PESQUISA EM MERCADO DE CAPITAIS. Prof. Patricia Maria Bortolon, D. Sc. (colaboração de Prof. Claudio Cunha)

Tamanho: px
Começar a partir da página:

Download "PESQUISA EM MERCADO DE CAPITAIS. Prof. Patricia Maria Bortolon, D. Sc. (colaboração de Prof. Claudio Cunha)"

Transcrição

1 PESQUISA EM MERCADO DE CAPITAIS Prof. Patrca Mara Bortolon, D. Sc. (colaboração de Prof. Claudo Cunha)

2 Cap. 15 Testes Empírcos de Modelos de Equlíbro ELTON, E.; GRUBER, M.; BROWN, S., GOETZMANN, W. Moderna Teora de Carteras e Análse de Investmentos. São Paulo: Edtora Atlas, 2004.

3 Revsão do Modelo CAPM Pressupostos Prmero: não há custos de transação Segundo: os atvos são nfntamente dvsíves Tercero: ausênca de mposto de renda da pessoa físca Quarto: os nvestdores são tomadores de preço Qunto: nvestdores tomam decsões com base em termos de retornos esperados e desvos padrão Sexto: são permtdas vendas a descoberto lmtadas Sétmo: é permtda a concessão e a tomada de empréstmos lmtados à taxa de juros sem rsco Otavo e nono: homogenedade de expectatvas; Investdores nteressados em méda e varânca dos retornos Investdores têm expectatvas dêntcas Décmo: todos os atvos são negocáves no mercado

4 Revsão do Modelo CAPM Prova Intutva Frontera efcente, com concessão e tomada de crédto P: cartera de atvos de rsco do nvestdor

5 Revsão do Modelo CAPM Fórmula de Precfcação

6 Implcações do Modelo CAPM E R R b E R f m R f I1: O Retorno Esperado E[R] é crescente em Beta (b) I2: O Retorno Esperado E[R] é função lnear de Beta (b) I3: O Beta (b ) é a únca característca do atvo que afeta E[R ] I4:...qualquer estratéga de nvestmento deverá representar um jogo justo em relação ao modelo. I5: Os parâmetros (a e b) da reta E[R] = a + b (b) devem ser: a = R f b = E[R m ] R f

7 Prmero problema metodológco: expectatvas versus dados passados Pelo CAPM, a relação é entre retornos esperados (expectatvas ex-ante) do atvo e da cartera de mercado. Não há base de dados ampla e confável das expectatvas de retorno (ex-ante). Os dados dsponíves são de retornos passados (ex-post). É precso assumr que os desvos passados em relação aos retornos esperados são aleatóros, com méda zero. Então: R t, Rf b Rt, m R f

8 Teste de Lntner (apud Douglas 1968) Defne cartera de mercado com pesos guas de 301 ações. Calcula beta de cada ação com retornos anuas de 1954 a Regressão: R Resultado: a 1 = 0,108 a 2 = 0,063 a 3 = 0,237 t, a 1 a b a todos sgnfcatvamente dferentes de zero 2 3 S 2 e

9 Crítcas de Mller* e Scholes** (1972) O retorno lvre de rsco R f pode varar ao longo do tempo. Pode haver erros nas estmatvas de beta (os retornos passados são aleatóros). Erros de medda de beta vesam as estmatvas de a 1 e a 2 no teste de Lntner. Se os erros de medda estverem correlaconados com os desvos aleatóros, então S 2 é proxy de beta e a 3 será dferente de zero. Se a dstrbução for assmétrca, podemos ter a 3 dferente de zero, mesmo que o rsco dossncrátco não cause maor retorno. * Ganhador do Prêmo Nobel de Economa em 1990, com Markowtz e Sharpe. (Lntner morreu em 1983.) ** Ganhador do Prêmo Nobel de Economa em 1997, com Merton.

10 Teste de Sharpe* e Cooper (1972) Calculam beta de cada atvo com base nos 60 meses anterores. A cada ano formam carteras por decl de beta. Computam retorno médo de cada cartera entre 1931 e Resultado: * Ganhador do Prêmo Nobel de Economa em 1990, com Markowtz e Mller

11 Teste de Black, Jensen e Scholes* (1972) Parte I sére temporal Semelhante a Sharpe e Cooper (1972). Modelo usado: t Rf b Rt, Se o modelo zero-beta do CAPM é váldo: Resultado: R, m Rf et, R R b 1 z f * Ganhador do Prêmo Nobel de Economa em 1997, com Merton. (Black morreu em 1995.)

12 Teste de Black, Jensen e Scholes* (1972) Parte II seção transversal (cross secton) Semelhante a Sharpe e Cooper (1972). Modelo usado: Resultado: R t, Rf a1 a2b a 1 = 0,00359 (nvalda versão básca do CAPM I5) a 2 = 0,0108 (nvalda a versão básca do CAPM I5) R 2 = 0,98 (consstente com relação lnear I2) todos sgnfcatvamente dferentes de zero * Ganhador do Prêmo Nobel de Economa em 1997, com Merton. (Black morreu em 1995.)

