Matemática Discreta - Exercícios de Grafos

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Matemática Discreta - Exercícios de Grafos"

Transcrição

1 UALG - 0/0 1. Seja G o grafo cuja matriz de adjacência é: (a) Determine o grau de cada vértice. (b) Faça uma representação de G. (c) Veri que se há um caminho entre 1 e 9. (d) Escreva as componentes conexas de G.. Um grafo também pode ser descrito pela lista dos seus sucessores. Encontre as componentes fortemente conexas do grafo descrito por: x (x) 1 1; 10 ; ; ; 9 8; ;. Seja G o grafo descrito por: x (x) ; ; 1; ; 1; ; ; ;? ; 9; 10 8; 10 8; 9 i

2 UALG - 0/0 (a) Represente matricialmente o grafo. (b) Determine as componentes fortemente conexas de G. (c) Determine as componentes conexas de G. (d) Represente gra camente o grafo. (e) Represente gra camente as relações entre as componentes fortemente conexas.. Será possível encontrar um grafo simples não orientado com quatro vértices de ordens 1,,,. É possível encontrar um grafo não simples nas condições anteriores?. É possível ter um grafo não orientado com oito vértices de graus:,,,,,,, e 8? Justi que.. Sejam A 1 = f1; ; ; ; g; A = f; ; ; 8g; A = f; ; 1g e A = f; 8; 10g. Desenhar o grafo de vértices A 1 ; A ; A ; A, tal que existe uma aresta entre dois vértices se e só se a intersecção é não vazia. Construa a matriz de adjacência do grafo.. Determine o caminho mais curto entre os vértices 1 e. 8. Uma empresa de telecomunicações está a instalar uma rede de bra óptica que cubra várias localidades no Alentejo. As distâncias e as ligações possíveis entre as localidades são esquematizadas na rede abaixo. Decida quais as ligações que devem ser executadas de modo a que todas as localidades ii

3 UALG - 0/0 quem ligadas com um mínimo de bra óptica. 9. Encontre um caminho no grafo que passe por todas as arestas sem repetição. 10. Um grafo tem dez vértices numerados de 1 a 10. Existe uma aresta entre i e j se i + j é ímpar e corresponde-lhe o custo ji jj. (a) Escreva a matriz de adjacência correspondente. (b) Será o grafo conexo? Justi que 11. Veri que teoricamente se no seguinte grafo é possível construir um circuito Euleriano contendo todas as arestas e, em caso a rmativo, construa-o. iii

4 UALG - 0/0 1. Um grafo simples diz-se bipartido se os seus vértices podem ser divididos em dois conjuntos A e B, de modo que cada aresta do grafo liga um vértice de A com um vértice de B. Determine quais dos seguintes grafos são bipartidos: (a) (b) (c) (d) 1. Seja G um grafo. G é o seu grafo complementar se e só se o conjunto de vértices de ambos for o mesmo e uma aresta existe em G se e só se não existe em G. Atendendo iv

5 UALG - 0/0 a esta de nição preencha a seguinte tabela: K 9 K 9;9 K ; K 9;9 K ; N o de vértices N o de arestas Soma dos graus dos vértices conexo 1. Um grafo completo tripartido K r;s;t consiste em três conjuntos de vértices com r; s e t elementos respectivamente, tal que dois vértices estão ligados por uma aresta se e só se estão em conjuntos diferentes. (a) Represente gra camente K ;; e K ;;. (b) Quantos vértices e arestas tem K r;s;t? Justi que. (c) Quantas componentes conexas tem K r;s;t? Justi que. Como se pode classi car cada componente conexa? (d) Quantas arestas tem K r;s;t? Justi que. 1. O diagrama é a planta de uma casa. Existe alguma forma de percorrer a casa (iniciando o trajecto dentro ou fora da casa) passando por cada porta uma e uma só vez? 1. No mapa da gura cada aresta representa uma avenida e cada vértice representa uma esquina entre avenidas. Pretende-se entregar o correio nesta área iniciando a entrega no ponto A e terminando no ponto B, passando em cada avenida exactamente uma vez. Determine o percurso a efectuar. v

6 UALG - 0/0 1. Considere o grafo não orientado valorado representado na matriz: A B C D E F A B C D E F (a) Quantos caminhos de comprimento ( n o de arestas ) existem entre os vértices A e D? Quais são? Destes qual é o menos pesado e qual é o mais pesado? (b) Utilizando o algoritmo de Dijkstra determine o caminho mais barato entre os vértices A e D. 18. Determine a árvore geradora mínima do grafo: vi

7 UALG - 0/0 A B C D E F A B C D E F Mostre que num grafo simples existem, pelo menos, dois vértices com o mesmo grau. 0. Redesenhe os seguintes grafos planares de forma a que não haja cruzamento de arestas e identi que as faces dos grafos. vii

GRAFOS. Prof. André Backes. Como representar um conjunto de objetos e as suas relações?

