mais

MAC de outubro de 2009

MAC de outubro de 2009 MECÂNICA MAC010 26 de outubro de 2009 1 2 3 4 5. Equiĺıbrio de Corpos Rígidos 6. Treliças 7. Esforços internos Esforços internos em vigas VIGA é um elemento estrutural longo e delgado que é apoiado em

Leia mais

Prof. MSc. David Roza José -

Prof. MSc. David Roza José - 1/15 2/15 Torção Objetivos: Determinar a distribuição de tensão de um membro longilíneo circular sujeito a um carregamento torsional; Determinar o giro provocado a um membro longilíneo circular sujeito

Leia mais

O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal.

O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. CENTRÓIDES E MOMENTO DE INÉRCIA Centróide O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. De uma maneira bem simples: centróide

Leia mais

Professora: Engª Civil Silvia Romfim

Professora: Engª Civil Silvia Romfim Professora: Engª Civil Silvia Romfim CRITÉRIOS DE DIMENSIONAMENTO Flexão simples reta Flexão oblíqua Flexão composta Flexo-tração Flexo-compressão Estabilidade lateral de vigas de seção retangular Flexão

Leia mais

Capítulo 4 Propriedades Mecânicas dos Materiais

Capítulo 4 Propriedades Mecânicas dos Materiais Capítulo 4 Propriedades Mecânicas dos Materiais Resistência dos Materiais I SLIDES 04 Prof. MSc. Douglas M. A. Bittencourt prof.douglas.pucgo@gmail.com Propriedades Mecânicas dos Materiais 2 3 Propriedades

Leia mais

Lista de Exercício 3 Elastoplasticidade e Análise Liimite 18/05/2017. A flexão na barra BC ocorre no plano de maior inércia da seção transversal.

Lista de Exercício 3 Elastoplasticidade e Análise Liimite 18/05/2017. A flexão na barra BC ocorre no plano de maior inércia da seção transversal. Exercício 1 Para o sistema estrutural da figura 1a, para o qual os diagramas de momento fletor em AB e força normal em BC da solução elástica são indicados na figura 1b, estudar pelo método passo-a-passo

Leia mais

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I Prof. Dr. Daniel Caetano 2012-2 Objetivos Compreender o que é a deformação por torção Compreender os esforços que surgem devido à torção Determinar distribuição

Leia mais

Capítulo 2 Tração, compressão e cisalhamento

Capítulo 2 Tração, compressão e cisalhamento Capítulo 2 Tração, compressão e cisalhamento Resistência dos materiais I SLIDES 02 Prof. MSc. Douglas M. A. Bittencourt prof.douglas.pucgo@gmail.com 2.1 Cargas resultantes internas A distribuição de forças

Leia mais

Assunto: Principios da Resistencia dos Materiais Prof. Ederaldo Azevedo Aula 5 e-mail: ederaldoazevedo@yahoo.com.br 6.2 Tensão: Tensão: é ao resultado da ação de cargas sobre uma área da seção analisada

Leia mais

5 Resultados Experimentais

5 Resultados Experimentais 5 Resultados Experimentais 5.1. Introdução Neste capítulo são apresentados os resultados medidos dos dois testes experimentais em escala real realizados para a comparação dos resultados teóricos. 5.2.

Leia mais

Prof. MSc. David Roza José -

Prof. MSc. David Roza José - 1/14 2/14 Carga Axial Objetivos: Determinar a deformação de membros axialmente carregados; Encontrar reações de sistemas hiperestáticos com equações de compatibilidade de efeitos térmicos, de concentração

Leia mais

ESTRUTURAS METÁLICAS E DE MADEIRAS PROF.: VICTOR MACHADO

ESTRUTURAS METÁLICAS E DE MADEIRAS PROF.: VICTOR MACHADO ESTRUTURAS METÁLICAS E DE MADEIRAS PROF.: VICTOR MACHADO UNIDADE II - ESTRUTURAS METÁLICAS VIGAS DE ALMA CHEIA INTRODUÇÃO No projeto no estado limite último de vigas sujeitas à flexão simples calculam-se,

Leia mais

DIMENSIONAMENTO DAS ARMADURAS LONGITUDINAIS DE VIGAS T

DIMENSIONAMENTO DAS ARMADURAS LONGITUDINAIS DE VIGAS T DIMENSIONAMENTO DAS ARMADURAS LONGITUDINAIS DE VIGAS T Prof. Henrique Innecco Longo e-mail longohenrique@gmail.com b f h f h d d Departamento de Estruturas Escola Politécnica da Universidade Federal do

Leia mais

Resistência dos Materiais Eng. Mecânica, Produção UNIME Prof. Corey Lauro de Freitas, Fevereiro, 2016.