13 Teste de Fama* e MacBeth (1973) Semelhante a Lntner (apud Doulgas, 1968) Mas formam 20 carteras como Black, Jensen e Scholes (1972) e recalculam parâmetros a cada mês. Regressão: Resultados: R t, 0, t 1, t 0 < < R f (nvalda a versão básca do CAPM I5) 0 < < E[R m R f ] (nvalda a versão básca do CAPM I5) 2,t = 0 (consstente com I2) 3,t 0,t 1,t = 0 (consstente com I3) b 2, t b Não há auto-correlação entre retornos nem resíduos (consstente com I4) 2 3, t S 2 e t * Ganhador do Prêmo Nobel de Economa em 2013, com Shller.

14 Testes de Gbbons (1982) e Stambaugh (1982) Gbbons (1982) Adcona na análse econométrca uma restrção para a relação entre o parâmetros de regressão. Mostra que o poder explcatvo dessa análse é substancalmente menor que da análse sem restrção (razão de verossmlhança), o que nvalda o CAPM. Stambaugh (1982) Faz teste semelhante a Gbbons (1982), mas compara os poderes explcatvos da regressões utlzando outro método (multplcador de Lagrange). Stambaugh obtém apoo forte à versão zero-beta do CAPM, mas as evdêncas quanto à versão básca são desfavoráves. Utlza defnções alternatvas de cartera de mercado (mas lmtado a atvos amercanos). O resultado é domnado pelas ações, por causa da volatldade desses atvos)

15 A Crítca de Roll (1977) A relação lnear postva entre o retorno esperado de um atvo e o seu beta é uma necessdade matemátca, caso a cartera de mercado seja representada por uma cartera efcente ex-post. O CAPM não é testável a menos que se use exatamente a cartera de mercado. Pode-se pegar uma cartera efcente ex-post, com resultados que valdam o CAPM mesmo que ele seja falso. Os resultados dos testes são bastante sensíves a pequenas varações no índce que representa a cartera de mercado Os métodos apenas testam a efcênca ou não da cartera escolhda para representar a cartera de mercado.

16 Resumo das Evdêncas Empírcas

17 Conclusões Do lvro Texto: Este talvez seja o capítulo mas dfícl de conclur neste lvro. De um lado dspomos de um grande volume de evdêncas que parecem apóar o CAPM. De outro, temos argumentos muto lógcos de Roll questonando essas evdêncas. De Fama e French (2004):...the CAPM s emprcal problems probably nvaldate ts use n applcatons.

18 Novos Problemas com o CAPM Volações da I3: outras característcas das empresas afetam o retorno Basu (1977) quanto menor a razão Preço / Lucro por Ação (P/LPA), mao o retorno esperado Banz (1981) quanto menor o valor de mercado da empresa, maor o retorno esperado Bandhar (1988) quanto maor alvancagem fnancera, maor o retorno esperado (mesmo ajustando beta para a alavancagem) Statman (1980) quanto menor a razão Preço / Valor Patrmonal da Ação (P / VPA) maor o retorno esperado Modelo de 3 fatores de Fama e French ajusta para essas anomalas Volações da I4: Jegadesh e Ttman (1993) ações com maores retornos no passado (6 meses) tendem a ter maores retornos no futuro (até 2 anos) - momento

19 Novos Problemas - Exemplo

20 Na Prátca a Teora é Outra Brealey & Myers (2000 4ª Edção):...securty prces reflect the true underlyng values of assets. ( preços de títulos refletem o verdadero valor dos atvos sujacentes) Brealey & Myers (2008 8ª Edção): much more research s needed before we have a full understandng of why prces sometmes get so out of lne wth what appears to be ther dscounted future payoffs. (muto mas pesqusa é necessára antes que tenhamos uma completa compreensão de porque os preços às vezes fcam tão for da lnha que parece ser o desconto dos ganhos futuros)

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

Diversificação - exemplo

Diversificação - exemplo INCETEZA E ISCO /4/009 Dversfcação - exemplo oss cap. 0 Cartera com N atvos Nova stuação: Cartera mas dversfcada Todos os títulos têm a mesma Varânca Todas as covarâncas são guas Todos os Títulos tem a

Leia mais

Sinézio Fernandes Maia Professor Adjunto do Departamento de Economia da UFPB

Sinézio Fernandes Maia Professor Adjunto do Departamento de Economia da UFPB SETOR BANCÁRIO BRASILEIRO NO PERÍODO DE JANEIRO DE 2009 A JULHO DE 2010: AVALIAÇÃO DA RELAÇÃO DE RISCO E RETORNO COM ABORDAGEM NAS TEORIAS DE MARKOWITZ E SHARPE Alza Slva de Lma Estudante de Pós-graduação

Leia mais

PRESSUPOSTOS DO MODELO DE REGRESSÃO

PRESSUPOSTOS DO MODELO DE REGRESSÃO PREUPOTO DO MODELO DE REGREÃO A aplcação do modelo de regressão lnear múltpla (bem como da smples) pressupõe a verfcação de alguns pressupostos que condensamos segudamente.. Os erros E são varáves aleatóras

Leia mais

Universidade Estadual de Ponta Grossa/Departamento de Economia/Ponta Grossa, PR. Palavras-chave: CAPM, Otimização de carteiras, ações.

