LISTA 0 - GABARITO. ( n p )ap b n p, n N {0}. (Passo de indução) Suponhamos a fórmula válida para m N e provemo-la para m=1. = a

Tamanho: px
Começar a partir da página:

Download "LISTA 0 - GABARITO. ( n p )ap b n p, n N {0}. (Passo de indução) Suponhamos a fórmula válida para m N e provemo-la para m=1. = a"

Transcrição

1 Curso: MAT 43 - CÁLCULO para CIÊNCIAS BIOLÓGICAS - FCFUSP Professor Oswaldo Rio Branco de Oliveira Período: Primeiro Semestre de 200 LISTA 0 - GABARITO. Binômio de Newton (a+b) n pn p0 ( n p )ap b n p, n N {0}. Solução (Combinatória) Por convenção 0! e portanto,( n 0 ), n N {0}. Temos,(a+b) n (a+b)(a+b)...(a+b)c n a n + c n a n b+...+c ab n + c 0 b n com os coeficientes c i N. Imaginando n caixas, cada uma só com os elementos a e b, cada parcela do desenvolvimento de(a+b) n pode ser vista como oriunda de n-retiradas, uma de cada caixa, ou de a ou de b. O número de formas que é possível retirar a n-vezes para formar a n é, evidentemente. Logo, c n. Formamos a p b n p retirando a p vezes e para tal temos na primeira retirada n possíveis caixas, na segunda n e na p-ésima retirada n p + possíveis caixas. O número de repetições, por não importar a caixa de onde retiramos a é p!. Assim, o coeficiente de a p b n p é n(n )...(n p+) p! n! (n p)!p!. Solução 2 (Indução) Seja X{n N afórmula é verdadeira}. Provemos X N. Caso n: temos(a+b) a+b e p ( p )ab b p ( 0 )a0 b +( )a b 0 a+b. Logo, X. p0 (Passo de indução) Suponhamos a fórmula válida para m N e provemo-la para m. Temos(a+b) m+ (a+b)(a+b) m e, por hipótese de indução [(a+b) m pm ( m p )ap b m p ], p0 (a+b) m+ pm (a+b) p0 ( m p )ap b m p pm a p0 ( m p )ap b m p pm + b p0 ( m p )ap b m p pm p0 ( m p )ap+ b m p + pm ( m p0 p )ap b m+ p. No primeiro dos dois últimos somatórios acima fazemos a substituição ip+. No segundo apenas trocamos a letra p por i. Obtemos assim, [ Por último, (a+b) m+ im+ ( m i i )ai b m+ i + im ( m i i )ai b m+ i + a m+ b 0 ] + [ a 0 b m+ + a m+ b 0 + im ( m i0 i )ai b m+ i im ( m i i )ai b m+ i ] im [( m i i )+(m i )] ai b m+ i + a 0 b m+. ( m i )+(m i ) m! (i )!(m )! [ m i+ + i ] (m+)m! i(i )!(m )! (m+ ) i

2 2. Progressão Geométrica +a+a a n an+, a R, a, n N {0}. Prova Somando as equações, s n +a+a a n a as n a a 2... a n a n+, obtemos( a)s n a n+ 3. Uma Fatoração Polinomial x n (x )(x n + x n x+), n N. Solução É claro que(x )(xn + x n x+)x(x n + x n x+)+ (x n + x n x+)x n + x n +...+x 2 + x) (x n + x n x+)x n. Solução 2 Pelo ítem 2, a n+ ( a)(+a+a a n ), a R, n N {0}. Trocando o sinal na equação e ainda a por x e, pondo mn+ temos, x m (x )(x m + x m x+), x R, m N 4. Um Produto Notável a n b n (a b)(a n + a n 2 b+...+ab n 2 + b n ), n N. Prova Substituindo x a b na identidade xn (x )(x n +x n x+) obtemos, a n )(an b (a n b an i +... bn b a n i b + ). Multiplicando a equação acima por b n nos dá, a n b n ( a b )bn ( an b n +...+an i b n i+...+a b +)(a b )(an b+...+a n i b i +...+ab n +b n ) a b b (a n b+...+a n i b i +...+ab n +b n )(a b)(a n +...+a n i b i +...+ab n 2 +b n ) 5. Teorema Todo polinômio de grau ímpar e coeficientes reais têm ao menos uma raíz real. Prova Basta verificarmos Se P(x)a n x n +...a x+a o, a i R, i0,,...,n, a n 0, é um polinômio com coeficientes reais de grau n sem raízes reais então grau(p) é par. Verificação Como o conjugado da soma e do produto de números em C é a respectiva soma e produto dos conjugados e o conjugado de x R é x, dada uma raíz z C temos, 00P(z)a n z n + a n z n +...+a z+ a 0 a n z n a z + a 0 P(z). Logo, z é raíz de P, z z pois z R e, Q(x)(x z)(x z) divide P. Porém, Q(x)x 2 zx zx+ z 2 x 2 (z+ z)x+ z 2 x 2 2Re(z)x+ z 2 têm coeficientes reais e assim, P(x) Q(x) também. Donde, é fácil ver, z e z têm igual multiplicidade. Logo, se z,z,...,z k,z k são as raízes de P, sem repetição, m i a multiplicidade de z i, então P(x)a n (x z ) m (x z ) m...(x z k ) m k (x z k ) m k e nm +m +...+m k +m k é par 2

3 6. Raízes de P(x)a n x n +a n x n +...+a x+a o n, com coeficientes, a i, inteiros: (i) Se α Z é raíz então α a o. (ii) Se α p q Q é raíz, mdc(p,q), então p divide a o e q divide a n. Prova (i) Sendo P(α)a n α n + a n α n +...+a α+a 0 0 temos, a 0 a n α n a n α n... a α. Assim, como α a n α n,..., α a α então α (a n α n + a n α n +...+a α)a 0. (ii) Mostremos primeiro que p a 0. Temos, 0P( p q )a n pn q n + a n p n q n + a p q + a 0. Logo, 0a n p n + a n p n q+...+a pq n + a 0 q n. Como p divide a n p n, a n p n q..., a pq n então p (a n p n + a n p n q+...+a pq n ). Isto é, p a 0 q n e portanto, como mdc(p,q), p a 0. Ainda, q divide a 0 q n, a pq n...,a n p n q e então q (a n p n q+...+a pq n + a 0 q n ). Isto é, q a n p n e assim, como mdc(p,q), q a n 7. Resolva algumas equações de segundo grau sem a fórmula de Baskhara e então prove-a. A fórmula Seja ax 2 + bx+c0, a 0, uma equação do segundo grau em x. Temos, ax 2 + bx+c a(x 2 + b a x+ c a ) a[(x+ b 2a )2 ( b 2a )2 + c a ] a[(x+ b 2a )2 + 4ac b2 4a 2 ]. Logo, x é raíz se, e só se,(x+ b 2a )2, b 2 4ac e extraindo a raíz quadrada 4a 2 complexa, que admite dois valores se o radicando é não nulo, obtemos, x+ b 2a ± 2a, qualquer que seja a escolha feita para. Consequentemente, x b± b 2 4ac 2a 8. Sejam α, β em R. (a) sen(α β)senαcosβ senβcosα (b) cos(α β)cosαcosβ+ senαsenβ. (c) cos(α+β)cosαcosβ senαsenβ (d) sen(α+β)senαcosβ+ senβcosα. 3