Resistência dos Materiais Eng. Mecânica, Produção UNIME Prof. Corey Lauro de Freitas, Fevereiro, 2016. Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.2 Prof. Corey Lauro de Freitas, Fevereiro, 2016. 1 Introdução: O conceito de tensão Conteúdo Conceito de Tensão Revisão de Estática Diagrama

Leia mais

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I. Capítulo 1 Tensão

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I. Capítulo 1 Tensão Capítulo 1 Tensão 1.1 - Introdução Resistência dos materiais é um ramo da mecânica que estuda as relações entre as cargas externas aplicadas a um corpo deformável e a intensidade das forças internas que

Leia mais

Mecânica Geral. Prof. Evandro Bittencourt (Dr.) Engenharia de Produção e Sistemas UDESC. 27 de fevereiro de 2008

Mecânica Geral. Prof. Evandro Bittencourt (Dr.) Engenharia de Produção e Sistemas UDESC. 27 de fevereiro de 2008 Mecânica Geral Prof Evandro Bittencourt (Dr) Engenharia de Produção e Sistemas UDESC 7 de fevereiro de 008 Sumário 1 Prof Evandro Bittencourt - Mecânica Geral - 007 1 Introdução 11 Princípios Fundamentais

Leia mais

CAPÍTULO 3 ESFORÇO CORTANTE

CAPÍTULO 3 ESFORÇO CORTANTE CAPÍTULO 3 ESFORÇO CORTANTE 1 o caso: O esforço cortante atuando em conjunto com o momento fletor ao longo do comprimento de uma barra (viga) com cargas transversais. É o cisalhamento na flexão ou cisalhamento

Leia mais

Professor: José Junio Lopes

Professor: José Junio Lopes A - Deformação normal Professor: José Junio Lopes Lista de Exercício - Aula 3 TENSÃO E DEFORMAÇÃO 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada

Leia mais

Nota de aula 15 - Flambagem

Nota de aula 15 - Flambagem Nota de aula 15 - Flambagem Flávia Bastos (retirado da apostila do rof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF 1o. semestre de 2011 Flávia Bastos RESMAT II 1/22 Informações sobre este documento:

Leia mais

CAPÍTULO VI FLEXÃO ELÁSTICA EM VIGAS

CAPÍTULO VI FLEXÃO ELÁSTICA EM VIGAS 1 CAPÍTULO VI FLEXÃO ELÁSTICA EM VIGAS I. ASPECTOS GERAIS As vigas empregadas nas edificações devem apresentar adequada rigidez e resistência, isto é, devem resistir aos esforços sem ruptura e ainda não

Leia mais

1.38. A luminária de 50 lb é suportada por duas hastes de aço acopladas por um anel em

1.38. A luminária de 50 lb é suportada por duas hastes de aço acopladas por um anel em 1.36. A luminária de 50 lb é suportada por duas hastes de aço acopladas por um anel em A. Determinar qual das hastes está sujeita à maior tensão normal média e calcular seu valor. Suponha que θ = 60º.

Leia mais

Capítulo 3 Propriedades Mecânicas dos Materiais

Capítulo 3 Propriedades Mecânicas dos Materiais Capítulo 3 Propriedades Mecânicas dos Materiais 3.1 O ensaio de tração e compressão A resistência de um material depende de sua capacidade de suportar uma carga sem deformação excessiva ou ruptura. Essa

Leia mais

Disciplinas: Mecânica dos Materiais 2 6º Período E Dinâmica e Projeto de Máquinas 2-10º Período

Disciplinas: Mecânica dos Materiais 2 6º Período E Dinâmica e Projeto de Máquinas 2-10º Período UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em Engenharia Mecânica Disciplinas: Mecânica dos Materiais 2 6º Período E Dinâmica e Projeto de Máquinas 2-10º Período Professor:

Leia mais

MECSOL34 Mecânica dos Sólidos I

MECSOL34 Mecânica dos Sólidos I MECSOL34 Mecânica dos Sólidos I Curso Superior em Tecnologia Mecatrônica Industrial 3ª fase Prof.º Gleison Renan Inácio Sala 9 Bl 5 joinville.ifsc.edu.br/~gleison.renan Tópicos abordados Conceito de Tensão