Universidade Estadual de Ponta Grossa/Departamento de Economia/Ponta Grossa, PR. Palavras-chave: CAPM, Otimização de carteiras, ações. A CONSTRUÇÃO DE CARTEIRAS EFICIENTES POR INTERMÉDIO DO CAPM NO MERCADO ACIONÁRIO BRASILEIRO: UM ESTUDO DE CASO PARA O PERÍODO 006-010 Rodrgo Augusto Vera (PROVIC/UEPG), Emerson Martns Hlgemberg (Orentador),

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

Teste do modelo de otimização de carteiras pelo índice beta

Teste do modelo de otimização de carteiras pelo índice beta Teste do modelo de otmzação de carteras pelo índce beta Cleber Gonçalves Junor Unversdade Federal de Itajubá cgj@unfe.edu.br Claton Gonçalves Unversdade Federal de Itajubá Resumo Recentemente, pode-se

Leia mais

( k) Tema 02 Risco e Retorno 1. Conceitos Básicos

( k) Tema 02 Risco e Retorno 1. Conceitos Básicos FEA -USP Graduação Cêcas Cotábes EAC05 04_0 Profa. Joaíla Ca. Rsco e Retoro. Cocetos Báscos Rotero BE-cap.6 Tema 0 Rsco e Retoro. Cocetos Báscos I. O que é Retoro? II. Qual é o Rsco de um Atvo Idvdual

Leia mais

4 Otimização e Diversificação: o Binômio Risco-Retorno

4 Otimização e Diversificação: o Binômio Risco-Retorno 4 Otmzação e Dversfcação: o Bnômo Rsco-Retorno O alto dnamsmo e a crescente sofstcação do mercado fnancero mundal fazem com que os nvestdores tenham o constante desafo de utlzarem estratégas que maxmzem

Leia mais

PESQUISA EM MERCADO DE CAPITAIS. Prof. Patricia Maria Bortolon, D. Sc.

PESQUISA EM MERCADO DE CAPITAIS. Prof. Patricia Maria Bortolon, D. Sc. PESQUISA EM MERCADO DE CAPITAIS Prof. Patricia Maria Bortolon, D. Sc. Cap. 13 O Modelo Padrão de Precificação dos Ativos ELTON, E.; GRUBER, M.; BROWN, S., GOETZMANN, W. Moderna Teoria de Carteiras e Análise

Leia mais

Finanças - BACEN 1997 CESPE

Finanças - BACEN 1997 CESPE Fnanças - BACE 997 CESPE Legenda: Tema, Itens Importantes Certo, Errado Questão 3. Exstem dversos nstrumentos fnanceros a dsposção do nvestdores: LIBOR, ações, opções, Eurobond, Swaps. Quanto às característcas

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

Capítulo 1. Exercício 5. Capítulo 2 Exercício

Capítulo 1. Exercício 5. Capítulo 2 Exercício UNIVERSIDADE FEDERAL DE GOIÁS CIÊNCIAS ECONÔMICAS ECONOMETRIA (04-II) PRIMEIRA LISTA DE EXERCÍCIOS Exercícos do Gujarat Exercíco 5 Capítulo Capítulo Exercíco 3 4 5 7 0 5 Capítulo 3 As duas prmeras demonstrações

Leia mais

1. CORRELAÇÃO E REGRESSÃO LINEAR

1. CORRELAÇÃO E REGRESSÃO LINEAR 1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação

Leia mais

4. Conceitos de Risco-Retorno, diversificação e índices de desempenho de Fundos de Investimento

4. Conceitos de Risco-Retorno, diversificação e índices de desempenho de Fundos de Investimento 4. Concetos de Rsco-Retorno, dversfcação e índces de desempenho de Fundos de Investmento O alto dnamsmo e a crescente sofstcação do mercado fnancero mundal fazem com que os nvestdores tenham o constante

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

PESQUISA EM MERCADO DE CAPITAIS. Prof. Patricia Maria Bortolon, D. Sc.

PESQUISA EM MERCADO DE CAPITAIS. Prof. Patricia Maria Bortolon, D. Sc. PESQUISA EM MERCADO DE CAPITAIS Prof. Patricia Maria Bortolon, D. Sc. Cap. 14 Versões não Convencionais do Modelo de Formação de Preços de Ativos ELTON, E.; GRUBER, M.; BROWN, S., GOETZMANN, W. Moderna

Leia mais

CÁLCULO DO RETORNO ESPERADO DA CARTEIRA DE MERCADO E DO RETORNO DO ATIVO LIVRE DE RISCO PARA O BRASIL

CÁLCULO DO RETORNO ESPERADO DA CARTEIRA DE MERCADO E DO RETORNO DO ATIVO LIVRE DE RISCO PARA O BRASIL ESCOLA FEDERAL DE ENGENHARIA DE ITAJUBÁ INSTITUTO DE ENGENHARIA MECÂNICA DEPARTAMENTO DE PRODUÇÃO CÁLCULO DO RETORNO ESPERADO DA CARTEIRA DE MERCADO E DO RETORNO DO ATIVO LIVRE DE RISCO PARA O BRASIL Dego

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

Ccapm condicional com aprendizagem

Ccapm condicional com aprendizagem SÃO PAULO, SP JAN./FEV. 2013 ISSN 1518-6776 (mpresso) ISSN 1678-6971 (on-lne) Submssão: 8 fev. 2012. Acetação: 8 ago. 2012. Sstema de avalação: às cegas dupla (double blnd revew). UNIVERSIDADE PRESBITERIANA

