Probabilidade Aula 02

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Probabilidade Aula 02"

Transcrição

1 Probabilidade Aula 02 Magno T. M. Silva Escola Politécnica da USP Março de 2017

2 Sumário 2.3 Técnicas de contagem 2.4 Probabilidade condicional

3 2.3 Princípio fundamental da contagem Suponhamos que uma tarefa possa ser executada em duas etapas. Se a primeira etapa pode ser realizada de n maneiras e a segunda de m maneiras, então a tarefa completa pode ser executada de n m maneiras. Essa regra pode ser estendida para tarefas que podem ser executadas em k etapas, cada uma realizada de n i, i = 1,2,,k, maneiras. Neste caso, a tarefa completa pode ser executada de n 1 n 2 n k maneiras. Exemplo 8 (1.5.1 do Dantas) Desejamos ir da cidade A à cidade C. Os caminhos de A a C passam pela cidade B. Se há dois caminhos que ligam A a B e três caminhos que ligam B a C, de quantas maneiras podemos ir de A a C? Resolução: Se designarmos por 1 e 2 os caminhos que ligam A e B e por 3, 4 e 5 os caminhos que ligam B a C, então há seis caminhos que ligam A a C: 13, 14, 15, 23, 24 e 25.

4 Exemplo 9 (2.18 do Devore) Uma família mudou-se para uma cidade e precisa dos serviços de um obstetra e de um pediatra. Há duas cĺınicas e cada uma tem 2 obstetras e 3 pediatras. A família obterá benefícios máximos do plano de saúde se escolher uma cĺınica e selecionar dois de seus especialistas. De quantas formas isso pode ser feito?

5 2.3 Exemplo 9 (continuação) Resolução: Vamos representar os obstetras por O 1, O 2, O 3, O 4 e os pediatras por P 1,, P 6. Desejamos determinar o número de pares (O i,p j ) para os quais O i e P j estão associados à mesma cĺınica. Como há n 1 = 4 obstetras e para cada um há três escolhas possíveis de pediatras (n 2 = 3), a regra do produto fornece N = n 1 n 2 = 12 escolhas possíveis. O diagrama de árvore desse problema segue abaixo. P 1 O 1 O 2 O 3 O 4 P 2 P 3 P 1 P 2 P 3 P 4 P 5 P 6 P 4 P 5 P 6

6 2.3 Arranjos Uma amostra é dita ordenada se os seus elementos forem ordenados, isto é, se duas amostras com os mesmos elementos, porém em ordens distintas, forem consideradas diferentes. Um subconjunto ordenado é chamado arranjo. O número de arranjos (amostras ordenadas sem reposição) de tamanho n que pode ser criado a partir de N elementos em um grupo é igual a (N) n = N! = N(N 1) (N n+1) (N n)! O número de amostras ordenadas com reposição de tamanho n com N elementos é igual a N n.

7 2.3 Exemplo 10 (1.5.4 do Dantas) Considere o conjunto das quatro primeiras letras do alfabeto {a,b,c,d}. O número de amostras ordenadas sem reposição de tamanho 3 é igual a (4) 3 = = 24 O número de amostras ordenadas com reposição de tamanho 3 é igual a 4 3 = 64

8 2.3 Exemplo 11 (2.21 do Devore) Há 10 assistentes de professores disponíveis para correção de provas em um curso de cálculo. A P 1 consiste de 4 questões e o professor deseja selecionar um assistente diferente para corrigir cada uma (um assistente apenas por questão). De quantas formas diferentes os assistentes podem ser escolhidos para a correção?

9 2.3 Exemplo 11 resolução O tamanho do grupo é N = 10 e o tamanho do subconjunto é n = 4. O número de arranjos é (10) 4 = 10! (10 4)! = 10! = 10(9)(8)(7) = ! Há 5040 maneiras diferentes de escolher os assistentes para corrigir a P 1.

10 2.3 Exemplo 12 (1.5.6 do Dantas) Suponha que a data de nascimento de qualquer pessoa pode ser considerada igualmente distribuída entre os 365 dias de um ano. Se em uma sala existem n pessoas, qual a probabilidade de que todas tenham nascido em dias diferentes? Resolução: Vamos denotar esse evento por A. O número de conjuntos de n dias em que nasceram as n pessoas é igual ao número de amostras ordenadas com reposição de tamanho n de um conjunto com 365 elementos, que vale 365 n. Datas distintas de nascimento das n pessoas correspondem a amostras ordenadas sem reposição de tamanho n de um conjunto de 365 elementos, que vale (365) n. Assim, P(A) = (365) n 365 n = ( 1 1 )( 1 2 ) ( 1 n 1 )

11 2.3 Exemplo 12 (1.5.6 do Dantas) Evento A: todas as n pessoas tenham nascido em dias diferentes. Gráfico de P(A) em função do número de pessoas na sala P(A) n

12 2.3 Exemplo 13 (2.22 do Devore) Um MP3 player possui 100 músicas, 10 das quais são dos Beatles. Suponha que se utilize um recurso para tocar as músicas em ordem aleatória (cada música deve ser tocada apenas uma vez). Qual a probabilidade de que a primeira música ouvida dos Beatles seja a quinta música tocada?

13 2.3 Exemplo 13 resolução Para esse evento ocorrer, as primeiras quatro músicas tocadas não devem ser dos Beatles (NBs) e a quinta deve ser dos Beatles (B). O número de formas de selecionar as cinco primeiras músicas é 100(99)(98)(97)(96). O número de formas de selecionar essas cinco músicas de modo que as quatro primeiras sejam NBs e a próxima seja B é 90(89)(88)(87)(10) A probabilidade desejada é a proporção do número de resultados para que o evento de interesse ocorra para o número de resultados possíveis: P(1 a B é a 5 a música tocada) = = 0,068

14 2.3 Permutações Uma amostra ordenada sem reposição de tamanho n de um conjunto de n elementos será denominada permutação dos n elementos. O número de permutações de n elementos é igual a P n = n! Exemplo (Dantas): Considere o conjunto dos inteiros de 1 a 3. O número de permutações desse conjunto é P 3 = 6 e as permutações são as seguintes: 123, 132, 213, 231, 312, 321

15 2.3 Combinações Um subconjunto desordenado é chamado de combinação. O número de combinações (amostras não ordenadas sem reposição) de tamanho n que pode ser criado a partir de N elementos em um grupo é igual a (N) n P n = ( N n ) = (N) n n! = N! n!(n n)! = C N,n

16 2.3 Exemplo 14 (2.23 do Devore) Um escola de engenharia recebeu 25 impressoras, das quais 10 são a laser e 15 são jato de tinta. Se 6 das 25 forem selecionadas aleatoriamente para serem verificadas por um técnico, qual a probabilidade de 3 delas serem a laser?