4 9. Desigualdade Triangular a+b a + b, a,b R. Prova Prova É claro que para todo x R temos x x e x x. Logo, a+b 0 a+b a+b a + b, a+b 0 a+b (a+b) a b a + b 0. O número 2 é irracional. Prova (Por Absurdo) É claro que se p N, p2 é par pépar (p 2 ímpar péímpar). Suponhamos, por absurdo, 2 Q. Então, existem p,q N, mdc(p,q), com 2 p q. Logo, elevando ao quadrado, p 2 2q 2 e assim, p 2 é par, p é par e existe m N tal que p2m. Substituindo temos 2 2m que, também quadradando, nos dá,2q 2 4m 2 e, q simplificando, q 2 2m 2. Logo, q é também par e então 2 divide p e q. Mostre, no plano de Argand-Gauss, que se z a+ib C, com a, b R e a 2 + b 2, existe um único θ [0,2π) tal que, z cosθ+ isenθ. 2. Se z cosθ + isenθ e z 2 cosθ 2 + isenθ 2 então, z z 2 cos(θ + θ 2 )+isen(θ + θ 2 ). Prova Temos, pelos ítens 8(c) e 8(d), z z 2 (cosθ + isenθ )(cosθ 2 + isenθ 2 ) (cosθ cosθ 2 senθ senθ 2 )+i(cosθ senθ 2 +senθ cosθ 2 )cos(θ +θ 2 )+sen(θ + θ 2 )i 3. Definindo z e iθ cosθ+ isenθ (Fórmula de Euler) temos a Fórmula de Moivre, z n (cosθ+ isenθ) n cos(nθ)+isen(nθ)e inθ, n N. Prova Consequência imediata do item anterior 4. Se z a+ib C, a,b R, o módulo de z é z a 2 + b 2 e o conjugado é z a ib. (a) Se z 0 então!θ R, módulo 2π, tal que z z e iθ. (b) Represente z, θ, z e z (simétrico a z em relação ao eixo real). (c) z zz z, Re(z) z e Im(z) z. (d) Para quaisquer z,z 2 C, z z 2 z z 2 e z z 2 z z 2. (e) Se z, z e iθ, θ R, então z e iθ. 4

5 Prova (a) Basta aplicar o item a z z. (c) Segue de zz(a+bi)(a bi)a 2 + b 2 z 2 e z z. (d) A primeira identidade deixamos ao leitor. A segunda segue da primeira e do item (c) pois, z z 2 2 (z z 2 )(z z 2 )(z z )(z 2 z 2 ) z 2 z 2 2. (e) Claramente, z e iθ cosθ+ isenθ cosθ isenθ cos( θ)+isen( θ)e iθ 5. Desigualdade Triangular: z + z 2 z + z 2, z,z 2 C. Prova Pelos ítens 4(c) e 4(d), z + z 2 2 (z + z 2 )(z + z 2 )z z + z z 2 + z z 2 + z 2 z 2 z 2 + z z 2 + z z 2 + z 2 2 z 2 + 2Re(z z 2 )+ z 2 2 z z z 2 + z 2 2 z z z 2 + z 2 2 ( z + z 2 ) 2 6. Se z,z 2 C, com z z e iθ e z 2 z 2 e iθ2 então, z z 2 z z 2 e i(θ+θ2). Prova Consequência imediata do item 2 7. Se ω C, ω a+ib, com a,b R, ω, então, ω ω ω a ib. Prova Segue de(a+ib)(a ib)a 2 + b 2 ω 2 8. Sejam ω 2 x 2 + iy 2 e iθ2 e ω x + iy e iθ, com x j,y j,θ j R, j,2, números complexos unitários (isto é, de comprimento ). Então, (a) ω 2 ω e i(θ2 θ) cos(θ 2 θ )+isen(θ 2 θ ), (b) ω 2 ω x 2+ iy 2 x + iy (x 2 + iy 2 )(x iy )(x x 2 + y y 2 )+i(x y 2 x 2 y ). Prova (a) Pelos itens 4(e) e 2 temos, ω2 ω e iθ2 (e iθ ) e iθ2 e iθ e i(θ2 θ). (b) Segue imediatamente do item 7 5

6 9. Fórmula para o ângulo entre as representações dos números z e z 2 em C, z j x j + iy j z j e iθj, com x j,y j,θ j R, para j,2, cos(θ 2 θ ) x x 2 + y y 2 z z 2 Prova Segue de 8, (a) e (b), aplicado a ω 2 x2 z 2 + y2 z 2 i e ω x z + y z i Distância de Ponto a Reta A equação geral de uma reta no plano cartesiano é: D ax+by+ c0; a ou b não nulo. Dado P o (x o,y o ) R 2, a distância de P o à reta D é : PD ax o + by o + c a2 + b 2. Prova Notemos m r o coeficiente angular de uma reta r. As retas S perpendiculares a D tem coeficiente angular m S, m S.m D e, introduzindo um parametro d, equação geral: S bx+ay+ d0, d R e entre tais a por P o (x o,y o ) é tal que dbx o ay o. Isto é, S Po bx+ay+(bx o ay o )0. Determinemos P (x,y )D S Po resolvendo, ax+by c, ( ) bx+ay ay o bx o. Multiplicando a primeira equação por a, a segunda por b, e então somando-as temos, x (b 2 x a 2 +b 2 o aby o ac) e, analogamente, multiplicando a primeira por b e a segunda por a e somando-as, y a 2 +b 2 ( abx o + a 2 y o bc). Computemos agora o quadrado da distância de P o (x o,y o ) a P (x,y ), P o P 2 [ x o ( b 2 x a 2 +b 2 o aby o ac)] 2 + [ y o ( abx a 2 +b 2 o + a 2 y o bc)] 2 [(a 2 x (a 2 +b 2 ) 2 o + aby o + ac) 2 + ( abx o + b 2 y o + bc) 2 ] [ a 2 (ax (a 2 +b 2 ) by 0 + c) 2 + b 2 (ax 0 + by 0 + c) 2 ] (a 2 +b 2 ) 2 [(a 2 + b 2 )(ax o + by o + c) 2 ] (axo + byo + c)2 a 2 +b 2. Segunda Prova Reescrevendo (*) na notação matricial temos, ( ) a b x c. b a y ay o bx o É fácil constatar que se M M 2 2 (R) é inversível, ela e sua inversa são relacionadas por, M A B M D B C D AD BC. C A Assim, a solução de (**) é, x a b c y a 2 + b 2 ( ac aby a 2 +b 2 o + b 2 x o ) b a ay o bx o ( bc+a 2. y a 2 +b 2 o abx o ) A prova agora segue como a anterior 6