GRAFOS. Prof. André Backes. Como representar um conjunto de objetos e as suas relações? 8/0/06 GRAFOS Prof. André Backes Definição Como representar um conjunto de objetos e as suas relações? Diversos tipos de aplicações necessitam disso Um grafo é um modelo matemático que representa as relações

Leia mais

Cap. 2 Conceitos Básicos em Teoria dos Grafos

Cap. 2 Conceitos Básicos em Teoria dos Grafos Teoria dos Grafos e Aplicações 8 Cap. 2 Conceitos Básicos em Teoria dos Grafos 2.1 Grafo É uma noção simples, abstrata e intuitiva, usada para representar a idéia de alguma espécie de relação entre os

Leia mais

Estrutura de Dados e Algoritmos e Programação e Computadores II. Aula 10: Introdução aos Grafos

Estrutura de Dados e Algoritmos e Programação e Computadores II. Aula 10: Introdução aos Grafos Estrutura de Dados e Algoritmos e Programação e Computadores II Aula 10: Introdução aos Grafos História O assunto que se constitui no marco inicial da teoria de grafos é na realidade um problema algorítmico.

Leia mais

PERCURSOS. André Falcão, Carlos Augusto, Rafael Broédel e Lucas Dipré

PERCURSOS. André Falcão, Carlos Augusto, Rafael Broédel e Lucas Dipré PERCURSOS André Falcão, Carlos Augusto, Rafael Broédel e Lucas Dipré Serra 2011 Índice 1...O que é caminho e circuito 1.1...Caminho 1.2...Circuito 1.3...Classificação 2...Caminhos Eulerianos 2.1...Definição

Leia mais

Conceitos Básicos da Teoria de Grafos

Conceitos Básicos da Teoria de Grafos Conceitos Básicos da Teoria de Grafos Universidade Federal do Pampa - UNIPAMPA Engenharia da Computação Estrutura de Dados Profª Sandra Piovesan Grafos Uma noção simples, abstrata e intuitiva. Representa

Leia mais

x y Grafo Euleriano Figura 1

x y Grafo Euleriano Figura 1 Grafo Euleriano Um caminho simples ou um circuito simples é dito euleriano se ele contém todas as arestas de um grafo. Um grafo que contém um circuito euleriano é um grafo euleriano. Um grafo que não contém

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Árvores Sabemos que com um ou dois vértices apenas uma árvore pode ser formada. Entretanto com três vértices podemos formar três árvores. Com quatro vértices temos quatro estrelas e doze

Leia mais

CI065 CI755 Algoritmos e Teoria dos Grafos

CI065 CI755 Algoritmos e Teoria dos Grafos CI065 CI755 Algoritmos e Teoria dos Grafos Exercícios 11 de outubro de 2017 1 Fundamentos 1. Seja S = {S 1,..., S n } uma família de conjuntos. O grafo intercessão de S é o grafo G S cujo conjunto de vértices

Leia mais

Introdução à Teoria dos Grafos. Isomorfismo

Introdução à Teoria dos Grafos. Isomorfismo Isomorfismo Um isomorfismo entre dois grafos G e H é uma bijeção f : V (G) V (H) tal que dois vértices v e w são adjacentes em G, se e somente se, f (v) e f (w) são adjacentes em H. Os grafos G e H são

Leia mais

Teoria dos grafos. Caminho euleriano e Hamiltoniano. Prof. Jesuliana N. Ulysses

Teoria dos grafos. Caminho euleriano e Hamiltoniano. Prof. Jesuliana N. Ulysses 1 7 Teoria dos grafos Caminho euleriano e Hamiltoniano Grafo Euleriano Grafo onde é possível achar um caminho fechado (ciclo), passando em cada aresta uma única vez Quais são os grafos de Euler? Teorema:

Leia mais

Grafos: algoritmos de busca

Grafos: algoritmos de busca busca em grafos como caminhar no grafo de modo a percorrer todos os seus vértices evitando repetições desnecessárias do mesmo vértice? e por onde começar? solução: necessidade de recursos adicionais que

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada. Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br Preparado a partir do texto: Rangel, Socorro. Teoria do Grafos,

Leia mais

Árvores: Conceitos Básicos e Árvore Geradora

Árvores: Conceitos Básicos e Árvore Geradora Árvores: Conceitos Básicos e Árvore Geradora Grafos e Algoritmos Computacionais Prof. Flávio Humberto Cabral Nunes fhcnunes@yahoo.com.br 1 Introdução No dia a dia aparecem muitos problemas envolvendo árvores:

Leia mais

Grafos: aplicações. Grafos: árvore geradora mínima

Grafos: aplicações. Grafos: árvore geradora mínima árvore geradora mínima caminhos mínimos problemas tipo 1 desejase conectar todos os computadores em um prédio usando a menor quantidade possível de cabos uma companhia aérea deseja voar para algumas cidades

Leia mais

Grafos Eulerianos e o Problema do Carteiro Chinês

Grafos Eulerianos e o Problema do Carteiro Chinês Prof. Ademir A. Constantino DIN - UEM 1 Grafos Eulerianos e o Problema do Carteiro Chinês Prof. Ademir Constantino Departamento de Informática Universidade Estadual de Maringá Prof. Ademir A. Constantino

Leia mais

Matemática Discreta. Aula nº 22 Francisco Restivo

Matemática Discreta. Aula nº 22 Francisco Restivo Matemática Discreta Aula nº 22 Francisco Restivo 2006-05-26 Definição: Um grafo cujos vértices são pontos no plano e cujos lados são linhas no plano que só se encontram nos vértices do grafo são grafos