17 2.3 Exemplo 14 resolução Seja o evento D 3 = {exatamente 3 das 6 selecionadas são impressoras a laser} Assumindo equiprobabilidade de eventos, temos em que Assim, P(D 3 ) = N(D 3) N ( ) 25 N = 6 ( )( N(D 3 ) = 3 3 ( 15 )( 10 ) ) P(D 3 ) = N(D 3) N = 3 3 ( ) = 0,

18 2.3 Exemplo 15 ( do Dantas) No jogo do pôquer com quatro participantes, é comum usar 32 cartas. As cartas pertencem a um conjunto de quatro naipes, a saber: paus, espadas, ouros e copas. As denominações das cartas são: sete, oito, nove, dez, valete, dama, rei e ás. Numa primeira etapa são dadas cinco cartas a cada jogador. Consideremos as cartas dadas a um jogador na primeira etapa. Qual a probabilidade de ele receber um par de ases e três outras cartas distintas?

19 2.3 Exemplo 15 ( do Dantas) resolução O espaço amostral é o conjunto das amostras não ordenadas sem reposição de tamanho 5 de um conjunto de 32, ou seja ( ) Vamos denotar evento A : o jogador recebe um par de ases e três cartas distintas. ( ) 4 Podemos selecionar os dois ases de maneiras. 2 As outras três cartas (que não ( devem ) ser ases e dever ser distintas) 7 podem ser selecionadas de 4 3. Assim, 3 ( )( ) P(A) = ( ) = 0,

20 Probabilidade Condicional Para quaisquer dois eventos A e B com P(B) > 0, a probabilidade condicional de A dado que ocorreu B é definida por P(A B) = P(A B) P(B)

21 Probabilidade Condicional Exemplo 16 (2.24 do Devore) Uma fábrica de componentes eletrônicos usa duas linhas de montagem diferentes: A e A. A linha A usa equipamentos mais antigos que A, de forma que é mais lenta e um pouco menos confiável. Suponha que, em um determinado dia, a linha A tenha montado 8 componentes, dos quais 2 foram identificados como defeituosos (B) e 6 como não defeituosos (B ), ao passo que a linha A produziu 1 defeituoso e 9 não defeituosos. condição linha B B A 2 6 A 1 9 O gerente de vendas seleciona aleatoriamente 1 desses 18 componentes para uma demonstração. Perguntas: Qual a probabilidade do componente selecionado ser da linha A? Dado que o componente selecionado apresentou defeito, qual a probabilidade de ser da linha A?

22 Probabilidade Condicional Exemplo 16 (2.24 do Devore) Resolução: Antes da demonstração P(componente selecionado da linha A) = P(A) = 8 18 = 0,44. Se o componente escolhido tiver defeito, o evento B terá ocorrido, ou seja, P(A B) = 2 3 = 2/18 3/18 = P(A B) P(B)

23 Probabilidade Condicional Exemplo 17 (2.25 do Devore) Suponha que de todos os indivíduos que compram uma determinada câmera digital, 60% incluam um cartão de memória opcional na compra, 40% incluam uma bateria extra e 30% incluam um cartão e uma bateria. Considere a seleção aleatória de um comprador e sejam A = {compra de um cartão de memória} P(A) = 0,6 B = {compra de bateria} P(B) = 0,4 C = {compra de ambos} P(A B) = 0,3 Perguntas: Dado que o indivíduo selecionado comprou uma bateria extra, qual a probabilidade de compra de um cartão de memória opcional? Dado que o indivíduo selecionado comprou um cartão de memória opcional, qual a probabilidade de compra de uma bateria extra?

24 Probabilidade Condicional Exemplo 17 (2.25 do Devore) Resolução: P(cartão comprou bateria extra) = P(A B) = P(A B) P(B) = 0,30 0,40 = 0,75 De todos que compraram bateria extra, 75% compraram um cartão de memória opcional. Analogamente, P(bateria extra cartão de memória)=p(b A)= P(B A) = 0,30 P(A) 0,60 =0,50 De todos que compraram cartão de memória, 50% compraram uma bateria extra. Note que P(A B) P(A) e P(B A) P(B)

25 Regra da multiplicação para P(A B) Da definição de probabilidade condicional, obtemos: P(A B) = P(A B) P(B) = P(B A) P(A)

26 Regra da multiplicação Exemplo 18 (2.27 do Devore) Quatro indivíduos responderam a uma solicitação de um banco de sangue para doação. Nenhum deles doou sangue antes, de forma que seus tipos sanguíneos são desconhecidos. Suponha que apenas o tipo O + seja desejado e apenas um dos quatro indivíduos tenha esse tipo sanguíneo. Se os doadores potenciais forem selecionados em ordem aleatória para determinação do tipo sanguíneo, responda: qual a probabilidade de que pelo menos três indivíduos tenham de ser testados para obtenção do tipo desejado? qual a probabilidade do tipo de sangue do terceiro indivíduo ser O +?