APOIO 1 - CÁLCULO I - Licenciatura Física - Diurno 1 o SEMESTRE de 2008 Professor Oswaldo Rio Branco. Raízes de um Polinômio com Coeficientes Inteiros

APOIO 1 - CÁLCULO I - Licenciatura Física - Diurno 1 o SEMESTRE de 2008 Professor Oswaldo Rio Branco. Raízes de um Polinômio com Coeficientes Inteiros APOIO - CÁLCULO I - Licenciatura Física - Diurno o SEMESTRE de 008 Professor Oswaldo Rio Branco Raízes de um Polinômio com Coeficientes Inteiros Para pesquisarmos as possíveis raízes inteiras, ou racionais,

Leia mais

Computemos agora o quadrado da distância de P o = (x o,y o ) a P 1 = (x 1,y 1 ): P o P 1 2 = (x o x 1 ) 2 +(y o y 1 ) 2 = = [ x o 1

Computemos agora o quadrado da distância de P o = (x o,y o ) a P 1 = (x 1,y 1 ): P o P 1 2 = (x o x 1 ) 2 +(y o y 1 ) 2 = = [ x o 1 Determinante - Aplicação Algébrica e Interpretação Geométrica- Bacharelado Oceanografia o semestre de 04 Professor Oswaldo Rio Branco de Oliveira Distância de ponto a reta A equação geral de uma reta no

Leia mais

Curso: MAT 221- CÁLCULO DIFERENCIAL E INTEGRAL IV Professor Oswaldo Rio Branco de Oliveira Período: Segundo Semestre de 2008

Curso: MAT 221- CÁLCULO DIFERENCIAL E INTEGRAL IV Professor Oswaldo Rio Branco de Oliveira Período: Segundo Semestre de 2008 Curso: MAT 22- CÁLCULO DIFERENCIAL E INTEGRAL IV Professor Oswaldo Rio Branco de Oliveira Período: Segundo Semestre de 2008 APRESENTAÇÃO Um objetivo do curso: Um estudo da exponenciação, subdividido nos

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1 (Ita 018) Uma progressão aritmética (a 1, a,, a n) satisfaz a propriedade: para cada n, a soma da progressão é igual a n 5n Nessas condições, o determinante da matriz a1 a a a4 a5 a 6 a a a 7 8 9 a)

Leia mais

1 Números Complexos e Plano Complexo

1 Números Complexos e Plano Complexo UNIVERSIDADE FEDERAL DE SANTA CATARINA Centro de Ciências Físicas e Matemáticas Departamento de Matemática SEMESTRE CÓDIGO DISCIPLINA TURMA 09-1 MTM5327 Variável Complexa 0549 Professor Lista de Exercícios

Leia mais

Inversão de Matrizes

Inversão de Matrizes Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2015.2 21 de

Leia mais

1.3 Matrizes inversas ] [ 0 1] = [ ( 1) ( 1) ] = [1 0

1.3 Matrizes inversas ] [ 0 1] = [ ( 1) ( 1) ] = [1 0 1.3 Matrizes inversas Definição: Seja A uma matriz de ordem k n, a matriz B de ordem n k é uma inversa à direita de A, se AB = I. A Matriz C de ordem n k é uma inversa à esquerda de A, se CA = I. Exemplo

Leia mais

PROVA COMENTADA PELOS PROFESSORES DO CURSO POSITIVO Vestibular ITA 2018

PROVA COMENTADA PELOS PROFESSORES DO CURSO POSITIVO Vestibular ITA 2018 Vestibular ITA 018 Resolução da prova de Matemática do ITA 018 Comentário da prova Uma prova extremamente abrangente, contendo grande parte dos conteúdos do programa. Além disso, houve uma gradação com

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem

Leia mais

NOTAÇÕES. Obs.: São cartesianos ortogonais os sistemas de coordenadas considerados

NOTAÇÕES. Obs.: São cartesianos ortogonais os sistemas de coordenadas considerados ITA006 NOTAÇÕES : conjunto dos números complexos : conjunto dos números racionais i: unidade imaginária; i z = x+ iy, x, y = 1 : conjunto dos números reais : conjunto dos números inteiros = {0, 1,, 3,...

Leia mais

Exercícios Operações com frações 1. Determine o valor das seguintes expressões, simplificando sempre que possível:

Exercícios Operações com frações 1. Determine o valor das seguintes expressões, simplificando sempre que possível: Exercícios Operações com frações. Determine o valor das seguintes expressões, simplificando sempre que possível: 7 c 6 8 6 d b a 8 : 8 7 0 f 8 7 h g e : 6 8 : 6 7 l k j i n m Equações de º Grau Resolva

Leia mais

ANÁLISE MATEMÁTICA 3 NÚMEROS COMPLEXOS

ANÁLISE MATEMÁTICA 3 NÚMEROS COMPLEXOS ANÁLISE MATEMÁTICA 3 NÚMEROS COMPLEXOS APÊNDICE Maria do Rosário de Pinho e Maria Margarida Ferreira Setembro 1998 Faculdade de Engenharia da Universidade do Porto Licenciatura em Engenharia Electrotécnica

Leia mais

Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma:

Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma: EQUAÇÕES POLINOMIAIS. EQUAÇÃO POLINOMIAL OU ALGÉBRICA Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma: p(x) = a n x n + a n x n +a n x n +... + a x + a 0 = 0 onde

Leia mais

Matemática 1 a QUESTÃO

Matemática 1 a QUESTÃO Matemática a QUESTÃO IME-007/008 Temos que: i) sen 3 x + cos 3 x = (senx + cosx) (sen x senxcosx + cos x) = (senx + cosx) ( senxcosx) ii) sen xcos x = ( + senxcosx) ( senxcosx) Então, a equação dada é