Leia mais

Grafos: caminhos mínimos

Grafos: caminhos mínimos quando o grafo é sem pesos, a determinação de um caminho mais curto pode ser feita através de uma busca em largura caminho mais curto é aquele que apresenta o menor número de arestas quando o grafo tem

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Árvores Algoritmo de Kruskal O algoritmo de Kruskal permite determinar a spanning tree de custo mínimo. Este custo corresponde à soma dos pesos (distância, tempo, qualidade,...) associados

Leia mais

Percursos em um grafo

Percursos em um grafo Percursos em um grafo Definição Um percurso ou cadeia é uma seqüência de arestas sucessivamente adjacentes, cada uma tendo uma extremidade adjacente à anterior e a outra a subsequente (à exceção da primeira

Leia mais

Grafos Orientados (digrafos)

Grafos Orientados (digrafos) Grafos Orientados (digrafos) Grafo Orientado ou digrafo Consiste em um grafo G = (V,A) onde V = {v 1,, v n } é um conjunto de vértices e A = {a 1,, a k } é um conjunto de arcos tais que a k, k=1,,m é representado

Leia mais

Grafos: árvores geradoras mínimas. Graça Nunes

Grafos: árvores geradoras mínimas. Graça Nunes Grafos: árvores geradoras mínimas Graça Nunes 1 Motivação Suponha que queremos construir estradas para interligar n cidades Cada estrada direta entre as cidades i e j tem um custo associado Nem todas as

Leia mais

Teoria dos Grafos. Motivação

Teoria dos Grafos. Motivação Teoria dos Grafos Aula 1 Primeiras Ideias Prof a. Alessandra Martins Coelho março/2013 Motivação Muitas aplicações em computação necessitam considerar conjunto de conexões entre pares de objetos: Existe

Leia mais

TEORIA DOS GRAFOS UMA APLICAÇÃO DE LOGÍSTICA PARA O ENSINO MÉDIO. Profº M. Sc. Marcelo Mazetto Moala

TEORIA DOS GRAFOS UMA APLICAÇÃO DE LOGÍSTICA PARA O ENSINO MÉDIO. Profº M. Sc. Marcelo Mazetto Moala TEORIA DOS GRAFOS UMA APLICAÇÃO DE LOGÍSTICA PARA O ENSINO MÉDIO mmmoala@fafica.br Breve Histórico Leonhard Euler (Matemático Suíço) - Pai da Teoria dos Grafos Nascimento de abril de 77 / 8 de setembro

Leia mais

CAP4. ELEMENTOS DA TEORIA DE GRAFOS. Grafo [graph]. Estrutura que consiste num par ordenado de conjuntos, G ( V, E) , sendo:

CAP4. ELEMENTOS DA TEORIA DE GRAFOS. Grafo [graph]. Estrutura que consiste num par ordenado de conjuntos, G ( V, E) , sendo: Matemática Discreta ESTiG\IPB Cap4. Elementos da Teoria de Grafos pg 1 CAP4. ELEMENTOS DA TEORIA DE GRAFOS Grafo [graph]. Estrutura que consiste num par ordenado de conjuntos, G ( V, E), sendo: Exemplos

Leia mais

Matemática Aplicada às Ciências Sociais- 11º ano (Versão: para o manual a partir de 2016/17)

Matemática Aplicada às Ciências Sociais- 11º ano (Versão: para o manual a partir de 2016/17) Matemática Aplicada às Ciências Sociais- 11º ano (Versão: para o manual a partir de 2016/17) Professor: Pedro Nóia Livro adotado: Matemática Aplicada às Ciências Sociais- 11º ano Elisabete Longo e Isabel

Leia mais

Algoritmos em Grafos: Caminho Mínimo

Algoritmos em Grafos: Caminho Mínimo Algoritmos em Grafos: Caminho Mínimo Letícia Rodrigues Bueno UFABC Problema 2: Menor caminho entre duas cidades Dado um mapa de cidades, contendo as distâncias entre cidades, qual o menor caminho entre

Leia mais

Tópicos de Matemática Finita Data: I II-1 II-2 II-3 II-4 III-1 III-2 III-3 III-4 IV-1 IV-2 IV-3 Nota Final

Tópicos de Matemática Finita Data: I II-1 II-2 II-3 II-4 III-1 III-2 III-3 III-4 IV-1 IV-2 IV-3 Nota Final Tópicos de Matemática Finita Data: 15-07-2002 2 a Época Correcção Código: 3C Nome: Número: Curso: O exame que vai realizar tem a duração de três horas. As respostas às perguntas do grupo I não necessitam

Leia mais

TEORIA DOS GRAFOS TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS MATEMÁTICA DISCRETA II PROFº MARCOS NASCIMENTO

TEORIA DOS GRAFOS TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS MATEMÁTICA DISCRETA II PROFº MARCOS NASCIMENTO TEORIA DOS GRAFOS TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS MATEMÁTICA DISCRETA II PROFº MARCOS NASCIMENTO Por que estudar grafos? Importante ferramenta matemática com aplicação em diversas áreas

Leia mais

Matemática discreta e Lógica Matemática

Matemática discreta e Lógica Matemática AULA - Prof. Dr. Hércules A. Oliveira UTFPR - Universidade Tecnológica Federal do Paraná, Ponta Grossa Departamento Acadêmico de Matemática Definição 1 Um Grafo G = (V, E) consiste em V, um conjunto não

Leia mais

Grafo planar: Definição

Grafo planar: Definição Grafo planar Considere o problema de conectar três casas a cada uma de três infraestruturas (gás, água, energia) como mostrado na figura abaixo. É possível fazer essas ligações sem que elas se cruzem?