27 Regra da multiplicação Exemplo 18 (2.27 do Devore) Resolução: Fazendo a identificação B = {primeiro tipo não O + } P(B) = 3 4 A = {segundo tipo não O + } Dado que o primeiro não é O +, dois dos três indivíduos restantes não serão O +, de forma que P(A B) = 2 3 Pela regra da multiplicação, obtemos: P(pelo menos três indivíduos tenham de ser testados) = P(A B) = P(A B) P(B) = = 6 12 = 0,5

28 Regra de multiplicação Exemplo 18 (2.27 do Devore) Podemos estender a regra para experimentos que envolvem mais de duas etapas, ou seja, P(A 1 A 2 A 3 ) = P(A 3 A 1 A 2 ) P(A 1 A 2 ) = P(A 3 A 1 A 2 ) P(A 2 A 1 ) P(A 1 ) A 1 ocorre primeiro, seguido por A 2 e finalmente por A 3. Voltando ao Exemplo 18 (2.27 do Devore): P(terceiro indivíduo O + ) = P(terceiro O + primeiro não O + e segundo não O + ) P(segundo não O + primeiro não O + ) P(primeiro não O + ) = = 1 4 = 0,25

29 Partição Uma partição de S é uma coleção de conjuntos disjuntos cuja união é S. Exemplo:S = A 1 A 2 A 3 A 4. Seja o evento B em S, então: B = B S = B (A 1 A 2 A 3 A 4 ) = (B A 1 ) (B A 2 ) (B A 3 ) (B A 4 ) A 1 A 3 B A 2 A 4 S

30 Teorema da Probabilidade total Sejam A 1,,A k eventos mutuamente exclusivos e exaustivos (partição de S). Então, para qualquer outro evento B em S, P(B) = k P(A i B) = P(A 1 B)+ +P(A k B) i=1 = P(B A 1 )P(A 1 )+ +P(B A k )P(A k ) = k P(B A i )P(A i ) i=1

31 Probabilidade total Exemplo 19 (2.30 do Devore) Um indivíduo possui 3 contas de diferentes, de modo que 70% de suas mensagens chega à Conta 1 e dessas 1% é spam 20% chega à Conta 2, sendo que dessas 2% é spam 10% chega à Conta 3 e dessas 5% é spam Qual a probabilidade de uma mensagem selecionada aleatoriamente ser spam?

32 Probabilidade total Exemplo 19 (2.30 do Devore) Resolução: Considere a notação A i = {mensagem é da Conta i}, para i = 1,2,3 B = {mensagem é spam} Do enunciado, obtemos P(A 1 ) = 0,7, P(A 2 ) = 0,2, P(A 3 ) = 0,1 P(B A 1 ) = 0,01, P(B A 2 ) = 0,02, P(B A 3 ) = 0,05 Usando o teorema da probabilidade total, obtemos P(B) = (0,01)(0,70) +(0,02)(0,20) +(0,05)(0,10) = 0,016 1,6% das mensagens do indivíduo é spam.

Probabilidade ESQUEMA DO CAPÍTULO. UFMG-ICEx-EST Cap. 2- Probabilidade 1

Probabilidade ESQUEMA DO CAPÍTULO. UFMG-ICEx-EST Cap. 2- Probabilidade 1 Probabilidade ESQUEMA DO CAPÍTULO 2.1 ESPAÇOS AMOSTRAIS E EVENTOS 2.2 INTERPRETAÇÕES DE PROBABILIADE 2.3 REGRAS DE ADIÇÃO 2.4 PROBABILIDADE CONDICIONAL 2.5 REGRAS DA MULTIPLICAÇÃO E DA PROBABILIDADE TOTAL

Leia mais

Aula 6 Revisão de análise combinatória

Aula 6 Revisão de análise combinatória Aula 6 Revisão de análise combinatória Conforme você verá na próxima aula, a definição clássica de probabilidade exige que saibamos contar o número de elementos de um conjunto. Em algumas situações, é

Leia mais

INTRODUÇÃO À PROBABILIDADE

INTRODUÇÃO À PROBABILIDADE INTRODUÇÃO À PROBABILIDADE Foto extraída em http://www.alea.pt Profª Maria Eliane Universidade Estadual de Santa Cruz USO DE PROBABILIDADES EM SITUAÇÕES DO COTIDIANO Escolhas pessoais Previsão do tempo

Leia mais

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e):

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Adição de probabilidades O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Dois eventos A e B são ditos mutuamente exclusivos se, e somente se, A B

Leia mais

Introdução à Probabilidade - parte III

Introdução à Probabilidade - parte III Introdução à Probabilidade - parte III Erica Castilho Rodrigues 02 de Outubro de 2012 Eventos Independentes 3 Eventos Independentes Independência Em alguns casos podemos ter que P(A B) = P(A). O conhecimento

Leia mais

Processos Estocásticos. Luiz Affonso Guedes

Processos Estocásticos. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Variáveis Aleatórias Funções de Uma Variável Aleatória Funções de Várias Variáveis Aleatórias Momentos e Estatística Condicional Teorema

Leia mais

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Dois ou mais eventos são mutuamente exclusivos, ou disjuntos, se os mesmos não podem ocorrer simultaneamente. Isto é, a ocorrência de um

Leia mais

NOÇÕES DE PROBABILIDADE

NOÇÕES DE PROBABILIDADE NOÇÕES DE PROBABILIDADE ALEATORIEDADE Menino ou Menina me? CARA OU COROA? 3 Qual será o rendimento da Caderneta de Poupança no final deste ano? E qual será a taxa de inflação acumulada em 014? Quem será

Leia mais

PROBABILIDADE E ESTATÍSTICA PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA PROBABILIDADES PROBABILIDADE E ESTATÍSTICA PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Revisando - Análise combinatória

Leia mais

ELEMENTOS DE PROBABILIDADE. Prof. Paulo Rafael Bösing 25/11/2015

ELEMENTOS DE PROBABILIDADE. Prof. Paulo Rafael Bösing 25/11/2015 ELEMENTOS DE PROBABILIDADE Prof. Paulo Rafael Bösing 25/11/2015 ELEMENTOS DE PROBABILIDADE Def.: Um experimento é dito aleatório quando o seu resultado não for previsível antes de sua realização, ou seja,