Leia mais

Lista de Exercícios Nº 02 Tecnologia em Mecatrônica Prof.: Carlos Bezerra

Lista de Exercícios Nº 02 Tecnologia em Mecatrônica Prof.: Carlos Bezerra TEXTO PARA A PRÓXIMA QUESTÃO (Ufba 96) Na(s) questão(ões) a seguir escreva nos parenteses a soma dos itens corretos. 1. Sendo m = x + 1, n = x - x, p = x - 1, pode-se afirmar: (01) m = n. p (02) m + n

Leia mais

1 Módulo: Fatoração. 1.1 Exemplos

1 Módulo: Fatoração. 1.1 Exemplos 1 Módulo: Fatoração Fatorar é transformar equações algébricas em produtos de duas ou mais expressões chamadas fatores. Existem vários casos de fatoração como: Fator comum em evidência: quando os termos

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem

Leia mais

1 Números Complexos. Seja R o conjunto dos Reais. Consideremos o produto cartesiano R R = R 2 tal que:

1 Números Complexos. Seja R o conjunto dos Reais. Consideremos o produto cartesiano R R = R 2 tal que: Números Complexos e Polinômios Prof. Gustavo Sarturi [!] Esse documento está sob constantes atualizações, qualquer erro de ortografia, cálculo, favor comunicar. Última atualização: 01/11/2018. 1 Números

Leia mais

Temos, 4(x 2 2x) + 3(y 2 + 4y) 32 = 4(x 1) 2 + 3(y + 2) E assim, a quádrica dada é a elipse

Temos, 4(x 2 2x) + 3(y 2 + 4y) 32 = 4(x 1) 2 + 3(y + 2) E assim, a quádrica dada é a elipse Exercício (c) - Elipse : x + y x + y 0 Este é apenas um resumo, com comentários, da solução Façam um esboço da elipse, mostrando o centro, os focos, semi-eixos, vértices e retas diretrizes Temos, (x x)

Leia mais

ELIPSE. Figura 1: Desenho de uma elipse no plano euclidiano (à esquerda). Desenho de uma elipse no plano cartesiano (à direita).

ELIPSE. Figura 1: Desenho de uma elipse no plano euclidiano (à esquerda). Desenho de uma elipse no plano cartesiano (à direita). QUÁDRICAS/CÔNICAS - Cálculo II MAT 147 FEAUSP Segundo semestre de 2018 Professor Oswaldo Rio Branco de Oliveira [ Veja também http://www.ime.usp.br/~oliveira/ele-conicas.pdf] No plano euclidiano consideremos

Leia mais

( )( ) = =

( )( ) = = GABARITO IME MATEMÁTICA Questão Assinale a alternativa verdadeira: (A) 06 0 < 07 06

Leia mais

CÔNICAS - MAT Complementos de Matemática para Contabilidade FEAUSP - Diurno 2 o semestre de 2015 Professor Oswaldo Rio Branco de Oliveira ELIPSE

CÔNICAS - MAT Complementos de Matemática para Contabilidade FEAUSP - Diurno 2 o semestre de 2015 Professor Oswaldo Rio Branco de Oliveira ELIPSE CÔNICAS - MAT 103 - Complementos de Matemática para Contabilidade FEAUSP - Diurno 2 o semestre de 2015 Professor Oswaldo Rio Branco de Oliveira No plano euclidiano consideremos dois pontos (focos) distintos

Leia mais

LISTA 9 (GABARITO) - CÁLCULO I - MAT111 - IAG - Diurno 1 o SEMESTRE de 2009 Professor Oswaldo Rio Branco

LISTA 9 (GABARITO) - CÁLCULO I - MAT111 - IAG - Diurno 1 o SEMESTRE de 2009 Professor Oswaldo Rio Branco LISTA 9 (GABARITO) - CÁLCULO I - MAT - IAG - Diurno o SEMESTRE de 009 Professor Oswaldo Rio Branco () Assumindo y = y(x) e derivando a equação da elipse em relação a x temos, d {x a + y b } = x a + y(x)y

Leia mais

Conteúdo. 2 Polinômios Introdução Operações... 13

Conteúdo. 2 Polinômios Introdução Operações... 13 Conteúdo 1 Conjunto dos números complexos 1 1.1 Introdução.......................................... 1 1.2 Operações (na forma algébrica).............................. 2 1.3 Conjugado..........................................

Leia mais

Questão 1. Considere os conjuntos S = {0, 2, 4, 6}, T = {1, 3, 5} e U = {0, 1} e as. A ( ) apenas I. B ( ) apenas IV. C ( ) apenas I e IV.

Questão 1. Considere os conjuntos S = {0, 2, 4, 6}, T = {1, 3, 5} e U = {0, 1} e as. A ( ) apenas I. B ( ) apenas IV. C ( ) apenas I e IV. NOTAÇÕES C : conjunto dos números complexos. [a, b] = {x R ; a x b}. Q : conjunto dos números racionais. ]a, b[= {x R ; a < x < b}. R : conjunto dos números reais. i : unidade imaginária ; i = 1. Z : conjunto

Leia mais

POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma:

POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma: POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma: n P(x) a a x a x... a x, onde 0 1 n Atenção! o P(0) a 0 o P(1) a a a... a 0 1 n a 0,a 1,a,...,a n :coeficientes

Leia mais

TURMA:12.ºA/12.ºB. O que é o i? Resposta: A raiz imaginária da unidade negativa. (Leibniz)

TURMA:12.ºA/12.ºB. O que é o i? Resposta: A raiz imaginária da unidade negativa. (Leibniz) GUIA DE ESTUDO NÚMEROS COMPLEXOS TURMA:12.ºA/12.ºB 2017/2018 (ABRIL/MAIO) Números Complexos O que é o i? Resposta: A raiz imaginária da unidade negativa. (Leibniz) A famosa igualdade de Euler i e 10 A

Leia mais

Conjunto dos Números Complexos

Conjunto dos Números Complexos Conjunto dos Unidade Imaginária Seja a equação: x + 0 Como sabemos, no domínio dos números reais, esta equação não possui solução, criou-se então um número cujo quadrado é. Esse número, representado pela

Leia mais

A Matemática no Vestibular do ITA. Material Complementar: Coletânea de Questões Isoladas ITA 1970

A Matemática no Vestibular do ITA. Material Complementar: Coletânea de Questões Isoladas ITA 1970 A Matemática no Vestibular do ITA Material Complementar: Coletânea de Questões Isoladas ITA 1970 Essas 24 questões foram coletadas isoladamente em diversas fontes bibliográficas. Seguindo sugestão de uma