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

2 Incerteza de medição

2 Incerteza de medição 2 Incerteza de medção Toda medção envolve ensaos, ajustes, condconamentos e a observação de ndcações em um nstrumento. Este conhecmento é utlzado para obter o valor de uma grandeza (mensurando) a partr

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão. AULA 2.1 Oligopólio em Quantidades (Cournot)

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão. AULA 2.1 Oligopólio em Quantidades (Cournot) Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 2.1 Olgopólo em Quantdades (Cournot) Isabel Mendes 2007-2008 18-03-2008 Isabel Mendes/MICRO II 1 2.1 Olgopólo em Quantdades

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

Gabarito da Lista de Exercícios de Econometria I

Gabarito da Lista de Exercícios de Econometria I Gabarto da sta de Exercícos de Econometra I Professor: Rogéro lva Mattos Montor: eonardo enrque A. lva Questão Y X y x xy x ŷ ˆ ˆ y ŷ (Y - Y ) (X - X ) (Ŷ - Y ) 360 00-76 -00 35.00 40.000 36-4 30.976 3076

Leia mais

UM ESTUDO SOBRE DIVERSIFICAÇÃO NA BOLSA DE VALORES DE SÃO PAULO

UM ESTUDO SOBRE DIVERSIFICAÇÃO NA BOLSA DE VALORES DE SÃO PAULO UM ESTUDO SOBRE DIVERSIFICAÇÃO A BOLSA DE VALORES DE SÃO PAULO Autores: André Luz Oda, Mara Carlota Morandn Senger e Alexandre oboru Chára Resumo O artgo estuda a redução de rsco que podera ter sdo obtda

Leia mais

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados Modelo lnear normal com erros heterocedástcos O método de mínmos quadrados ponderados Varâncas homogêneas Varâncas heterogêneas y y x x Fgura 1 Ilustração da dstrbução de uma varável aleatóra y (condconal

Leia mais

Beta Contábil Versus Beta CAPM: Uma Investigação Empírica na Mercado Financeiro Brasileiro

Beta Contábil Versus Beta CAPM: Uma Investigação Empírica na Mercado Financeiro Brasileiro 40 Beta Contábl Versus Beta CAPM: Uma Investgação Empírca na Mercado Fnancero Braslero Accountable Beta Versus CAPM Beta: A Emprcal Research n tne Brazlan Fnancal Market Ramundo Nonato Rodrgues Doutor

Leia mais

Finanças as Comportamentais

Finanças as Comportamentais Fnanças as Comportamentas Prf. José Fajardo Barbachan IBMEC Mercado Efcente Um mercado fnancero é efcente se o preço de cada atvo é gual ao valor esperado descontado dos fluxos de caxa futuros. Perguntas:

Leia mais

'.. FGV RISCO IDIOSSINCRÁTICO E DIVERSIFICAÇÃO EM. PORTFÓLlOS

'.. FGV RISCO IDIOSSINCRÁTICO E DIVERSIFICAÇÃO EM. PORTFÓLlOS '.. FGV ESAPE FUNDAÇÃO GETULIO VAGAS ESCOLA BASILEIA DE ADMINISTAÇÃO PÚBLICA E DE EMPESAS MESTADO EXECUTIVO EM GESTÃO EMPESAIAL ISCO IDIOSSINCÁTICO E DIVESIFICAÇÃO EM POTFÓLlOS DISSETAÇÃO APESENTADA À

Leia mais

Capítulo 2 Taxas de Juro

Capítulo 2 Taxas de Juro Capítulo 2 Taxas de Juro 2.. EFINIÇÕE E EIA E TAXA E JURO 2... Valor Actualzado, Valor Futuro e Juros Compostos Valor Futuro FV (Future Value) É o valor, numa data futura, de um nvestmento feto no presente

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso de Admnstração em Gestão Públca Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos uns dos

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2 Econometra - Lsta 3 - Regressão Lnear Múltpla Professores: Hedbert Lopes, Prscla Rbero e Sérgo Martns Montores: Gustavo Amarante e João Marcos Nusdeo QUESTÃO 1. Você trabalha na consultora Fazemos Qualquer

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

AS CARTEIRAS DE INVESTIMENTO E A SEMIVARIÂNCIA

AS CARTEIRAS DE INVESTIMENTO E A SEMIVARIÂNCIA AS CARTEIRAS DE INVESTIMENTO E A SEMIVARIÂNCIA chrstóvão thago de brto neto Professor Adjunto II do Programa de Engenhara de Produção da Unversdade Federal do Ro Grande do Norte (UFRN) - E-mal: brto@ufrnet.br

Leia mais

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma:

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma: Professora Janete Perera Amador 1 8 Meddas Descrtvas Vmos anterormente que um conjunto de dados pode ser resumdo através de uma dstrbução de freqüêncas, e que esta pode ser representada através de uma

Leia mais

Estudo e Previsão da Demanda de Energia Elétrica. Parte II

Estudo e Previsão da Demanda de Energia Elétrica. Parte II Unversdade Federal de Paraná Setor de Tecnologa Departamento de Engenhara Elétrca Estudo e Prevsão da Demanda de Energa Elétrca Parte II Prof: Clodomro Unshuay-Vla Etapas de um Modelo de Prevsão Objetvo