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada. Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br Grafos Eulerianos Preparado a partir do texto: Rangel, Socorro.

Leia mais

Grafos Hamiltonianos e o Problema do Caixeiro Viajante. Prof. Ademir Constantino Departamento de Informática Universidade Estadual de Maringá

Grafos Hamiltonianos e o Problema do Caixeiro Viajante. Prof. Ademir Constantino Departamento de Informática Universidade Estadual de Maringá Grafos Hamiltonianos e o Problema do Caixeiro Viajante Prof. Ademir Constantino Departamento de Informática Universidade Estadual de Maringá Grafo Hamiltoniano Definição: Um circuito hamiltoniano em um

Leia mais

Pesquisa Operacional II. Professor João Soares de Mello

Pesquisa Operacional II. Professor João Soares de Mello Pesquisa Operacional II Professor João Soares de Mello http://www.uff.br/decisao/notas.htm Ementa Teoria dos grafos (pré-requisitos: PO I, Álgebra Linear) Programação não linear (pré-requisitos: PO I,

Leia mais

GRAFOS Aula 04 Caminhos, Conexidade e Distância Max Pereira

GRAFOS Aula 04 Caminhos, Conexidade e Distância Max Pereira Ciência da Computação GRAFOS Aula 04 Caminhos, Conexidade e Distância Max Pereira Um grafo é dito conexo se for possível visitar qualquer vértice, partindo de um outro qualquer, passando pelas suas arestas.

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Introdução Um passeio entre os nós i e j é uma seqüência alternada de nós e arestas que começa no nó i e termina no nó j. G 1 G 2 Um exemplo de passeio entre os nós 1 e 4 do grafo G 1 é (1,(1,3),3,(2,3),2,(1,2),1,(1,4),4).

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Existem três companhias que devem abastecer com gás, eletricidade e água três prédios diferentes através de tubulações subterrâneas. Estas tubulações podem estar à mesma profundidade? Isto

Leia mais

Noções da Teoria dos Grafos. André Arbex Hallack

Noções da Teoria dos Grafos. André Arbex Hallack Noções da Teoria dos Grafos André Arbex Hallack Junho/2015 Índice 1 Introdução e definições básicas. Passeios eulerianos 1 1.1 Introdução histórica..................................... 1 1.2 Passeios

Leia mais

Teoria dos Grafos. Componentes, Conj. Indep., Cliques

Teoria dos Grafos. Componentes, Conj. Indep., Cliques Teoria dos Grafos Componentes, Conj. Indep., Cliques Grafo Conexo/Desconexo Um grafo é conexo se existe um caminho entre qualquer par de nós, caso contrário ele é chamado desconexo. Basta que não exista

Leia mais

Busca em Largura. Adaptado de Humberto C. B. Oliveira

Busca em Largura. Adaptado de Humberto C. B. Oliveira Busca em Largura Adaptado de Humberto C. B. Oliveira Últimas aulas Introdução: História Aplicações Conceitos Básicos: Grafo simples Grafo completo/vazio Grafo não orientado: Arestas laço Arestas paralelas

Leia mais

Escola Básica e Secundária Mouzinho da Silveira. MACS 11.º Ano Problema do Caixeiro Viajante

Escola Básica e Secundária Mouzinho da Silveira. MACS 11.º Ano Problema do Caixeiro Viajante Escola Básica e Secundária Mouzinho da Silveira MACS 11.º Ano Problema do Caixeiro Viajante Problema do Caixeiro Viajante Trata-se de um problema matemático que consiste, sendo dado um conjunto de cidades

Leia mais

Redes. ADSA António Câmara

Redes. ADSA António Câmara Redes ADSA António Câmara Redes Método do caminho mais curto Localização de equipamentos Minimum spanning tree Carteiro chinês Caixeiro viajante Links Redes Redes são sistemas de linhas (arcos) ligando

Leia mais

Grafos - Introdução. Pedro Ribeiro 2014/2015 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) Grafos - Introdução 2014/ / 32

Grafos - Introdução. Pedro Ribeiro 2014/2015 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) Grafos - Introdução 2014/ / 32 Grafos - Introdução Pedro Ribeiro DCC/FCUP 2014/2015 Pedro Ribeiro (DCC/FCUP) Grafos - Introdução 2014/2015 1 / 32 Conceito Definição de Grafo Formalmente, um grafo é: Um conjunto de nós/vértices (V).

Leia mais

Teoria dos Grafos. Aulas 3 e 4. Profa. Alessandra Martins Coelho

Teoria dos Grafos. Aulas 3 e 4. Profa. Alessandra Martins Coelho Teoria dos Grafos Aulas 3 e 4 Profa. Alessandra Martins Coelho fev/2014 Passeio ou percurso Um passeio ou percurso é uma sequência finita de vértices e arestas Exemplo Em (1) o passeio inicia pelo vértice

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Introdução Automorfismo Um automorfismo de um grafo G é um isomorfismo de G para si próprio. Os automorfismos de G são as permutações de V(G) que podem ser aplicadas a ambas as linhas e colunas

Leia mais

C 3 C 3. De acordo com o teorema de Euler, um grafo não orientado admite um ciclo de Euler se e só for conexo e não tiver vértices de grau ímpar.