Leia mais

CÔNICAS - MAT CÁLCULO II - Bacharelado Química - Diurno 2 o SEMESTRE de 2009 Professor Oswaldo Rio Branco ELIPSE

CÔNICAS - MAT CÁLCULO II - Bacharelado Química - Diurno 2 o SEMESTRE de 2009 Professor Oswaldo Rio Branco ELIPSE CÔNICAS - MAT 2127 - CÁLCULO II - Bacharelado Química - Diurno 2 o SEMESTRE de 2009 Professor Oswaldo Rio Branco No plano euclidiano consideremos F 1 e F 2 dois pontos (focos) distintos. ELIPSE (1) Se

Leia mais

Polinômios (B) 4 (C) 2 (D) 1 3 (E). 2

Polinômios (B) 4 (C) 2 (D) 1 3 (E). 2 Polinômios. (ITA 2005) No desenvolvimento de (ax 2 2bx + c + ) 5 obtém-se um polinômio p(x) cujos coeficientes somam 32. Se 0 e são raízes de p(x), então a soma a + b + c é igual a (A) 2 (B) 4 (C) 2 (D)

Leia mais

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A. Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos

Leia mais

Solução Comentada da Prova de Matemática

Solução Comentada da Prova de Matemática Solução Comentada da Prova de Matemática 01. Considere, no plano cartesiano, os pontos P(0,1) e Q(,3). A) Determine uma equação para a reta mediatriz do segmento de reta PQ. B) Determine uma equação para

Leia mais

para Fazer Contas? A primeira e, de longe, mais importante lição é 1.1. Produtos notáveis; em especial, diferença de quadrados!

para Fazer Contas? A primeira e, de longe, mais importante lição é 1.1. Produtos notáveis; em especial, diferença de quadrados! Álgebra: É Necessário ter Ideias para Fazer Contas? A primeira e, de longe, mais importante lição é 1. Fatoração é legal; fatoração é sua amiga 1.1. Produtos notáveis; em especial, diferença de quadrados!

Leia mais

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ]

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ] MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 017 Gabarito Questão 01 [ 1,5 ] Encontre as medidas dos lados e ângulos de dois triângulos ABC diferentes tais que AC = 1, BC = e A BC = 0 Considere

Leia mais

P1 de Álgebra Linear I

P1 de Álgebra Linear I P1 de Álgebra Linear I 2008.1 Gabarito 1) Decida se cada afirmação a seguir é verdadeira ou falsa e marque COM CANETA sua resposta no quadro a seguir. Itens V F N 1.a x 1.b x 1.c x 1.d x 1.e x 1.a) Para

Leia mais

( ) ( ) ( ) 23 ( ) Se A, B, C forem conjuntos tais que

( ) ( ) ( ) 23 ( ) Se A, B, C forem conjuntos tais que Se A, B, C forem conjuntos tais que ( B) =, n( B A) n A =, nc ( A) =, ( C) = 6 e n( A B C) 4 n B =, então n( A ), n( A C), n( A B C) nesta ordem, a) formam uma progressão aritmética de razão 6. b) formam

Leia mais

Notas breves sobre números complexos e aplicações

Notas breves sobre números complexos e aplicações Notas breves sobre números complexos e aplicações Complementos de Análise Matemática - ESI DMat - Universidade do Minho Dezembro de 2005 1 Definição O conjunto dos números complexos, denotado por C, pode-se

Leia mais

Álgebra Linear. Cursos: Química, Engenharia Química, Engenharia de Materiais,Engenharia Biológica, Engenharia do Ambiente 1 ō ano/1 ō Semestre 2006/07

Álgebra Linear. Cursos: Química, Engenharia Química, Engenharia de Materiais,Engenharia Biológica, Engenharia do Ambiente 1 ō ano/1 ō Semestre 2006/07 Álgebra Linear Cursos: Química, Engenharia Química, Engenharia de Materiais,Engenharia Biológica, Engenharia do Ambiente ō ano/ ō Semestre 2006/07 a Lista: SISTEMAS DE EQUAÇÕES LINEARES E ÁLGEBRA DE MATRIZES

Leia mais

p a p. mdc(j,k): máximo divisor comum dos números inteiros j e k. n(x) : número de elementos de um conjunto finito X. (a,b) = {x : a < x < b}.

p a p. mdc(j,k): máximo divisor comum dos números inteiros j e k. n(x) : número de elementos de um conjunto finito X. (a,b) = {x : a < x < b}. MATEMÁTICA NOTAÇÕES = {0,,,,...} : conjunto dos números inteiros : conjunto dos números racionais : conjunto dos números reais : conjunto dos números complexos i: unidade imaginária; i = Izl: módulo do

Leia mais

CÔNICAS - MAT CÁLCULO 1 - IO Bacharelado Oceanografia - Diurno 1 o semestre de 2010 Professor Oswaldo Rio Branco de Oliveira ELIPSE

CÔNICAS - MAT CÁLCULO 1 - IO Bacharelado Oceanografia - Diurno 1 o semestre de 2010 Professor Oswaldo Rio Branco de Oliveira ELIPSE CÔNICAS - MAT 144 - CÁLCULO 1 - IO Bacharelado Oceanografia - Diurno 1 o semestre de 2010 Professor Oswaldo Rio Branco de Oliveira No plano euclidiano consideremos F 1 e F 2 dois pontos (focos) distintos.

Leia mais

Equação Geral do Segundo Grau em R 2

Equação Geral do Segundo Grau em R 2 8 Equação Geral do Segundo Grau em R Sumário 8.1 Introdução....................... 8. Autovalores e autovetores de uma matriz real 8.3 Rotação dos Eixos Coordenados........... 5 8.4 Formas Quadráticas..................