Leia mais

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL. A FUNÇÃO DE PRODUÇÃO E SUPERMERCADOS NO BRASIL ALEX AIRES CUNHA (1) ; CLEYZER ADRIAN CUNHA (). 1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL;.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

Leia mais

Estudo de Eventos: Procedimentos e Estudos Empíricos

Estudo de Eventos: Procedimentos e Estudos Empíricos Estudo de Eventos: Procedmentos e Estudos Empírcos Wagner Moura Lamouner 1 Else MOntero Noguera RESUMO O prncpal objetvo deste trabalho é dscutr as aplcações e os pontos fundamentas da metodologa de estudo

Leia mais

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

TESTANDO EMPIRICAMENTE O CAPM CONDICIONAL DOS RETORNOS ESPERADOS DE PORTFOLIOS DO MERCADO BRASILEIRO, ARGENTINO E CHILENO.

TESTANDO EMPIRICAMENTE O CAPM CONDICIONAL DOS RETORNOS ESPERADOS DE PORTFOLIOS DO MERCADO BRASILEIRO, ARGENTINO E CHILENO. ELMO TAMBOSI FILHO TESTANDO EMPIRICAMENTE O CAPM CONDICIONAL DOS RETORNOS ESPERADOS DE PORTFOLIOS DO MERCADO BRASILEIRO, ARGENTINO E CHILENO. Tese de Doutorado apresentada ao Programa de Pós-Graduação

Leia mais

CAPM TEÓRICO VERSUS CAPM EMPÍRICO: SUGESTÃO PARA ESTIMATIVA DO BETA NAS DECISÕES FINANCEIRAS

CAPM TEÓRICO VERSUS CAPM EMPÍRICO: SUGESTÃO PARA ESTIMATIVA DO BETA NAS DECISÕES FINANCEIRAS CAP TEÓRICO VERSUS CAP EPÍRICO: SUGESTÃO PARA ESTIATIVA DO BETA NAS DECISÕES INANCEIRAS Pablo Rogers UNIVERSIDADE DE SÃO PAULO / UNIVERSIDADE EDERAL DE VIÇOSA Resumo José Roberto Securato UNIVERSIDADE

Leia mais

Análise de Variância. Comparação de duas ou mais médias

Análise de Variância. Comparação de duas ou mais médias Análse de Varânca Comparação de duas ou mas médas Análse de varânca com um fator Exemplo Um expermento fo realzado para se estudar dabetes gestaconal. Desejava-se avalar o comportamento da hemoglobna (HbA)

Leia mais

Aula 2. aula passada. Bibliografia: VVH (1995), cap 4; Motta (2005), Cap 2, 3; 1. Definição, objetivos; 2. Defesa da concorrência no Brasil;

Aula 2. aula passada. Bibliografia: VVH (1995), cap 4; Motta (2005), Cap 2, 3; 1. Definição, objetivos; 2. Defesa da concorrência no Brasil; Aula 2 Bblografa: VVH (1995), cap 4; Motta (2005), Cap 2, 3; aula passada 1. Defnção, objetvos; 2. Defesa da concorrênca no Brasl; 3. Defesa da concorrênca em pases em desenvolvmento. 1 Plano da aula I.

Leia mais

Diferença entre a classificação do PIB per capita e a classificação do IDH

Diferença entre a classificação do PIB per capita e a classificação do IDH Curso Bem Estar Socal Marcelo Ner - www.fgv.br/cps Metas Socas Entre as mutas questões decorrentes da déa de se mplementar uma proposta de metas socas temos: Qual a justfcatva econômca para a exstênca

Leia mais

APLICAÇÃO DE UM NOVO MODELO DE ANÁLISE DE RISCO NA BOVESPA: O D-CAPM

APLICAÇÃO DE UM NOVO MODELO DE ANÁLISE DE RISCO NA BOVESPA: O D-CAPM APLICAÇÃO E UM NOVO MOELO E ANÁLISE E RISCO NA BOVESPA: O -CAPM Perre Lucena 1 e 2 Rua Farme de Amoedo, 77 Apto. 203 Ipanema CEP: 22420-020 Ro de Janero/RJ Brasl Tel.: (21) 9394-0794 E-malperrelucena@uol.com.br

Leia mais

Experiência V (aulas 08 e 09) Curvas características

Experiência V (aulas 08 e 09) Curvas características Experênca (aulas 08 e 09) Curvas característcas 1. Objetvos 2. Introdução 3. Procedmento expermental 4. Análse de dados 5. Referêncas 1. Objetvos Como no expermento anteror, remos estudar a adequação de

Leia mais

Representação e Descrição de Regiões

Representação e Descrição de Regiões Depos de uma magem ter sdo segmentada em regões é necessáro representar e descrever cada regão para posteror processamento A escolha da representação de uma regão envolve a escolha dos elementos que são

Leia mais

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade.