Leia mais

PROBABILIDADE E ESTATÍSTICA PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA PROBABILIDADES PROBABILIDADE E ESTATÍSTICA PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Revisando - Análise combinatória

Leia mais

Prof.Letícia Garcia Polac. 26 de setembro de 2017

Prof.Letícia Garcia Polac. 26 de setembro de 2017 Bioestatística Prof.Letícia Garcia Polac Universidade Federal de Uberlândia UFU-MG 26 de setembro de 2017 Sumário 1 2 Probabilidade Condicional e Independência Introdução Neste capítulo serão abordados

Leia mais

Processos Estocásticos. Introdução. Probabilidade. Introdução. Espaço Amostral. Luiz Affonso Guedes. Fenômenos Determinísticos

Processos Estocásticos. Introdução. Probabilidade. Introdução. Espaço Amostral. Luiz Affonso Guedes. Fenômenos Determinísticos Processos Estocásticos Luiz ffonso Guedes Sumário Probabilidade Variáveis leatórias Funções de Uma Variável leatória Funções de Várias Variáveis leatórias Momentos e Estatística Condicional Teorema do

Leia mais

Conceitos básicos de teoria da probabilidade

Conceitos básicos de teoria da probabilidade Conceitos básicos de teoria da probabilidade Experimento Aleatório: procedimento que, ao ser repetido sob as mesmas condições, pode fornecer resultados diferentes Exemplos:. Resultado no lançamento de

Leia mais

3 NOÇÕES DE PROBABILIDADE

3 NOÇÕES DE PROBABILIDADE 3 NOÇÕES DE PROILIDDE 3.1 Conjuntos Um conjunto pode ser considerado como uma coleção de objetos chamados elementos do conjunto. Em geral denota-se conjunto por letras maiúsculas,, C,... e a sua representação

Leia mais

Técnicas de Contagem I II III IV V VI

Técnicas de Contagem I II III IV V VI Técnicas de Contagem Exemplo Para a Copa do Mundo 24 países são divididos em seis grupos, com 4 países cada um. Supondo que a escolha do grupo de cada país é feita ao acaso, calcular a probabilidade de

Leia mais

Sumário. 2 Índice Remissivo 12

Sumário. 2 Índice Remissivo 12 i Sumário 1 Definições Básicas 1 1.1 Fundamentos de Probabilidade............................. 1 1.2 Noções de Probabilidade................................ 3 1.3 Espaços Amostrais Finitos...............................

Leia mais

Probabilidade - aula II

Probabilidade - aula II 25 de Março de 2014 Interpretações de Probabilidade Amostras Aleatórias e Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades de eventos conjuntos. Interpretar e calcular

Leia mais

Probabilidade - aula II

Probabilidade - aula II 2012/02 1 Interpretações de Probabilidade 2 3 Amostras Aleatórias e Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades de eventos conjuntos. Interpretar e calcular probabilidades

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 5 09/2014 Probabilidade Espaços Amostrais e Eventos Probabilidade e Estatística 3/41 Experimentos Aleatórios Experimento

Leia mais

PROBABILIDADE. Aula 2 Probabilidade Básica. Fernando Arbache

PROBABILIDADE. Aula 2 Probabilidade Básica. Fernando Arbache PROBABILIDADE Aula 2 Probabilidade Básica Fernando Arbache Probabilidade Medida da incerteza associada aos resultados do experimento aleatório Deve fornecer a informação de quão verossímil é a ocorrência

Leia mais

Probabilidade Básica. Capítulo 1 EXPERIMENTOS ALEATÓRIOS ESPAÇOS AMOSTRAIS

Probabilidade Básica. Capítulo 1 EXPERIMENTOS ALEATÓRIOS ESPAÇOS AMOSTRAIS Capítulo 1 Probabilidade Básica EXPERIMENTOS ALEATÓRIOS Todos estão familiarizados com a importância dos experimentos na ciência e na engenharia. A experimentação é útil porque podemos presumir que, se

Leia mais

Eisencraft e Loiola 2.1 Probabilidade 37. Para resolver problemas de probabilidades são necessários 3 passos:

Eisencraft e Loiola 2.1 Probabilidade 37. Para resolver problemas de probabilidades são necessários 3 passos: Eisencraft e Loiola 2.1 Probabilidade 37 Modelo matemático de experimentos Para resolver problemas de probabilidades são necessários 3 passos: a Estabelecimento do espaço das amostras b Definição dos eventos

Leia mais

Probabilidade. Prof. Paulo Cesar F. de Oliveira, BSc, PhD

Probabilidade. Prof. Paulo Cesar F. de Oliveira, BSc, PhD Prof. Paulo Cesar F. de Oliveira, BSc, PhD 1 Seção 3.1 Conceitos básicos de probabilidade 2 ² Experimento de ² Uma ação, ou tentativa, por meio do qual resultados específicos (i.e. contagens, medições

Leia mais

Aula de Exercícios - Teorema de Bayes

Aula de Exercícios - Teorema de Bayes Aula de Exercícios - Teorema de Bayes Organização: Rafael Tovar Digitação: Guilherme Ludwig Primeiro Exemplo - Estagiários Três pessoas serão selecionadas aleatóriamente de um grupo de dez estagiários

Leia mais

2 Conceitos Básicos de Probabilidade

2 Conceitos Básicos de Probabilidade CE003 1 1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento de técnicas estatísticas

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Capítulo 2 Teoria das Probabilidades 2.1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento

Leia mais

AULA 08 Probabilidade

AULA 08 Probabilidade Cursinho Pré-Vestibular da UFSCar São Carlos Matemática Professora Elvira e Monitores Ana Carolina e Bruno AULA 08 Conceitos e assuntos envolvidos: Espaço amostral Evento Combinação de eventos Espaço Amostral

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Primeira Lista de Exercícios de junho de 0 Quantos códigos de quatro letras podem ser construídos usando-se as letras a, b, c, d, e, f se: a nenhuma letra puder ser repetida? b qualquer

Leia mais

Probabilidade Condicional. Prof.: Ademilson

Probabilidade Condicional. Prof.: Ademilson Probabilidade Condicional Prof.: Ademilson Operações com eventos Apresentam-se abaixo algumas propriedades decorrentes de complementação, união e interseção de eventos, úteis no estudo de probabilidade.