C 3 C 3. De acordo com o teorema de Euler, um grafo não orientado admite um ciclo de Euler se e só for conexo e não tiver vértices de grau ímpar. rafos ircuito e iclo de uler X. ircuito e iclo de uler Um grafo orientado diz-se euleriano se há um circuito que contenha todos os seus arcos uma e só uma vez (circuito euleriano ).O grafo da figura é

Leia mais

Teoria dos Grafos. Aula 5 - Estruturas de Dados para Grafos. Profª. Alessandra Martins Coelho. março/2013

Teoria dos Grafos. Aula 5 - Estruturas de Dados para Grafos. Profª. Alessandra Martins Coelho. março/2013 Teoria dos Grafos Aula 5 - Estruturas de Dados para Grafos Profª. Alessandra Martins Coelho março/2013 Estrutura é o que caracteriza o próprio grafo e independe da forma como ele é representado. A representação

Leia mais

2º Trabalho Prático - Algoritmos em grafos

2º Trabalho Prático - Algoritmos em grafos Page of LEIC - AEDII - 00/003 - º Semestre º Trabalho Prático - Algoritmos em grafos Introdução Conteúdo do trabalho O segundo trabalho consiste no desenvolvimento de um programa em Java de aplicação de

Leia mais

INF1010 Lista de Exercícios 2

INF1010 Lista de Exercícios 2 INF00 Lista de Exercícios 2 Árvores. Construir algoritmo para dada uma árvore n-ária, transformá-la em uma árvore binária. 2. Qual a maior e menor quantidade de nós que podem existir em uma árvore binária

Leia mais

Grafos: componentes fortemente conexos, árvores geradoras mínimas

Grafos: componentes fortemente conexos, árvores geradoras mínimas Grafos: componentes fortemente conexos, árvores geradoras mínimas SCE-183 Algoritmos e Estruturas de Dados 2 Thiago A. S. Pardo Maria Cristina 1 Componentes fortemente conexos Um componente fortemente

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Introdução Um passeio entre os nós i e j é uma seqüência alternada de nós e arestas que começa no nó i e termina no nó j. G 1 G 2 Um exemplo de passeio entre os nós 1 e 4 do grafo G 1 é (1,(1,3),3,(2,3),2,(1,2),1,(1,4),4).

Leia mais

Conceito Básicos da Teoria de Grafos

Conceito Básicos da Teoria de Grafos 1 Conceito Básicos da Teoria de Grafos GRAFO Um grafo G(V,A) é definido pelo par de conjuntos V e A, onde: V - conjunto não vazio: os vértices ou nodos do grafo; A - conjunto de pares ordenados a=(v,w),

Leia mais

EXERCÍCIOS RESOLVIDOS DE TEORIA DOS GRAFOS - LISTA II. a) SOLUÇÃO

EXERCÍCIOS RESOLVIDOS DE TEORIA DOS GRAFOS - LISTA II. a) SOLUÇÃO EXERCÍCIOS RESOLVIDOS DE TEORIA DOS GRAFOS - LISTA II.) Escreva a matriz de adjacências dos grafos abaixo: a) b) c) .) Desenhe os grafos correspondentes as matrizes de adjacência abaixo: a) Como a matriz

Leia mais

01 Grafos: parte 1 SCC0503 Algoritmos e Estruturas de Dados II

01 Grafos: parte 1 SCC0503 Algoritmos e Estruturas de Dados II 01 Grafos: parte 1 SCC0503 Algoritmos e Estruturas de Dados II Prof. Moacir Ponti Jr. www.icmc.usp.br/~moacir Instituto de Ciências Matemáticas e de Computação USP 2011/1 Moacir Ponti Jr. (ICMCUSP) 01

Leia mais

Introdução à Teoria dos Grafos (MAC-5770) IME-USP Depto CC Profa. Yoshiko. Capítulo 3

Introdução à Teoria dos Grafos (MAC-5770) IME-USP Depto CC Profa. Yoshiko. Capítulo 3 Introdução à Teoria dos Grafos (MAC-5770) IME-USP Depto CC Profa. Yoshiko Capítulo 3 Árvores Problema: Suponha que numa cidade haja n postos telefônicos. Para que seja sempre possível haver comunicação

Leia mais

Introdução à Teoria dos Grafos

Introdução à Teoria dos Grafos Capítulo 1 Introdução à Teoria dos Grafos 1.1 História O primeiro problema cuja solução envolveu conceitos do que viria a ser teoria dos grafos, denominado "problema das pontes de Königsberg", foi resolvido

Leia mais

CONCEITOS BÁSICOS EM GRAFOS

CONCEITOS BÁSICOS EM GRAFOS Um grafo (simples) G é formado por um conjunto de vértices, denotado por V(G), e um conjunto de arestas, denotado por E(G). Cada aresta é um par (não ordenado) de vértices distintos. Se xy é uma aresta,