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade. Heterocedastcdade y = β 0 + β + β + β k k + u O que heterocedastcdade? Lembre-se da hpótese de homocedastcdade: condconal às varáves eplcatvas, a varânca do erro, u, é constante Se sso não for verdade,

Leia mais

CAPÍTULO 7 TESTES DE HIPÓTESES

CAPÍTULO 7 TESTES DE HIPÓTESES CAPÍTULO 7 TESTES DE HIPÓTESES Além dos métodos de estmação de parâmetros e de construção de ntervalos de confança, os testes de hpóteses são procedmentos usuas da nferênca estatístca, útes na tomada de

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

Gestão e Teoria da Decisão

Gestão e Teoria da Decisão Gestão e Teora da Decsão Logístca e Gestão de Stocks Estratégas de Localzação Lcencatura em Engenhara Cvl Lcencatura em Engenhara do Terrtóro 1 Estratéga de Localzação Agenda 1. Classfcação dos problemas

Leia mais

Econometria II. Painel (1ª Diferenças, Efeitos Fixos e escolha entre estimadores de painel)

Econometria II. Painel (1ª Diferenças, Efeitos Fixos e escolha entre estimadores de painel) Eco montora Leandro Anazawa Econometra II Este não é um resumo extensvo. O ntuto deste resumo é de servr como gua para os seus estudos. Procure desenvolver as contas e passos apresentados em sala de aula.

Leia mais

Identidade dos parâmetros de modelos segmentados

Identidade dos parâmetros de modelos segmentados Identdade dos parâmetros de modelos segmentados Dana Campos de Olvera Antono Polcarpo Souza Carnero Joel Augusto Munz Fabyano Fonseca e Slva 4 Introdução No Brasl, dentre os anmas de médo porte, os ovnos

Leia mais

Revista de Ciências da Administração ISSN: Universidade Federal de Santa Catarina Brasil

Revista de Ciências da Administração ISSN: Universidade Federal de Santa Catarina Brasil Revsta de Cêncas da Admnstração ISSN: 1516-3865 rca.cse@contato.ufsc.br Unversdade Federal de Santa Catarna Brasl Carnero Afonso da Costa Jr., Newton; Nór Güttler, Cao DIVERSFICAÇÃO E AVALIAÇÃO DE CARTEIRAS

Leia mais

Eixo Temático: Estratégia e Internacionalização de Empresas. PRECIFICAÇÃO DE ETFs BRASILEIROS. BRAZILIAN ETFs PRICING

Eixo Temático: Estratégia e Internacionalização de Empresas. PRECIFICAÇÃO DE ETFs BRASILEIROS. BRAZILIAN ETFs PRICING Exo Temátco: Estratéga e Internaconalzação de Empresas RESUMO PRECIFICAÇÃO DE ETFs BRASILEIROS BRAZILIAN ETFs PRICING Bruno Mlan e Paulo Sergo Ceretta O objetvo deste estudo é verfcar, com base nos tradconas

Leia mais

INFLAÇÃO E DESIGUALDADE*

INFLAÇÃO E DESIGUALDADE* Artgos Outono 2009 INFLAÇÃO E DESIGUALDADE* Isabel H. orrea** 1. INTRODUÇÃO A baxa persstente da taxa de nflação é talvez a mudança de polítca maor, mas sustentada, e comum a um maor número de países desenvolvdos.

Leia mais

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística ESTATÍSTICA MULTIVARIADA º SEMESTRE 010 / 11 EXERCÍCIOS PRÁTICOS - CADERNO 1 Revsões de Estatístca -0-11 1.1 1.1. (Varáves aleatóras: função de densdade e de dstrbução; Méda e Varânca enquanto expectatvas

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

INVESTIMENTOS NO MERCADO IMOBILIÁRIO DO RIO DE JANEIRO E A FRONTEIRA EFICIENTE DE MARKOWITZ

INVESTIMENTOS NO MERCADO IMOBILIÁRIO DO RIO DE JANEIRO E A FRONTEIRA EFICIENTE DE MARKOWITZ FACULDADE DE ECONOMIA E FINANÇAS IBMEC PROGRAMA DE PÓS-GRADUAÇÃO E PESQUISA EM ADMINISTRAÇÃO E ECONOMIA DISSERTAÇÃO DE MESTRADO PROFISSIONALIZANTE EM ADMINISTRAÇÃO INVESTIMENTOS NO MERCADO IMOBILIÁRIO

Leia mais

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores.

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores. Estatístca Aplcada à Engenhara AULA 4 UNAMA - Unversdade da Amazôna.8 MEDIDA EPARATRIZE ão valores que separam o rol (os dados ordenados) em quatro (quarts), dez (decs) ou em cem (percents) partes guas.

Leia mais

Relevância de Prêmio por Risco País no Custo de Capital das Empresas

Relevância de Prêmio por Risco País no Custo de Capital das Empresas Dsponível em http:// RAC, Ro de Janero, v. 19, Edção Especal, art. 3, pp. 38-52, Mao 2015 http://dx.do.org/10.1590/1982-7849rac2015140097 Relevânca de Prêmo por Rsco País no Custo de Captal das Empresas

Leia mais

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva Teora da Regressão Espacal Aplcada a Modelos Genércos Sérgo Alberto Pres da Slva ITENS DE RELACIONAMENTOS Tópcos Báscos da Regressão Espacal; Banco de Dados Geo-Referencados; Modelos Genércos Robustos;

Leia mais

Introdução a Combinatória- Aplicações, parte II

Introdução a Combinatória- Aplicações, parte II Introdução a Combnatóra- Aplcações, AULA 7 7.1 Introdução Nesta aula vamos estudar aplcações um pouco dferentes das da aula passada. No caso estudaremos arranjos com repetção, permutações crculares e o