Leia mais

Estatística Empresarial. Fundamentos de Probabilidade

Estatística Empresarial. Fundamentos de Probabilidade Fundamentos de Probabilidade A probabilidade de chuva é de 90% A probabilidade de eu sair é de 5% Conceitos Básicos Conceitos Básicos 1. Experiência Aleatória (E) Processo de obtenção de uma observação

Leia mais

TE802 Processos Estocásticos em Engenharia. Informação sobre a disciplina Notes. Processos Estocásticos em Engenharia Conteúdo Notes.

TE802 Processos Estocásticos em Engenharia. Informação sobre a disciplina Notes. Processos Estocásticos em Engenharia Conteúdo Notes. TE802 Processos Estocásticos em Engenharia Conceitos Básicos de Teoria de Probabilidade 7 de março de 2016 Informação sobre a disciplina Terças e Quintas feiras das 09:30 às 11:20 horas Professor: Evelio

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística. Probabilidade

UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística. Probabilidade UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística Probabilidade Disciplina: Cálculo das Probabilidades e Estatística I Prof. Tarciana Liberal Existem muitas situações que envolvem incertezas:

Leia mais

Tipos de Modelo. Exemplos. Modelo determinístico. Causas. Efeito. Exemplos. Modelo probabilístico. Causas. Efeito. Determinístico.

Tipos de Modelo. Exemplos. Modelo determinístico. Causas. Efeito. Exemplos. Modelo probabilístico. Causas. Efeito. Determinístico. Tipos de Modelo Sistema Real Determinístico Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Probabilístico Modelo determinístico Exemplos Gravitação F GM 1 M 2 /r 2 Causas Efeito

Leia mais

ESTATÍSTICA I PROBABILIDADE. Aulas 3 e 4 Professor Regina Meyer Branski

ESTATÍSTICA I PROBABILIDADE. Aulas 3 e 4 Professor Regina Meyer Branski ESTATÍSTICA I PROBABILIDADE Aulas 3 e 4 Professor Regina Meyer Branski Probabilidade 1. Conceitos básicos de probabilidade 2. Probabilidade Condicional 3. Eventos Dependentes e Independentes 4. Regra da

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aulas passadas Motivação Espaço Amostral, Eventos, Álgebra de eventos Aula de hoje Probabilidade Análise Combinatória Independência Probabilidade Experimentos

Leia mais

1.4.2 Probabilidade condicional

1.4.2 Probabilidade condicional M. Eisencraft 1.4 Probabilidades condicionais e conjuntas 9 Portanto, P(A B) = P(A)+P(B) P(A B) (1.2) Para eventos mutuamente exclusivos, P(A B) = e P(A)+P(B) = P(A B). 1.4.2 Probabilidade condicional

Leia mais

2 a Lista de PE Solução

2 a Lista de PE Solução Universidade de Brasília Departamento de Estatística 2 a Lista de PE Solução 1. a Ω {(d 1, d 2, m : d 1, d 2 {1,..., 6}, m {C, K}}, onde C coroa e K cara. b Ω {0, 1, 2,...} c Ω {(c 1, c 2, c 3, c 4 : c

Leia mais

Roteiro D. Nome do aluno: Número: Revisão. Combinações;

Roteiro D. Nome do aluno: Número: Revisão. Combinações; Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Roteiro D Nome do aluno: Número: Periodo: Grupo: Revisão Tópicos Tarefa Pesquisar história do Fatorial e outros tipos

Leia mais

MATEMÁTICA MÓDULO 4 PROBABILIDADE

MATEMÁTICA MÓDULO 4 PROBABILIDADE PROBABILIDADE Consideremos um experimento com resultados imprevisíveis e mutuamente exclusivos, ou seja, cada repetição desse experimento é impossível prever com certeza qual o resultado que será obtido,

Leia mais

CAPÍTULO 3 PROBABILIDADE

CAPÍTULO 3 PROBABILIDADE CAPÍTULO 3 PROBABILIDADE 1. Conceitos 1.1 Experimento determinístico Um experimento se diz determinístico quando repetido em mesmas condições conduz a resultados idênticos. Exemplo 1: De uma urna que contém

Leia mais

Noções sobre Probabilidade

Noções sobre Probabilidade Noções sobre Probabilidade Introdução Vimos anteriormente como apresentar dados em tabelas e gráficos, e também como calcular medidas que descrevem características específicas destes dados. Mas além de

Leia mais

T o e r o ia a da P oba ba i b lida d de

T o e r o ia a da P oba ba i b lida d de Teoria da Probabilidade Prof. Joni Fusinato Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso cotidiano. Usa o princípio básico do aprendizado humano que

Leia mais

EST029 Cálculo de Probabilidade I Cap. 3: Probabilidade Condicional e Independência

EST029 Cálculo de Probabilidade I Cap. 3: Probabilidade Condicional e Independência EST029 Cálculo de Probabilidade I Cap. 3: Probabilidade Condicional e Independência Prof. Clécio da Silva Ferreira Depto Estatística - UFJF 1 Perguntas 1. Um novo aparelho para detectar um certo tipo de

Leia mais

Princípios de Bioestatística

Princípios de Bioestatística Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Princípios de Bioestatística Aula 5 Introdução à Probabilidade Nosso dia-a-dia está cheio de incertezas Vai

Leia mais

EXPERIMENTO ALEATÓRIO : Experimento que pode fornecer diferentes resultados, embora seja repetido toda vez da mesma maneira.

EXPERIMENTO ALEATÓRIO : Experimento que pode fornecer diferentes resultados, embora seja repetido toda vez da mesma maneira. EXPERIMENTO ALEATÓRIO : Experimento que pode fornecer diferentes resultados, embora seja repetido toda vez da mesma maneira. ESPAÇO AMOSTRAL : O conjunto de todos os resultados possíveis de um experimento

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte III 08 de Abril de 2014 Distribuição Binomial Negativa Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições

Leia mais

Capítulo 3 Probabilidade Pearson Prentice Hall. Todos os direitos reservados.