Leia mais

APLICAÇÕES DE BUSCA EM GRAFOS

APLICAÇÕES DE BUSCA EM GRAFOS APLICAÇÕES DE BUSCA EM GRAFOS David Krenkel Rodrigues de Melo david.melo1992@gmail.com Prof. Leonardo Sommariva, Estrutura de Dados RESUMO: São inúmeras as aplicaçõe de grafos, bem como os problemas clássicos

Leia mais

Definições Básicas para Grafos

Definições Básicas para Grafos Definições Básicas para rafos RAFO Um grafo (V,A) é definido pelo par de conjuntos V e A, onde: V - conjunto não vazio: os vértices ou nodos do grafo; A - conjunto de pares ordenados a=(v,w), v e w V:

Leia mais

BCC402 Algoritmos e Programação Avançada. Prof. Marco Antonio M. Carvalho Prof. Túlio Toffolo 2012/1

BCC402 Algoritmos e Programação Avançada. Prof. Marco Antonio M. Carvalho Prof. Túlio Toffolo 2012/1 BCC402 Algoritmos e Programação Avançada Prof. Marco Antonio M. Carvalho Prof. Túlio Toffolo 2012/1 Definições e Estruturas de Grafos Representações; Percursos Busca em Largura; Busca em Profundidade.

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada. Teoria dos Grafos Valeriano A de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilceunespbr, socorro@ibilceunespbr Grafos Hamiltonianos Preparado a partir do texto: Rangel, Socorro

Leia mais

Selecciona-se dos vértices ainda não seleccionados o vértice v k que está à menor distância de v i,

Selecciona-se dos vértices ainda não seleccionados o vértice v k que está à menor distância de v i, V. Problema do caixeiro-viajante Grafos - Problema do caixeiro-viajante onsidere-se um grafo em que os vértices representam cidades e as arestas (ou arcos) representam as estradas de uma dada região (a

Leia mais

Matemática Discreta 10

Matemática Discreta 10 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta 10 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br - www.univasf.edu.br/~jorge.cavalcanti 1 Muitas

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Introdução Representação Mostre que todo passeio de u até v contém um caminho de u até v. Considere um passeio de comprimento l de u até v. Se l = 0 então temos um passeio sem nenhuma aresta.

Leia mais

Grafos aula 3. Relembrando... Rede de eventos e atividades. Rede de eventos e atividades

Grafos aula 3. Relembrando... Rede de eventos e atividades. Rede de eventos e atividades Grafos aula Relembrando... m grafo é valorado (ou ponderado) se possuir valores associados às linhas e/ou aos vértices. Rota mais curta entre aeroportos aminho mais curto entre máquinas, para transmissão

Leia mais

Teoria dos Grafos Aula 5

Teoria dos Grafos Aula 5 Teoria dos Grafos Aula Aula passada Explorando grafos Mecanismos genéricos Ideias sobre BFS, DFS Aula de hoje Busca em grafos Busca em largura (BFS Breadth First Search) Propriedades Busca em Grafos Problema

Leia mais

Oferta de Serviços. Grafo Planar. Notas. Teoria dos Grafos - BCC204, Planaridade. Notas

Oferta de Serviços. Grafo Planar. Notas. Teoria dos Grafos - BCC204, Planaridade. Notas Teoria dos Grafos - BCC204 Planaridade Haroldo Gambini Santos Universidade Federal de Ouro Preto - UFOP 29 de maio de 2011 1 / 23 Oferta de Serviços Gás Luz Água Podemos oferecer os demais serviços para

Leia mais

TGR BCC Representação Computacional de Grafos. Prof. Ricardo José Pfitscher

TGR BCC Representação Computacional de Grafos. Prof. Ricardo José Pfitscher TGR BCC Representação Computacional de Grafos Prof. Ricardo José Pfitscher Cronograma Representação Matriz de djacências Lista de djacências Matriz de Incidências Representação Como podemos representar

Leia mais

Teoria dos Grafos Aula 6

Teoria dos Grafos Aula 6 Teoria dos Grafos Aula 6 Aula passada Busca em grafos Busca em largura (BFS Breadth First Search) Propriedades Aula de hoje BFS implementação Complexidade Busca em profundidade (DFS) Conectividade, componentes

Leia mais

APLICAÇÕES DA TEORIA DOS GRAFOS

APLICAÇÕES DA TEORIA DOS GRAFOS Universidade de Aveiro Departamento de Matemática 2013 Sandra Maria Pereira dos Santos APLICAÇÕES DA TEORIA DOS GRAFOS Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários

Leia mais

Teoria dos Grafos Aula 2

Teoria dos Grafos Aula 2 Teoria dos Grafos Aula 2 Aula passada Logística, regras Objetivos Grafos, o que são? Formando pares Encontrando caminhos Aula de hoje Outro problema real Definições importantes Algumas propriedades Grafo

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes As arestas possuem a função de indicar o relacionamento(espacial, comportamental, temporal) entre os elementos de um grafo. Em diversas situações esta relação não é simétrica, ou seja, par

Leia mais

Problema da Árvore Geradora Mínima

Problema da Árvore Geradora Mínima Instituto Federal do Espírito Santo Campus Serra Problema da Árvore Geradora Mínima Diego Pasti Jefferson Rios Sumário Apresentação do Problema da AGM...3 Raízes do Problema Definindo o Problema O Problema