Leia mais

37 [C] Verdadeira. Veja justificativa do item [B]. Moda = 8

37 [C] Verdadeira. Veja justificativa do item [B]. Moda = 8 Resposta da questão 1: [C] Calculando:,5 + 10 + 8 + 9,4 + 8 +,4 + x + 7,4 = 8, 8,5 + 10 + 8 + 9,4 + 8 +,4 + x + 7,4 = 5, x = 9,9 Moda = 8 8+ 8 Medana = = 8,5 + 10 + 8 + 9,4 + 8 +,4 + 7,4 Méda das outras

Leia mais

Elementos de Estatística e Probabilidades II

Elementos de Estatística e Probabilidades II Elementos de Estatístca e Probabldades II Varáves e Vetores Aleatóros dscretos Inês Das 203 O prncpal objetvo da deste documento é fornecer conhecmentos báscos de varáves aleatóras dscretas e pares aleatóros

Leia mais

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma Redução dos Dados Júlo Osóro Meddas Característcas da Dstrbução Tendênca Central (Localzação) Varação (Dspersão) Forma 1 Meddas Característcas da Dstrbução Meddas Estatístcas Tendênca Central Dspersão

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

FAAP APRESENTAÇÃO (1)

FAAP APRESENTAÇÃO (1) ARESENTAÇÃO A Estatístca é uma cênca que organza, resume e smplfca nformações, além de analsá-las e nterpretá-las. odemos dvdr a Estatístca em três grandes campos:. Estatístca Descrtva- organza, resume,

Leia mais

Estatística - exestatmeddisper.doc 25/02/09

Estatística - exestatmeddisper.doc 25/02/09 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade

Leia mais

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método

Leia mais

Realimentação negativa em ampliadores

Realimentação negativa em ampliadores Realmentação negatva em ampladores 1 Introdução necessdade de amplfcadores com ganho estável em undades repetdoras em lnhas telefôncas levou o Eng. Harold Black à cração da técnca denomnada realmentação

Leia mais

DECISÃO SOB INCERTEZA

DECISÃO SOB INCERTEZA PPGE/UFRGS - Prof. Sabno Porto Junor 19/10/2005 Incerteza: o básco Curso de especalzação em Fnanças e Economa Dscplna: Incerteza e Rsco Prof: Sabno da Slva Porto Júnor Sabno@ppge.ufrgs.br 1 Introdução

Leia mais

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de métodos

Leia mais

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos.

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos. Meddas de Dspersão e Assmetra Desvo Médo Varânca Desvo Padrão Meddas de Assmetra Coefcente de Assmetra Exemplos lde 1 de 16 Meddas de Dspersão - Méda ervem para verfcação e representatvdade das meddas

Leia mais

MODELO RECEPTOR MODELO RECEPTOR MODELO RECEPTOR. Princípio do modelo:

MODELO RECEPTOR MODELO RECEPTOR MODELO RECEPTOR. Princípio do modelo: MODELO RECEPTOR Não modela a dspersão do contamnante. MODELO RECEPTOR Prncípo do modelo: Atacar o problema de dentfcação da contrbução da fonte em ordem nversa, partndo da concentração do contamnante no

Leia mais

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Centfca Curso Matemátca Engenhara Electrotécnca º Semestre º 00/0 Fcha nº 9. Um artgo da revsta Wear (99) apresenta dados relatvos à vscosdade do óleo e ao desgaste do aço maco. A relação entre estas

Leia mais

MODELO DE SELEÇÃO DE PORTFOLIO USANDO FUNÇÃO DE UTILIDADE

MODELO DE SELEÇÃO DE PORTFOLIO USANDO FUNÇÃO DE UTILIDADE MODELO DE SELEÇÃO DE PORTFOLIO SDO FÇÃO DE TILIDDE Renata Patríca L. Jeronymo M. Pnto nversdade Federal da Paraíba Departamento de Estatístca João Pessoa, P rasl renata@de.ufpb.br Roberto Qurno do ascmento

Leia mais

Efeito Trabalhador Adicional: Evidências Usando as Condições de Saúde dos Trabalhadores por Conta-Própria

Efeito Trabalhador Adicional: Evidências Usando as Condições de Saúde dos Trabalhadores por Conta-Própria Efeto Trabalhador Adconal: Evdêncas Usando as Condções de Saúde dos Trabalhadores por Conta-Própra Maurco Cortez Res IPEA Resumo De acordo com o efeto trabalhador adconal, a oferta agregada de trabalho

Leia mais

Assimetria de informação e os preços das emissões públicas de ações

Assimetria de informação e os preços das emissões públicas de ações XXVI ENEGEP - Fortaleza, CE, Brasl, 9 a de Outubro de 006 Assmetra de nformação e os preços das emssões públcas de ações Hudson Fernandes Amaral CAD/CEPEAD/UFMG) hamaral@face.ufmg.br Robert Aldo Iquapaza

Leia mais

Transistores Bipolares de Junção Parte I Transistores Bipolares de Junção (TBJs) Parte I

Transistores Bipolares de Junção Parte I Transistores Bipolares de Junção (TBJs) Parte I Transstores Bpolares de Junção (TBJs) Parte I apítulo 4 de (SEDRA e SMITH, 1996). SUMÁRIO Introdução 4.1. Estrutura Físca e Modos de Operação 4.2. Operação do Transstor npn no Modo Atvo 4.3. O Transstor