Leia mais

OBTENÇÃO DE TRAJETÓRIAS DE TENSÕES EM VIGAS DE CONCRETO ARMADO

OBTENÇÃO DE TRAJETÓRIAS DE TENSÕES EM VIGAS DE CONCRETO ARMADO OBTENÇÃO DE TRAJETÓRIAS DE TENSÕES EM VIGAS DE CONCRETO ARMADO Bruno Bandeira Brandão Graduando em Engenharia Civil pela Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brasil bruno.uerj@hotmail.com

Leia mais

Resistência dos Materiais. Aula 6 Estudo de Torção, Transmissão de Potência e Torque

Resistência dos Materiais. Aula 6 Estudo de Torção, Transmissão de Potência e Torque Aula 6 Estudo de Torção, Transmissão de Potência e Torque Definição de Torque Torque é o momento que tende a torcer a peça em torno de seu eixo longitudinal. Seu efeito é de interesse principal no projeto

Leia mais

Estruturas de concreto Armado II. Aula IV Flexão Simples Equações de Equilíbrio da Seção

Estruturas de concreto Armado II. Aula IV Flexão Simples Equações de Equilíbrio da Seção Estruturas de concreto Armado II Aula IV Flexão Simples Equações de Equilíbrio da Seção Fonte / Material de Apoio: Apostila Fundamentos do Concreto e Projeto de Edifícios Prof. Libânio M. Pinheiro UFSCAR

Leia mais

Dimensionamento de Estruturas em Aço. Parte 1. Módulo. 2ª parte

Dimensionamento de Estruturas em Aço. Parte 1. Módulo. 2ª parte Dimensionamento de Estruturas em Aço Parte 1 Módulo 2 2ª parte Sumário Módulo 2 : 2ª Parte Dimensionamento de um Mezanino Estruturado em Aço 1º Estudo de Caso Mezanino página 3 1. Cálculo da Viga V2 =

Leia mais

4 ESFORÇO DE FLEXÃO SIMPLES

4 ESFORÇO DE FLEXÃO SIMPLES 4 ESFORÇO DE FLEXÃO SIMPLES O esforço de flexão simples é normalmente resultante da ação de carregamentos transversais que tendem a curvar o corpo e que geram uma distribuição de tensões aproximadamente

Leia mais

teóricos necessários para se calcular as tensões e as deformações em elementos estruturais de projetos mecânicos.

teóricos necessários para se calcular as tensões e as deformações em elementos estruturais de projetos mecânicos. EME311 Mecânica dos Sólidos Objetivo do Curso: ornecer ao aluno os fundamentos teóricos necessários para se calcular as tensões e as deformações em elementos estruturais de projetos mecânicos. 1-1 EME311

Leia mais

CAPÍTULO 3: DIMENSIONAMENTO DE VIGAS

CAPÍTULO 3: DIMENSIONAMENTO DE VIGAS Curso de Engenharia Civil Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil CPÍTULO 3: DIMENSIONMENTO DE VIGS 3.1 - Introdução Escolher o material e as dimensões da

Leia mais

Curso de Dimensionamento de Pilares Mistos EAD - CBCA. Módulo

Curso de Dimensionamento de Pilares Mistos EAD - CBCA. Módulo Curso de Dimensionamento de Pilares Mistos EAD - CBCA Módulo 4 Sumário Módulo 4 Dimensionamento de Pilares Mistos 4.1. Considerações Gerais página 3 4.2. Critérios de dimensionamento página 3 4.3. Dimensionamento

Leia mais

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco. Lista de Exercícios - Sapatas

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco. Lista de Exercícios - Sapatas Lista de Exercícios - Sapatas 1 Dimensione uma sapata rígida para um pilar de dimensões 30 x 40, sendo dados: N k = 1020 kn; M k = 80 kn.m (em torno do eixo de maior inércia); A s,pilar = 10φ12,5 σ adm

Leia mais

4ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO ANÁLISE DE TENSÕES

4ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO ANÁLISE DE TENSÕES Universidade Federal da Bahia Escola Politécnica Departamento de Construção e Estruturas Disciplina: ENG285 - Resistência dos Materiais I-A Professor: Armando Sá Ribeiro Jr. www.resmat.ufba.br 4ª LISTA

Leia mais

Quarta Lista de Exercícios

Quarta Lista de Exercícios Universidade Católica de Petrópolis Disciplina: Resitência dos Materiais I Prof.: Paulo César Ferreira Quarta Lista de Exercícios 1. O tubo de aço (E s = 210 GPa) tem núcleo de alumínio (E a = 69 GPa)

Leia mais

(NBR 8800, Tabela C.1)

(NBR 8800, Tabela C.1) CE Estabilidade das Construções II FESP Faculdade de Engenharia São Paulo Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr. Nome: Matrícula ORIENTAÇÕES PARA PROVA Avaliação: A1 Data: 13/abr/