Capítulo 3 Probabilidade Pearson Prentice Hall. Todos os direitos reservados. Capítulo 3 Probabilidade slide 1 Descrição do capítulo 3.1 Conceitos básicos de probabilidade 3.2 Probabilidade condicional e a regra da multiplicação 3.3 A regra da adição 3.4 Tópicos adicionais sobre

Leia mais

Probabilidade e Estatística Probabilidade Condicional

Probabilidade e Estatística Probabilidade Condicional Introdução Probabilidade e Estatística Probabilidade Condicional Em algumas situações, a probabilidade de ocorrência de um certo evento pode ser afetada se tivermos alguma informação sobre a ocorrência

Leia mais

Métodos Estatísticos Básicos

Métodos Estatísticos Básicos Aula 6 - Introdução à probabilidade Departamento de Economia Universidade Federal de Pelotas (UFPel) Maio de 2014 Experimento Experimento aleatório (E ): é um experimento que pode ser repetido indenidamente

Leia mais

Cap. 8 - Variáveis Aleatórias

Cap. 8 - Variáveis Aleatórias Variáveis Aleatórias Discretas: A de Poisson e Outras ESQUEMA DO CAPÍTULO 8.1 A DISTRIBUIÇÃO DE POISSON 8.2 A DISTRIBUIÇÃO DE POISSON COMO APROXIMAÇÃO DA DISTRIBUIÇÃO BINOMIAL 8.3 O PROCESSO DE POISSON

Leia mais

Métodos Quantitativos para Ciência da Computação Experimental. Jussara Almeida DCC-UFMG 2013

Métodos Quantitativos para Ciência da Computação Experimental. Jussara Almeida DCC-UFMG 2013 Métodos Quantitativos para Ciência da Computação Experimental Jussara Almeida DCC-UFMG 2013 Revisão de Probabilidade e Estatística Concentrado em estatística aplicada Estatística apropriada para medições

Leia mais

2. Quantas ordenações para rebatedores é possível em um time de nove jogadores de beisebol?

2. Quantas ordenações para rebatedores é possível em um time de nove jogadores de beisebol? Seção 3.4 Permutaçoes e Combinações 139 2. Quantas ordenações para rebatedores é possível em um time de nove jogadores de beisebol? 3. Os 14 times da Confederação Local estão listados no jornal. Quantas

Leia mais

Será que vai chover amanhã? Quantificando a incerteza. Probabilidades Aula 1

Será que vai chover amanhã? Quantificando a incerteza. Probabilidades Aula 1 Será que vai chover amanhã? Quantificando a incerteza Probabilidades Aula 1 Nosso dia-a-dia está cheio de incertezas Vai chover amanhã? Quanto tempo levarei de casa até a universidade? Em quanto tempo

Leia mais

Teoria da Probabilidade

Teoria da Probabilidade Teoria da Probabilidade Luis Henrique Assumpção Lolis 14 de fevereiro de 2014 Luis Henrique Assumpção Lolis Teoria da Probabilidade 1 Conteúdo 1 O Experimento Aleatório 2 Espaço de amostras 3 Álgebra dos

Leia mais

2. Probabilidade. Aula 3

2. Probabilidade. Aula 3 Aula 3 2. Probabilidade 2-1 Espaços de amostragem e eventos 2-1.1 Experimentos randômicos 2-1.2 Espaços de amostragem 2-1.3 Eventos 2-2 Interpretações de probabilidade 2-2.1 Introdução 2-2.2 Axiomas de

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/20 4 - INTROD. À ANÁLISE COMBINATÓRIA 4.1) Arranjos

Leia mais

Definição de Probabilidade

Definição de Probabilidade INTRODUÇÃO A TEORIA DAS PROBABILIDADES A teoria das probabilidade nada mais é do que o bom senso transformado em cálculo A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número

Leia mais

Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω.

Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω. PROBABILIDADE 1.0 Conceitos Gerais No caso em que os possíveis resultados de um experimento aleatório podem ser listados (caso discreto), um modelo probabilístico pode ser entendido como a listagem desses

Leia mais

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Conceitos Básicos de Probabilidade

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Conceitos Básicos de Probabilidade Estatística: Aplicação ao Sensoriamento Remoto SER 202 - ANO 2016 Conceitos ásicos de Probabilidade Camilo Daleles Rennó camilo@dpi.inpe.br http://www.dpi.inpe.br/~camilo/estatistica/ Frequência Absoluta

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA PRODUTO DA DISSERTAÇÃO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA PRODUTO DA DISSERTAÇÃO UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA PRODUTO DA DISSERTAÇÃO O JOGO DE PÔQUER: UMA SITUAÇÃO REAL PARA DAR SENTIDO AOS CONCEITOS

Leia mais

1 Definição de Probabilidade 2 Principais Teoremas 3 Probabilidades dos Espaços Amostrais 4 Espaços Amostrais Equiprováveis. Francisco Cysneiros

1 Definição de Probabilidade 2 Principais Teoremas 3 Probabilidades dos Espaços Amostrais 4 Espaços Amostrais Equiprováveis. Francisco Cysneiros Probabilidade 1 Definição de Probabilidade 2 Principais Teoremas 3 Probabilidades dos Espaços Amostrais 4 Espaços Amostrais Equiprováveis Francisco Cysneiros Introdução 1 - Conceito Clássico Se uma experiência

Leia mais

MB-210 Probabilidade e Estatística

MB-210 Probabilidade e Estatística Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MB-210 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br 2o. semestre/2013 Variáveis

Leia mais

1 Definição Clássica de Probabilidade

1 Definição Clássica de Probabilidade Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 4 Professor: Carlos Sérgio UNIDADE 2 - Probabilidade: Definições (Notas de aula) 1 Definição Clássica

Leia mais

INTRODUÇÃO ÀS PROBABILIDADES15

INTRODUÇÃO ÀS PROBABILIDADES15 INTRODUÇÃO ÀS PROBABILIDADES15 Vanderlei S. Bagnato 15.1 Introdução 15.2 Definição de Probabilidade 15.3 Adição de probabilidade 15.4 Multiplicação de probabilidades Referências Licenciatura em Ciências

Leia mais

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Probabilidade Condicional 08/16 1 / 56 Introdução É provável que você ganhe um aumento....