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido:

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido: Capítulo 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r é assim definido: (r1, r ) 0o se r1 e r são coincidentes, se as retas são concorrentes, isto é, r1

Leia mais

Complementos sobre Números Complexos

Complementos sobre Números Complexos Complementos sobre Números Complexos Ementa 1 Introdução Estrutura Algébrica e Completude 1 O Corpo dos números complexos Notações 3 Interpretação Geométrica e Completude de C 4 Forma Polar de um Número

Leia mais

Equações de 2º grau. Denomina-se equação do 2º grau na incógnita x, toda equação da forma: IR e

Equações de 2º grau. Denomina-se equação do 2º grau na incógnita x, toda equação da forma: IR e Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax 2 + bx + c = 0; a, b, c IR e Exemplo: x 2-5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e

Leia mais

1 0 para todo x, multiplicando-se os dois membros por. 2x 1 0 x 1 2. b a x. ba 2. e b 2 c

1 0 para todo x, multiplicando-se os dois membros por. 2x 1 0 x 1 2. b a x. ba 2. e b 2 c CAPÍTULO 1 Exercícios 1..n) Como x 0 para todo x, o sinal de x(x ) é o mesmo que o de x; logo, x(x ) 0 para x 0; x(x ) 0 para x 0; x(x ) 0 para x 0.. n) Como x 1 1 0 para todo x, multiplicando-se os dois

Leia mais

Lista de exercícios: Polinômios e Equações Algébricas Problemas Gerais Prof ºFernandinho. Questões:

Lista de exercícios: Polinômios e Equações Algébricas Problemas Gerais Prof ºFernandinho. Questões: Lista de eercícios: Polinômios e Equações Algébricas Problemas Gerais Prof ºFernandinho Questões: 0.(GV) Num polinômio P() do terceiro grau, o coeficiente de P() = 0, calcule o valor de P( ). é. Sabendo-se

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Exercícios de exames e testes intermédios 1. Em C, conjunto dos números complexos, sejam z 1 = 1 3i19 1 + i e z = 3k cis ( 3π, com k R + Sabe-se

Leia mais

Exercício Obtenha, em cada caso, o módulo, o argumento e a forma trigonométrica de z: a) z = 1 + i. setor Aula 31. ρ = 1 2 +( 3 ) 2 ρ= 2.

Exercício Obtenha, em cada caso, o módulo, o argumento e a forma trigonométrica de z: a) z = 1 + i. setor Aula 31. ρ = 1 2 +( 3 ) 2 ρ= 2. setor 0 00408 Aula NÚMEROS COMPLEXOS: PLANO DE ARGAND-GAUSS Até este ponto, usamos, para representar um número complexo a expressão a + b i, em que a e b são números reais e i é a unidade imaginária Com

Leia mais

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3 01 Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b a) a = 3, b, b R b) a = 3 e b = 1 c) a = 3 e b 1 d) a 3 1 0 y = 3x + 1 m = 3 A equação que apresenta uma reta com o mesmo coeficiente angular

Leia mais

Matrizes e sistemas de equações algébricas lineares

Matrizes e sistemas de equações algébricas lineares Capítulo 1 Matrizes e sistemas de equações algébricas lineares ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 1 / 37 Definições Equação linear Uma equação (algébrica)

Leia mais

a é sempre o coeficiente de x²; b é sempre o coeficiente de x, c é o coeficiente ou termo independente.

a é sempre o coeficiente de x²; b é sempre o coeficiente de x, c é o coeficiente ou termo independente. Definições Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax 2 + bx + c = 0; a, b, c Exemplo: x 2-5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6. 6x 2 - x - 1 = 0 é

Leia mais

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO LEEC EXERCÍCIOS DE ÁLGEBRA

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO LEEC EXERCÍCIOS DE ÁLGEBRA FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO LEEC EXERCÍCIOS DE ÁLGEBRA Exercícios vários. Considere o conjunto C =, e a operação binária definida por a b = min(a, b). O conjunto C é, relativamente

Leia mais

NÚMEROS COMPLEXOS

NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS - 016 1. (EFOMM 016) O número complexo, z z (cos θ i sen θ), sendo i a unidade imaginária e 0 θ π, que satisfaz a inequação z i e que possui o menor argumento θ, é a) b) c) d) 5 5 z i

Leia mais

Sistemas de Equações Lineares e Matrizes

Sistemas de Equações Lineares e Matrizes Sistemas de Equações Lineares e Matrizes. Quais das seguintes equações são lineares em x, y, z: (a) 2x + 2y 5z = x + xy z = 2 (c) x + y 2 + z = 2 2. A parábola y = ax 2 + bx + c passa pelos pontos (x,

Leia mais

APOIO 2 - CÁLCULO I - Licenciatura Física - Diurno 1 o SEMESTRE de 2008 Professor Oswaldo Rio Branco

APOIO 2 - CÁLCULO I - Licenciatura Física - Diurno 1 o SEMESTRE de 2008 Professor Oswaldo Rio Branco APOIO - CÁLCULO I - Licenciatura Física - Diurno o SEMESTRE de 008 Professor Oswaldo Rio Branco - Regra da Cadeia (idéia da demonstração) Supondo z = f(y) e y = g(x) funções diferenciáveis de R em R, determinemos

Leia mais

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira: Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto

Leia mais

Prova Vestibular ITA 1995

Prova Vestibular ITA 1995 Prova Vestibular ITA 1995 Versão 1.0 ITA - 1995 01) (ITA-95) Seja A = n ( 1) n!. π + sen ; n ℵ n! 6 a) (- 1) n n. b) n. c) (- 1) n n. d) (- 1) n+1 n. e) (- 1) n+1 n. Qual conjunto abaixo é tal que sua

Leia mais

(UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado do número complexo z = x + yi é:

(UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado do número complexo z = x + yi é: APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado

Leia mais

Introdução: Um pouco de História

Introdução: Um pouco de História Números Complexos Introdução: Um pouco de História Houve um momento na História da Matemática em que a necessidade de expressar a raiz de um número negativo se tornou fundamental. Em equações quadráticas

Leia mais

Conteúdo. 1 Tópicos sobre Números Complexos Polinómios Funções Racionais... 11

Conteúdo. 1 Tópicos sobre Números Complexos Polinómios Funções Racionais... 11 Conteúdo Tópicos sobre Números Complexos........................... Polinómios........................................ 5 3 Funções Racionais.................................... Números Complexos. Polinómios.