Leia mais

LISTA 3 EXERCÍCIOS SOBRE ENSAIOS DE COMPRESSÃO, CISALHAMENTO, DOBRAMENTO, FLEXÃO E TORÇÃO

LISTA 3 EXERCÍCIOS SOBRE ENSAIOS DE COMPRESSÃO, CISALHAMENTO, DOBRAMENTO, FLEXÃO E TORÇÃO LISTA 3 EXERCÍCIOS SOBRE ENSAIOS DE COMPRESSÃO, CISALHAMENTO, DOBRAMENTO, FLEXÃO E TORÇÃO 1. Uma mola, com comprimento de repouso (inicial) igual a 30 mm, foi submetida a um ensaio de compressão. Sabe-se

Leia mais

AULA: TORÇÃO EM VIGAS DE CONCRETO ARMADO

AULA: TORÇÃO EM VIGAS DE CONCRETO ARMADO UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONHA E MUCURI INSTITUTO DE CIÊNCIA, ENGENHARIA E TECNOLOGIA ENGENHARIA CIVIL ECV 313 ESTRUTURAS DE CONCRETO AULA: TORÇÃO EM VIGAS DE CONCRETO ARMADO ana.paula.moura@live.com

Leia mais

RESISTÊNCIA DOS MATERIAIS II 6º CICLO (EEM 6NA) Profa. Ms. Grace Kelly Quarteiro Ganharul

RESISTÊNCIA DOS MATERIAIS II 6º CICLO (EEM 6NA) Profa. Ms. Grace Kelly Quarteiro Ganharul RESISTÊNCIA DOS MATERIAIS II 6º CICLO (EEM 6NA) Profa. Ms. Grace Kelly Quarteiro Ganharul gracekellyq@yahoo.com.br Graduação em Engenharia Mecânica Disciplina: RESISTÊNCIA DOS MATERIAIS II * ANÁLISE DE

Leia mais

Resistência dos Materiais Teoria 2ª Parte

Resistência dos Materiais Teoria 2ª Parte Condições de Equilíbrio Estático Interno Equilíbrio Estático Interno Analogamente ao estudado anteriormente para o Equilíbrio Estático Externo, o Interno tem um objetivo geral e comum de cada peça estrutural:

Leia mais

Para efeito de cálculo o engastamento deve ser substituído por um tramo adicional biapoiado (barra fictícia = Barra 3)

Para efeito de cálculo o engastamento deve ser substituído por um tramo adicional biapoiado (barra fictícia = Barra 3) Exercício 1 Determinar os diagramas de esforços solicitantes para a viga abaixo pelo Equação dos Três Momentos. Determinar todos os pontos de momentos máximos. Calcular também as reações de apoio. Solução:

Leia mais

Professor: José Junio Lopes

Professor: José Junio Lopes Aula 2 - Tensão/Tensão Normal e de Cisalhamento Média; Tensões Admissíveis. A - TENSÃO NORMAL MÉDIA 1. Exemplo 1.17 - A luminária de 80 kg é sustentada por duas hastes, AB e BC, como mostra a Figura 1.17a.

Leia mais

TENSÃO NORMAL e TENSÃO DE CISALHAMENTO

TENSÃO NORMAL e TENSÃO DE CISALHAMENTO TENSÃO NORMAL e TENSÃO DE CISALHAMENTO 1) Determinar a tensão normal média de compressão da figura abaixo entre: a) o bloco de madeira de seção 100mm x 120mm e a base de concreto. b) a base de concreto

Leia mais

5ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO FLEXÃO

5ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO FLEXÃO Universidade Federal da Bahia Escola Politécnica Departamento de Construção e Estruturas Professor: Armando Sá Ribeiro Jr. Disciplina: ENG285 - Resistência dos Materiais I-A www.resmat.ufba.br 5ª LISTA

Leia mais

Momentos de Inércia de Superfícies

Momentos de Inércia de Superfícies PUC Goiás Curso: Engenharia Civil Disciplina: Mecânica dos Sólidos Corpo Docente: Geisa Pires Turma:----------- Plano de Aula Data: ------/--------/---------- Leitura obrigatória Mecânica Vetorial para

Leia mais

Mecânica Técnica e Resistência dos Materiais. Irineu Yassuda

Mecânica Técnica e Resistência dos Materiais. Irineu Yassuda Mecânica Técnica e Resistência dos Materiais Irineu Yassuda 2013 Definição de Resistência dos Materiais É um ramo da mecânica que estuda as relações entre cargas externas aplicadas a um corpo deformável

Leia mais