Leia mais

Resumo. Parte 2 Introdução à Teoria da Probabilidade. Ramiro Brito Willmersdorf Introdução.

Resumo. Parte 2 Introdução à Teoria da Probabilidade. Ramiro Brito Willmersdorf Introdução. Parte 2 Introdução à Teoria da Probabilidade Ramiro Brito Willmersdorf ramiro@willmersdorf.net Departamento de Engenharia Mecânica Universidade Federal de Pernambuco 2011.2 Resumo 1 Introdução 2 Espaço

Leia mais

Experiências Aleatórias. Espaço de Resultados. Acontecimentos

Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiência Aleatória É uma experiência em que: não se sabe exactamente o resultado que se virá a observar; conhece-se o universo dos resultados

Leia mais

Espaços Amostrais Finitos

Espaços Amostrais Finitos 2 ESQUEMA DO CAPÍTULO Espaços Amostrais Finitos 1.1 ESPAÇO AMOSTRAL FINITO 1.2 RESULTADOS IGUALMENTE VEROSSÍMEIS 1.3 MÉTODOS DE ENUMERAÇÃO UFMG-ICEx-EST-032/045 Cap. 2 - Espaços Amostrais Finitos 1 2.1

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA

UNIVERSIDADE FEDERAL DA PARAÍBA UNIVERSIDADE FEDERAL DA PARAÍBA Probabilidade Departamento de Estatística UFPB Luiz Medeiros Introdução Encontramos na natureza dois tipos de fenômenos Determinísticos: Os resultados são sempre os mesmos

Leia mais

Lista de Exercícios 1 Probabilidades Escola Politécnica, Ciclo Básico

Lista de Exercícios 1 Probabilidades Escola Politécnica, Ciclo Básico Lista de Exercícios 1 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Historicamente sabe-se que 10% dos artigos de uma firma são de segunda qualidade. Um inspetor de controle

Leia mais

Lista de Exercícios 1 Probabilidades Escola Politécnica, Ciclo Básico

Lista de Exercícios 1 Probabilidades Escola Politécnica, Ciclo Básico Lista de Exercícios 1 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Historicamente sabe-se que 10% dos artigos de uma firma são de segunda qualidade. Um inspetor de controle

Leia mais

Probabilidade Condicional e Independência

Probabilidade Condicional e Independência Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-13 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br 17/08/2011 Probabilidade

Leia mais

Capítulo 2 Probabilidades

Capítulo 2 Probabilidades Capítulo 2 Probabilidades Slide 1 Definições Slide 2 Acontecimento Qualquer colecção de resultados de uma experiência. Acontecimento elementar Um resultado que não pode ser simplificado ou reduzido. Espaço

Leia mais

Probabilidade e Estatística Preparação para P1

Probabilidade e Estatística Preparação para P1 robabilidade e Estatística reparação para rof.: Duarte ) Uma TV que valia R$ 00,00, entrou em promoção e sofreu uma redução de 0% em seu preço. Qual é o novo preço da TV? ) Um produto foi vendido por R$

Leia mais

Métodos de contagem. Francimário Alves de Lima. Universidade Federal do Rio Grande do Norte. 6 de agosto de 2014

Métodos de contagem. Francimário Alves de Lima. Universidade Federal do Rio Grande do Norte. 6 de agosto de 2014 Universidade Federal do Rio Grande do Norte 6 de agosto de 2014 Sumário 1 Introdução 2 Permutação 3 Combinações 4 Exercícios Sumário 1 Introdução 2 Permutação 3 Combinações 4 Exercícios Introdução Um sistema

Leia mais

Métodos Estatísticos Básicos

Métodos Estatísticos Básicos Aula 7 - Probabilidade condicional e independência Departamento de Economia Universidade Federal de Pelotas (UFPel) Maio de 2014 Probabilidade condicional Seja (Ω, A, P) um espaço de probabilidade. Se

Leia mais

AULA 06 Probabilidade

AULA 06 Probabilidade 1 AULA 06 Probabilidade Ernesto F. L. Amaral 03 de setembro de 2013 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro: LTC. Capítulo 4 (pp.110-157).

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aulas passadas Motivação Exemplos de aplicação de probabilidade e estatística Informações do curso Aula de hoje Espaço amostral Álgebra de Eventos Eventos

Leia mais

3. Probabilidade P(A) =

3. Probabilidade P(A) = 7 3. Probabilidade Probabilidade é uma medida numérica da plausibilidade de que um evento ocorrerá. Assim, as probabilidades podem ser usadas como medidas do grau de incerteza e podem ser expressas de

Leia mais

Aula 9 Teorema da probabilidade total e teorema de Bayes

Aula 9 Teorema da probabilidade total e teorema de Bayes Aula 9 Teorema da probabilidade total e teorema de Bayes Nesta aula você estudará dois importantes teoremas de probabilidade e verá suas aplicações em diversas situações envolvendo a tomada de decisão.

Leia mais

BANCO DE QUESTÕES TURMA PM-PE PROBABILIDADE

BANCO DE QUESTÕES TURMA PM-PE PROBABILIDADE 01. (UNICAMP 016) Uma moeda balanceada é lançada quatro vezes, obtendo-se cara exatamente três vezes. A probabilidade de que as caras tenham saído consecutivamente é igual a A) 1. B). 8 C) 1. D). 0. (UNESP

Leia mais

Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva

Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Probabilidade Probabilidade Experimento Aleatório Um experimento é dito aleatório quando satisfaz

Leia mais

Probabilidades. O cálculo de probabilidades teve a sua origem no estudo dos jogos de azar, principalmente nos jogos de dados.