Leia mais

Pesquisa Operacional

Pesquisa Operacional Faculdade de Engenharia - Campus de Guaratinguetá Pesquisa Operacional Livro: Introdução à Pesquisa Operacional Capítulo 3 - Teoria dos Grafos Fernando Marins fmarins@feg.unesp.br Departamento de Produção

Leia mais

Conteúdo. Conceitos e Resultados Gerais. 11 Combinatória. Introdução

Conteúdo. Conceitos e Resultados Gerais. 11 Combinatória. Introdução Introdução ix I Conceitos e Resultados Gerais 1 1 Linguagem Matemática e Lógica Informal 1.1 Sistemas matemáticos.. 1.2 Noção de conjunto... 1.3 Linguagem proposicional.. 1.4 Operações sobre conjuntos.

Leia mais

ALGORITMO DE DIJKSTRA

ALGORITMO DE DIJKSTRA LGORITMO IJKSTR por runo Miguel Pacheco Saraiva de arvalho epartamento de ngenharia Informática Universidade de oimbra oimbra, Portugal brunomig@student.dei.uc.pt Resumo escreve-se o funcionamento do algoritmo

Leia mais

Programa. 1 Parte 1 - Conjuntos e Aplicações. 1 Conjuntos. 4 Indução Matemática e Divisibilidade. 5 Congruências Lineares

Programa. 1 Parte 1 - Conjuntos e Aplicações. 1 Conjuntos. 4 Indução Matemática e Divisibilidade. 5 Congruências Lineares Programa Matemática Discreta 2008/09 Jorge Manuel L. André FCT/UNL 1 Parte 1 - Conjuntos e Aplicações 1 Conjuntos 2 Relações Binárias 3 Aplicações 4 Indução Matemática e Divisibilidade 5 Congruências Lineares

Leia mais

IFRN. Introdução à Teoria dos Grafos. Prof. Edmilson Campos

IFRN. Introdução à Teoria dos Grafos. Prof. Edmilson Campos IFRN Introdução à Teoria dos Grafos Prof. Edmilson Campos Conteúdo Histórico Aplicações Definições Grafo Dígrafo Ordem, adjacência e grau Laço Tipos de grafos Representação de Grafos Matriz de adjacências

Leia mais

Otimização em Grafos

Otimização em Grafos Otimização em Grafos Luidi G. Simonetti PESC/COPPE 2017 Luidi Simonetti (PESC) EEL857 2017 1 / 33 Definição do Problema Dado: um grafo ponderado G = (V, E), orientado ou não, onde d : E R + define as distâncias

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DO ENSINO SECUNDÁRIO DE MATEMÁTICA APLICADA Às CIÊNCIAS SOCIAIS (CÓDIGO DA PROVA 835) 1ª FASE 23 DE JUNHO 2016

PROPOSTA DE RESOLUÇÃO DA PROVA DO ENSINO SECUNDÁRIO DE MATEMÁTICA APLICADA Às CIÊNCIAS SOCIAIS (CÓDIGO DA PROVA 835) 1ª FASE 23 DE JUNHO 2016 Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 27-A 1500-236 Lisboa Tel.: +351 21 716 36 90 / 21 711 03 77 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO DA PROVA

Leia mais

Doutorado em Ciência da Computação. Algoritmos e Grafos. Raimundo Macêdo LaSiD/DCC/UFBA

Doutorado em Ciência da Computação. Algoritmos e Grafos. Raimundo Macêdo LaSiD/DCC/UFBA Doutorado em Ciência da Computação Algoritmos e Grafos Raimundo Macêdo LaSiD/DCC/UFBA Grafo Completo Grafo simples cujos vértices são dois a dois adjacentes. Usa-se a notação K n para um grafo completo

Leia mais

Estudo e implementação de heurísticas para determinação do caminho de menor custo para atender a rotas pré estabelecidas. Por: Charles Pereira

Estudo e implementação de heurísticas para determinação do caminho de menor custo para atender a rotas pré estabelecidas. Por: Charles Pereira Estudo e implementação de heurísticas para determinação do caminho de menor custo para atender a rotas pré estabelecidas Por: Charles Pereira Objetivos Principal: - Criar, implementar e avaliar heurísticas

Leia mais

15 - Coloração Considere cada um dos grafos abaixo:

15 - Coloração Considere cada um dos grafos abaixo: 15 - Coloração Considere cada um dos grafos abaixo: a) Quantas cores são necessárias para colorir os vértices de um grafo de maneira que dois vértices adjacentes não recebam a mesma cor? b) Qual é o número

Leia mais

Grafos: caminhos (matriz adjacência)

Grafos: caminhos (matriz adjacência) Grafos: caminhos (matriz adjacência) Algoritmos e Estruturas de Dados 2 Graça Nunes 1 O problema do menor caminho Um motorista deseja encontrar o caminho mais curto possível entre duas cidades do Brasil

Leia mais

Tópicos de Matemática Finita Data: I II-1 II-2 II-3 II-4 III-1 III-2 III-3 III-4 IV-1 IV-2 IV-3 IV-4 Nota Final