Leia mais

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0 Lista de exercícios. AL. 1 sem. 2015 Prof. Fabiano Borges da Silva 1 Matrizes Notações: 0 para matriz nula; I para matriz identidade; 1. Conhecendo-se somente os produtos AB e AC calcule A(B + C) B t A

Leia mais

Geometria Analítica - Aula

Geometria Analítica - Aula Geometria Analítica - Aula 18 228 IM-UFF K. Frensel - J. Delgado Aula 19 Continuamos com o nosso estudo da equação Ax 2 + Cy 2 + Dx + Ey + F = 0 1. Hipérbole Definição 1 Uma hipérbole, H, de focos F 1

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Leia mais

PROBLEMAS DE ÁLGEBRA LINEAR

PROBLEMAS DE ÁLGEBRA LINEAR PROBLEMAS DE ÁLGEBRA LINEAR P. FREITAS Conteúdo. Números complexos. Sistemas de equações; método de eliminação de Gauss 3. Operações com matrizes 3 4. Inversão de matrizes 4 5. Característica e núcleo

Leia mais

1. A imagem da função real f definida por f(x) = é a) R {1} b) R {2} c) R {-1} d) R {-2}

1. A imagem da função real f definida por f(x) = é a) R {1} b) R {2} c) R {-1} d) R {-2} 1. A imagem da função real f definida por f(x) = é R {1} R {2} R {-1} R {-2} 2. Dadas f e g, duas funções reais definidas por f(x) = x 3 x e g(x) = sen x, pode-se afirmar que a expressão de (f o g)(x)

Leia mais

Tecnologia em Construções de Edifícios

Tecnologia em Construções de Edifícios 1 Tecnologia em Construções de Edifícios Aula 9 Geometria Analítica Professor Luciano Nóbrega 2º Bimestre 2 GEOMETRIA ANALÍTICA INTRODUÇÃO A geometria avançou muito pouco desde o final da era grega até

Leia mais

GABARITO ITA MATEMÁTICA

GABARITO ITA MATEMÁTICA GABARITO ITA MATEMÁTICA Sistema ELITE de Ensino ITA - 014/01 GABARITO 01. D 11. B 0. C 1. E 0. D 1. C 04. E 14. D 0. D 1. E 06. E 16. A 07. B 17. E 08. B 18. A 09. C 19. A 10. A 0. C Sistema ELITE de Ensino

Leia mais

Renato Martins Assunção

Renato Martins Assunção Análise Numérica Renato Martins Assunção DCC - UFMG 2012 Renato Martins Assunção (DCC - UFMG) Análise Numérica 2012 1 / 84 Equação linear Sistemas de equações lineares A equação 2x + 3y = 6 é chamada linear

Leia mais

Álgebra Linear I - Aula 14. Roteiro

Álgebra Linear I - Aula 14. Roteiro Álgebra Linear I - Aula 14 1 Matrizes 2 Forma matricial de uma transformação linear 3 Composição de transformações lineares e produto de matrizes 4 Determinante do produto de matrizes Roteiro 1 Matrizes

Leia mais

MÓDULO 17. Radiciações e Equações. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

MÓDULO 17. Radiciações e Equações. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Mostre que MÓDULO 7 Radiciações e Equações 3 + 8 5 + 3 8 5 é múltiplo de 4. 2. a) Escreva A + B como uma soma de radicais simples. b) Escreva

Leia mais

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x EQUAÇÃO POLINOMIAL Equação algébrica Equação polinomial ou algébrica é toda equação na forma a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0, sendo x C a incógnita e a n, a n 1,..., a

Leia mais

Soluções dos Exercícios do Capítulo 2

Soluções dos Exercícios do Capítulo 2 A MATEMÁTICA DO ENSINO MÉDIO Volume 1 Soluções dos Exercícios do Capítulo 2 2.1. Seja X = {n N; a + n Y }. Como a Y, segue-se que a + 1 Y, portanto 1 X. Além disso n X a + n Y (a + n) + 1 Y n + 1 X. Logo

Leia mais

exercícios de álgebra linear 2016

exercícios de álgebra linear 2016 exercícios de álgebra linear 206 maria irene falcão :: maria joana soares Conteúdo Matrizes 2 Sistemas de equações lineares 7 3 Determinantes 3 4 Espaços vetoriais 9 5 Transformações lineares 27 6 Valores

Leia mais

NOTAÇÕES. R N C i z. ]a, b[ = {x R : a < x < b} (f g)(x) = f(g(x)) n. = a 0 + a 1 + a a n, sendo n inteiro não negativo.

NOTAÇÕES. R N C i z. ]a, b[ = {x R : a < x < b} (f g)(x) = f(g(x)) n. = a 0 + a 1 + a a n, sendo n inteiro não negativo. R N C i z det A d(a, B) d(p, r) AB Â NOTAÇÕES : conjunto dos números reais : conjunto dos números naturais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : determinante

Leia mais

FUVEST Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

FUVEST Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (9) -7 O ELITE RESOLVE IME 00 PORTUGUÊS/INGLÊS Você na elite das universidades! FUVEST 00 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (9) 5-0 O ELITE RESOLVE FUVEST

Leia mais

1. (Espcex 2013) A figura geométrica formada pelos afixos das raízes complexas da equação a) 7 3 b) 6 3 c) 5 3 d) 4 3 e) 3 3

1. (Espcex 2013) A figura geométrica formada pelos afixos das raízes complexas da equação a) 7 3 b) 6 3 c) 5 3 d) 4 3 e) 3 3 Complexos 06. (Espcex 0) A figura geométrica formada pelos afixos das raízes complexas da equação a) 7 b) 6 c) 5 d) e) x 8 0 tem área igual a. (Unicamp 0) Chamamos de unidade imaginária e denotamos por

Leia mais

Exercícios de Aprofundamento 2015 Mat - Polinômios

Exercícios de Aprofundamento 2015 Mat - Polinômios Exercícios de Aprofundamento 05 Mat - Polinômios. (Espcex (Aman) 05) O polinômio (x) x x deixa resto r(x). Sabendo disso, o valor numérico de r( ) é a) 0. b) 4. c) 0. d) 4. e) 0. 5 f(x) x x x, uando dividido

Leia mais

Matemática Matrizes e Determinantes

Matemática Matrizes e Determinantes . (Unesp) Um ponto P, de coordenadas (x, y) do a plano cartesiano ortogonal, é representado pela matriz 5. (Unicamp) Considere a matriz M b a, onde coluna assim como a matriz coluna b a e b são números

Leia mais

Inversão de Matrizes

Inversão de Matrizes Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2017.1 18 de

Leia mais

Geometria Analítica. Distância entre dois pontos: (d AB ) 2 = (x B x A ) 2 + (y B y A ) 2 A( 7, 5 ) P( 5, 2 ) B( 3, 2 ) Q( 3, 4 ) d = 5.