Probabilidades. O cálculo de probabilidades teve a sua origem no estudo dos jogos de azar, principalmente nos jogos de dados. Probabilidades O cálculo de probabilidades teve a sua origem no estudo dos jogos de azar, principalmente nos jogos de dados. Quando lançamos um dado, os resultados possíveis são sempre um dos elementos

Leia mais

Modelos Probabiĺısticos Discretos

Modelos Probabiĺısticos Discretos Discretos Prof. Gilberto Rodrigues Liska UNIPAMPA 19 de Setembro de 2017 Material de Apoio e-mail: gilbertoliska@unipampa.edu.br Gilberto R. Liska ( UNIPAMPA ) Notas de Aula 19 de Setembro de 2017 1 /

Leia mais

PROBABILIDADE E ESTATÍSTICA. Aula 2 Professor Regina Meyer Branski

PROBABILIDADE E ESTATÍSTICA. Aula 2 Professor Regina Meyer Branski PROBABILIDADE E ESTATÍSTICA Aula 2 Professor Regina Meyer Branski Probabilidade 1. Conceitos básicos de probabilidade 2. Probabilidade condicional 3. Eventos Dependentes e Independentes 4. Regra da Multiplicação

Leia mais

Modelos de Probabilidade e Inferência Estatística

Modelos de Probabilidade e Inferência Estatística Modelos de Probabilidade e Inferência Estatística Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Probabilidade Condicional 03/14 1 / 48 É provável que você

Leia mais

Noções de Probabilidade parte I

Noções de Probabilidade parte I Noções de Probabilidade parte I 5 de Março de 2012 Site: http://ericaestatistica.webnode.com.br/ e-mail: ericaa_casti@yahoo.com.br Referências: Probabilidae Aplicações à Estatística - Mayer (Capítulo 1)

Leia mais

PARTE 2. Profª. Drª. Alessandra de Ávila Montini

PARTE 2. Profª. Drª. Alessandra de Ávila Montini PARTE 2 Profª. Drª. Alessandra de Ávila Montini Conteúdo Introdução a Probabilidade Conceito de Experimento Conceito de Espaço Amostral Conceito de Variável Aleatória Principais Distribuições de Probabilidade

Leia mais

Métodos Quantitativos para Ciência da Computação Experimental

Métodos Quantitativos para Ciência da Computação Experimental Métodos Quantitativos para Ciência da Computação Experimental -Aula #2a- Virgílio A. F. Almeida Março 2008 Departamento de Ciência da Computação Universidade Federal de Minas Gerais Revisão de Probabilidade

Leia mais

Exercícios resolvidos sobre Teoremas de Probabilidade

Exercícios resolvidos sobre Teoremas de Probabilidade Exercícios resolvidos sobre Teoremas de Probabilidade Aqui você tem mais uma oportunidade de estudar os teoremas da probabilidade, por meio de um conjunto de exercícios resolvidos. Observe como as propriedades

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/18 4 - INTROD. À ANÁLISE COMBINATÓRIA 4.1) Arranjos

Leia mais

Unidade II ESTATÍSTICA APLICADA. Prof. Luiz Felix

Unidade II ESTATÍSTICA APLICADA. Prof. Luiz Felix Unidade II ESTATÍSTICA APLICADA Prof. Luiz Felix Distribuição de frequências - média Cálculo da Média x = X i. f i n Onde: x média aritmética da distribuição de frequência X i ponto médio de cada classe

Leia mais

Universidade Federal de Lavras

Universidade Federal de Lavras Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 13 a Lista de Exercícios Práticos Conceitos Básicos de Probabilidade 1) Considere um experimento que consiste em

Leia mais

Revisão estatística e probabilidade. Prof. Anderson Almeida Ferreira

Revisão estatística e probabilidade. Prof. Anderson Almeida Ferreira Revisão estatística e probabilidade Prof. Anderson Almeida Ferreira População População é o conjunto de elementos (indivíduos, objetos, etc.) que formam o universo de nosso estudo e que são passíveis de

Leia mais

Seja A um evento de um espaço amostral Ω finito, cujos elementos são igualmente prováveis. Define-se a probabilidade do evento A como

Seja A um evento de um espaço amostral Ω finito, cujos elementos são igualmente prováveis. Define-se a probabilidade do evento A como Aula 7 Probabilidade Nesta aula você aprenderá a definição de probabilidade, estudará os axiomas e propriedades de uma lei de probabilidade e fará revisão dos seguintes conceitos de análise combinatória:

Leia mais

Estatística e Probabilidade. Aula 5 Cap 03 Probabilidade

Estatística e Probabilidade. Aula 5 Cap 03 Probabilidade Estatística e Probabilidade Aula 5 Cap 03 Probabilidade Na aula anterior vimos... Conceito de Probabilidade Experimento Probabilístico Tipos de Probabilidade Espaço amostral Propriedades da Probabilidade

Leia mais

Para iniciar o conceito do que é probabilidade condicional, vamos considerar o seguinte problema.

Para iniciar o conceito do que é probabilidade condicional, vamos considerar o seguinte problema. PROBABILIDADE CONDICIONAL E DISTRIBUIÇÃO BINOMINAL 1. PROBABILIDADE CONDICIONAL Para iniciar o conceito do que é probabilidade condicional, vamos considerar o seguinte problema. Suponha que um redator

Leia mais

Princípios de Bioestatística Conceitos de Probabilidade

Princípios de Bioestatística Conceitos de Probabilidade 1/37 Princípios de Bioestatística Conceitos de Probabilidade Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG 2/37 Tipos de Fenômenos 1. Aleatório: Situação ou

Leia mais

Aulas 10 e 11 / 18 e 20 de abril

Aulas 10 e 11 / 18 e 20 de abril 1 Conjuntos Aulas 10 e 11 / 18 e 20 de abril Um conjunto é uma coleção de objetos. Estes objetos são chamados de elementos do conjunto. A única restrição é que em geral um mesmo elemento não pode contar

Leia mais