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ADMINISTRAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO ESPECIALIZAÇÃO EM MERCADO DE CAPITAIS

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ADMINISTRAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO ESPECIALIZAÇÃO EM MERCADO DE CAPITAIS UNIVESIDADE FEDEAL DO IO GANDE DO SUL ESCOLA DE ADMINISTAÇÃO OGAMA DE ÓS-GADUAÇÃO EM ADMINISTAÇÃO ESECIALIZAÇÃO EM MECADO DE CAITAIS MODENA TEOIA DE CATEIAS: DESENVOLVIMENTO E ANÁLISE DE UM MODELO DE SELEÇÃO

Leia mais

ANÁLISE DE COMPONENTES PRINCIPAIS, ANÁLISE FATORIAL: Exemplos em STATA. Prof. Dr. Evandro Marcos Saidel Ribeiro RESUMO

ANÁLISE DE COMPONENTES PRINCIPAIS, ANÁLISE FATORIAL: Exemplos em STATA. Prof. Dr. Evandro Marcos Saidel Ribeiro RESUMO UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ADMINISTRAÇÃO ANÁLISE DE COMPONENTES PRINCIPAIS, ANÁLISE FATORIAL: Eemplos em STATA. Prof. Dr. Evandro Marcos

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 4 Regressão Linear

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 4 Regressão Linear ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11 EERCÍCIOS PRÁTICOS - CADERNO 4 Regressão Lnear 4. EERCÍCIOS PARA RESOLVER NAS AULAS 4.1. O gestor de marketng duma grande cadea de supermercados quer determnar

Leia mais

PESQUISA EM MERCADO DE CAPITAIS. Prof. Patricia Maria Bortolon, D. Sc.

PESQUISA EM MERCADO DE CAPITAIS. Prof. Patricia Maria Bortolon, D. Sc. PESQUISA EM MERCADO DE CAPITAIS Prof. Patricia Maria Bortolon, D. Sc. Cap. 6 Técnicas de Cálculo da Fronteira Eficiente ELTON, E.; GRUBER, M.; BROWN, S., GOETZMANN, W. Moderna Teoria de Carteiras e Análise

Leia mais

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011 Instruções: PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 00/0 Cada uestão respondda corretamente vale (um) ponto. Cada uestão respondda ncorretamente vale - (menos um) ponto. Cada uestão

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.4

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.4 Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 5.4 Provsão de Bens Públcos de forma descentralzada: a solução de Lndahl Isabel Mendes 2007-2008 13-05-2008 Isabel Mendes/MICRO

Leia mais

Lista de Exercícios. 2 Considere o número de aparelhos com defeito na empresa Garra durante 50 dias.

Lista de Exercícios. 2 Considere o número de aparelhos com defeito na empresa Garra durante 50 dias. Classque as varáves: Faculdade Ptágoras / Dvnópols-MG Curso: Pscologa Dscplna: Estatístca Aplcada à Pscologa Lsta de Eercícos a) número de peças produzdas por hora; b) dâmetro eterno da peça; c) número

Leia mais

Aplicação da metodologia de Componentes Principais na análise da estrutura a termo de taxa de juros brasileira e no cálculo de Valor em Risco

Aplicação da metodologia de Componentes Principais na análise da estrutura a termo de taxa de juros brasileira e no cálculo de Valor em Risco Francsco Eduardo de Luna e Almeda Santos Aplcação da metodologa de Componentes Prncpas na análse da estrutura a termo de taxa de juros braslera e no cálculo de Valor em Rsco Dssertação de Mestrado Orentador:

Leia mais

MACROECONOMIA I LEC 201

MACROECONOMIA I LEC 201 ACROECONOIA I LEC 20 3.2. odelo IS-L Outubro 2007, sandras@fep.up.pt nesdrum@fep.up.pt 3.2. odelo IS-L odelo Keynesano smples (KS): equlíbro macroeconómco equlíbro no mercado de bens e servços (BS). odelo

Leia mais

Professor Mauricio Lutz CORRELAÇÃO

Professor Mauricio Lutz CORRELAÇÃO Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais

Correlação. Frases. Roteiro. 1. Coeficiente de Correlação 2. Interpretação de r 3. Análise de Correlação 4. Aplicação Computacional 5.

Correlação. Frases. Roteiro. 1. Coeficiente de Correlação 2. Interpretação de r 3. Análise de Correlação 4. Aplicação Computacional 5. Correlação Frases Uma probabldade razoável é a únca certeza Samuel Howe A experênca não permte nunca atngr a certeza absoluta. Não devemos procurar obter mas que uma probabldade. Bertrand Russel Rotero

Leia mais

Análise multivariada do risco sistemático dos principais mercados de ações da América Latina: um enfoque Bayesiano

Análise multivariada do risco sistemático dos principais mercados de ações da América Latina: um enfoque Bayesiano XXVI ENEGEP - Fortaleza, CE, Brasl, 9 a 11 de Outubro de 006 Análse multvarada do rsco sstemátco dos prncpas mercados de ações da Amérca Latna: um enfoque Bayesano André Asss de Salles (UFRJ) asalles@nd.ufrj.br

Leia mais