Geometria Analítica. Distância entre dois pontos: (d AB ) 2 = (x B x A ) 2 + (y B y A ) 2 A( 7, 5 ) P( 5, 2 ) B( 3, 2 ) Q( 3, 4 ) d = 5. Erivaldo UDESC Geometria Analítica Distância entre dois pontos: (d AB ) 2 = (x B x A ) 2 + (y B y A ) 2 A( 7, 5 ) B( 3, 2 ) d 2 = ( 4 ) 2 + ( 3 ) 2 d = 5 P( 5, 2 ) Q( 3, 4 ) d 2 = ( 8 ) 2 + ( 6 ) 2 d =

Leia mais

Módulo de Equações do Segundo Grau. Relações entre coeficientes e raízes. Nono Ano

Módulo de Equações do Segundo Grau. Relações entre coeficientes e raízes. Nono Ano Módulo de Equações do Segundo Grau Relações entre coeficientes e raízes. Nono Ano Relações entre Coeficientes e Raízes. Exercícios Introdutórios Exercício. Fazendo as operações de soma e de produto entre

Leia mais

01. Determinar as equações da reta que passa pelo ponto A( 2, 3, 2) e tem a. = 2x. v são: b c

01. Determinar as equações da reta que passa pelo ponto A( 2, 3, 2) e tem a. = 2x. v são: b c 01. Determinar as equações da reta que passa pelo ponto A(, 3, ) e tem a direção do vetor v = 3 i + k. a = 3 As componentes do vetor v são: b = 0. c = Tendo em vista que b = 0, a reta se acha num plano

Leia mais

MAT3457 ÁLGEBRA LINEAR PARA ENGENHARIA I 1 a Lista de Exercícios - 1 o semestre de 2018

MAT3457 ÁLGEBRA LINEAR PARA ENGENHARIA I 1 a Lista de Exercícios - 1 o semestre de 2018 MAT3457 ÁLGEBRA LINEAR PARA ENGENHARIA I a Lista de Exercícios - o semestre de 8 Exercícios -8: os espaços V e V 3. Exercícios 9-7: dependência, independência linear, bases. Exercícios 8-48: sistemas lineares.

Leia mais

Álgebra Linear e Geometria Anaĺıtica. Matrizes e Sistemas de Equações Lineares

Álgebra Linear e Geometria Anaĺıtica. Matrizes e Sistemas de Equações Lineares universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 1 Matrizes e Sistemas de Equações Lineares Geometria anaĺıtica em R 3 [1 01]

Leia mais

UFSC. Matemática (Violeta) 21) Resposta: 38. Comentário. 01. Incorreta. f(0, 3) = f(0, 4) = Correta. m < 0 m 1 2 < 0.

UFSC. Matemática (Violeta) 21) Resposta: 38. Comentário. 01. Incorreta. f(0, 3) = f(0, 4) = Correta. m < 0 m 1 2 < 0. UFSC Matemática (Violeta) 1) Resposta: 8 01. Incorreta. f(0, ) = f(0, ) = 0 0. Correta. m < 0 m 1 < 0 1 Logo, f m = m 1 m 1 < m 1 < m 0. Correta. Pela função f(x) = x x z 08. Incorreta. Im(f) = z 16. Incorreta.

Leia mais

Álgebra Linear. Curso: Engenharia Electrotécnica e de Computadores 1 ō ano/1 ō S 2006/07

Álgebra Linear. Curso: Engenharia Electrotécnica e de Computadores 1 ō ano/1 ō S 2006/07 Álgebra Linear Curso: Engenharia Electrotécnica e de Computadores ō ano/ ō S 6/7 a Lista: SISTEMAS DE EQUAÇÕES LINEARES E ÁLGEBRA DE MATRIZES Sistemas de equações lineares. Quais das seguintes equações

Leia mais

Operações Básicas, Conjuntos, Fatorações, Exponenciação e Logaritmos

Operações Básicas, Conjuntos, Fatorações, Exponenciação e Logaritmos Operações Básicas, Conjuntos, Fatorações, Exponenciação e Logaritmos Alexandre Alborghetti Londero Pré UFSC/UFSC Blumenau 1 Operações Básicas Adição e Subtração Operações que reúnem ou excluem objetos

Leia mais

Prova: Usando as definições e propriedades de números reais, temos λz = λx + iλy e

Prova: Usando as definições e propriedades de números reais, temos λz = λx + iλy e Lista Especial de Exercícios de Física Matemática I Soluções (Número complexo, sequência de Cauchy, função exponencial e movimento hamônico simples) IFUSP - 8 de Agosto de 08 Exercício Se z x + iy, x,

Leia mais

... Onde usar os conhecimentos os sobre...

... Onde usar os conhecimentos os sobre... IX NÚMEROS COMPLEXOS E POLINÔMIOS Por que aprender sobre Números Complexos?... Ao estudar os Números Complexos percebemos que sua ligação à geometria nos dá uma perspectiva mais rica dos métodos geométricos

Leia mais

o anglo resolve a prova de Matemática do ITA

o anglo resolve a prova de Matemática do ITA o anglo resolve a prova de Matemática do ITA Código: 858005 É trabalho pioneiro. Prestação de serviços com tradição de confiabilidade. Construtivo, procura colaborar com as Bancas Examinadoras em sua tarefa

Leia mais

Resolução dos Exercícios 31/05-09/06.

Resolução dos Exercícios 31/05-09/06. Resolução dos Exercícios 31/05-09/06. 1. Seja A um domínio de integridade. Mostre que todo subgrupo finito de U(A) é cíclico. Seja K o corpo de frações de A. Então A é um subanel de K (identificado com

Leia mais

Números Complexos 2017

Números Complexos 2017 Números Complexos 07. (Eear 07) Se i é a unidade imaginária, então i i i é um número complexo que pode ser representado no plano de Argand-Gauss no quadrante. a) primeiro b) segundo c) terceiro d) quarto.

Leia mais

CRITÉRIO DE EISENSTEIN. Marília Martins Cabral Orientador: Igor Lima

CRITÉRIO DE EISENSTEIN. Marília Martins Cabral Orientador: Igor Lima CRITÉRIO DE EISENSTEIN 1 Marília Martins Cabral Orientador: Igor Lima NOTAÇÕES a b a divide b. a b a não divide b x n a variável x elevado a potência n. a n coeficiente de x n 2 INTRODUÇÃO: POLINÔMIOS

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Escola Secundária com º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Taxa de Variação e Derivada 4º Teste de avaliação Grupo I As

Leia mais

Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 1. Terceiro Ano - Médio

Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 1. Terceiro Ano - Médio Material Teórico - Módulo: Vetores em R 2 e R 3 Módulo e Produto Escalar - Parte 1 Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Módulo de um vetor O módulo

Leia mais

Números Complexos. Matemática Básica. Números Complexos. Números Complexos: Um Pouco de História. Humberto José Bortolossi.

Números Complexos. Matemática Básica. Números Complexos. Números Complexos: Um Pouco de História. Humberto José Bortolossi. Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Números Complexos Parte 8 Parte 08 Matemática Básica 1 Parte 08 Matemática Básica 2 Números

Leia mais