Tópicos de Matemática Finita Data: I II-1 II-2 II-3 II-4 III-1 III-2 III-3 III-4 IV-1 IV-2 IV-3 IV-4 Nota Final Tópicos de Matemática Finita Data: 20-06-2003 1 a Época Correcção Código: 1B Nome: Número: Curso: O exame que vai realizar tem a duração de três horas. As respostas às perguntas do grupo I não necessitam

Leia mais

As Pontes de Königsberg

As Pontes de Königsberg As Pontes de Königsberg Anderson Freitas Ferreira e Lívia Minami Borges 13 de junho de 2015 Resumo A teoria de grafos teve seu início em 1736, quando Euler utilizou uma estrutura para resolver o Problema

Leia mais

Teoria dos Grafos AULA

Teoria dos Grafos AULA Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br AULA Caminho mínimo - Algoritmo de Djskstra Preparado a partir

Leia mais

14 Coloração de vértices Considere cada um dos grafos abaixo:

14 Coloração de vértices Considere cada um dos grafos abaixo: 14 Coloração de vértices Considere cada um dos grafos abaixo: a) Quantas cores são necessárias para colorir os vértices de um grafo de maneira que dois vértices adjacentes não recebam a mesma cor? b) Qual

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Grafos Enumeração de Passeios/Caminhos O processo associado à enumeração de caminhos de um grafo/dígrafo é semelhante ao processo de contagem com a diferença de que usaremos uma matriz de

Leia mais

Alguns probleminhas...

Alguns probleminhas... Introdução Vários problemas da computação, com aplicações em diversos problemas importantes, nasceram de jogos ou brincadeiras. Hoje veremos uma pequana amostra deste fato. Alguns probleminhas... Problema

Leia mais

Teoria dos Grafos AULA 3

Teoria dos Grafos AULA 3 Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br AULA 3 Trajetos, Caminhos, Circuitos, Grafos Conexos Preparado

Leia mais

Caminho mais curto. 1 - Caminho não pesado

Caminho mais curto. 1 - Caminho não pesado Caminho mais curto Dado um grafo pesado G = (V, E) e um vértice s, obter o caminho pesado mais curto de s para cada um dos outros vértices em G Exemplo: rede de computadores, com custo de comunicação e

Leia mais

Ciência da Computação Engenharia de Computação Mestrado em Informática. Teoria dos Grafos. Maria Claudia Silva Boeres.

Ciência da Computação Engenharia de Computação Mestrado em Informática. Teoria dos Grafos. Maria Claudia Silva Boeres. Ciência da Computação Engenharia de Computação Mestrado em Informática Maria Claudia Silva Boeres boeres@inf.ufes.br Programa 1.Conceitos Básicos 2.Grafos Eulerianos e Hamiltonianos 3.Caminhos, Ciclos

Leia mais

Definição e Conceitos Básicos

Definição e Conceitos Básicos Definição e Conceitos Básicos Grafos e Algoritmos Computacionais Prof. Flávio Humberto Cabral Nunes fhcnunes@yahoo.com.br 1 Conceitos Básicos Em grafos ocorrem dois tipos de elementos: Vértices ou nós;

Leia mais

Grafos Planares. Grafos e Algoritmos Computacionais. Prof. Flávio Humberto Cabral Nunes

Grafos Planares. Grafos e Algoritmos Computacionais. Prof. Flávio Humberto Cabral Nunes Grafos Planares Grafos e Algoritmos Computacionais Prof. Flávio Humberto Cabral Nunes fhcnunes@yahoo.com.br 1 Introdução Os exemplos mais naturais de grafos são os que se referem à representação de mapas

Leia mais

Estruturas de Dados para Conjuntos Disjuntos: Union-find Letícia Rodrigues Bueno

Estruturas de Dados para Conjuntos Disjuntos: Union-find Letícia Rodrigues Bueno Estruturas de Dados para Conjuntos Disjuntos: Union-find Letícia Rodrigues Bueno UFABC Estruturas de Dados para Conjuntos Disjuntos: Introdução Estruturas de Dados para Conjuntos Disjuntos: Introdução

Leia mais

PCC173 - Otimização em Redes

PCC173 - Otimização em Redes PCC173 - Otimização em Redes Marco Antonio M. Carvalho Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto 27 de abril de 2016 Marco Antonio M. Carvalho

Leia mais

As pontes de Königsberg

As pontes de Königsberg As pontes de Königsberg Adérito Araújo Centro de Matemática da Universidade de Coimbra A cidade de Königsberg Era uma vez uma cidade chamada Königsberg ( montanha do rei ) na antiga Prússia. Fundada em

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Introdução Grafo Estrela Um grafo estrela é um grafo bipartido de n vértices que possui um conjunto independente com um único vértice e o outro com n-1 vértices Quantos grafos estrelas podemos

Leia mais

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 2.1 Domínio e Imagem 1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 3 (e) g (x) 2x (f) g (x) = jx 1j x, se x 2

Leia mais

1 Trajeto Euleriano. > Trajeto Euleriano 0/20

1 Trajeto Euleriano. > Trajeto Euleriano 0/20 Conteúdo 1 Trajeto Euleriano > Trajeto Euleriano 0/20 Um trajeto Euleriano em um grafo G é um trajeto que utiliza todas as arestas do grafo. Definição Um grafo G é Euleriano se e somente se possui um trajeto

Leia mais